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PheWAS-based clustering of Mendelian
Randomisation instruments reveals distinct
mechanism-specific causal effects between
obesity and educational attainment

Liza Darrous 1,2,3 , Gibran Hemani 4,5, George Davey Smith 4,5 &
Zoltán Kutalik 1,2,3

Mendelian Randomisation (MR) estimates causal effects between risk factors
and complex outcomes using genetic instruments. Pleiotropy, heritable con-
founders, and heterogeneous causal effects violate MR assumptions and can
lead to biases. To alleviate these, we propose an approach employing a
Phenome-Wide association Clustering of the MR instruments (PWC-MR) and
apply this method to revisit the surprisingly large apparent causal effect of
body mass index (BMI) on educational attainment (EDU): bα = −0.19 [−0.22,
−0.16]. First, we cluster 324 BMI-associated genetic instruments based on their
association with 407 traits in the UK Biobank, which yields six distinct groups.
Subsequent cluster-specific MR reveals heterogeneous causal effect estimates
on EDU. A cluster enriched for socio-economic indicators yields the largest
BMI-on-EDU causal effect estimate (bα = −0.49 [−0.56, −0.42]) whereas a cluster
enriched for body-mass specific traits provides a more likely estimate (bα =
−0.09 [−0.13, −0.05]). Follow-up analyses confirms these findings: within-
siblingMR (bα = −0.05 [−0.09, −0.01]);MR for childhoodBMI on EDU (bα = −0.03
[−0.06, −0.002]); step-wise multivariableMR (bα = −0.05 [−0.07, −0.02]) where
socio-economic indicators are jointly modelled. Here we show how the in-
depth examinationof theBMI-EDU causal relationshipdemonstrates the utility
of our PWC-MR approach in revealing distinct pleiotropic pathways and con-
founder mechanisms.

Genome-wide association studies1 (GWASs) have identified many
genetic variants associated with multiple complex phenotypes,
aiding us in annotating single nucleotide polymorphisms (SNPs)
and their functions, as well as identifying putative causal genes.
As sample sizes of GWASs increase, more SNP associations are
revealed which improve various downstream analyses such as

polygenic score prediction, pathway- and tissue-enrichment, and
causal inference2,3.

Mendelian Randomisation4,5 (MR), an approach generally applied
through the use of genetic variants/SNPs as instrumental variables
(IVs) to infer the causal relationship between an exposure or a risk
factor X and an outcome Y, has become increasingly used thanks to
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well-powered GWASs from which hundreds of genetic associations
with heritable exposures can be used as IVs.

MR has threemajor assumptions concerning the genetic variantG
used as an instrument: (1) Relevance –G is strongly associatedwith the
exposure. (2) Exchangeability – there is no confounder of the G-out-
come relationship. (3) Exclusion restriction – G affects the outcome
only through the exposure. Each instrument provides a causal effect
estimate, which can then be combined with others using an inverse
variance-weighting6 (IVW) method to obtain an estimate of the total
causal effect of the exposure on the outcome. This estimate is more
reliable thanobservational associations due to it beingmoreprotected
against unmeasured confounding and reverse causality, provided that
the core conditions are met.

Thanks to well-powered GWASs, we have also discovered that
most genetic instruments are highly pleiotropic7, i.e. associated with
more than a single trait. This has also been shown in phenome-wide
association studies (PheWASs), where associations between a SNP and
a large number of phenotypes are tested. The situationwhere a genetic
variant influences multiple traits, but there is a primarily associated
traitwhichmediates all other trait associations, is referred to as vertical
pleiotropy. On the other hand, genetic variants that affect some traits
through pathways other than the primary trait (the exposure) – a
phenomena known as horizontal pleiotropy – are in direct violation of
the exclusion restriction assumption and could lead to biased causal
effect estimates. However, if the InSIDE assumption8 (Instrument
Strength is Independent of theDirect Effecton theoutcome) holds and
the direct SNP effects are on average null, then IVW will yield con-
sistent causal effect estimates. There have been MR extensions to IVW
such as MR-Egger to produce less biased causal effect estimates if the
InSIDE assumption holds and direct effects are not null on average.
Note that violation of the InSIDE assumption leads to correlated
pleiotropy, which can severely bias causal effect estimates. Such a
phenomenon may emerge as a result of a heritable confounder of the
exposure-outcome relationship and has been modelled in the past9,10.

Well-powered GWAS may also provide confounded genetic
associations through dynastic effects3,11, assortative mating12,13, and
population stratification14. These phenomena can introduce correla-
tion between an instrument and confounding factors, such as parental/
partner traits or genetic ancestry, leading to a violation of the
exchangeability assumption and biased causal effect estimates. This

type of confounding can be resolved when using family-based study
designs15,16 such as sibling-pair studies. Since genetic differences
between sibling pairs are due to independent and random meiotic
events, these effects are unaffected by population stratification and
other potential confounders influencing thephenotype. This andother
emerging family-based designs have been used to obtain unbiased
heritability estimates, validate GWAS results, and test for unbiased
causal effect estimates using MR17,18.

Another factor that can lead to complications in MR studies is the
presence of heterogeneous causal effects emerging due to distinct
biological mechanisms: various subtypes of the exposure (e.g. sub-
cutaneous vs. visceral adiposity) or different biological pathways
through which the exposure impacts the outcome (e.g. interaction
between the exposure and other factors). To date, horizontal pleio-
tropy, confounding of genetic associations, and heterogeneous causal
effect have been largely treated as distinct mechanisms in MR mod-
elling. However, what they have in common is that they can lead to
variable causal effects estimateddependingon thegroupof IVs used in
the MR analysis.

To address this, we introduce in this paper our approach of
PheWAS-driven clustering of instrumental variables (PWC-MR) and
test the resulting clusters for distinct pathways or mechanisms that
could underlie the overall causal effect of the exposure. Throughout
the paper, we demonstrate the approach through the example of
estimating the causal effect of body mass index (BMI) on educational
attainment (EDU). This relationship has been analysed extensively in
the past and family studies have shown that an apparent strong effect
of higher BMI on lower educational attainment is shrunk to near zero
when using family studies17. One explanation is that offspring BMI is
influenced by parental alleles associated with parental (rearing)
behaviour, which in turn modify the environment of the offspring.
Suchparental traits act as a confounder of the offspring genotype-EDU
relationship, hence violating the exchangeability assumption of MR.
Moreover, they confound the BMI-EDU association in the tested sam-
ple, violating the exclusion-restriction assumption and inducing cor-
related pleiotropy (see Fig. 1). Thus, it is plausible that some of the
detected IV clusters arise through parental genetic confoundingwhich
maymanifest statistically as horizontal pleiotropy. To test this, we ran
a systematic confounder search and probed the causal effect of the
exposure conditional on candidate confounder traits.

Fig. 1 | Directed Acyclic Graph (DAG) illustrating the complex relationship
between exposure and outcome.Gj represents genetic instrument jwith an effect
βj on exposure X. Exposure X is associated with outcome Y through K possible
pathways of mediation or confounding denoted through the various X1...XK

elements. The associations between the main exposure and the various elements
denoted by the π arrows purposely do not show directionality to allow for both
mediators and confounders. The causal effects on outcome Y are denoted by
α1, α2, . . . ,αK.
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Results
Overview of the method
Horizontal/correlated pleiotropy, confounded genetic associations,
and mechanism-specific causal effects all lead to heterogeneous MR
causal effect estimates. In PWC-MR, we attempt to investigate all these
possible biases simultaneously by informatively clustering the various
IVs and testing the resulting groups for distinct pathways or mechan-
isms underlying the overall causal effect as illustrated in Fig. 1.

We applied the PWC-MR approach to investigate potential
horizontal pleiotropic effects (emerging due to heritable con-
founders, dynastic effects, genetic subtypes of obesity and other
pleiotropic mechanisms, see Fig. 1) of BMI on educational attain-
ment. The analysis focused on grouping the IVs of the exposure by
running a PheWAS-based clustering to reveal distinct mechanisms
or pathways underlying their overall effect on the outcome (Fig. 2a).
This was done by obtaining the standardised PheWAS association of
the BMI IVs across a filtered set of 407 traits, and running a k-means
clustering on the resulting matrix. This resulted in six clusters of IVs
for BMI, which were then annotated by traits based on the asso-
ciation of the clustered SNPs with each trait. Specifically, for each
cluster-trait pair we computed the average explained variance of
the trait by the SNPs of the given cluster. This yielded an enrichment
ratio (ratio of the average explained variances) for each cluster-trait
pair, and we chose the top ten traits with the highest enrichment

ratio for each cluster as representatives. Furthermore, the causal
effect of each cluster’s IVs on education was calculated and com-
pared against each other and that of the causal effect obtained
using all BMI IVs.

To complement our findings from the clustering-based analysis,
we explored (i) the BMI-EDU causal relationship using sib-regression
SNP effect sizes18, (ii) the childhood BMI-EDU causal relationship, (iii)
replacing the outcome trait with systolic blood pressure (SBP), and
finally (iv) the potential role of each of the filtered set of traits as a
confounder of the BMI-EDU relationship.

We implemented the latter one by systematically running bidir-
ectional MR between each of the traits and either BMI or EDU as out-
come, then classifying the traits depending on their bidirectional
associations with both BMI and EDU. The resulting set of candidate
confounder traits was further analysed for its potential to bias the
causal effect of BMI on EDU. To assess this, we ran stepwiseMVMRand
finally calculated the causal effect of BMI on EDU conditional on the
surviving set of candidate confounder traits of the BMI-EDU relation-
ship (illustrated in Fig. 2b).

To further understand the emerging clusters, we sought to
uncover tissue-specific mechanisms. To do this, we performed a
colocalisation analysis of the BMI and gene expression association
signals at each locus around (±400kb) the 324 BMI IVs. For the gene
expression association, we used eQTL data from both adipose and

Fig. 2 | Flow diagram representing how the PWC-MR approach aims to
disentangle causal effect between trait pairs from confounding or pleiotropy,
as well as systematically search for confounders of the trait pair. Panel
a represents the main steps of the PWC-MR method: (i) Instrument selection and
PheWAS; (ii) Informative IV clustering using K-means; and (iii) Enrichment analysis
and cluster-specific MR. Panel b represents a complimentary approach to PWC-MR
where a systematic candidate confounder trait search is performed. These

candidate confounder traits are defined as having an effect on both the exposure
and the outcome. A stepwise multivariable MR (MVMR) of the candidate con-
founder traits is performed to select those with a strong effect on the outcome.
These are then addedwith the primary exposure (BMI) to a standardMVMRand the
multivariable causal effect on the outcome (EDU) is estimated. Acronyms: N:
sample size, rG: genetic correlation, T: trait, p: t-test p-value; MR p: MR p-value.
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brain tissue. This yielded a proportion of brain-vs-adipose colocalised
IVs for each cluster.

PheWAS-based clustering, annotation and cluster-specific cau-
sal effects
After identifying 324 genome-wide significant SNPs as IVs for BMI, and
selecting 407 filtered traits to run PheWAS on, we obtained a stan-
dardised effectmatrix of the 324 IVs on the 407 traits. Normalising the
matrix by IVs and running K-means clustering on it revealed that six
clusters yielded the lowest AIC score (Supplementary Fig. 1) when
compared to varying the number of clusters from two to 50. The
number of SNPs in each of the six clusters were: 32, 98, 35, 41, 69, 49
respectively (Supplementary Data 2).

Next, we computed an enrichment ratio (ER) to identify with
which traits the SNPs in each cluster were strongly associated. The
overall ER value between clusters was roughly centred around 1,
however, clusters #2, #3, #4, and #6 had some large ER values (see
Supplementary Fig. 2). Visualising the top 10 enriched traits in each
cluster and their ER values in Fig. 3 and Supplementary Data 3, we see
that cluster #2 is strongly enriched for lean mass traits such as ‘Trunk
fat-free mass’ and ‘Whole body fat-free mass’. Similarly, cluster #3
seemed to mostly be enriched for blood- and body stature-related
traits suchas ‘Platelet count’ and ‘Standingheight’, while cluster #4was
enriched for traits related to socio-economic position (SEP) such as
‘Job involves heavy manual or physical work’, ‘Time spent outdoors in
summer’, and ‘Fluid intelligence score’. Lastly, cluster #6 was enriched
for food supplements/nutrients such as ‘Folate’ and ‘Potassium’.

To test whether the clusters had different causal effects on a
selected outcome than the overall causal effect (using all IVs), we
computed the IVW causal effect estimate of each cluster on education
using cluster-specific IVs. As seen in Fig. 4a and Supplementary Data 4,
the causal effect estimates between the different clusters are sig-
nificantly heterogeneous (Q-test value = 130.61, p-value < 10−300).
Clusters #2 and #5 had the smallest causal effect estimates of −0.09 (p-
value = 1.23 × 10−5) and −0.12 (p-value = 5.22 × 10−6) respectively, where
cluster #2 was enriched for lean-mass traits. These estimates are con-
sistent with those obtained from within-family studies, which are
relatively immune to confounding (see Sensitivity analyses section
below). By contrast, clusters #1 and #4 had the largest negative causal
effect estimates of −0.44 (p-value = 7.78 × 10−20) and −0.49 (p-value =
1.63 × 10−44) respectively, where cluster #4 was strongly enriched for
SEP-related traits. All the clusters were less heterogeneous than the
group of all the IVs combined (see ‘Avg_het’ in Supplementary Data 4).

Sensitivity analyses
To test the robustness of the PWC-MR results, we performed three
additional analyses. First, we used the same exposure and outcome,
but theMR analysis was based on sib-regression-based SNP effect sizes
instead of SNP effects from GWAS of unrelated samples. Second, we
replaced the exposure with childhood BMI and estimated its causal
effect on EDU. Lastly, we replaced the outcome, EDU, with SBP.

In Howe et al.18, within-sibship (within-family) meta-analysed
GWAS estimates were generated from 178,086 siblings across 19
cohorts. Using these effect estimates, MR was performed with BMI as
exposure on multiple traits, including educational attainment. They
used 418 independent and genome-wide significant genetic variants
for BMI, and estimated its effect on EDU using IVW to be −0.05 (95%
CI: −0.09, −0.01).

They also used jackknife to estimate the standard error of the
difference between the sib-regression MR estimate and that of the
GWAS of unrelated samples MR estimate: −0.19 (95% CI: −0.22, −0.16).
Using the difference Z-score to generate a p-value for heterogeneity
between the two estimates revealed a significant difference with a p-
value < 0.001.

We used the UK Biobank trait ‘Comparative body size at age 10’ as
a proxy for childhood BMI – ameasure that has been validated against
measured BMI in childhood19,20 – for the exposure trait. Childhood BMI
is presumed to be less influenced by SEP compared to adult BMI and
hence we expect the causal effect estimate on EDU to have less con-
founding bias. For this trait, we had 171 genome-wide significant SNPs
that we used as IVs for the analysis. Of these, 16 SNPs were more
strongly associated to traits other than childhood BMI and were thus
excluded from further analysis. The standardised effect matrix of the
remaining 155 SNPs across 461 traits was normalised with respect to
the SNPs, and then clustered into four clusters (yielding optimal AIC),
each containing 37, 42, 32, 44 IVs, respectively (Supplementary Fig. 3,
Supplementary Data 5).

Analysing the trait enrichment for each cluster revealed only two
clusters with high ER values: clusters #2 and #4 (Supplementary Fig. 4,
Supplementary Data 6). Cluster #2 had only two traits with ERs greater
than 2, which were ‘Number of fluid intelligence questions attempted
within time limit’ and ‘Fluid intelligence score’, whereas cluster #4 was
highly enriched for body-measurement/fat-mass traits such as ‘Waist
circumference’ and ‘Whole body fat mass’ (see Supplementary Fig. 5).
However, calculating the IVW causal effect estimate for each cluster
and comparing it to the estimate calculated using all IVs revealed
homogeneous causal effect estimates with aQ-statistic of 3.84 (p-value
of 0.43) as seen in Fig. 4b and Supplementary Data 7. Cluster #2 had a
causal effect estimate of −0.09 (95% CI:−0.1638, −0.0148), and cluster
#4 had a causal effect estimate of −0.04 (95% CI: −0.0823, −0.0024).
Noteworthy is the finding that the IVs of cluster #2 were more het-
erogeneous than all the IVs combined. Thus, we obtained a massively
attenuated causal effect of BMI on EDU,when childhood BMI is used as
an exposure. Reassuringly, no strongly SEP-enriched cluster emerged
and the cluster-specific causal effects were homogeneous.

To find further evidence that our approach does not always reveal
distinct causal effects when the causal effect is non-null, we replaced
EDU with SBP as outcome. Namely, we tested a well-established non-
null causal relationship that is hypothesised to not be biased by
pleiotropy or confounding: BMI’s effect on SBP. Using the same six
clusters previously obtained for BMI, we calculated the estimated
causal effect of each of the clusters compared to using all the IVs
combined on SBP. This revealed a homogeneous set of causal effect
estimates (Q-test value of 4.49, p-value = 0.61), with the IVW estimate
using all IVs being 0.15 (p-value = 1.09 × 10−28) as seen in Fig. 4c and
Supplementary Data 8.

Systematic confounder search and MVMR analysis
Given our suspicion that the large BMI-EDU causal effect is driven by
heritable confounders, we performed a systematic search to reveal
traits thatmay be potential confounders. As described in the Methods
section, the strength of the bidirectional effect of the traits on either
the exposure or the outcomedetermined their categorisation. This led
to the identification of 19 traits that were found to be candidate con-
founder traits (Supplementary Data 9). Matching the 19 confounder
traits from this analysis to their respective ERs across the six clusters
from the previous analysis revealed higher ERs in cluster #1 and cluster
#4 (associated with SEP-related traits), both of which also had the
largest negative causal effects on EDU (Supplementary Fig. 6).

It is worth noting that the traits labelled as candidate confounders
were predominantly environmental exposures, such as ‘Exposure to
tobacco smoke outside home’ and ‘Transport type for commuting to
job workplace: Cycle’. Furthermore, these candidate confounder traits
are attributed as candidate or potential confounders since they are
most likely only genetic correlates of the true confounding traits of the
BMI-EDU relationship and do not act as true confounders themselves.

To investigate the possible biasing effect that potential con-
founder traits can have on the causal relationship of BMI on EDU, we
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ran a stepwise MVMR on these 19 candidate confounder traits (Sup-
plementary Data 9). During the creation of the Z-score matrix of SNPs
and traits, only twelve traits had at least three genome-wide significant
and independent SNPs whose effects could be used in the analysis,

leaving us with a total of 683 SNPs across these twelve traits and BMI.
The twelve traits were: ‘Time spent watching television (TV)’, ‘Usual
walking pace’, ‘Past tobacco smoking’, ‘Cereal type:Muesli’, ‘Frequency
of tiredness/lethargy in last 2weeks’, ‘Frequency of depressedmood in

Fig. 3 | Heatmap of the enrichment ratio of the top 10 traits in each cluster. K-means clustering of BMI revealed six clusters with the following trait enrichment ratios.
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last 2weeks’, ‘Public transport’, ‘Walking for pleasure’, ‘Weeklyusageof
mobile phone in last 3 months’, ‘Eating eggs, dairy, wheat, sugar’,
‘Symptoms, signs and abnormal clinical and laboratory findings’, and
‘Averageweekly beer plus cider intake’. Of these, only the first four had
a significant causal effect estimate on EDU (Bonferroni corrected p-
value < 0.05/12) based on stepwise MVMR, and were subsequently
used as exposures alongside BMI in a standard MVMR analysis.

To ensure the strength of the IVs used in the MVMR analysis, we
calculated the conditional F-statistic and the MVMR causal effect
estimate of BMI given various combinations of the four remaining
candidate confounder traits. We saw the expected trend of a
decreasing conditional F-statistic with the addition of traits and their
IVs to the analysis (see Supplementary Fig. 7). We note that the causal
effect estimate of BMI on EDU decreases when any combination of the
candidate confounder traits is used with BMI as exposure in compar-
ison to the univariableMRcausal effect estimate of BMI on EDU (−0.19,

p-value = 7.11 × 10−41). We settled on the combination of candidate
confounder traits yielding a conditional F-statistic for BMI of 10.19, for
which the corresponding causal effect estimates are reported in
Table 1 below. This choice was a compromise between two sources of
biases: weak instrument bias vs. upward bias due to omitting relevant
confounders.

Comparison with MR-clust
Other known IV clustering methods include MR-Clust21, which
attempts to cluster variants with similar causal effect estimates toge-
ther following the hypothesis that exposures can affect an outcome by
distinct causal mechanisms to varying extents. MR-Clust also accounts
for the possibility of spurious clusters by assigning IVs with uncertain
causal effect estimates to ‘null’ or ‘junk’ clusters.

We compared the PWC-MR clustering of BMI IVs against that of
MR-Clust with EDU as the outcome. TheMR-Clust results revealed two
main clusters as well as a ‘null’ cluster. Cluster #1 had 35 SNPs, 13 of
whichhadan inclusionprobability greater than 80%. Cluster #2had 171
SNPs, 36 of which had an inclusion probability greater than 80%, and
the remaining 142 SNPs were categorised into the ‘null’ cluster as seen
in Supplementary Fig. 8. The mean causal effect estimate of SNPs in
cluster #1 was−0.496, whereas it was−0.246 for cluster #2. Searching
for trait associations for the SNPs in each of the clusters revealed that
body measurement traits like ‘Arm fat mass’ or ‘Body fat percentage’
are associated to SNPs in both clusters, while SEP-related traits such as
‘Fluid intelligence score’ or ‘Time spent watching television’ were
associated to more SNPs in cluster #1 than in cluster #2.

Comparing the SNP clustering between the PWC-MR method
against that of MR-Clust in Table 2 below, we see that cluster #1 inMR-
Clust, which seems to be more strongly enriched for SEP traits than
cluster #2, has SNPs that were similarly clustered in clusters #1 and #4
using PWC-MR, matching their large negative causal effect of BMI on
EDU. However, the samedistinct comparison cannot bemade for SNPs
in cluster #2 of MR-Clust.

Of the 12 Fisher’s exact tests performed to examine the con-
tingency of SNPs in the two separate sets of clusters, only four tests
revealed a significant association: SNPs in cluster #1 of MR-Clust were

Fig. 4 | Forest plot of IVW causal effect estimate on outcome using either all
exposure IVs (All) or cluster-specific IVs (C1..C4/C6). Panel a shows causal effect
estimates of adult BMI on EDU, panelb proxy of childhood BMI (cBMI) on EDU, and
panel c adult BMI on SBP. Vertical error bars represent the point estimate ± 1.96 ×

standard error (SE). The blue vertical line represents the causal effect estimated
using all BMI/cBMI IVs. Box sizesof clusters represent theproportionof the number
of IVs in each cluster to the total.

Table 1 | MVMR analysis results of BMI and three candidate
confounder traits on educational attainment

Trait Description α estimate SE P-value

1070 Time spent watching television (TV) -0.2771 0.0256 4.63E-25

1249 Past tobacco smoking 0.1592 0.0218 7.85E-13

1468_4 Cereal type: Muesli 0.2930 0.0383 7.96E-14

21001 Body mass index (BMI) -0.0455 0.0106 2.07E-05

α: causal effect estimate.

Table 2 | Cross table of BMI IVs clustered using PWC-MR and
MR-Clust

MR-Clust Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
PWC-MR

Cluster1 13 1 0 13 0 5

Cluster2 15 38 21 26 32 29

Null 4 59 14 2 37 15
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significantly associated with SNPs in clusters #1, #2 (lean-mass traits),
#4 (SEP-related traits) and #5 of the PWC-MR clustering.

Given the differences between the two methods (where PWC-MR
performs informative clustering of IVs based on external data, and
thenmeasures theMR causal effect estimates per cluster, compared to
MR-Clust that clusters IVs based on the magnitude of their MR causal
effects) we see a more biologically meaningful separation of SNPs
using PWC-MR, shedding light on the various mechanisms through
which BMI can act on EDU.

Comparison with tissue-specific colocalisation analysis
With the aimof finding supporting evidence for the k-means clustering
and enrichment analysis, we ran a genetic colocalisation analysis on
BMI IVs and two types of tissue: subcutaneous adipose and brain, the
results of which can be found in Supplementary Data 12 and 13
respectively.

Running a set of Fisher’s tests to compute theoverlap between the
membership of the SNPs in the six clusters and their tissue of colo-
calization did not reveal any association between clusters and tissues,
as seen in Table 3.

Discussion
We have developed a method that performs informative clustering of
IVs by utilising their association with a large number of traits. Our use
of PheWAS data to guide the clustering of IVs has revealed distinct
mechanismsbywhich exposure effects could act onoutcomes. For our
exposure, BMI, six distinct clusters were obtained through optimal
K-means clustering. These clusters had well-defined trait enrichments,
with clusters matching SEP-related, substrate, and body measurement
traits. Estimating individual causal effects of each cluster on EDU as an
outcome revealed heterogeneous causal effect estimates which
allowed us to further strengthen our suspicion that the MR estimate
for the causal effect of BMI on EDU is upwardly biased when using
population-based SNP effect size estimates, due to confounding.

We note from MR analysis run using within-sibling GWAS data18

that the causal effect estimate between BMI and EDU is −0.05 (95%
CI: −0.09, −0.01), which is smaller than the causal effect estimate seen
using population-based GWAS data (−0.19, 95% CI: −0.22, −0.16).
Investigating the various mechanisms or pathways through which BMI
could have a causal effect estimate on EDU through trait-enrichment
analysis has revealed notable causal effect estimates from two clusters:
one with a strongly negative MR estimate, the trait enrichment of
which reflects shared mechanisms with socio-economic factors, and
another cluster with close to zero causal effect estimate enriched for
lean-mass traits.MRhas typically presented bias due to heterogeneous
causal effects emerging via distinct pathways, and bias due to con-
founding of the instrument-outcome association as being separate
mechanisms. Here, we have illustrated that a pheWAS-based clustering
approach can classify instruments into clusters, some of which corre-
spond to different pathways, while others include IVs that areprimarily
confounder-associated. Our results have two major implications: 1)

The lean-mass-related IV cluster indicated a more plausible, close to
zero causal effect of BMI on EDU, 2) The SEP-related IVs leading to an
apparent, sizeable negative effect of BMI on EDU, are likely over-
estimating the true underlying causal effect.

In order to substantiate our findings, we performed several sen-
sitivity analyses. First, sib-regression-based MR of BMI on EDU reca-
pitulated the close-to-zero causal effect obtained for the body-mass-
specific cluster of IVs. This indicates that many IVs for adult BMI (from
population-based GWAS) represent indirect (parental/dynastic)
effects associated with a rearing-related parental trait, and not pri-
marily with offspring BMI. Second, replacing adult BMI with childhood
BMI (much less associated with SEP) as exposure in the PWC-MR
analysis confirmed a negligible causal effect estimate (−0.03, 95%
CI: −0.06, 0), and the four emerging clusters showed homogeneous
causal effect estimates indicating a relative lack of confounding or
biasing effects. This comparison was supported by the growing evi-
dence showing that genetic variants have varying effects on BMI or
body size at different stages of life22,23, and that the UK Biobank proxy
trait ‘Comparative body size at age 10’ captures childhood BMI well19.
Noteworthy is the fact that the childhood BMI proxy we use is a
coarsened trait in comparison to true childhood BMI, and thus its
genetic effects are underestimated (due to noise dilution). Since the
estimated causal effect is a ratio of outcomeand exposureeffects, then
if the denominator is underestimated, the MR effect is likely to be
overestimated. We have supported this intuition with simulations in
Supplementary Methods 1.2, and Supplementary Fig. 12. Of the four
clusters, one was strongly enriched for body-measurement/fat-mass
traits whereas the secondmost strongly enriched cluster had only two
mildly enriched SEP-related traits. This finding means that as opposed
to adult BMI, childhood BMI genetics are unrelated to childhood (i.e.
parental) SEP. Furthermore, out of the 41 adult BMI IVs that make up
cluster #4 (SEP-related traits), only three were found to be in LD with
childhood BMI IVs.

In Howe et al. (2022), assortative mating, dynastic effects, and
population stratification were all considered candidate mechanisms
for biased population-based GWAS effect estimates. Given our obser-
vations, a possible explanation is a dynastic effect of parental SEP traits
acting as a confounderon theoffspring’s BMIandEDU in adulthood (as
seen in Supplementary Fig. 9). This effect is direct on the offspring’s
adulthood EDU but could affect the offspring’s adult BMI indirectly
through either of two ways: (i) Parental SEP has a direct effect on the
offspring’s SEP as an adult, which in turn has an effect on offspring
adult/late BMI24, or (ii) parental SEP – as a determinant of childhood
social circumstances – may have an effect through this on the off-
spring’s adult BMI.

To explore the relevance of the obtained six clusters of IVs, we
replaced EDU with SBP as the outcome of interest since within-sibling
GWASMR results showed no differencewhen compared to population
GWAS MR results, indicating that there seems to be no bias in the
causal effect estimate due to pleiotropy or confounding. Our analysis
revealed that for the six clusters attributed to BMI, their causal effect
estimate on SBP was homogeneous with the estimate using all SNPs
(0.16, p-value = 1.09 × 10−28). As there are no clear heterogeneous
effects and the cluster causal effects agree, we can conclude that there
are no major confounding effects biasing the causal effect estimate. It
is reassuring to note that our PWC-MR approach does not always seek
to identify distinct causal effects, confirming that confounding
mechanisms are specific to certain exposure-outcome pairs.

Finally, our systematic confounder search coupled with stepwise
MVMR has pinpointed TV watching, muesli eating, and past tobacco
smoking as three candidate confounder traits that could bias standard
MR analysis of the BMI-EDU relationship: upon accounting for these
three traits, BMI exhibits a strongly attenuated causal effect on EDU,
comparable to that of cluster #2 and the sib-regression MR estimate.

Table 3 | Cross table indicating the number of genes whose
expression colocalises in adipose/brain tissue with BMI

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

Adipose 9 9 14 3 6 5

Brain 3 3 4 1 2 4

Both 1 2 1 1 4 4

Neither 29 77 36 23 53 47

The colocalisation exercise was performed at loci-defined BMI IVs falling into particular clusters.
Colocalisationwasdefinedas theposteriorprobability of bothGWASandeQTLbeingassociated
is ≥ 0.8 in either brain or adipose tissue or both.
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We acknowledge the fact that past tobacco smoking is unlikely to have
an effect on EDU retroactively, similar to TV watching and other later-
in-life traits, which we all consider to be acting as confounder-proxies
or correlates of parental SEP. We have explored this further in Sup-
plementary Methods 1.3 by introducing ‘Smoking Initiation’ into the
candidate confounder traits, the results of which are found in Sup-
plementary Table 1.

Comparing ourmethod to other IV clusteringmethods such asMR-
Clust does not reveal strong concordance in thefindings.MR-Clust takes
as input the association effects of the exposure and outcome as well as
their association standard errors and attempts to cluster the exposure
IVs based on the possible similarity between each IV’s causal effect on
the outcome. When using BMI and EDU as exposure and outcome
respectively, MR-Clust revealed two main clusters alongside a null
cluster. Bothof the clusterswere enriched for a variety of traits including
body-measurement traits, both lean- and fat-mass, as well as SEP-related
traits. The causal effect estimates of both clusters were strongly nega-
tive, similar to using all IVs in anMR analysis for this trait pair. Themost
apparent difference between the clustering of our method and that of
MR-Clust is our use of external information (PheWAS data of the expo-
sure IVs and various other traits) to reveal possible pathways and
mechanisms through which the exposure manifests, independently of
any outcome. MR-Clust, on the other hand, clusters the individual MR
causal effects of IVs on a specific outcome based on their magnitude.

Another clustering method by Grant et al.25 uses genetic variant
associations with a set of traits to identify groups of IVs with similar
biological mechanisms. Their method, NAvMix, uses a directional
clustering algorithm and includes a noise-cluster to increase robust-
ness to outliers. NAvMIX is demonstrated on BMI IVs and their asso-
ciations to nine lifestyle or cardio-metabolic traits that have been
previously shown to be related to BMI. Their results revealed 5 distinct
clusters where they were able to identify a metabolically healthy
obesity cluster that also had a smallMR causal effect on coronary heart
disease (CHD).However, wewere unable to run theirmethodusingour
data due to convergence issues arising when the number of traits used
for PheWASassociation increases. This comparison also highlights that
the traits we include in the pheWAS analysis (and the subsequent
clustering) have an important role in determining which biological
mechanisms we can detect. For example, our analysis did not pick up
themetabolicallyhealthyobesity cluster, possibly becausewaist-to-hip
ratio and other subcutaneous-vs-visceral fat proxy-traits were not
included among the 407 selected phenotypes due to our filtering on
genetic correlation with BMI (rG <0.75). Without such filtering, PWC-
MR reveals 5 clusters with significantly heterogeneous causal effects
on EDU. These five clusters are very similar to the original six, with the
original cluster #1 getting diffused into the other clusters. Reassur-
ingly, the cluster that is strongly enriched for SEP-related traits has a
large negative causal effect estimate of −0.53 (95% CI: −0.59, −0.48),
whereas the cluster that is most enriched for body-measurement/fat-
mass traits still had a much attenuated causal effect of −0.10 (95%
CI: −0.14, −0.06).

Furthermore, we attempted to consolidate our findings of the
k-means clustering and enrichment analysis by running a genetic colo-
calisation analysis on the 324 clustered BMI IVs and both subcutaneous
adipose and brain tissue. However, we do not find an association
between the cluster memberships of the IVs and their signal colocali-
zation in brain or adipose tissue, possibly due tohigh false negative rates
of colocalization combined with low eQTL sample sizes.

Our method has its own set of limitations: first, we are limited by
the availability of traits with PheWAS data to support our informative
clustering of IVs. This may lead to a failure in identifying key pathways
and thus missing clusters representing important subgroups (med-
iator/sub-phenotype/confounder). Second, although it is not themost
ideal handling of data, our binary traits are treated as continuous ones
in our analysis. In large samples, linear and logistic regression effect

estimates correlate very strongly and hence, it is likely that this choice
did not impact the clustering26. Third, although we have attempted to
minimise the arbitrary choiceofparameters in our analysis, the genetic
correlation threshold that determines which traits are too similar to
the exposure and outcome trait is arbitrarily set at 0.75 for BMI and
EDU, and couldbemodified but the emerging clustersmay change as a
consequence. Similarly, some p-value thresholds and type I error rate
control were set at 5%, which may be viewed as arbitrary. Fourth, the
identified potential confounder traits used in the MVMR analysis may
act as simple proxies for true confounders. For example, exposure to
current tobacco smoking or TV watching can be highly (genetically)
correlated to the same or a similar exposure during early life (or even
proxy a parental trait), hence it is rather the earlier version of the
exposure which is likely to be the true confounder. Note however, that
the role of our proxy confounders was to see the remaining causal
effect of BMI on EDU upon conditioning on them. Fifth, while for the
BMI-EDU relationship we had several lines of evidence pinpointing
cluster #2 as the one yielding the most likely correct causal effect
estimate, in general, we might not be able to decide which cluster(s)
provide biologically meaningful causal effect estimate(s) and which
ones may be linked to confounders. Lastly, we acknowledge that there
are several other tests27 that could be used in place of a t-test when
excluding SNPs more strongly associated to other traits than our
exposure or different MRmethods used in our systematic confounder
search, however both of these were simple exclusion or pre-selection
steps that have little impact on the outcome of the results.

To conclude, we found that the classical MR estimate based on
population GWAS leads to an overestimation of the BMI-EDU causal
effect and identified a lean-mass-specific subgroup of IVs (cluster #2)
that, we believe, yields a more reliable causal effect estimate. Still, we
are uncertain whether this effect is exactly zero, or is just strongly
attenuated. Our analysis also revealed that the unrealistically large
standardMRestimatewasdrivenby IVs that likely violate the pleiotropy
assumption through being also linked to SEP. The attenuated estimate
providedby our PWC-MRapproach (cluster #2) is compatiblewith both
the estimate based on sib-regression summary statistics (P-value of
difference =0.16) and theMVMRestimate (P-valueof difference =0.48),
all of which are based on adulthood phenotypes. However, the estimate
obtained for childhood BMI is slightly more attenuated than that of the
PWC-MR method (P-value of difference = 0.024).

Equipping the MR toolkit with a range of different analytical
strategies is critical for improving insights into epidemiological ques-
tions, and PWC-MR offers a number of attractive features: (i) it does
not require summary statistics from within-family GWAS, which are
typically scarce and available inmuch smaller samples and for a limited
set of phenotypes (ii) it does not rely on association data from
chronologically-correct exposures, which may face similar limitations
as within-family GWAS (iii) in contrast to MVMR, which estimates a
single causal effect, PWC-MRprovidesmultiple causal effect estimates,
some of which may reflect confounder effects, and others hetero-
geneousmechanismsof action, overall revealing biological insight that
can be used in follow-up research.

Methods
Instrumental variable selection and PheWAS
As our primary analysis, we aimed to investigate the potential
pleiotropy-patterns emerging from the grouping of IVs that are
strongly associated with an exposure of interest, as outlined in Fig. 2a.
With BMI selected as the exposure trait, we obtained IVs from the
Neale group’s UK Biobank GWAS analysis28 (data sources can be found
in Supplementary Data 1) by filtering for genome-wide significant SNPs
(i.e. association p-value less than 5 × 10−8) followed by linkage dis-
equilibrium (LD)-based clumpingusing theTwoSampleMRRpackage29

with the following parameters: clump_kb = 10, 000, clump_r2 =0.001,
pop = ”EUR” to obtain independent IVs.
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This left us with 348 BMI-associated IVs, for which we ran PheWASs
across 1480 traits from theNeale groupUKBiobankGWASanalysis28.We
extracted for each trait and for each SNP the association effect and the
corresponding standard error (SE), creating a datamatrix of 348 SNPsby
1480 traits. For the 1480 traits, we also extracted details such as variable
type, origin and complete sample size, among others.

Quality control. We removed traits from the PheWAS datamatrix that
hadmissing association effects as well as duplicates (keeping themost
recent version). Furthermore, we filtered out traits for which the
effective sample size was less than 50,000 due to their low power of
association, leaving us with 424 traits.

Using genetic correlation data from the Neale group28, we further
removed traits that had a high genetic correlation with BMI, i.e. the
exposure, (rG > 0.75), to avoid obvious repetitions of traits closely
related to it. The resulting association effect data matrix of 348 SNPs
and 407 traits was then standardised (SNP effects are on a SD/SD scale)
and used for further analysis. Note that for simplicity, effect sizes for
binary traits were treated as those of continuous traits.

In order to test for invalid IVs,we performed a trait-wide variant of
Steiger-filtering30. Specifically, for each SNP, we tested if any of the
traits had a significantly stronger (in terms of explained variance)
association compared to that of the exposure. The significance
threshold for this one-sided t-test was corrected for using the total
number of traits remaining (p-value < 0.05/407). This revealed 24 SNPs
more strongly associated to traits other thanBMI (such as ‘Whole body
water mass’, ‘Basal metabolic rate’ and ‘Sitting height’) that were then
removed from further analysis.

K-means clustering and trait identification
With the aim of discovering distinct meaningful groups of SNPs among
the 324 IVs, we proceeded with the clustering of the SNPxTrait asso-
ciation effect matrix using the K-means algorithm31. Taking the absolute
standardised effects matrix, we normalised the data frame with respect
to the SNPs, such that the variance of the SNP effects across all the traits
equalled 1. We used the absolute effects to cluster, in order to ensure
that negatively correlated traits were considered similar by the Eucli-
dean distance-based similarity measure of the k-means clustering. We
then compared the performance of the clusteringwith different number
of clusters ranging from two to 50, bymeasuring the Akaike Information
Criterion (AIC) score (for further model selection criteria, see Supple-
mentary Methods 1.1, including Supplementary Figs. 10 and 11). After
finding the number of clusters with the lowest AIC score (six clusters),
weproceededwith the assignment of each SNP tooneof the six clusters.

In order to identify traits that were particularly associated to SNPs
in each of the six clusters,we computed an enrichment ratio (ER) in the
following way:

For each trait t, we calculated the per-SNP average squared effect
in a given cluster j, denoted as σ2

j,t . Given that SNP i belongs to cluster j,
σ2
j,t was calculated as follows:

σ2
j,t =

1
jcj j

X
i2cj

β2
i,t ð1Þ

where β2
i,t represents the squared standardised effect of SNP i on trait t

(not normalised across traits), cj represents the set of SNPs in cluster j
and ∣cj∣ its cardinality. We then normalised these per-SNP average
squared effects for each cluster relative to the total effect across all
clusters (K) to obtain the enrichment ratio (ER), Rj,t:

Rj,t =
σ2
j,t

1
K

PK
k = 1 σ

2
k,t

ð2Þ

where K is the total number of clusters. For each cluster (j), traits were
then prioritised by the (highest) value of ER (Rj,t).

Causal effect estimate per cluster. We measured the cluster-specific
IVW causal effect estimate on the outcome (EDU) using the standar-
dised SNP effects in each cluster, and then compared these estimates
to the causal effect estimate using all SNPs. We used the TwoSam-
pleMR R package29 for this analysis, and although we use two-sample
MR techniques despite having a close to complete sample overlap, this
does not lead to substantial biases32. Measures of IV heterogeneity
were calculated using the Cochran’s Q-statistic33 for the IVW method
for each cluster. Furthermore, average cluster-heterogeneity (per-IV
variance) was also calculated for each cluster from the above-
mentioned parameter.

As sensitivity analyses, PWC-MR was repeated twice, once with a
different exposure trait (replacing BMI with childhood BMI), and
another with a different outcome trait (replacing EDU with systolic
blood pressure).

Systematic confounder search
In order to decide which of the emerging clusters represents genetic
confounding or true biological heterogeneity, we systematically sear-
ched for BMI-EDU confounders. To do this, we investigated the bi-
directional causal effects that each trait had on both the exposure and
the chosen outcome.

Firstly, an extra filtering step was done where traits that were
highly genetically correlated with the outcome (rG >0.75) were
removed from the total 407 traits of the previous analysis.

Then, we ran a bidirectional MR for the remaining traits using the
TwoSampleMR R package29, and obtained four sets of causal effect
measurements per trait (bidirectional, two different outcome traits -
BMI and EDU). To select bidirectional causal effect estimates from
those calculated by the different methods in the TwoSampleMR
package29 (Weighted median, Inverse variance weighted, Simple
mode, and Weighted mode), we ordered the p-values of the causal
effect estimates for the four different methods and selected the esti-
mate of the secondmost significantmethod to ensure that at least one
other method supports the causal claim.

The next stepwas to identify the direction of causality. To do so,we
performed a one-sided t-test to compare the strengths of the estimated
causal effects between the trait and the exposure, BMI. More precisely,

tA,B : =
jbαA!Bj � jbαB!Ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

A!B + SE
2
B!A

q ð3Þ

where A and B denote the examined traits, bαA!B the causal effect esti-
mate from A on B and SEA→B the corresponding standard error (SE). The
one-sided P-value is then calculated as P=Φ(tA,B): if P <0.05 the B→A
causal effect is nominally significantly larger, while if P >0.95, the A→B
direction is dominant. For all the p-values in between, it was challenging
to assign a direction in which the causal effect was stronger, and thus
these traits were not further categorised. The p-value thresholds we
apply are not intended to suggest that there is a transition point at
which the meaning of associations change, rather we use these as a
heuristic that is required to control the type I error rate at an arbitrary
(5%) threshold. We further tested varying one-sided p-value thresholds
of more stringent (P<0.01, P >0.99) and more lenient nature (P <0.1,
P >0.9), the results ofwhich are found in Supplementary Data 10 and 11.

The same procedure was repeated to explore the relationship
between the traits and the outcome trait (EDU). This allowed us to
classify traits into candidate confounders, mediators, colliders and
other categories (as seen in themiddle panel of Fig. 2b). For example, a
confounder was defined as a trait with a significantly larger effect on
both exposure andoutcome than the reverse.We then focusedonly on
the confounders which can distort MR estimates, and filtered them
further to make sure that they have at least a nominally significant MR
causal estimate (p-value < 0.05) on both BMI and EDU.Wewere lenient
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in our categorisation of candidate confounder traits as adding
potentially irrelevant traits would not bias the multivariable causal
effect of BMI in the next step. As our aim was not to reduce the total
causal effect to the unmediated part (possible by including mediators
in an MVMR) but to correctly estimate it, mediators were not con-
sidered further. Similarly, the inclusion of colliders into anMVMRdoes
not alter the exposure’s causal effect as previously seen34, thus they too
were not considered further. The same holds for traits with a direct
effect on either the exposure or the outcome only.

Furthermore, to test how compatible the two lines of analysis
were, we examined the cluster-specific enrichment ratio values for the
set of candidate confounder traits we obtained.

Multivariable MR. Focusing on the candidate confounder traits
resulting from the systematic search that could bias the causal effect
estimate between the exposure-outcome pair, we first ran a stepwise
multivariableMR (MVMR) (adapted from the bGWASRpackage35) with
them as exposures to test their effect on our chosen outcome, EDU.

To do this, we created a Z-score matrix combining all genome-
wide significant SNPs (p-value less than 5 × 10−8) and their Z-scores for
eachof the 19 candidate confounder traits andBMI, such that eachSNP
had an effect that is genome-wide significant for at least one of the
candidate traits.

To obtain independent SNPs, weperformed rank-based clumping.
For this, we first ranked the absolute Z-scores across all SNPs for each
trait (in descending order), and then for each SNP we obtained the
highest (best) rank across traits, which was used as an importance
score during the clumping process (LD-clumped clump_kb = 5000,
clump_r2 =0.01). We then further filtered out traits that had less than
three instruments remaining. Note that any SNPs that fall in the HLA
region (6p21.3) were removed for being strongly associated with
multiple immune-related traits.

Using this Z-score matrix without our primary exposure (BMI) as
input for step-wise MVMR, we obtained a final list of candidate con-
founder traits with significant multivariable causal effects (p-value <
0.05/12) on our chosen outcome (EDU).

Then, to minimise weak instrument bias when runningMVMR, we
calculated the conditional F-statistic for our primary exposure (BMI)
given each of the surviving traits and their different combinations.
Finally we ran standard MVMR using the combination of traits that
produced a conditional F-statistic36≥10 (for BMI) alongside BMI, and
examined the multivariable causal effect of BMI on EDU.

Relation to other approaches
Comparison with MR-Clust. We compared the k-means clustering of
BMI IVs against another IV clustering method called MR-Clust21, which
requires as input the unstandardised SNP effects on both the exposure
and the outcome, as well as the standard error of the SNP on each. To
do so, we performed a Fisher’s exact test to examine the frequency
distribution of SNPs in each of the k-means clusters against the MR-
Clust clusters.

Comparison with tissue-specific colocalisation analysis. To further
interpret the findings of the IV clustering, we sought to test if specific
patterns of colocalisation in different tissue types appear for the dif-
ferent IV clusters.

To do this, we reran the steps detailed in Leyden et al.37 for the 324
BMI IVs used in this work. For each IV, we tested for genetic colocali-
sation between the BMI GWAS data and the gene expression (eQTL)
data of both subcutaneous adipose and brain tissue (data sources can
be found in Supplementary Data 1). For each SNP tested, we took a
margin of 200kb up- and downstream, and used the coloc R package38

to test the SNP’s colocalisation with each gene found in that region,
once using brain eQTL data, and another colocalisation using adipose
eQTL data. We declared colocalisation if the posterior probability of

themodel sharing a single causal variant was larger than 80%. For each
of the aforementioned clusters, we investigated if the IVs were more
strongly enriched for or depleted in one tissue or the other using
Fisher’s exact test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The origin and unique identifier of each of the summary statistics data
used is referenced in Supplementary Data 1. The UK Biobank summary
statistics data used in this study can be downloaded from http://www.
nealelab.is/uk-biobank. BMI meta-analyzed GWAS and adipose meta-
analyzed cis-eQTL can be obtained from Leyden et al. 37 with permis-
sion, and the brain cis-eQTL data can be downloaded from https://
yanglab.westlake.edu.cn/software/smr/#DataResource. All results and
data generated during this study are included in this published article
and its supplementary information files.

Code availability
The source code39 for this work can be found on https://github.com/
LizaDarrous/PheWAS-cluster(https://doi.org/10.5281/zenodo.
10466847).
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