
 
 

Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 

 

 
Year: 2014 

 

EXPRESSION AND ROLE OF BORIS/CTCFL IN HUMAN CANCER 
STEM CELLS 

 

Loredana Maria Alberti 
 
 
 
 
 
 

 
 
 
 

 
 
 

 

Loredana Maria Alberti 2014 Expression and role of BORIS/CTCFL in human cancer stem 

cells 
 
Originally published at: Thesis, University of Lausanne 

 
Posted at the University of Lausanne Open Archive. 
http://serval.unil.ch 
 
 

Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 

loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 

loi. Nous déclinons toute responsabilité en la matière. 
 

Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 

author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



 
Institut Universitaire de Pathologie du CHUV 

 

 

 

 

 

EXPRESSION AND ROLE OF BORIS/CTCFL IN HUMAN CANCER 

STEM CELLS 

 
 
 

Thèse de doctorat ès sciences de la vie (PhD) 

 
présentée à la  

 

Faculté de biologie et de médecine 

de l’Université de Lausanne 

 

par 

 

 

Loredana Maria ALBERTI 
 

Biologiste diplômée de l'Université de Milan, Italie 

 

 

Jury 

 

 

Prof. Luc Pellerin, Président 

Prof. Serge Leyvraz, Directeur de thèse 

Dr. Jean Benhattar, Co-directeur 

Prof. Michel Aguet, expert 

Prof. Nicolas Mermod, expert 

            

 

 

Lausanne 2014 

 



 

 





 



ACKNOWLEDGEMENT 

 

The first person that I have to thank is my supervisor Doctor Jean Benhattar, for having selected 

me and for the constant guidance provided during these years. Among all the things, I particularly 

appreciate the support during the last “particular” period of the thesis. 

 

I also want to particularly thank Professor Serge Leyvraz for having accepted to be my director at 

the last moment.  

 

Thanks also to all the members of my dissertation committee: Professor Michel Aguet, Professor 

Nicolas Mermod and Professor Luc Pellerin for their precious suggestions which improved the 

work presented in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

                               A tutte le persone che mi sono sempre vicine 

 

  “Guarda verso il sole 

e l’ombra ti cadrà alle spalle” 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



I 
 

RESUME 
 

Le cancer est défini comme la croissance incontrôlée des cellules dans le corps. Il est 

responsable de 20 % des décès en Europe. Plusieurs expériences montrent que les tumeurs 

sont issues et se développent grâce à un petit nombre de cellules, que l’on appelle cellules 

souches cancéreuses (CSC). Ces CSC sont également responsables de l'apparition de métastases 

et de la résistance aux médicaments anticancéreux. De ce fait, l'identification des gènes qui 

contribuent aux propriétés de ces CSC (comme la survie des tumeurs, les métastases et la 

résistance aux médicaments) est nécessaire pour mieux comprendre la biologie des cancers et 

d'améliorer la qualité des soins des patients avec un cancer. A ce jour, de nombreux marqueurs 

ont été proposés ainsi que de nouvelles thérapies ciblées contre les CSC. Toutefois, et malgré 

les énormes efforts de la recherche dans ce domaine, la quasi-totalité des marqueurs de CSC 

connus à ce jour sont aussi exprimés dans les cellules saines. 

Ce projet de recherche visait à trouver un nouveau candidat spécifique des CSC. Le gène 

BORIS (pour Brother of Regulator of Imprinted Sites), nommé aussi CTCFL (CTCF-like), semble 

avoir certaines caractéristiques de CSC et pourrait donc devenir une cible prometteuse pour le 

traitement du cancer. BORIS/CTCFL est une protéine nucléaire qui se lie à l'ADN, qui est 

exprimée dans les tissus normaux uniquement dans les cellules germinales et qui est réactivée 

dans un grand nombre de tumeurs. BORIS est impliqué dans la reprogrammation épigénétique 

au cours du développement et dans la tumorigenèse. En outre, des études récentes ont montré 

une association entre l'expression de BORIS et un mauvais pronostic chez des patients atteints 

de différents types de cancers. 
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Nous avons développé une nouvelle technologie basée sur les Molecular Beacon pour 

cibler l’ARNm de BORIS et cela dans les cellules vivantes. Grâce à ce système expérimental, 

nous avons montré que seule une toute petite sous-population (0,02 à 5%) de cellules 

tumorales exprimait fortement BORIS. Les cellules exprimant BORIS ont pu être isolées et elles 

présentaient les caractéristiques de CSC, telles qu’une forte expression de hTERT et des gènes 

spécifiques des cellules souches (NANOG, SOX2 et OCT4). En outre, une expression élevée de 

BORIS a été mise en évidence dans des populations enrichies en CSC (‘side population’ et 

sphères). Ces résultats suggèrent que BORIS pourrait devenir un nouveau et important 

marqueur de CSC. Dans des études fonctionnelles sur des cellules de cancer du côlon et du sein, 

nous avons montré que le blocage de l’expression de BORIS altère largement la capacité de ces 

cellules à former des sphères, démontrant ainsi un rôle essentiel de BORIS dans l'auto-

renouvellement des tumeurs. Nos expériences montrent aussi que BORIS est un facteur 

important qui régule l'expression de gènes jouant un rôle clé dans le développement et la 

progression tumorale, tels le gène hTERT et ceux impliqués dans les cellules souches, les CSC et 

la transition épithélio-mésenchymateuse (EMT). BORIS pourrait affecter la régulation de la 

transcription de ces gènes par des modifications épigénétiques et de manière différente en 

fonction du type cellulaire. 

En résumé, nos résultats fournissent la preuve que BORIS peut être classé comme un 

gène marqueur de cellules souches cancéreuse et révèlent un nouveau mécanisme dans lequel 

BORIS jouerait un rôle important dans la carcinogénèse. Cette étude ouvre de nouvelles voies 

pour mieux comprendre la biologie de la progression tumorale et offre la possibilité de 

développement de nouvelles thérapies anti-tumorales et anti-CSC avec BORIS comme molécule 

cible. 
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SUMMARY 
 

Cancer is defined as the uncontrolled growth of cells in the body. It causes 20% of deaths in the 

European region. Current evidences suggest that tumors originate and are maintained thanks 

to a small subset of cells, named cancer stems cells (CSCs). These CSCs are also responsible for 

the appearance of metastasis and therapeutic resistance. Consequently, the identification of 

genes that contribute to the CSC properties (tumor survival, metastasis and therapeutic 

resistance) is necessary to better understand the biology of malignant diseases and to improve 

care management. To date, numerous markers have been proposed to use as new CSC-

targeted therapies. Despite the enormous efforts in research, almost all of the known CSCs 

markers are also expressed in normal cells.  

This project aimed to find a new CSC-specific candidate. BORIS (Brother of Regulator of 

Imprinted Sites) or CTCFL (CTCF-like) is a DNA binding protein involves in epigenetic 

reprogramming in normal development and in tumorigenesis. Recent studies have shown an 

association of BORIS expression with a poor prognosis in different types of cancer patients. 

Therefore, BORIS seems to have the same characteristics of CSCs markers and it could be a 

promising target for cancer therapy. BORIS is normally expressed only in germinal cells and it is 

re-expressed in a wide variety of tumors. 

We developed a new molecular beacon-based technology to target BORIS mRNA 

expressing cells. Using this system, we showed that the BORIS expressing cells are only a small 

subpopulation (0.02-5%) of tumor cells. The isolated BORIS expressing cells exhibited the 

characteristics of CSCs, with high expression of hTERT and stem cell genes (NANOG, SOX2 and 

OCT4). Furthermore, high BORIS expression was observed in the CSC-enriched populations (side 

population and spheres). These results suggest that BORIS might be a novel and powerful CSCs 
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marker. In functional studies, we observed that BORIS knockdown significantly impairs the 

capacity to form spheres in colon and breast cancer cells, thus demonstrating a critical role of 

BORIS in the self-renewal of tumors. The results showed in the functional analysis indicate that 

BORIS is an important factor that regulates the expression of key-target genes for tumor 

development and progression, such as hTERT, stem cells, CSCs markers and EMT (epithelial 

mesenchymal transition)-related marker genes. BORIS could affect the transcriptional 

regulation of these genes by epigenetic modification and in a cell type dependent manner.  

In summary, our results support the evidence that BORIS can be classified as a cancer 

stem cell marker gene and reveal a novel mechanism in which BORIS would play a critical role in 

tumorigenesis. This study opens new prospective to understand the biology of tumor 

development and provides opportunities for potential anti-tumor drugs.  

 

 

 

 

 

 

 

 

 

 

Keywords: BORIS/CTCFL, cancer stem cells, cancer-testis antigens, epigenetic reprogramming, 

Molecular Beacon technology, hTERT telomerase, stem cell genes. 
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1.1. Cancer and cancer stem cells 

 

Recent evidences support the view that cancers are complex tissues where aberrant cell 

growth is driven by a small population defined as cancer stem cells (CSCs) (Reya, Morrison et 

al. 2001; Jordan, Guzman et al. 2006; Dalerba, Cho et al. 2007). CSCs are characterized by 

stem cell proprieties and allow tumor metastasis and drug resistance. Their presence may 

explain tumor relapses and the failure of cancer treatment (chemotherapy, radiotherapy). 

Numerous markers have been proposed as possible new CSCs-targeted therapies. Despite 

the enormous efforts in research, almost all of known CSCs markers are also expressed in 

normal cells. 

 

The following section will introduce the principal features of cancer and describe the 

CSCs, in particular their definition, discoveries and their characteristics. Then, the use of 

specific markers for the identification and isolation of CSCs and the development of novel 

CSC-targeted therapies to overcome tumor resistance and relapse will be discussed.  

  

1.1.1. Introduction to cancer and cancer stem cells 

Cancer is one of the major causes of death in the world. The World Health Organization 

estimated that, in 2008, cancer was a leading cause of around 13% of all deaths. The most 

common cancer worldwide is lung cancer followed by breast, colorectal, stomach and 

prostate cancers (http://globocan.iarc.fr). Tumor incidence is different between men and 

women. In particular, lung cancer is the most common in men with 16% of the total number 

of new cases, while in women breast cancer is the most frequent with 23% of the total 

number of new cases (http://globocan.iarc.fr). 

http://globocan.iarc.fr/
http://globocan.iarc.fr/
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Cancer cells acquire functional capabilities allowing their growth and dominance in a 

local tissue environment by a multistep process named tumorigenesis. During tumor 

progression, different tumor types gain distinct features as proliferation, survival, resistance 

to apoptosis and dissemination. Genomic instability, random mutations and epigenetic 

changes are the main events whereby cancer cells acquire these capabilities and are 

essential hallmarks for tumor development and progression (Hanahan and Weinberg 2011). 

Recently, it has been shown that also normal cells (such as endothelial, immune and 

mesenchymal cells) are recruited at the tumor site and can actively participate in 

tumorigenesis (Hanahan and Weinberg 2011). Thus, cancer is considered as a complex 

system compounds of many different cell types enable to interact together. 

To explain the heterogeneity and growth of tumors, two models have been proposed 

(Figure 1). The first was the stochastic model, which predicts that all tumor cells have the 

potential to become tumorigenic and stochastically a fraction of cells proliferate to tumor 

growth, while the other tumor cells differentiate. The second model proposes that tumors 

are hierarchically structured similar to normal tissues, in which only a subset of tumor cells is 

capable to drive indefinitely the tumor growth and the other progenitor cells have limited 

growth potential. In this latter model, the tumorigenic cells have been termed “cancer stem 

cells” (CSCs) due to the analogy to stem cells, which control the maintenance of adult 

tissues. CSCs have been proposed to be responsible for the development and the 

progression of tumors. The clonal evolution theory assumes that in both models, the tumor 

cells can accumulate mutations which confer survival advantage and competition with the 

other non-mutated cells (Greaves and Maley 2012).  
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Figure 1. Models to explain the heterogeneity of tumors. a) In the stochastic model of tumor growth, all tumor 
cells have the potential to become tumorigenic and stochastically a fraction of cells proliferate and the other 
tumor cells differentiate. b) In the cancer stem cell (CSC) model of tumour growth, only a subset of tumor cells 
is capable to drive indefinitely the tumor growth and the other committed progenitor cells have limited growth 
potential and could differentiate. c, d) In both models, the clonal evolution proposes that new somatic 
mutations can generate clonal diversity (Beck and Blanpain 2013). 

 

In recent years, with the research advances in stem biology and the development of 

new technologies to measure the CSCs properties, the CSCs theory has gained validation 

(Reya, Morrison et al. 2001; Pardal, Clarke et al. 2003). The experimental demonstrations of 

CSCs in different tumors support the concept of stem cell theory in tumor biology (Bonnet 

and Dick 1997; Al-Hajj, Wicha et al. 2003; Singh, Hawkins et al. 2004; Li, Heidt et al. 2007; 

Ricci-Vitiani, Lombardi et al. 2007; Zhang, Balch et al. 2008).  

Although the term “cancer stem cell” is referred to stem cells, the cells having the 

property to originate the tumors could be stem cells, progenitor cells or differentiated cells, 

depending on the tumor type (Clarke, Dick et al. 2006). Cancer stem cells, which are also 
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named tumor-initiating cells, are characterized by three distinctive properties: 1) capacity to 

originate the tumors and drive tumor proliferation, 2) ability of long-term self-renewal, that 

is the ability to create infinite copies of themselves, 3) capacity to divide into differentiated 

tumor cells, which are non-CSC progeny (Schatton, Frank et al. 2009) (Figure 2). 

 

 

Figure 2. The principal features of cancer stem cells. CSCs are defined by three proprieties: (1) enhanced 
proliferation and tumorigenic growth, (2) self-renewal capacity, (3) ability to differentiate in non-CSC 
population (Schatton, Frank et al. 2009). 

 

CSCs have the capability of both symmetrical and asymmetrical cell division (Clarke, 

Dick et al. 2006). The symmetrical division into two identical daughter CSCs explains the self-

renewal ability while the asymmetrical division into one daughter cell and one progenitor 

differentiated cell explains the differentiation ability of CSCs.  

The hypothesis that tumors could evolve from a subset of cell population with stem 

cell characteristics was first demonstrated in hematological malignancies. It has been 

identified a subpopulation of tumor cells in acute myeloid leukemia (AML) that was able to 

give rise to leukemic growth in severe immodeficient mice (Lapidot, Sirard et al. 1994; 

Bonnet and Dick 1997). This CD34+CD38- subpopulation represents a small fraction of the 
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leukemia population that shows self-renewal and differentiation capabilities, which allows to 

recapitulate the entire hierarchy of human leukemia in mice. Following these studies in 

hematological malignancies, a number of studies have also identified CSCs in solid tumors. 

For example, ESA+CD44+CD24-/low breast tumor cells demonstrated to form tumors when 

injected into mammary fat pads of NOD/SCID mice, while cells lacking these markers were 

not capable to form tumors (Al-Hajj, Wicha et al. 2003). Different reports have identified 

CSCs in solid tumors based on other surface markers in a variety of organs such as brain, 

pancreas, colon and ovaries (Bonnet and Dick 1997; Al-Hajj, Wicha et al. 2003; Singh, 

Hawkins et al. 2004; Li, Heidt et al. 2007; Ricci-Vitiani, Lombardi et al. 2007; Zhang, Balch et 

al. 2008). Other phenotypic markers such as aldehyde dehydrogenase (ALDH) activity 

(Ginestier, Hur et al. 2007) and side population (SP) (Kondo, Setoguchi et al. 2004) have been 

demonstrated to identify CSCs. The most common CSCs markers used so far will be 

described in detail in the following section.  

The existence of this small population of tumor cells that drives tumor development, 

progression and metastasis could explain the recurrent failures of the conventional 

anticancer therapies. The conventional anticancer drug discovery has focused on the 

cytotoxic agents which inhibit metabolic pathways crucial for cell division. These drugs have 

demonstrated to have significant cytostatic or/and cytotoxic activity in vitro on tumor cell 

lines and to cause tumor regression in cancer xenograft mouse model. However, 

experimental evidences support the hypothesis that some cancer cells can survive and adapt 

to the selective pressure imposed by the drugs, becoming resistant to the treatment. This 

adaptation could involve mutations, epigenetic reprogramming and changes in the local 

tissue environment and it could be the cause of the restoring of the cancer growth and 

consequently cancer relapse. These evidences suggest the existence within a tumor of a 
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subpopulation of cancer cells that have the ability to adapt to their microenvironment and 

become resistant to drug treatment. This cell subpopulation could be represented by CSCs, 

since there have been a number of studies showing that these cells are resistant to standard 

chemotherapies. For example, high level of CD44+CD24-/low cells were found in biopsy 

samples of human breast cancer patients treated with standard chemotherapy (Li, Lewis et 

al. 2008). CD133+ human colon tumor cells were more resistant to apoptosis after treatment 

with oxaliplatin or 5-fluorouracil (Todaro, Alea et al. 2007). Therefore, some properties of 

CSCs, as expression of drug resistance transporters and quiescence, could make them 

resistant to the conventional cytotoxic drugs.  

Recent studies have correlated the acquisition of CSCs properties with the epithelial-

mesenchymal transition (EMT) process (Mani, Guo et al. 2008; Morel, Lievre et al. 2008; 

Singh and Settleman 2010). EMT is a morphogenic cellular program in which epithelial cells 

acquire a mesenchymal phenotype characterized by dramatically alteration of their shape 

and increase of motility (Thiery 2002). EMT is considered the first step in the metastatic 

process, as cancer cells acquire the capability to migrate, invade and disseminate (Biddle, 

Liang et al. 2011; Dave, Mittal et al. 2012). For example, acquisition of EMT and CSC marker 

expression was observed in mammary epithelial cells transformed by mutant Ras expression 

(Morel, Lievre et al. 2008). Moreover, it has been shown that the overexpression of some 

genes, such as NANOG, CD44, TWIST, hTERT, leads to reprogram the non-CSCs or bulk tumor 

cells in cells having CSCs characteristics (Jeter, Liu et al. 2011; Scaffidi and Misteli 2011; Su, 

Lai et al. 2011; Paranjape, Mandal et al. 2012).  

In 2006, Takahashi and Yamanaka have demonstrated that a differentiated fibroblast 

cell could be reprogrammed into an induced pluripotent stem cell (iPS) by a defined set of 

transcription factors (Takahashi and Yamanaka 2006). Oct4, Sox2, Nanog, Klf4 and c-Myc are 
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the transcription factors whereby pluripotency was induced. These transcription factors are 

highly expressed in embryonic stem cells and they represent the key regulators of embryonic 

stem cell identity. Their expression was observed in different human cancer types (Gidekel, 

Pizov et al. 2003; Li, Eishi et al. 2004; Rodriguez-Pinilla, Sarrio et al. 2007; Santagata, Ligon et 

al. 2007), where their role in tumorigenesis was established (Suvà 2013). Moreover, an 

overexpression of Oct4, Sox2, Nanog and c-Myc was associated with poorly differentiated 

aggressive tumors, such as basal-like subtype ER-negative breast cancer, poorly 

differentiated glioblastoma and bladder carcinoma (Ben-Porath, Thomson et al. 2008). All 

these evidences reveal a link between these genes, associated with embryonic stem cell 

identity, and the stem cell-like phenotype observed in tumors. Indeed, a number of studies 

showed an overexpression of these pluripotent stem cell genes in CSCs (Apostolou, Toloudi 

et al. 2012; Akhavan-Niaki and Samadani 2013; Giampieri, Scartozzi et al. 2013; Wang, Liu et 

al. 2013). 

Based on the model of cancer as a hierarchical disease, the CSCs are biologically 

diverse from the bulk tumor cells. The molecular pathways involved in survival and response 

to injury could be different in CSCs compared to non-tumorigenic cells. To achieve 

permanent cure and prevent tumor relapse, CSCs that drive the tumor growth must be 

eradicated, in addition to eliminating the bulk tumor cells. Therefore, it is crucial to 

understand the biology of CSCs in order to develop more effective targeted anti-CSCs 

treatments. 

The major obstacle to develop CSC-targeted therapies becomes from the fact that the 

CSCs retain features of the pathways involved in normal development, such as pathways 

that regulate self-renewal in normal stem cells (Hope, Jin et al. 2004). Therefore, drugs that 

target specifically process involved in survival or self-renewal may be effective against CSCs 
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but they could also affect their normal counterparts. Moreover, progenitor or normal stem 

cells could be more sensitive to chemotherapy compared to CSCs. Indeed, it is possible that 

CSCs acquire genetic and epigenetic modifications which allow them to bypass the tumor-

suppressing process that normal cells possess in response to DNA damage, such as 

senescence and apoptosis. Therefore, therapies with drugs that induce senescence or 

apoptosis may provide an advantage to the growth of CSCs (Bao, Wu et al. 2006). More 

effective drugs should target pathways important for CSCs survival but not for the growth of 

normal stem cells.  

 

1.1.2. Cancer stem cells markers 

Currently, the most common method to identify and isolate the CSCs is based on the 

expression of cell surface proteins. A list of the major CSC markers identified in solid tumor 

types is reported on Table 1 (Medema 2013).  

Table 1. CSCs markers of different types of solid tumors. (Medema 2013). 

Breast Colon Glioma Liver Lung Melanoma Ovarian Pancreatic Prostate 

ALDH1 ABCB5 CD15 CD13 ABCG2 ABCB5 CD24 ABCG2 ALDH1 

CD24 ALDH1 CD90 CD24 ALDH1 ALDH1 CD44 ALDH1 CD44 

CD44 β-
catenin 
activity 

CD133 CD44 CD90 CD20 CD117 CD24 CD133 

CD90 CD24 α6-

integrin 

CD90 CD117 CD133 CD133 CD44 CD166 

CD133 CD26 nestin CD133 CD133 CD271   CD133 α2β1-

integrin 
Hedgehog-
Gli activity 

CD29           c-Met α6-

integrin 

α6-integrin CD44           CXCR4 Trop2 

  CD133           Nestin   

  CD166           Nodal-
Activin 

  

  LGR5               
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However, most of the CSCs marker identified so far exhibit broad expression because 

they are also expressed by normal stem cells, rendering them non-CSCs specific. As an 

example, CD44 is a membrane glycoprotein involved in cell–cell interactions, cell adhesion 

and migration (Goodison, Urquidi et al. 1999), it is expressed in normal epithelial tissues and 

marks also CSCs of breast and other type of tumors. In addition, CD44 is amplified in 

different isoforms. The variants that identify specifically CSCs is still unknown (Fox, Fawcett 

et al. 1994). One widely used CSCs marker is CD133 (prominin-1), a transmembrane 

glycoprotein discovered in haematopoietic and neural stem cells. It has been shown that 

CD133+ CSCs have strong resistance to chemotherapy and radiotherapy (Todaro, Alea et al. 

2007). Monoclonal antibodies against two epitopes of CD133 protein were used to treat 

human melanoma cells and a cytotoxic effect was found in these cells (Rappa, Fodstad et al. 

2008). CD133 is considered as a potential target of CSCs. Indeed, it has been found that 

CD133+ CSCs isolated from colon cancer were able to initiate tumor growth in 

immunodeficient mice (Todaro, Alea et al. 2007). Nevertheless, CD133 could not be used as 

an efficient CSCs marker because is also expressed in a large variety of normal (Mizrak, 

Brittan et al. 2008). 

To identify and isolate CSCs, it has been proposed to use a combination of markers. As 

reported above, human breast cancer cells with CD44+CD24- phenotype have been observed 

to be tumorigenic (Al-Hajj, Wicha et al. 2003). CD44+CD24+ESA+ human pancreatic cancer 

cells have been shown to be tumorigenic (Li, Heidt et al. 2007). CD45-CD90+CD44+ was 

recommended to be a good marker combination for human liver tumor (Yang, Ngai et al. 

2008). However, the use of marker combination makes more difficult the development of 

specific CSCs–targeted therapies. 
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Another marker highly expressed in CSCs, especially in breast CSCs, is ALDH1 (aldehyde 

dehydrogenase 1) (Ginestier, Hur et al. 2007). ALDH1 is an isoenzyme of ALDH family, 

NAD(P)+-dependent enzymes able to catalyze the oxidation of aldehyde in carboxylic acid 

(Ma and Allan 2011) and expressed in both normal stem cells and CSCs. It functions as drug 

detoxifying enzyme, and is thus responsible for chemoresistance (Sun and Wang 2010; 

Marcato, Dean et al. 2011). The ALDH-activated fluorescent substrate (Aldefluor assay) is a 

suitable marker widely used to detect cells having high ALDH activity (Ma and Allan 2011). In 

human breast cancer cells, an ALDHhiCD44+ subpopulation was identified to be resistant to 

chemotherapeutic drugs (doxorubicin/paclitaxel) and radiotherapy. Furthermore this 

subpopulation was observed to be sensitized to treatment after exposure with some ALDH 

inhibitors, as DEAB (diethylamino-benzaldehyde) and ATRA (all-trans retinoic acid) (Croker 

and Allan 2012). However, ALDH1 could not be a good target for CSCs because the inhibition 

of ALDH1 led to a significant up-regulation of stem cell genes (Ginestier, Hur et al. 2007).  

The ABC (ATP-binding cassette) drug transporters are highly expressed in normal stem 

cells and also in many CSCs. They have the ability to efflux dyes out of the cells, protecting 

them from xenobiotic toxins (Haraguchi, Utsunomiya et al. 2006; Remsberg, Lou et al. 2007). 

This capacity is usually used in protocols where Hoechst dye is pumped out by cells 

expressing these pumps, which identifies a dye-free cell subpopulation named side 

population (SP) (Vermeulen, Sprick et al. 2008). The major responsible of this phenotype is 

ABCG2 (also named BCRP) protein, a member of ABC transporters protein family. ABCG2 is 

responsible of multidrug resistance, thus is considered as a potential CSCs marker 

(Hirschmann-Jax, Foster et al. 2004; Kondo, Setoguchi et al. 2004; Chiba, Kita et al. 2006). SP 

cells have shown different properties of CSCs, such as self-renewal, tumorigenicity, 

expression of stem cell genes and other CSC markers (Wu and Alman 2008). Furthermore, 
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they can be isolated from tumor cell lines (Kondo, Setoguchi et al. 2004). It has been shown 

that another ABC transporter family (ABCB5) has a functional role on CSCs in colorectal 

cancer, as its depletion decreased the tumorigenic capacity (Wilson, Schatton et al. 2011). 

Another important property of stem cells, which is widely used to enrich CSCs, is the 

ability to form spheroid colonies called spheres (Dontu, Abdallah et al. 2003). The spheres 

can be obtained using in vitro assay based on serum-free medium supplemented with 

epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) where cells from 

tumor specimens or cell lines are seed at low density (Dontu, Abdallah et al. 2003). The 

sphere-derived cells have shown to be tumorigenic and have drug resistance property (Qiu, 

Wang et al. 2012). However, the results obtained using in vitro assay should be confirmed by 

in vivo assay, as they do not show the tumor formation ability of CSCs. The transplantation in 

animal models is considered the gold standard assay which measures the self-renewal ability 

of CSCs and tumor propagation (Clarke, Dick et al. 2006). Typically, tumor cells isolated with 

specific CSC marker or from primary human tumors are transplanted into 

immunocompromised mice (normally NOD/SCID). Then, the mice are monitored at different 

time points to follow the tumor formation.  

In summary, mostly all the known CSCs markers are used to isolate an enriched 

populations that are also expressed by normal progenitor and stem cells. Therefore, they do 

not represent effective markers for the development of specific anti-CSC drugs.  

 

1.1.3. Signaling pathways involved in cancer transformation 

To identify functional CSC markers, tumor research has focused on molecular signaling 

pathways which have important roles in normal stem cells, such as self-renewal, 

proliferation and differentiation. Wnt/β-catenin, Hedgehog and Notch signaling pathways 
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are the most characterized and they have shown to be responsible for the formation of cells 

with properties of CSCs (Merchant and Matsui 2010; Maugeri-Sacca, Zeuner et al. 2011) 

(Figure 3).  

The Wnt signaling pathway is involved in embryogenesis, development, cell 

proliferation, survival and differentiation process (Klaus and Birchmeier 2008). Wnt ligand 

(secreted glycoprotein) initiates Wnt pathway binding to cell membrane receptors, resulting 

in the activation of target genes. The tissues where Wnt signaling is most involved are skin, 

intestine and mammary gland (Katoh and Katoh 2007). Aberrant activation of Wnt pathway 

was shown in many tumors (Barker, Ridgway et al. 2009; Gaston-Massuet, Andoniadou et al. 

2011). 

 

Figure 3. Signaling pathways which regulate self-renewal during normal stem cell development and cancer 
transformation. Wnt/β-catenin, Hedgehog and Notch pathways. (Zhou, Zhang et al. 2009). 
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Deregulation of Wnt pathway was observed after oncogenic mutation of β-catenin and 

APC (adenomatous polyposis coli) genes, resulting in neoplastic transformation (Reya and 

Clevers 2005). In several tumors, such as chronic myelogenous leukemia and squamous cell 

carcinoma, the Wnt pathway is required for the self-renewal of CSCs (Zhao, Blum et al. 2007; 

Malanchi, Peinado et al. 2008). It has been discovered that Wnt signaling can be inhibited by 

secreted proteins, as the Soluble Frizzled-related protein (SFRP) and Dickkopf protein (DKK), 

which act at cell membrane inhibiting the Wnt pathway through its receptors (Kawano and 

Kypta 2003). Small molecules antagonist of TCF- β-catenin complex factor have been 

described (Lepourcelet, Chen et al. 2004).  

Hedgehog (Hh) signaling is another pathway important for development during 

embryogenesis and for the maintenance of stem cells (Varjosalo and Taipale 2008). This 

pathway is activated when Hh protein binds to PTCH, a transmembrane protein, resulting in 

the activation of target genes. Recently, it has been observed that the Hh pathway is critical 

for the maintenance of the proprieties of CSCs in different human tumors, such as 

pancreatic, gastric, and colorectal (Merchant and Matsui 2010; Song, Yue et al. 2011; Tang, 

Fu et al. 2012). A small molecule inhibiting the co-receptor SMO (smoothened homologue) 

was reported (Sanchez, Hernandez et al. 2004) and also pharmacological inhibitors that 

display efficacy in animal models of basal cell carcinoma, small cell lung and pancreatic 

tumors (Berman, Karhadkar et al. 2003; Thayer, di Magliano et al. 2003; Romer, Kimura et al. 

2004). However, the results vary among the different models and these agents are not so 

effective (Fan, Pepicelli et al. 2004; Sasai, Romer et al. 2006). 

Notch signaling pathway is involved in cell-cell communication and also in embryonic 

development (Wang, Li et al. 2008). It is activated by four receptors (Notch 1, 2, 3 and 4) and 

five Notch ligands (Delta-like 1-4 and Jagged 1,2) (Wang, Li et al. 2008). The deregulation of 
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Notch signaling plays different roles in tumorigenesis depending on the tumor type: 

oncogenic in cervical, lung, colon, head and neck, prostate, pancreatic tumors, while it could 

act as tumor suppressor in hepatocellular carcinoma, small cell lung cancer and skin cancer 

(Radtke and Raj 2003; Lobry, Oh et al. 2011). Notch pathway was targeted to eliminate CSC 

cells (Pannuti, Foreman et al. 2010; Wang, Ahmad et al. 2011). In glioblastoma, γ-secretase 

inhibitors (GSIs) were used to block Notch signaling, leading reduction of neurospheres 

growth, tumorogenecity and expression of CSC markers (Fan, Khaki et al. 2010). Another 

report shows the use of GSI MRK-003 in breast cancer, resulting in inhibition of self-renewal 

and proliferation of CSCs (Kondratyev, Kreso et al. 2012). However, GSIs are non-selective 

CSC-targeted drugs because they block the cleavage of all four Notch ligands and also other 

γ-secretase substrates (Wang, Ahmad et al. 2011). 

There are growing evidences that Wnt, Hedgehog and Notch pathways interact with 

other signals, such as bone morphogenic proteins (BMPs) and growth factors produced by 

CSCs, tumor bulk cells and their microenvironments (Ayyanan, Civenni et al. 2006). For 

example, in prostate and esophageal cancer, Hedgehog activity is associated to ABC drug 

transporters expression (Sims-Mourtada, Izzo et al. 2007) and in colon cancer Wnt is linked 

to CD133 and CD44 (Katoh and Katoh 2007; Van der Flier, Sabates-Bellver et al. 2007).  

Although, the dysregulation of these signaling pathways has been found in CSCs, the 

genes involved in these pathways are normally expressed in stem cells. Therefore, all the 

drugs against these pathways can target both CSCs and normal stem cells, with adverse 

effects. Advances in research are needed to improve their specificity against CSCs.  
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1.1.4. microRNAs 

An altered expression of microRNA (miRNA) has been observed in CSCs (Zimmerman and Wu 

2011). MiRNAs are short RNAs that post-transcriptionally regulate expression through 

complementary binding of mRNA sequences. They commonly led to gene silencing through 

target mRNA degradation or translational repression. They normally regulate different 

process, such as self-renewal, differentiation and cell division (Zimmerman and Wu 2011). 

Many studies have shown a deregulation of miRNAs in cancer, in which miRNAs can act as 

tumor suppressor or oncogene (Hatfield and Ruohola-Baker 2008). For example, miRNA-34a 

is down-regulated in several tumors and it can target p53 tumor suppressor gene as well as 

oncogenes, as c-Met, Notch-1-2, and CDK6 (Hermeking 2010). MiRNA-34a could induce the 

differentiation of CSCs in glioblatoma cells and brain tumors (Li, Guessous et al. 2009; 

Guessous, Zhang et al. 2010). Furthermore, miRNA-34a was observed to act as negative 

regulator of CD44+ prostate cancer cells (Liu, Kelnar et al. 2011), suggesting that miRNA-34a 

could be used to target CSCs of prostate cancer. In head and neck cancer cells, miRNA-21 

and miRNA-205 were highly expressed (Hatfield and Ruohola-Baker 2008). Interestingly, it 

has been observed that some specific miRNAs promote EMT process and metastasis. For 

example, the re-expression of miRNA-21 in MCF7 cell line leads to the acquisition of EMT 

phenotype, the upregulation of CSC markers (ALDH1 and CD44+CD24-) and the increase of 

sphere formation capacity (Han, Liu et al. 2012). Recently, nanoparticles load with an 

oligonucleotide anti-miRNA (AMO-loaded SLNs) that specifically suppresses miRNA-21 

functions were tested in lung tumor A549 cells. These AMO-loaded SLNs lead to the 

decrease of proliferation, migration and invasion (Shi, Zhong et al. 2012). Therefore, the 

development of therapies targeting miRNAs could become an attractive proposition to 

target CSCs. 
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1.2. BORIS/CTCFL 

 

BORIS (Brother of the regulator of imprinting sites) or CTCFL, CCCTC-binding factor (CTCF)-

like, is a zinc finger (ZF) DNA-binding protein. BORIS is a mammalian paralog of CTCF with 

which it shares a 11 ZF domain (Loukinov, Pugacheva et al. 2002). It is a member of cancer 

testis antigen (CTA) gene family, as it is expressed in germ cells and aberrantly re-expressed 

in cancer (Kalejs and Erenpreisa 2005). 

 

1.2.1. BORIS gene and protein 

Human BORIS gene is located at chromosome 20q13.2, which is a chromosomal region 

amplified in many cancers (Tanner, Tirkkonen et al. 1994; Cuthill, Agarwal et al. 1999). 

Human BORIS transcript consists of 11 exons. Its expression is controlled by three alternative 

promoters, corresponding to transcription start sites at −1447, −899 and −658 bp upstream 

of the first ATG and designated promoter A, B and C respectively (Renaud, Pugacheva et al. 

2007). Each of these promoters has putative binding sites for specific transcription factors, 

such as CREB for promoter A, NF-kB, N-myc for promoter B, WT1 and EKLF for promoter C 

(Renaud, Pugacheva et al. 2007). It has been also reported that BORIS can be expressed in 23 

different isoforms which are translated in 17 different proteins, each isoprotein has a unique 

combination of ZF domains and N- and C- termini, according to promoter usage (Pugacheva, 

Suzuki et al. 2010). Human BORIS is 75 kDa protein that shares 70% of homology with the 

CTCF protein in the 11 ZF domains but differs in the N- and C- termini (Klenova, Morse et al. 

2002; Loukinov, Pugacheva et al. 2002). The N-termini and full length protein interact with 

PMRT7-DNA methylase, hystones H1, H3, H2A (Jelinic, Stehle et al. 2006) and with the 

promoter of cerebroside sulfotransferase (CST) (Pugacheva, Suzuki et al. 2010). 
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1.2.2 BORIS functions in normal tissue 

In normal human tissues, BORIS expression was firstly described to be restricted to testis, 

where it is involved in the spermatogenesis (Loukinov, Pugacheva et al. 2002). It was 

detected in primary spermatocytes, at early stage of spermatogenesis. In contrast, in 

spermatids and spermatozoa, BORIS is apparently not expressed (Klenova, Morse et al. 

2002). BORIS expression was found to be associated with a concomitant erasure of DNA 

methylation marks. Although some studies indicate that in testis tissue, BORIS regulates 

gene expression and meiosis events, the function of BORIS in spermatogenesis is not fully 

understood. It has been shown that BORIS-knockout mice have small testis and defective 

spermatogenesis, despite they are fertile. In addition, inactivation of BORIS led to a 

reduction of CST expression, which has an important role in meiosis, and to a significant 

delay of sperm production (Suzuki, Kosaka-Suzuki et al. 2010). Recently, it was reported that 

BORIS regulates also other genes important in male germ cell development in mice, such as 

Gal3st1, Prss50 and Stra8 (Sleutels, Soochit et al. 2012). It has been observed that BORIS has 

an important role on DNA methylation of male germline imprinted genes, specifically on the 

methylation of the H19 imprinting control region (Jelinic, Stehle et al. 2006). BORIS interacts 

with PRMT7, a methlytransferase protein and stimulates its histone-methyltransferase 

activity on histones H2A and H4. Moreover, it has been shown that BORIS preferentially 

binds to the paternal H19-ICR region which is differentially methylated, while CTCF binds to 

the unmethylated maternal allele (Nguyen, Cui et al. 2008). This result shows a regulatory 

mechanism whereby BORIS preferentially binds to methylated CTCF DNA-binding sites. 

In mouse testis, it has been observed that a miRNA-709 specifically targets BORIS. 

Indeed, after x-ray radiation the miRNA-709 was up-regulated, resulting in the inhibition of 

BORIS expression (Tamminga, Kathiria et al. 2008). It was suggested that BORIS inhibition 
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may be act as protective mechanism to prevent aberrant erasure of DNA methylation in the 

treated testis. This finding also suggests that BORIS could be a target of other miRNAs that 

could allow the re-activation of BORIS in malignant disease. 

Additionally, BORIS expression was detected also in ovary, precisely in oocytes and 4-

cell embryos (Monk, Hitchins et al. 2008). The same report shows the co-localisation of 

BORIS with other proteins involved on self-renewal, as ECSA (embryo/cancer sequence A), 

OCT4 and NANOG in cultured embryonic stem cells. This suggests a role of BORIS in 

epigenetic reprogramming events relating the pluripotency and thus, a possible role of 

BORIS as a gene involved in the epigenetic modification that could lead to CSCs phenotype.  

 

1.2.3. BORIS functions in cancer 

In different tumors, a reactivation of BORIS expression was observed. Transcription 

activation was found in several cancer cell lines and in about 70% of primary tumors (de 

Necochea-Campion, Ghochikyan et al. 2011). However, contradictory results were reported 

concerning BORIS expression in some types of tumors. For example, BORIS expression was 

observed in different breast tumor cell lines and in primary breast tumors (D'Arcy, Pore et al. 

2008) while, another report shows the absence of BORIS expression in the same breast cell 

lines and breast carcinoma (Hines, Bazarov et al. 2010). Furthermore, BORIS expression was 

detected in melanoma cell lines but not in primary melanoma (Kholmanskikh, Loriot et al. 

2008). There are some reasons that could explain these discrepancies. A validated good 

antibody against BORIS is still not available and the main commercial antibodies lead to a 

high number of false-positive and false-negative results. Additionally, as BORIS is known to 

be translated in 23 isoforms (Pugacheva, Suzuki et al. 2010), expression analysis with 

different set of primers may produce inconsistent reproducible data.  
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Due to its restricted expression in normal germinal tissues and its re-expression in a 

wide variety of tumors, BORIS belongs to cancer testis antigen (CTA) family. CTAs are 

normally expressed in germ cells and aberrantly expressed in a wide variety of human tumor 

(Caballero and Chen 2009). They are mainly regulated by epigenetic mechanism, such as 

DNA methylation (De Smet, Lurquin et al. 1999; Meklat, Li et al. 2007). So far, almost all 

identified CTAs are silenced by methylation of CpG island promoters in normal somatic 

tissue and are reactivated by demethylation during spermatogenesis (Lim, Kim et al. 2005). 

CTAs are considered promising targeted molecules for anti-cancer vaccines because of their 

restricted expression in normal tissues, their high immunogenicity and their re-expression in 

tumors (Simpson, Caballero et al. 2005; Akers, Odunsi et al. 2010). Encouraging results have 

been obtained in clinical trials using vaccines targeting the CTA genes MAGE-A3 or NY-ESO-1, 

CTAs genes (Simpson, Caballero et al. 2005; Odunsi, Qian et al. 2007; Atanackovic, Altorki et 

al. 2008). However, due to the low frequency and heterogeneous expression of CTAs genes 

in human tumors, there are some limitations with this approach (Woloszynska-Read, 

Mhawech-Fauceglia et al. 2008).  

The immunogenicity of BORIS was confirmed when in sera of breast cancer patients 

anti-BORIS antibodies were detected (USA Patent 7785814 B2). Several vaccines based on 

truncated mouse BORIS were generated and tested (Loukinov, Ghochikyan et al. 2006; 

Ghochikyan, Mkrtichyan et al. 2007; Mkrtichyan, Ghochikyan et al. 2008). Vaccination with 

BORIS-based vaccine in poorly immunogenic and aggressive 4T1 adenocarcinoma mice 

model resulted in inhibition of tumor growth and reduction of tumor metastasis compared 

to control mice (Mkrtichyan, Ghochikyan et al. 2011). 

In Korean patients, a susceptibility to breast cancer was correlated to allelic variations 

in the minisatellite of BORIS (BORIS-MS2), which is located upstream of BORIS gene (Yoon, 
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Kim et al. 2010). Consequently, this report suggests that BORIS-MS2 short rare alleles may 

be used as risk factor for breast cancer. 

Several studies have demonstrated a direct role of BORIS in the regulation of the 

expression of some CTAs genes. Indeed, overexpression of BORIS in normal cells allows 

MAGEA1 expression through its promoter demethylation (Vatolin, Abdullaev et al. 2005). In 

lung tumor, MAGEA1 was found to be regulated by binding of BORIS together with CTCF to 

NY-ESO-1 promoter (Hong, Kang et al. 2005). In other two reports, a correlation between 

BORIS and expression of CTA genes in non-small cell lung cancer and head and neck 

squamous cell carcinoma it has been shown (Glazer, Smith et al. 2009; Smith, Glazer et al. 

2009). Interestingly, in a variety of tumors, BORIS was implicated in the coordinated 

promoter demethylation and transcriptional re-activation of putative oncogenes, which are 

epigenetically silenced in somatic cells (Smith, Glazer et al. 2009) . 

BORIS is the unique gene of the CTA family with a somatic counterpart gene, CTCF. 

BORIS and CTCF share the same ZF DNA-binding domain (Loukinov, Pugacheva et al. 2002). 

CTCF is a highly conserved gene, while BORIS is less conserved across species and it is 

detected only in amniotes because during the evolution its protein arose later (Hore, Deakin 

et al. 2008). In contrast to BORIS, CTCF is ubiquitously expressed and it has been shown that 

CTCF is a multifunctional chromatin factor that plays as a tumor suppressor gene (Dunn and 

Davie 2003; Moon, Filippova et al. 2005; Herold, Bartkuhn et al. 2012). CTCF was found 

localized in the nucleolus compartment and BORIS was found in both nucleolus and 

cytoplasm compartments (Rosa-Garrido, Ceballos et al. 2012). CTCF and BORIS are both 

insulator proteins. BORIS is present in euchromatin domains and in the sites of RNA 

transcription, but it is not present in highly condensed chromatin, suggesting a role of BORIS 

in the unfolding of the chromatin before the transcription (Rosa-Garrido, Ceballos et al. 



26 
 

2012). BORIS could regulate gene expression through histone modification. Indeed, it has 

been shown that binding of BORIS to some CTAs leads to an enrichment of modification of 

two histones, H3K9 and H3K4 (Bhan, Negi et al. 2011). In another study, the binding of BORIS 

led to some modifications in the local chromatin organization, allowing altered Rb2/p130 

expression (Fiorentino, Macaluso et al. 2011). Apparently, the binding of BORIS could lead to 

the conformational modification of chromatin from a close state to an open state, allowing 

the transcriptional activation of some important genes for tumorigenesis. 

The important role of BORIS in the immortalization process during tumorigenesis 

through transcriptional regulation of hTERT telomerase gene has been reported (Renaud, 

Loukinov et al. 2011). Telomerase is a specialized DNA polymerase complex responsible for 

adding telomeric DNA repeats to the ends of chromosomes. hTERT is the catalytic subunit of 

the telomerase complex and is the limiting factor for telomerase activation (Bodnar, 

Ouellette et al. 1998; Counter, Meyerson et al. 1998). In human, telomerase is generally 

absent in somatic cells but remains active in germ cells, progenitor cells and some adult stem 

cells. It has been shown that telomerase is reactivated in a majority (approximately 90%) of 

tumors (Kim, Piatyszek et al. 1994). In clinical studies, its reactivation is associated with poor 

outcomes in different types of cancer (Gertler, Rosenberg et al. 2004; Domont, Pawlik et al. 

2005; Tabori, Ma et al. 2006; Terrin, Rampazzo et al. 2008). The enhancement of telomerase 

activity is considered one of the hallmarks of cancer and is essential for cellular 

immortalization and malignant transformation (Hanahan and Weinberg 2011). Interestingly, 

the transcriptional regulation of hTERT is controlled by CTCF and this regulation is cell type 

dependent (Renaud, Loukinov et al. 2005). In somatic cells, CTCF inhibits hTERT expression 

by binding to the hTERT promoter. In about 85% of tumor cells, a hypermethylation of the 

CTCF binding site was observed within the hTERT promoter. This hypermethylation blocks 
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CTCF binding and the CTCF repressive effect, leading to hTERT expression (Renaud, 

Pugacheva et al. 2007). Recently, we have reported that in testicular and ovarian tumor cells, 

BORIS binds to the CTCF binding site, resulting in hTERT activation (Renaud, Loukinov et al. 

2011). In addition, ectopic BORIS expression in normal cells led to an up-regulation of hTERT 

expression and an increasing of cell passages number (Renaud, Loukinov et al. 2011). All 

these data revealed an important role of BORIS in the immortalization process during 

tumorigenesis. 

Recent reports have highlighted the association of BORIS expression with poor 

prognosis in different types of cancers. In ovarian cancers, BORIS expression was correlated 

with advanced stage and decreased survival (Woloszynska-Read, James et al. 2010). It has 

been demonstrated that BORIS was involved in proliferation and invasion of esophageal 

squamous cell cancer and BORIS-positive tumors had a poor overall survival (Okabayashi, 

Fujita et al. 2012). In hepatocellular carcinoma, a correlation between BORIS expression and 

poor overall survival as well as with the CSCs marker CD90 has been observed (Chen, Huang 

et al. 2013). All these findings recognize an important role for BORIS in cancer and suggest 

that BORIS could play a key function in CSCs. 

Interestingly, an overexpression of BORIS after treatment with apicidin and docetaxel 

drugs in metastatic breast tumor cells has been reported, suggesting a potential role of 

BORIS on favoring an antitumor immune response (Buoncervello, Borghi et al. 2012).  

Collectively all these observations show the structural complexity of BORIS gene and its 

important role in cancer. However, all its functions of BORIS in malignant disease are not 

fully understood. Therefore, a better understanding of biological functions of BORIS in tumor 

disease was the final goal of this study. 
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The goal for this study was to better understand the function of BORIS in tumor cells. BORIS 

is a DNA binding protein that is expressed in normal tissues only in germinal cells (testis and 

oocytes) and is re-expressed in a wide variety of tumors. Recent studies have shown an 

association of BORIS expression with a poor prognosis in different type of cancer patients. 

Although the expression of BORIS in tumors is well documented, there are questions not yet 

answered:  

1) How frequently is BORIS expressed? 

2) Is BORIS expressed at basal level in almost all the tumor cells or rather is it expressed 

in a restricted cell population with a high significant expression level? 

3) What is the role of the BORIS-expressing cell population in tumor development? 

4) Is the role of BORIS different according to the cell type? 

Our hypothesis is that BORIS is mainly expressed in the cancer stem cells (CSCs). This 

restricted expression of BORIS in CSCs may lead to epigenetic reprogramming of several 

genes and therefore, BORIS could play an essential role in tumor development. 

To address the first two questions, we developed a new technology system to target 

BORIS mRNA expressing cells. Using this system, we were able to quantify the estimated 

frequency of the BORIS-expressing cells. To address the last two questions, we set up to use 

this system to isolate the BORIS-high expressing cells and to assess their expression profile. 

We evaluated the expression of hTERT and stem cell genes in order to identify an association 

of BORIS with the known characteristics of CSCs. We further investigated the BORIS 

expression in the CSCs-enriched populations (side population and spheres). To validate our 

main hypothesis, we finally analyzed the role of BORIS in the self-renewal of tumors using a 

functional assay approach in which BORIS was stably silenced or induced.  
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2.1. Abstract 

 

BORIS/CTCFL is a member of cancer testis antigen family normally expressed in germ cells. In 

tumors, it is aberrantly expressed although its functions are not completely well-defined. To 

better understand the functions of BORIS in cancer, we selected the embryonic cancer cells 

as a model. Using a molecular beacon (MB), which specifically targets BORIS mRNA, we 

demonstrated that BORIS positive cells are a small subpopulation of tumor cells (3-5% of 

total). The BORIS-high expressing cells, isolated by flow cytometer sorting, expressed higher 

telomerase hTERT mRNA compared to the BORIS-low and the entire bulk tumor cells. 

Interestingly, the isolated BORIS-high cells also displayed significant high expression of stem 

cells genes (NANOG, OCT4, SOX2) and cancer stem cells (CSCs) markers genes (CD44 and 

ALDH1). In order to define the functional role of BORIS, stable BORIS-depleted cells were 

generated. BORIS silencing strongly down-regulated the expression of hTERT, stem cell 

genes and CSC markers genes. Moreover, the BORIS knockdown increased cellular 

senescence in embryonic cancer cells, revealing a protective role of BORIS on senescence 

biological program likely by transcriptional regulation of telomerase. Our data indicate an 

association of BORIS expressing cells subpopulation with stem cell-like traits, demonstrating 

the critical role played by BORIS on embryonic neoplastic disease.  
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2.2. Introduction 

 

Brother of the regulator of imprinting sites (BORIS) also designed as CTCFL, CCCTC-binding 

factor-like, is a DNA-binding protein with functions in cancer not fully understood. CTCF is a 

highly conserved, ubiquitously expressed, multifunctional chromatin factor that plays a role 

as a tumor suppressor gene (Dunn and Davie 2003; Moon, Filippova et al. 2005; Herold, 

Bartkuhn et al. 2012). BORIS is a mammalian paralog of CTCF with whom it shares 11 zinc-

finger domains but differs at N- and C- termini, within zinc-finger domains BORIS and CTCF 

exhibit 70% of homology. In normal tissues, BORIS expression is restricted to germ cells, 

where it is involved in epigenetic reprogramming (Klenova, Morse et al. 2002; Loukinov, 

Pugacheva et al. 2002). Indeed, BORIS is expressed in spermatocytes during male germ line 

development, in absence of CTCF. In tumors, BORIS is aberrantly expressed and its 

transcription was found in several cancer cell lines and 70% of primary tumors (de 

Necochea-Campion, Ghochikyan et al. 2011). Due to its restricted expression in normal 

germinal tissues and its re-expression in a wide variety of tumors, BORIS belongs to cancer 

testis antigen (CTA) family. It has been shown that BORIS induced expression of other CTA 

genes, as MAGE-A1, NY-ESO-1 (Hong, Kang et al. 2005; Vatolin, Abdullaev et al. 2005) and 

SPANX (Kouprina, Noskov et al. 2007) but not in all tumors (Kholmanskikh, Loriot et al. 2008; 

Woloszynska-Read, James et al. 2010). In addition, we previously showed that BORIS 

activated hTERT expression by binding to the first exon of the hTERT gene (Renaud, Loukinov 

et al. 2011) in embryonic and ovarian tumor cells. Furthermore, in studies of exogenous 

BORIS expression in normal BORIS-negative cells, we demonstrated that these transfected 

cells exhibited high levels of hTERT mRNA. All these results revealed an important role of 

BORIS in the immortalization process during tumorigenesis. Interestingly, current reports 
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show a correlation between hTERT expression and stem cell like properties (Hiyama and 

Hiyama 2007; Schepers, Vries et al. 2011; Shay and Wright 2011; Paranjape, Mandal et al. 

2012; Kim, Yoo et al. 2013). 

An important question not yet answered is how frequently BORIS is expressed among 

cancer cells within a tumor. The molecular beacon (MB) imaging technology is an approved 

method to detect and also to visualize mRNA expression (Monroy-Contreras and Vaca 2011). 

MBs are oligonucleotides structured as stem-loop hairpin with at one end, a fluorescence 

quencher and at the opposite end, a fluorescent dye also called fluorophore. Due to their 

specific structure, MBs in presence of their target complementary sequences are able to 

bind them and emit fluorescence signals, otherwise in absence of their targets do not emit 

fluorescence. To explore the frequency of BORIS positive cells within tumor cell lines, we 

first designed a BORIS mRNA-targeting MB and analyzed BORIS expression in human 

embryonic and ovarian tumor cell lines, respectively NCCIT and OVCAR3. After verifying that 

BORIS-MB enable FACS sorting of BORIS-positive cells, we showed that the isolated BORIS-

high fraction cells expressed high hTERT mRNA level. A correlation with the stem cell like 

properties was observed in the BORIS-high isolated cells from NCCIT embryonic cancer cells. 

We further confirmed this result by BORIS silencing studies and finally demonstrated that 

BORIS is associated with increase expression of hTERT and acquisition of stem cell-like traits 

in embryonic cancer cells. Moreover, we showed that BORIS protects from senescence 

process apparently through hTERT regulation. Altogether, our data confirm a direct role of 

BORIS in embryonic neoplastic disease. 
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2.3. Materials and methods 

 

2.3.1. Cells 

The human cell lines (BJ, foreskin fibroblast; HeLa, cervical adenocarcinoma; NCCIT, 

embryonic carcinoma; OVCAR3, ovary carcinoma) were purchased from the American Type 

Culture Collection (ATCC). The cells were cultured at 37°C with 5% CO2 either in Dulbecco's 

modified Eagle's medium (DMEM; Gibco, Invitrogen) for HeLa and BJ cells, or in RPMI-1640 

medium (Gibco, Invitrogen) for NCCIT and OVCAR-3, supplemented with 10% of heat 

inactivated fetal bovine serum (FBS; Invitrogen) and 1% of Penicillin-Streptomycin (Gibco, 

Invitrogen).  

 

2.3.2. Molecular beacon (MB) design 

Sequences of BORIS-MB1 and BORIS-MB2 were designed using Beacon Designer (Premier 

Biosoft). BORIS mRNA secondary structures were predicted using mFOLD software (mFOLD, 

http://www.bioinfo.rpi.edu/applications/mfold/) and specificity was determined by a BLAST 

search (NCBI). The target sequence of BORIS-MB1 is located on exon 2 and that of BORIS-

MB2 is located on exon 11 of BORIS mRNA. These location were chosen since they are 

outside the zinc-finger domains and do not cross-hybridize with the CTCF homology regions. 

In addition, previous study has shown that the starting and ending regions of mRNA are the 

more accessible for MBs hybridization (Rhee, Santangelo et al. 2008). The RANDOM-MB that 

was used as negative control does not match with any mammalian sequences (Rhee, 

Santangelo et al. 2008). Sequences were the following: BORIS-MB1 5’-

CGCTGTCTCTGCACACTCCGTCTTCAGCG-3’; BORIS-MB2 5’-CAGCCATTCCTCTTTGACTCTGGCTG-

3’ and RANDOM-MB 5’-CGACGCGACAAGCGCACCGATACGTCG-3’ (underlined bases indicating 

http://www.bioinfo.rpi.edu/applications/mfold/
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those complementary to the target). A fluorophore (Cy3 or ATTO647) was 5’-conjugated and 

a Black Hole Quencher (BHQ-2) was linked to the 3’-end. The MBs were purchased from 

Sigma with high-pressure liquid chromatography purification method. 

 

2.3.3. In vitro determination of MB specificity 

Oligos were designed to be specific of the MBs target (BORIS-MB1 specific target: 5’-

AAGACGGAGTGTGCAGAGAGA-3’; BORIS-MB2 specific target: 5’-

CAGCCAGAGTCAAAGAGGAA-3’ and RANDOM-MB specific target: 5’-TATCGGTGCGCTTGTCG-

3’). A non-specific oligo was also designed (non-specific target: 5’-

CGATGCCGAACCAATTCTCCAC-3’). To test the specificity in solution, 200 nM of MB was 

mixed or not with 1 μM of oligo in 10 μL of Opti-MEM medium (Invitrogen). 

The emission fluorescence profiles were obtained after heating the MB-target oligo 

mix to a progressive temperature elevation ranging from 15 to 80°C using 1°C steps. 

Fluorescence signal was acquired at the end of each increasing degree and detected on the 

Cy3 channel using a Rotor Gene 6000 Real-Time PCR system (Corbett Life Science). 

 

2.3.4. MB delivery and cell fluorescence imaging  

Cells were detached using 0.05% trypsin-EDTA (Invitrogen) and resuspended in serum-free 

DMEM medium at the concentration of 106 cells/ml. Firstly, Cy3-BORIS-MB or Cy3-RANDOM-

MB (200 nM) was incubated at room temperature in presence of 1 μl/ml of Lipofectamine 

RNAiMAX siRNA transfection reagent (Invitrogen) using Opti-MEM medium. The 

Lipofectamine RNAiMAX reagent was used as delivery vehicle since in our conditions it gave 

less background compared to other reagents such as Streptolysin (data not shown). After 10 

min, the transfection mix was added to the suspended cells and together incubated for 1 
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hour at 37°C. Hoechst 33342 (Invitrogen) was added at concentration of 5 µg/mL during the 

last 10 min of incubation. Then, cells were washed using PBS and resuspended in PBS with 5 

mM EDTA. Transfected cells were cytocentrifugated onto glass slide using a cytospin 

centrifuge and examined under fluorescent microscope (Axioplan2 Imaging, Zeiss). The 

fluorescence signal of Cy3-coniugated MB was analyzed using the red channel and Hoechst 

33342 fluorescence emission was observed under blue channel.  

 

2.3.5. FACS analysis and sorting using MB 

For FACS analysis and cell sorting, we used MBs conjugated with ATTO 647, a dye 

characterized by its high photostability (Arden-Jacob, Frantzeskos et al. 2001). Cells were 

prepared and incubated with MBs as described above (except that Hoechst 33342 was not 

added) and were directly analyzed using Gallios flow cytometer (Beckman Coulter). At least 

10,000 events were collected and analyzed by Kaluza Software. The BORIS-high and BORIS-

low population were sorted after exclusion of dead cells by Propidium Iodide (PI) staining 

using FACSAria I (Becton Dickinson) instrument at the Flow Cytometry Facility of UNIL 

(University of Lausanne, Switzerland). Ranges of 2 x 104 - 9 x 104 BORIS-high cells and 2 x 105 

- 9 x 105 BORIS-low cells were sorted. 

 

2.3.6. BORIS knockdown by inducible shRNA lentiviral system 

Stable cell lines with inducible expressing shRNAs targeting human BORIS mRNA were 

generated using the doxycycline-inducible shRNA lentiviral system, pINDUCER (Meerbrey, Hu 

et al. 2011). The lentiviral vector pINDUCER11 constitutively expresses the eGFP fluorescent 

reporter protein, which enables to track cells transduced by the virus. This vector also 

contains a cassette with a doxycycline-inducible promoter that controls the transcription of a 
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tRFP reporter gene together with the shRNA, which allows detection of cells with 

doxycycline activated shRNA transcription (Meerbrey, Hu et al. 2011). Four different 

shRNAmiR (shRNA) specifically targeting BORIS, and not its parolog CTCF (BORIS-sh1: 5’-

ATTCACCAAGATCAAAGAACTC-3’, BORIS-sh2: 5’-GTTCTCACAGTTTCAAATTCAA-3’, BORIS-sh3: 

5’-TTCATCCCGACTGTTTACAAAT-3’, BORIS-sh4: 5’TCCGACAGAAGCAACTTCTAAA-3’) and a 

control shRNA with scrambled sequence (CTR sh: 5’CAGAGCTAACTCAGATAGTACT3’) were 

synthetized (Sigma). They were PCR amplified and cloned into the pINDUCER11 backbone 

using EcoRI and XhoI restriction enzymes. The sequences of all constructs were verified by 

sequencing. Lentivirus were generated by co-transfection of the appropriate shRNA 

constructs along with the packaging vectors (pMD2G-VSVg, pCMV-dR8.74) into HEK-293T 

cells using FuGENE 6 reagent according to the manufacturer's protocol (Roche Diagnostics). 

Viral supernatants were harvested 48 hours after transfection, filtered through a 0.45 µm 

pore filter, ultracentrifugated for 1.5 hours at 19,500 rpm in a Beckman SW28 rotor and 

resuspended in RPMI medium. The viral suspension combined with 8 µg/ml polybrene 

(Sigma) was used to infect target cells (NCCIT). Twenty-four hours post infection the medium 

was replaced and stably infected cells were eGFP-sorted using FACSAria I instrument (Becton 

Dickinson) at the Flow Cytometry Facility of UNIL. Induction of shRNA expression was 

obtained by addition to the medium of 2 μg/ml of doxycycline (Sigma). To maintain the 

knockdown, doxycycline-containing medium was refreshed every 3 days. 

 

2.3.7. Ectopic BORIS transfection in HeLa cells 

The day prior transfection, Hela cells were seeded at a density of 2 x 105 cells/well in 12-well 

plates. Cells were transfected with 3 μg of the previously described pCMV-BORIS vector 

(Renaud, Loukinov et al. 2011) using the Lipofectamine 2000 transfection reagent 
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(Invitrogen) following the manufacturer’s instructions. Cells were harvested 2 days post-

transfection for cell fluorescence imaging. 

 

2.3.8. Quantitative RT-PCR 

Total RNA was isolated using the RNeasy mini kit (Qiagen) including on-column DNAse 

treatment according to the manufacturer’s instructions. RNA concentration was determined 

using Nanodrop 2000 (Thermo Scientific) and Qubit Fluorescent Technology (Invitrogen).  

A major limiting step was the low amount of total RNA isolated from cell sorting. To 

solve this technical limitation, we applied a method already described and validated 

(Peixoto, Monteiro et al. 2004; Noutsias, Rohde et al. 2008). Firstly, 200 ng of total RNA were 

retrotranscribed using random hexamers and Superscript III reverse transcriptase 

(Invitrogen). Then 2 μl of cDNA were used for a preamplification reaction consisting on a 

multiplex PCR made with a mix of primers (Table 1) at 0.1 µM final concentration, 0.5 unit of 

Platinum Taq DNA Polymerase (Invitrogen), 1X PCR buffer, and 2 mM MgCl2. 

For preamplification, PCR cycling conditions were: one denaturation step at 95°C for 5 

min followed by 15 cycles of amplification (45 sec at 95°C, 30 sec at 60°C, 1 min at 72°C). 

Finally, for quantitative PCR, the preamplification reaction was 20-fold diluted and 2 µl of 

this dilution were used as template. Reaction was complemented with 0.5 units Platinum 

Taq DNA Polymerase (Invitrogen), 1X PCR buffer, 2.5 mM MgCl2, 2.5 μM SYTO9 green 

(Invitrogen) and 0.1 µM of each gene specific primer (Sigma). PCR conditions were: 95°C for 

5 min followed by 40 times: (5 sec at 95°C, 30 sec at 60°C, 45 sec at 72°C). Melting curve 

analysis was also performed at the end of the cycling to check PCR homogeneity. Cycling and 

fluorescence acquisition were done in Rotor Gene 6000 Real-Time PCR system (Corbett Life 
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Science). Relative expression levels were determined with the comparative ∆∆Ct method in 

Rotor-Gene 6000 software using GAPDH as reference gene. 

The human specific primers were designed using Primer3 

(http://bioinfo.ut.ee/primer3-0.4.0/) and OLIGO Primer Analysis software. Specificity was 

verified using BLAST search (NCBI). The designed primer pairs cross intron-exon boundaries 

to avoid genomic DNA contamination. BORIS primers were chosen (between exon 8 and 9) in 

base of results obtained previously (Pugacheva, Suzuki et al. 2010) and amplify the most 

abundant BORIS isoforms. For each set of primers, standard curves were performed and 

efficiencies were determined. PCR products were loaded on agarose gel to verify the size of 

amplified products. 

Table 1 Primer sequences for qRT-PCR analysis 

Gene Forward primer Reverse primer 

BORIS 5' GCCCTCATTCAGCACCAGAAAAC 3' 5' CTCCAGTGTGGGTACGAATGTGA 3' 

CTCF 5’ GTGGCAGGGCATTCAGAACAG 3’ 5’ CGATGCCGAACCAATTCTCCAC 3’ 

hTERT 5’ TGACACCTCACCTCACCCAC 3’ 5’ CACTGTCTTCCGCAAGTTCAC 3’ 

ALDH1 5’ GCAACTGAGGAGGAGCTCTG 3’ 5’ AAGCATCCATAGTACGCCAC 3’ 

BMI1 5’ GCTAAATCCCCACCTGATGT 3’ 5’ GGTCTCCAGGTAACGAACAA 3’ 

NANOG 5’ ATACCTCAGACTCCAGCAGA 3’ 5’ TCTGGAACCAGGTCTTCACC 3’ 

OCT4 5’ GGTATTCAGCCAAACGACCA 3’ 5’ TTCTCTTTCGGGCCTGCACG 3’ 

SOX2 5’ CCTGGCATGGCTCTTGGCTC 3’ 5’ TGGAGTGGGAGGAAGAGGTA 3’ 

CD44 5’ TAAGGACACCCCAAATTCCA 3’ 5’ ACTGCAATGCAAACTGCAAG 3’ 

GAPDH 5’ AAGGTGAAGGTCGGAGTCAAC 3’ 5’ GAGTTAAAAGCAGCCCTGGTG 3’ 

 

2.3.9. DNA methylation analysis 

DNA was extracted using DNeasy kit (Qiagen). A range of 200 ng (from sorted cells) and 500 

ng of DNA was used to bisulfite reaction using EpiTect Bisulfite kit (Qiagen) according to the 

manufacturer’s instructions. The modified DNA was used to amplify a 123 bp fragment of 

the BORIS promoter. 
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Assay was designed using the PyroMark Assay Design Software 1.0 (Qiagen). This assay 

allowed sequencing of 50 bp (from position -968 to -918) inside the promoter B of BORIS 

(Renaud, Pugacheva et al. 2007) and included 10 CpG. To perform sequencing, 3 μl of 

bisulfite treated DNA were first amplifyied by PCR. Sequences of the PCR primers were: 

BORIS-pyro Forward 5’ TGGTTTGTGGGTTTTGT 3’ and BORIS-pyro BIO Reverse 5’ 

CCCTTCACCCCCCCTCTTT 3’. PCR conditions were as follow: 95°C for 5 min; 45 cycles of 95°C 

for 30 s, 58°C for 15 s and 72°C for 1 min; and a final extension step at 72°C for 10 min. Then, 

purification and subsequent processing of the biotinylated single-stranded PCR fragment 

were performed according to the manufacturer's recommendations. Pyrosequencing of this 

PCR fragment was performed on a PyroMark Q24 instrument using Pyro Gold Q24 Reagents 

(Qiagen). The pyrosequencing primer (5’ GTGTTGTAGTTTATAGT 3’) was used at a final 

concentration of 0.3 µM. Resulting data were analyzed and quantified with the PyroMark 

Q24 software (Qiagen) which calculates the methylation percentage for each CpG site, 

allowing quantitative comparisons. 

 

2.3.10. Cell proliferation assay 

Cell proliferation was assessed by MTT assay. MTT (3-(4,5-dimethyl-2-thiazol)-2,5-

diphenyltetrazolium bromide, Sigma) reagent was used according to the manufacturer’s 

instructions. Briefly, stably infected cells were seeded at a density of 25 x 103 cells/well in 

24-well/plates with doxycycline-containing medium. After 3 days, cells were incubated with 

MTT reagent (200 μg/ml final concentration) for 3 hours at 37 °C. Then, cells were lysed 

adding isopropanol/HCl for 10 min and the plates were gently shaken for 5 min. Absorbance 

values were determined using a microplate reader (Synergy Mx, BioTek) at 570 nm. Each 

experiment was performed in triplicate and 2-3 independent experiments were conducted. 
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2.3.11. Apoptosis analysis 

Apoptosis was measured in triplicates using Annexin V Apoptosis Detection Kit (BD 

bioscience) according to the manufacturer’s protocols. Briefly, 5 x 104 cells/well were seeded 

in 12-well/plates and were grown in presence of doxycycline until confluence (5-7 days). The 

floating cells as well as trypsinized cells were collected, washed with PBS and resuspended in 

100 µl Binding Buffer. Then, 5 µl of Annexin V-V500 and 5 µl of 7AAD were added and 

incubated with the cells for 30 min at room temperature. After addition of 400 µl of Binding 

Buffer the samples were immediately analyzed by Gallios flow cytometer (Beckman Coulter). 

At least 5 x 104 events were counted for all samples. The percentage of apoptotic cells was 

estimated after gating on eGFP and tRFP (transduced and doxycycline-induced, respectively) 

positive cells. 

 

2.3.12. Western blot analysis 

Whole cell lysates were obtained using RIPA buffer (Sigma) in presence of protease inhibitor 

cocktail (Sigma) and quantified using the BCA assay (Thermo Scientific). Thirty micrograms of 

protein were loaded on a 10% SDS-polyacrylamide gel, followed by blotting on a 

nitrocellulose membrane using a semi-dry transfer apparatus (BIO RAD). Non-specific 

binding was blocked by overnight incubation in 5% non-fat dried milk in TBST buffer (0.1% 

Tween 20 in TBS) at 4°C. The membranes were then probed with monoclonal mouse anti-

human BORIS/CTCFL antibody (produced and kindly provided by Dr Dmitri Loukinov, 

NIH/NIAD) used at 1:1000 dilution in 1% blocking buffer (1% low-fat dried milk in TBST 

buffer) and incubated at room temperature for 1.5 hours. As loading control, mouse anti-

human β-actin antibody (Sigma) at 1:5000 dilution in 1% blocking buffer was used and 
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incubated at room temperature for 45 min. The membranes were washed 3X with TBST and 

incubated at room temperature for 1 hour with horseradish peroxidase (HRP)-labeled rabbit 

anti-mouse IgG (Sigma) diluted at 1:5000 in 5% blocking buffer. After 3X washing with TBST, 

the membranes were developed using WesternBright Quantum (Advansta) and visualized 

with Fusion FX Chemiluminescence System (Vilber Lourmat). 

 

2.3.13. Senescence-associated β-Galactosidase staining 

Senescence-associated β-galactosidase (SA-β-gal) staining was performed using β-

galactosidase staining kit (BioVision), according to the manufacturer's instructions. Briefly, 5 

x 104 cells/well were seeded in 12-well/plates in presence of doxycycline and were grown 

until confluence (5-7 days). Then, cells were rinsed with PBS, fixed for 15 min and incubated 

with freshly prepared SA-β-Gal staining solution at 37°C for 24 hour. After washing with PBS, 

SA-β-gal activity was observed using inverted microscope (Nikon) by detection of blue 

stained cells. At least 10 separate fields were selected. For each field the number of blue 

stained cells and the number of total cells were counted. Results are expressed as 

percentage of SA-β-gal-positive cells calculated as: (number of blue cells/number of total 

cells) x 100. 

 

2.3.14. Telomerase activity 

Telomerase activity was measured using TRAPEZE RT telomerase detection kit (Millipore). 

This assay quantifies telomerase activity by SYBR Green real-time quantitative PCR (Wege, 

Chui et al. 2003). Briefly, cells were lysed in 200 μl of CHAPS buffer and protein 

concentrations were determined with Nanodrop 2000. Aliquots of cell lysate (1.5 μg of 

protein/sample) were used. Inactivated samples, no-template reactions, and positive control 
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were also assayed for quality control. A standard curve was prepared by serial dilution of 

TSR8 control template following manufacturer's instructions. Real-time amplifications were 

performed using Platinum Taq DNA Polymerase (2 unit/sample, Invitrogen). Cycling and 

fluorescence acquisition were done in Rotor Gene 6000 real-time PCR system (Corbett Life 

Science). Telomerase activity was calculated by comparing the average Ct values from each 

sample against the standard curve generated by the TSR8 control template. 

 

2.3.15. Statistical analysis 

Statistical significance was evaluated using two-tailed student t-test analysis. P-value <0.05 

was considered statistically significant. 
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2.4. Results 

 

2.4.1. In vitro validation of Molecular beacons (MBs) 

Two different MBs specific to BORIS mRNA (BORIS-MB1 and BORIS-MB2) were designed as 

described in the Material and Methods. The hybridization temperatures and specificity of 

the BORIS-MBs, and that of a RANDOM-MB which does not have any complementary target 

in human genome, were first tested in solution. The fluorescence emission of these MBs was 

monitored at temperatures ranging from 25 to 80°C, under different conditions: MB alone, 

MB in presence of the specific target, in presence of a non-specific target or in presence of a 

plasmid containing BORIS cDNA (pCMV-BORIS). As shown in Figure 1, noticeable 

fluorescence signal was detected only when the MBs were mixed with their specific targets. 

Optimal fluorescence emission with acceptable signal-to-background ratio (> 4) was 

observed below 40°C. The assay also showed that BORIS-MBs discriminate single and double 

stranded structures, since they do not emit fluorescence when incubated with the pCMV-

BORIS plasmid. These results demonstrated that MBs specifically hybridize to their target 

sequences and strongly suggested that these MBs would be able to specifically bind mRNA 

(and not DNA). Therefore, MBs could emit strong fluorescence signal under in vivo 

conditions (at 37°C). 

 

2.4.2. Detection of BORIS mRNA using BORIS-MB 

We first verified whether BORIS-MBs could be able to distinguish positive and negative 

BORIS expressing cells in living cells. Quantitative RT-PCR detected strong levels of BORIS 

mRNA in NCCIT and OVCAR-3 cell lines, whereas this level was low in Hela cells and not 

detectable in BJ cells (Figure 2A), in accordance to previous studies (Renaud, Loukinov et al. 
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2011). Therefore, to study the specificity of MBs, NCCIT was used as a positive control cells 

and BJ as a negative control. NCCIT cells were transfected with BORIS-MB1 or BORIS-MB2 

and fluorescence emissions were measured by flow cytometry. As shown in Figures 2B and 

C, both MBs showed an increase of fluorescence. However, since BORIS-MB1 provided 

higher (5 fold) mean fluorescence signal compared to BORIS-MB2, this MB was selected for 

the subsequent analysis. From here onward BORIS-M1 is referred as BORIS-MB. As expected, 

when BORIS negative BJ cells were transfected with BORIS-MB, they did not show any 

fluorescence signal (Figure 2D). 

To further challenge the specificity of the BORIS-MB, HeLa cells that expressed BORIS 

mRNA at low level, were transiently transfected with the pCMV-BORIS expression plasmid. 

As expected, the transfected cells presented higher fluorescence signal compared with the 

non-transfected cells (Figure 2E). All together, these results confirmed the capacity of the 

BORIS-MB to reliably and specifically detect BORIS mRNA in living cells. 

Hence, the cell lines were transfected with the BORIS-MB to visualize BORIS mRNA 

expression by fluorescence imaging. According to the qRT-PCR results, fluorescence of the 

BORIS-MB was nicely detected in NCCIT and OVCAR-3 cells (Figure 2F), but remarkably, only 

a subset of cells were fluorescent (from 3 to 5% BORIS positive cells of total cells). While in 

Hela few cells were positive (about 0.5%) and no fluorescent cells were observed in BJ cell 

line. This experiment demonstrated that within tumor cell lines, BORIS mRNA is not present 

at the same level in all cells but rather occurs at higher level only in a subset of cells. 
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2.4.3. Isolation of cell population expressing high levels of BORIS mRNA using BORIS-MB 

NCCIT cell line was used for the isolation of BORIS high-expressing cells. FACS sorting was 

performed after cell transfection with BORIS-MB. The brightest and the lowest (8.4 ± 1.5 and 

41.5 ± 7.2 % of total cells, respectively; mean ± SD) BORIS-expressing cells were sorted 

(Figure 3A). 

BORIS expression analysis of the sorted subpopulations showed that BORIS mRNA level 

of BORIS-high fraction was 20 fold higher compared to the non-sorted cells (Figure 3B) while 

BORIS-low fraction expressed lower BORIS mRNA. This result demonstrated the efficiency of 

the sorting method and the successful enrichment of a cell population that highly expressed 

BORIS mRNA. 

 

2.4.4. Cells expressing high and low levels of BORIS mRNA harbors similar methylation 

pattern of BORIS promoter B 

In a previous study, it has been shown that BORIS expression is controlled by three 

alternative promoters, corresponding to transcription start sites at −1447, −899 and −658 bp 

upstream of the first ATG and designated promoters A, B and C, respectively (Renaud, 

Pugacheva et al. 2007). Interestingly, it has been observed that in tumors, demethylation of 

BORIS promoter B, is generally correlated with the expression of BORIS, which is not the case 

for promoters C and A (Renaud, Pugacheva et al. 2007). Consequently, we interrogated the 

presumed correlation between methylation of promoter B and BORIS expression in the 

sorted cells. BORIS methylation level of this promoter was measured by pyrosequencing, 

after bisulfite modification of DNA extracted from BORIS-high and -low cell fractions. 

Pyrosequencing results  indicated that in both fractions CpGs were heavily methylated (85- 

100 % methylation) and no differences were detected (Figure 4A). This confirmed that in 
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NCCIT cells, BORIS is not expressed from promoter B and suggested that the different 

expression of BORIS among the sorted fractions is not guided by DNA methylation status of 

promoter B but rather involves other levels of control. 

 

2.4.5. BORIS-high cells express higher mRNA levels of hTERT as well as stem cell genes and 

cancer stem cell markers genes 

We previously established that BORIS binds hTERT promoter at the same site of CTCF and 

can activate hTERT transcription in NCCIT cells (Renaud, Loukinov et al. 2011). To further 

investigate the correlation between BORIS, hTERT and CTCF expression, BORIS-low and 

BORIS-high populations were sorted as mentioned above, and expression of these genes 

markers was evaluated by qRT-PCR. Interestingly, three independent sorting experiments 

showed that hTERT mRNA level was significant higher (from 1.5 to 3.8 fold) in the BORIS-high 

population compared to the BORIS-low population. This result confirms the positive 

correlation between BORIS and hTERT expression, whereas no difference was observed for 

CTCF (Figure 4B).  

Expression of hTERT has been frequently associated with expression of stemness-

related markers (Hiyama and Hiyama 2007; Schepers, Vries et al. 2011; Shay and Wright 

2011; Paranjape, Mandal et al. 2012; Kim, Yoo et al. 2013). Consequently, considering our 

results, we also investigated if this correlation could exist with BORIS expression. To assess 

this, a panel of representative genes considered as stemness markers (NANOG, OCT4, SOX2 

and BMI1) (Suvà 2013) or as specific cancer stem cell (CSC) markers (ABCG2, CD44 and 

ALDH1) (Medema 2013) were added to the qRT-PCR analysis. Interestingly, it emerged that 

the BORIS-high/hTERT-high population also expressed higher levels of stem cell like markers. 

Indeed, mRNA levels of mostly all these genes were significantly higher in BORIS-high 
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population compared to BORIS-low population and non-sorted cells (between 2 and 6 fold in 

average), at exception of BMI1 and ABCG2 genes (Figure 4B). 

 

2.4.6. Knockdown of BORIS down-regulates expression of CTCF, hTERT, stem cell and CSC 

markers genes 

To investigate more directly the functions of BORIS, stable cell lines with inducible 

expressing shRNAs, targeting human BORIS mRNA, were generated using a lentiviral system. 

Four different BORIS shRNA lentivirus (BORIS sh-1, sh-2, sh-3 and sh-4) and a lentivirus 

carrying a scrambled sequence (CTR sh) were produced and tested. A significant reduction of 

BORIS mRNA was observed in all BORIS-depleted NCCIT-derived cells, compared to control 

cells (Figure 5A). The western-blot analysis indicated a remarkable protein decreasing in 

BORIS sh-3 and sh-4 cells (Figure 5B). Therefore, all following knockdown experiments were 

performed using these BORIS sh-3 and sh-4 NCCIT-derived cells. The capacity of doxycycline-

induction to maintain BORIS-knockdown overtime was also verified. As shown in figure 6A, 

BORIS mRNA levels were significantly reduced during 1 month, even though the knockdown 

slightly relapsed the last week. Interestingly, CTCF expression was dramatically decreased 

(Figure 6B). As expected, hTERT expression was down-regulated compared to control (Figure 

6C) and this down-regulation was even stronger after 3 weeks. This observation was 

consistent with the correlation observed in the sorting experiment (Figure 4A) and was 

further confirmed by telomerase activity analysis. Indeed, we observed that telomerase 

activity was also decreased, especially after 3 and 4 weeks of BORIS silencing (Figure 6D). 

Notably, absence of BORIS triggered a dramatic down-regulation of the expression of stem 

cell and CSC marker genes (between 75% and 99%), at exception of CD44 (Figure 6E). This 

down-regulation was consistent up to the third week (data not shown). 
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All these results firstly confirmed that BORIS transcriptional regulates hTERT and strongly 

suggested that BORIS could also affect the transcription of stem cell and CSC marker genes, 

which play an important role during tumorigenesis. 

 

2.4.7. Knockdown of BORIS inhibits cell proliferation through cellular senescence 

We also investigated the impact of BORIS silencing on cell survival of embryonic tumor cells. 

Cell proliferation was measured each week during 1 month by MTT assay (Figure 7A). An 

inhibition of cell growth was observed starting from the second week, with 26% of reduction 

to the fourth week, with 40% of decrease compared to control. The analysis of apoptosis 

showed that the percentage of apoptotic cells (late apoptotic AnnexinV+/7AAD+ and early 

apoptotic AnnexinV+/7AAD-) was not significantly different between BORIS knockdown cells 

and control cells (Figure 7B). This result suggested that the decreasing of the observed cell 

growth is not due to cell apoptosis, therefore we further explored the causes of proliferation 

defects. As BORIS knockdown led to a reduction of hTERT expression, a possible alteration of 

cellular senescence was additionally investigated. Interestingly, analysis of senescence-

associated β-galactosidase showed that the percentage of senescent cells was 2 fold higher 

in BORIS silenced cells compared to control cells (Figure 7C). This result confirmed that 

BORIS directly affects hTERT telomerase activity. 
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Figure 1. Fluorescence emission profile of MBs. Representative fluorescence emission profile of BORIS-MB1, 
BORIS-MB2 and RANDOM-MB. All the MBs were 5’-end Cy3-coniugated. All thermal profiles indicate the MBs 
(200 nM) alone (dash line) and MBs mixed with specific target (solid line), with non-specific target (dash-dot 
line) and with plasmid (pCMV-BORIS, dot line). The targets were used at the final concentration of 1 µM. The 
samples were analyzed immediately by Rotor Gene 6000 Real-Time PCR system and the fluorescence was 
measured at each temperature (from 25°C to 80°C) using filter for Cy3. 
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Figure 2. Detection of BORIS mRNA by MB. (A) BORIS expression in human cell lines. Total RNA from human 
tumoral cell lines, NCCIT (embryonic), OVCAR3 (ovarian), HeLa (cervical) cells, and normal BJ (fibroblast) cells 
were isolated. mRNA levels of BORIS were analyzed by qRT-PCR. Results were normalized to GAPDH and are 
shown relative to NCCIT cells. BJ and NCCIT were considered as negative and positive controls, respectively. 
Error bars represent the mean ± SD (n=3). (B) Fluorescent signals measured by flow cytometry of NCCIT cells 
transfected with ATTO647-BORIS-MB1 (dark grey peak) and with ATTO647-RANDOM-MB (white peak). (C) 
Fluorescent signals measured by flow cytometry of NCCIT cells transfected with ATTO647-BORIS-MB2 (weak 
grey peak) and with ATTO647-RANDOM-MB (white peak). (D) Fluorescent signals measured by flow cytometry 
of BJ cells treated with ATTO647-BORIS-MB1 (from here onward referred to BORIS-MB) and with ATTO647-
RANDOM-MB (white peak). (E) BORIS expression in HeLa cells using BORIS MB. Representative images of HeLa 
cells transiently transfected with the BORIS expression vector, pCMV BORIS (bottom) and non-transfected 
control cells (top). 20X magnification. (F) BORIS expression in human cell lines as detected using BORIS MB. 
Representative images of BJ, NCCIT and OVCAR3 cells, 20X magnification. For fluorescence imaging, 1 x 10

6
 cells 

were incubated at 37°C for 1 hour in serum-free DMEM medium with Cy3-BORIS MB (200 nM). Hoechst 33342 
5 µg/mL was added during the last 10 min of incubation. Then, cells were cytocentrifugated onto glass slide 
using a cytospin centrifuge and the slides were analyzed by fluorescence microscopy.  
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Figure 3. Isolation of BORIS high expressing cells using BORIS-MB. (A) NCCIT cells were transfected with 
ATTO647-RANDOM-MB (white peak) and ATTO647-BORIS-MB (grey peak). The two subpopulations, BORIS-low 
and BORIS-high cells were selected by comparing the fluorescent signal of RANDOM-MB to that of BORIS-MB. 
After exclusion of dead cells by PI staining, the two fractions were sorted. (B) BORIS expression of the isolated 
BORIS-low and BORIS-high fractions were analyzed by qRT-PCR. The results were normalized to GAPDH and 
related to NCCIT non-sorted cells. Error bars represent the mean ± SD of 3 independent experiments. 
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Figure 4. Analysis of the isolated BORIS-high cells reveals higher expression of hTERT, stem cells and cancer 
stem cells (CSCs) marker genes compared to BORIS-low and non-sorted cells. (A) Methylation analysis of 10 
CpG islands within the BORIS promoter region (B promoter). The representative graphic shows the percentage 
of methylation of each CpG island for the isolated BORIS-high, -low and non-sorted NCCIT cells. (B) Expression 
analysis of the isolated BORIS-high and BORIS-low fractions. The indicated genes were analyzed by qRT-PCR. 
The results were normalized to GAPDH and relative to NCCIT non-sorted cells. Graphic shown one 
representative experiment out of 3 independent experiments (the trend was similar in all independent 
experiments). Asterisks indicate statistically significant difference (p<0.05) between BORIS-high fraction and 
BORIS-low fractions and non-sorted cells. 
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Figure 5. BORIS knockdown using lentivirus with doxycycline inducible BORIS-specific shRNA. Four different 
BORIS shRNA lentiviral vectors (BORIS sh-1, sh-2, sh-3 and sh-4) and the vector carrying a scrambled sequence 
(CTR sh) were tested. NCCIT were transduced with the indicated lentivirus and sorted for eGFP marker 
expression. Then, cells were cultured with doxycycline-containing medium and after 3 days were analysed. (A) 
BORIS mRNA levels were analysed by qRT-PCR, normalised to GAPDH and compare to that of CTR sh. Error bars 
represent the mean ± SD of 3 independent experiments. Asterisks indicate p<0.05. (B) Representative western 
blot analysis. BORIS and β-actin (as a loading control) protein levels were determine by western blot. For both 
analysis (qRT-PCR and western blot) the knockdown was especially noticed with the BORIS sh-3 and sh-4 
compared to the CTR shRNA cells. 
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Figure 6. Knockdown of BORIS resulted in decreasing of hTERT expression and telomerase activity but also 
decrease of expression of stem cell and CSCs genes. NCCIT cells were engineered to stably exhibit knocked-
down BORIS mRNA. BORIS sh-3, sh-4 and CTR sh (control with scrambled sequence) lentivirus were used to 
infect NCCIT cells. Each transduced cells were cultured with doxycycline to induce BORIS shRNA expression. 
Doxycycline-containing medium was replaced every 3 days. At each week over 1 month, RNA was isolated from 
BORIS sh-3, sh-4 and CTR sh of transduced NCCIT cells. mRNA levels of (A) BORIS, (B) CTCF and (C) hTERT were 
analysed by qRT-PCR. Results were normalized with GAPDH and are shown relative to that of control cells (CTR 
sh) at each week. Error bars represent the mean ± SD of 2 independent experiments. (D) Telomerase activity 
was measured at each week by real-time quantitative PCR using TRAPEZE RT Telomerase Detection Kit. Values 
of telomerase activity of BORIS sh-3, sh-4 NCCIT-derived cells are shown relative to that of control cells at each 
week. Error bars represent the mean ± SD of 2 independent experiments. Asterisks indicate p<0.05. (E) BORIS 
sh-3, sh-4 and CTR sh NCCIT-derived cells were cultured with doxycycline and after 7 days RNA was analysed by 
qRT-PCR. mRNA levels of the indicated genes are shown relative to that of control cells (CTR sh) after 
normalization with GAPDH. Error bars represent the mean ± SD of 2 independent experiments. Asterisks 
indicate statistically significant difference (p<0.05) between BORIS sh-3, sh-4 and CTR sh cells. 
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Figure 7. Knockdown of BORIS impairs cell senescence. (A) Cell proliferation over 1 moth of dox-induced 
BORIS shRNA cells were analysed by MTT assay. Results of the two specific BORIS-shRNA (BORIS sh-3 and sh-4) 
NCCIT-derived are indicated as a percentage compare to the cell proliferation of control cells (scrambled 
shRNA, CTR sh). Error bars represent the mean ± SD of 3 independent experiments. (B) After dox-induction of 
the BORIS specific shRNA in NCCIT cells, apoptosis was tested at each week using Annexin V Apoptosis 
Detection Kit. Results show the percentage of apoptotic cells (late apoptotic AnnexinV

+
/7AAD

+
 and early 

apoptotic AnnexinV
+
/7AAD

-
) of BORIS sh-3 and sh-4 cells compared to the control cells. Error bars represent 

the mean ± SD of 2 experiments. (C) The senescence-associated β-galactosidase (SA-β-gal) staining was 
performed using β-galactosidase staining kit. SA-β-gal were analysed after 2 and 4 weeks of dox-induction of 
the BORIS specific shRNA in NCCIT cells. Results show the percentage of senescent cells of BORIS sh-3 and sh-4 
NCCIT-derived cells compared to the control cells. Error bars represent the mean ± SD of 2 experiments. 
Asterisks indicate p< 0.05. Representative images were shown after 1 month of BORIS knockdown. 
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2.5 Discussion 

 

Our studies showed that in embryonic tumor cell line, BORIS positive cells represent only a 

subset of the tumor cell population. Indeed, all the tumor cells did not express a similar level 

of BORIS mRNA but a small fraction of them, about 3 to 5 %, showed remarkably higher 

BORIS mRNA levels compared to the rest of bulk tumor cells. This observation was confirmed 

by performing experiments with BORIS mRNA-targeting MB. Molecular beacon technology 

provides a powerful tool to discriminate target sequences, with very high specificity. Since 

their discovery (Tyagi and Kramer 1996), the MBs have been seen to distinguish target 

sequences differing only by a single nucleotide. Due to the characteristics of exceptional 

specificity and high sensibility, MBs have found a wide range of applications in biological 

sciences. MBs were used as taqman probes in real time quantitative PCR, for detection of 

mutations, SNP and allele, as indicators of contaminating infectious agents and also for in 

vivo detection of mRNA (Li, Zhou et al. 2008). Furthermore, MBs are capable to bind target 

sequences without modify them. To date, there is no yet a validated antibody for in vivo 

detection of BORIS, therefore we used the MB technology to visualize BORIS mRNA positive 

cells. Recently, two publications demonstrated the use of MBs in FACS sorting (King, 

Liszewski et al. 2011; Larsson, Lee et al. 2012). However, they showed different delivery 

systems of MBs to enter into the cells. One group used electroporation with a dual-FRET MB 

(King, Liszewski et al. 2011) and the other group described a delivery system with a cationic 

lipid vehicle (Larsson, Lee et al. 2012). Instead, we used the RNAiMAX Transfection Reagent, 

a cationic lipid formulation that was designed specifically for delivery single strand 

nucleotides (siRNA and miRNA). Additionally, we used for the sorting experiments, BORIS-

MB conjugated with ATTO647, a fluorophore which confers a high photostability of 
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fluorescence signal (Arden-Jacob, Frantzeskos et al. 2001). Analysis of BORIS expression 

demonstrated that we successfully enriched the cell population that highly expresses BORIS 

mRNA (Figure 3B). In our experiments we used NCCIT cell line, classified as germ-cell tumor 

or embryonic cancer cells (Teshima, Shimosato et al. 1988). Due to its higher BORIS 

expression compared to the other tumor cell lines, the NCCIT cell line provides a good model 

for our studies, especially for the feasibility of isolation of BORIS positive cells by MB 

technology. 

It has been previously showed that BORIS modulates the transcription of hTERT 

telomerase gene in NCCIT and in OVCAR3 and it has opposite effects compared to its paralog 

CTCF (Renaud, Loukinov et al. 2011). To further investigate the correlation between BORIS, 

hTERT and CTCF, we analyzed their expression in the isolated BORIS-high and BORIS-low 

expressing cells. The results confirm the positive correlation between BORIS and hTERT, 

whereas no correlation was observed with CTCF. In the same previous work, it has been 

found that ectopic BORIS expression, in normal BORIS negative cells, allowed to expand the 

in vitro lifespan increasing cell passages, this finding could be explained by the expression of 

high levels of hTERT mRNA in these BORIS-transfected cells. Induction of hTERT expression 

and telomerase activity are well established as hallmarks of cancer and are prerequisite to 

cellular immortalization and malignant transformation (Hanahan and Weinberg 2011). Our 

previous data revealed an important role of BORIS in immortalization during tumorigenesis. 

Here, we further confirm this role of BORIS, since the isolated BORIS-high cells expressed 

significant higher hTERT compared to counterpart BORIS-low cells and the entire bulk tumor 

cells. 

In human, telomerase is generally absent in somatic cells but remains active in germ 

cells, progenitor cells and some adult stem cells (Shay and Wright 2011). It has been shown 
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that telomerase is reactivated in a majority (approximately 90%) of tumors (Kim, Piatyszek et 

al. 1994) and in clinical studies, its reactivation is associated with poor outcomes of different 

tumors (Gertler, Rosenberg et al. 2004; Domont, Pawlik et al. 2005; Tabori, Ma et al. 2006; 

Terrin, Rampazzo et al. 2008). In addition, current literature supports the evidence that CSCs 

express telomerase and its inhibition suppresses the self-renewal of CSCs (Marian, Cho et al. 

2010; Marian, Wright et al. 2010; Vicente-Duenas, Barajas-Diego et al. 2012). All these 

discoveries, together with our observations indicate that BORIS could play an important and 

direct role in tumor malignancies by up-regulation of the hTERT telomerase gene. Consistent 

with this, we notably observed that the BORIS-high/hTERT-high isolated cells expressed also 

high levels of the most important stem cell markers. The embryonic carcinoma cells that we 

investigated, indeed, provide a good model system to study the stem cell concept of cancer. 

In fact, they are stem cells derived from a teratocarcinoma and are also the malignant 

transformed embryonic stem cells (Przyborski, Christie et al. 2004). Therefore, they show 

gene expression profiles close to those of human embryonic stem cells (Sperger, Chen et al. 

2003). Hence, we analyzed the association of BORIS-high/hTERT-high cells with the 

expression of the key-regulator genes of embryonic cells (NANOG, SOX2 and OCT4) and with 

some of the most known specific markers of CSCs (Medema 2013). Interestingly, a 

correlation of BORIS-high/hTERT-high isolated cells with stem cell markers was observed. 

These findings were confirmed by BORIS silencing studies. Stable BORIS knockdown NCCIT-

derived cells were generated by an efficient system of inducible-shRNA lentivirus (Meerbrey, 

Hu et al. 2011). After BORIS silencing, a significant decreasing of hTERT expression was 

observed, as well as a down-regulation of telomerase activity, which is strictly regulated by 

hTERT gene transcription. The decreasing involved also CTCF expression, which is in 

accordance with our previous results (Renaud, Loukinov et al. 2011) and thus, confirms a 
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role of BORIS in the transcriptional regulation of CTCF. Such correlation between CTCF and 

BORIS was not observed in the expression analysis of BORIS-high isolated cells. This 

discrepancy could be due to the different experimental conditions. Indeed, in the expression 

analysis of the BORIS-high isolated cells, CTCF was analyzed at steady state, while in BORIS 

silencing studies, what we observed is the result of cellular and genetic modifications. 

Importantly, after BORIS knockdown a decreasing of expression of stem cell and CSC 

marker genes (NANOG, OCT4, SOX2, BMI1, ABCG2, CD44 and ALDH1) was also observed. 

These results highlight the importance of BORIS in malignant disease and its possible critical 

role on cancer development and progression. Previous works have already showed a 

correlation of BORIS with stem cells. One group has observed the co-localization at the 

protein level of BORIS with ECSA, OCT4 and NANOG in cultured embryonic stem cells (Monk, 

Hitchins et al. 2008). Another group has detected BORIS expression in ECSA-expressing lung 

tumors (John, Caballero et al. 2008). Here, we additionally showed the molecular function of 

BORIS in embryonic cancer cells and all these data strongly suggest that BORIS may play a 

key role in the regulation of stem cell genes. 

Cell proliferation analysis through one month of BORIS silencing revealed that the 

depletion of BORIS led to cell growth inhibition and an increase of cellular senescence in 

embryonic cancer cells. Cellular senescence is defined as the irreversible arrest of cell 

growth that is activated after alterations of telomeres or in response to different forms of 

stress (Campisi and d'Adda di Fagagna 2007). Of note, cellular senescence is considered as a 

potent tumor suppressive mechanism, a protective barrier against neoplastic expansion 

(Sager 1991). Senescent cells cannot divide, even if they continue to be metabolically and 

synthetically active (Campisi 2001). Senescent cells also show changes in chromatin 

organization and gene expression (Campisi 2013). In our studies, the cellular senescence was 
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measure by the most widely used senescence associated marker, the β-galactosidase activity 

(Dimri, Lee et al. 1995). The increasing of senescent cells after BORIS knockdown could be 

caused by the simultaneous telomerase inhibition. Consistent with the finding that inhibition 

of telomerase has been shown to initiate telomere shortening followed by cell senescence 

and cell death by apoptosis (Hahn, Stewart et al. 1999; Zhang, Mar et al. 1999). Future 

studies, analyzing more in details the effects of telomerase inhibition, as a result of BORIS 

depletion, will be needed to better understand the functions and regulation of BORIS in 

cancer cells. 

The present study provides some evidences that, in embryonic tumors, BORIS is 

expressed only in a small subset of tumor cells and this subpopulation plays an important 

role in cancer development and progression, since BORIS directly regulates the expression of 

stem cell and CSCs genes.  
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3.1. Abstract 

Cancer stem cells (CSCs) are cancer cells characterized by stem cell properties and represent 

a small population of tumor cells that drives tumor development, progression, metastasis 

and drug resistance. To date, the molecular mechanisms that generate and regulate CSCs are 

not well-defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a 

DNA-binding protein that is expressed only in germ cells in normal tissues and is re-activated 

in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression 

with poor overall survival of different cancer patients. Previously, we showed an association 

of BORIS expressing cells with stem cell-like traits, demonstrating the critical role played by 

BORIS in embryonic neoplastic disease. Here, we studied the role of BORIS in BORIS-low 

expressing cells, and especially in cervical, breast and colon tumor cell lines. Interestingly, 

BORIS was found highly expressed in all the analyzed CSC-enriched populations (Side 

Population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies 

showed a decrease of sphere formation capacity in breast and colon tumor cells. On the 

contrary, BORIS induction showed an increasing of sphere formation in colon tumor cells. 

Importantly, BORIS-silencing and BORIS-induction led to down-regulation and up-regulation, 

respectively, of hTERT, stem cell and CSC markers genes of cervical, colon and invasive 

breast cells. However, a completely different behavior of the non-invasive breast cells 

(MCF7) was observed after BORIS silencing; indeed, these cells acquired an epithelial 

mesenchymal transition (EMT) phenotype. In this study, we demonstrated that BORIS is 

associated with CSC-enriched populations of several epithelial tumor cell lines and has 

different critical roles depending on the tumor origins. 
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3.2. Introduction 

 

Enormous evidences support the view that human cancer could be considered as a stem cell 

disease (Reya, Morrison et al. 2001; Jordan, Guzman et al. 2006; Dalerba, Cho et al. 2007). 

The cancer stem cells theory assumes that cancers are viewed as complex tissues where 

aberrant cell growth is driven by a small population of cells defined as cancer stem cells 

(CSCs) or tumor-initiating cells. The CSCs are characterized by distinct proprieties: 

uncontrolled proliferation capacity, ability to self-renewal and ability to differentiate into a 

non-CSC progeny (Schatton, Frank et al. 2009). The first observations of CSCs was performed 

in human acute myeloid leukemia (Bonnet and Dick 1997) and consequently developed in 

different types of human solid tumors, as breast (Al-Hajj, Wicha et al. 2003), brain (Singh, 

Hawkins et al. 2004), colon (Ricci-Vitiani, Lombardi et al. 2007), colorectal (Dalerba, Dylla et 

al. 2007), pancreatic (Li, Heidt et al. 2007) and ovarian (Zhang, Balch et al. 2008) tumors. It 

has been shown that many patients, especially with solid tumors, do not respond to the 

conventional therapies, such as chemotherapy and radiotherapy, and after an initial 

remission, tumors relapse. The reasons of such failure could be explained by the drug- and 

radio- resistance of CSCs. In addition, it has been demonstrated that CSCs are more frequent 

in highly aggressive and refractory tumors (Al-Hajj, Wicha et al. 2003; Singh, Hawkins et al. 

2004). Therefore, it becomes extremely important to identify the CSC populations and their 

markers to develop CSC-targeted therapies to overcome the resistance of CSCs to the 

conventional anti-cancer drugs. Using experimental approaches, the CSCs of many tumor 

types have been characterized phenotypically and several CSC markers have been identified 

(Schatton, Frank et al. 2009; Zhou, Zhang et al. 2009). However, most of the identified 

markers are not fully specific to CSCs because are also expressed in normal cells, and 
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generally, the use of multiple markers is required. Therefore, much efforts on cancer 

research will be necessary to optimize targeting CSCs therapies. There are several 

approaches to enrich the CSCs population, which are used mainly for in vitro analyses and 

screening methods. One approach is based on the selection of a cell subpopulation that is 

able to efflux dyes. The efflux of Hoechst 33342, a DNA-binding dye, is a capacity of CSCs 

which express genes encoding the ATP-binding cassette (ABC) drug transporters, such as 

ABCG2, and it is a feature of also stem cells from different origin (Hirschmann-Jax, Foster et 

al. 2004; Kondo, Setoguchi et al. 2004; Chiba, Kita et al. 2006). The subpopulation selected 

by this method is called side population (SP). The aldehyde dehydrogenase (ALDH) activity is 

another functional property of stem cells, used to isolate enriched CSC population (Ginestier, 

Hur et al. 2007; Charafe-Jauffret, Ginestier et al. 2009). An in vitro approach based on non-

adherent serum-free culture has been shown to enrich CSCs population from different type 

of tumors (Lee, Kotliarova et al. 2006; Ricci-Vitiani, Lombardi et al. 2007). Using this non-

adherent culture method, the cells from tumors (including brain, breast and colon), which 

have the self-renewal capacity and maintain stem-cell proprieties, can form spheroid 

colonies named spheres (Dontu, Abdallah et al. 2003). 

Since its discovery, BORIS is described as a DNA-binding protein which shares with its 

paralog CTCF, 11 zinc-finger domains and for this also called CTCFL (Loukinov, Pugacheva et 

al. 2002). BORIS protein is involved in epigenetic reprogramming and it belongs to cancer 

testis antigen family, as it is expressed in normal germinal cells and reactivated in tumors. 

Recent reports demonstrate that BORIS expression is associated with poor prognosis in 

different cancers. In ovarian cancers, BORIS expression was correlated with advanced stage 

and decreased survival (Woloszynska-Read, James et al. 2010). It has been demonstrated 

that BORIS was involved in proliferation and invasion of esophageal squamous cell cancer 
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and BORIS-positive tumors had a poor overall survival (Okabayashi, Fujita et al. 2012). In 

hepatocellular carcinoma, a correlation between BORIS expression and poor overall survival, 

as well as, with the CSC marker CD90 have been observed (Chen, Huang et al. 2013). Our 

previous study has demonstrated the association of BORIS expression with stem cell and CSC 

marker genes in embryonic carcinoma cells (Alberti et al. submitted). All together these 

evidences prompted us to further investigate the presence and consequently also the 

molecular functions of BORIS in the CSCs-enriched populations from different type of tumor 

epithelial cells (cervical, colon and breast). Interestingly, we found that BORIS is highly 

expressed in CSC-enriched populations isolated from SP and spheres. Additional functional 

studies revealed that BORIS plays an important role in the self-renewal of tumors and/or 

acquisition of epithelial mesenchymal transition (EMT) signature in base of the different 

origin of tumor cells.  
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3.3. Materials and methods 

 

3.3.1. Cells and spheres preparation 

The human cell lines (HeLa, cervical adenocarcinoma; HT29, colon adenocarcinoma; NCCIT, 

embryonic carcinoma) were purchased from the American Type Culture Collection (ATCC) 

and the human breast cell lines (MCF7 and MDA-MB-231) were kindly provided by Dr 

Stéphanie Renaud (Biotechnology Institute, University of Lausanne). The cells were cultured 

at 37°C with 5% CO2 either in Dulbecco's modified Eagle's medium (DMEM; Gibco, 

Invitrogen) for HeLa and HT29 cells, or in RPMI-1640 medium (Gibco, Invitrogen) for NCCIT, 

MCF7 and MDA-MB-231 cells, supplemented with 10% of heat inactivated fetal bovine 

serum (FBS; Invitrogen) and 1% of Penicillin-Streptomycin (Gibco, Invitrogen). 

For sphere culture, cells (HT29, MCF7 and MDA-MB-231) were first detached with 

0.25% trypsin solution (Invitrogen) and washed twice in PBS (Invitrogen). Then, cells were 

filtrated twice using a cell-strainer of 40 μm mesh size (Falcon) and cultured in serum-free 

medium containing DMEM/F-12 medium (Invitrogen) supplemented with B27 (Invitrogen), 5 

μg/ml heparin (Sigma), 20 ng/ml EGF (Epidermal Growth Factor, BD Biosciences), 20 ng/ml 

FGF (Fibroblast Growth Factor, BD Biosciences) and 5 μg/ml insulin (Sigma). Cells were 

plated into ultra-low attachment 6 well/plates (Corning) at the density of 1,000 cells/ml for 

10-15 days. Spheres were counted and collected for RNA extraction, an aliquot of spheres 

was seeded in normal medium with serum to allow the differentiation.  

 

3.3.2. Fluorescence analysis of Side Population (SP) and BORIS expression using BORIS MB 

Cells were prepared as previously described (Alberti et al. submitted). Briefly, cells in 

suspension (1 x 106 cells/ml) were incubated at 37°C for 1.5 hour in serum-free DMEM 
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medium with Cy3-BORIS MB (200 nM) and Hoechst 33342 (5 µg/mL) in presence of a 

Lipofectamine RNAiMAX siRNA transfection reagent (Invitrogen). The cells were washed, 

resuspended in PBS-5 mM EDTA and cytocentrifugated onto glass slide using a cytospin 

centrifuge and then examined under a fluorescent (Axioplan2 Imaging, Zeiss) or a confocal 

(LSM 710 Quasar, Zeiss) microscope. 

 

3.3.3. ABCG2 immunofluorescence staining 

Cells were prepared as described above. After cytospin, cells were fixed with ice-cold 

acetone for 8 min and stained at 4°C overnight with rabbit anti-human ABCG2 antibody 

(Sigma) used at 1:20 dilution in PBS. Slides were washed with PBS and incubated for 1 hour 

at room temperature with donkey anti-rabbit secondary antibody labelled with Alexa Fluor 

488 (Sigma) used at 1:500 dilution in PBS. The slides were then examined under fluorescent 

microscope. 

 

3.3.4. FACS analysis and sorting of SP 

HeLa cells (1 x 106 cells/ml) were incubated in serum-free medium at 37°C for 1.5 hour with 

Hoechst 33342 (Invitrogen) at a final concentration of 12.5 µg/ml either alone or in 

combination with 50 µM verapamil (Sigma) as a control. The cell suspensions were 

periodically mixed during the incubation. After incubation, cells were washed with PBS and 

resuspended in PBS-5 mM EDTA. Before the analysis, the cells were incubated with 

propidium iodide (2 µg/ml) and filtrated using a cell-strainer of 40 μm mesh size (Falcon). SP 

analyses were performed using LSRII (Becton Dickinson) and the sorting of SP and NSP (non-

SP) using FACS Aria (Becton Dickinson) at the facility of EPFL (Ecole Polytechnique Fédérale 
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of Lausanne). Hoechst 33342 dye was excited at 355 nm and its fluorescence was analyzed 

using dual-wavelength of emission, 445 nm for Hoechst blue and 650 nm for Hoechst red.  

 

3.3.5. Ectopic BORIS transfection 

Briefly, Hela cells were transfected with pCMV-BORIS plasmid using Lipofectamine 2000 

transfection reagent (Invitrogen) as previously described (Alberti et al. submitted). 

 

3.3.6. BORIS knockdown by inducible shRNA lentiviral system 

Stables cell lines (HeLa, HT29, MCF7 and MDA-MB-231) with inducible expressing shRNAs 

targeting human BORIS mRNA were prepared as previously described (Alberti et al. 

submitted). 

 

3.3.7. BORIS cDNA expression by inducible lentiviral system 

Stable cell lines with inducible expressing human BORIS cDNA were generated using the 

doxycycline-inducible lentiviral system, (Meerbrey, Hu et al. 2011). BORIS cDNA from pCMV-

BORIS plasmid was cloned into pINDUCER20 by Gateway Cloning system (Invitrogen). The 

lentiviral vector pINDUCER20 harbours the antibiotic selection marker of G418 (Geneticin), 

which enables to select only the transduced cells. This vector also contains a cassette with a 

doxycycline-inducible promoter that controls the transcription of the cloned cDNA. For the 

generation of lentivirus, we followed the previously described procedure (Alberti et al. 

submitted). The viral suspension combined with 8 µg/ml polybrene (Sigma) was used to 

infect target cells (HeLa, HT29, MCF7 and MDA-MB-231). Twenty-four hours post infection 

the medium was replaced with medium supplemented with 500 μg/ml G418 (Roche). After 2 

weeks of antibiotic selection, 2 μg/ml of doxycycline (Sigma) was added to the medium to 
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allow induction of BORIS cDNA expression and doxycycline-containing medium was 

refreshed every 3 days. 

 

3.3.8. Quantitative RT-PCR analysis 

qRT-PCR was performed as previously described (Alberti et al. submitted). The sequences of 

primer used in addition are shown in Table 1. 

Table 1 Primer sequences for qRT-PCR analysis 

Gene Forward primer Reverse primer 

ECADH 5' TGAAATTGGAAATTTTATTGATGA 3' 5' ATCATAAGGCGGGGCTGT 3' 

CK19 5’ CTGCAGATGACTTCCGAACC 3’ 5’ TTGATGTCGGCCTCCAC 3’ 

EpCAM 5’ GCAGCTCAGGAAGAATGTGTC 3’ 5’ GACGATTATTATTCACAAAGCAGTTT 3’ 

NCADH 5’ CCTGAAGCCAACCTTAACTGA 3’ 5’ TCTTGGGAACACTATTTCTTCAA 3’ 

VIMENTIN 5’ CAAAGTGGAATCTTTGCAAGAAG 3’ 5’ GCAGCTCCTGGATTTCCTCT 3’ 

FIBRONECTIN 5’ TAAGCTGTACCATCGCAAACC 3’ 5’ CCTCCAGGTGTCACCAATCT 3’ 

SNAIL 5’ CCCAATCGGAAGCCTAACTA 3’ 5’ TAGGGCTGCTGGAAGGTAAA 3’ 

SLUG 5’ CAGACCCTGGTTGCTTCAA 3’ 5’ GCAGTGAGGGCAAGAAAAAG 3’ 

TWIST 5’ CAGCAGGGCCGGAGAC 3’ 5’ CCAGAGTCTCTAGACTGTCCATTTT 3’ 

 

3.3.9. CD44 and CD24 analysis by FACS  

CD44 and CD24 expressions were analyzed in cells engineered to stably exhibit knockdown 

BORIS mRNA or BORIS cDNA. Cells were trypsinized and 106 cells were resuspended in 100 

μL PBS-1% FBS. Monoclonal mouse anti-human CD44–APC-H7 antibody (BD Pharmingen) 

and a monoclonal mouse anti-human CD24–Alexa Fluor 647 antibody (BD Pharmingen) were 

added at dilutions of 1:20 and 1:5 respectively, as suggested by the manufacturer, and 

incubated for 40 min at 4 °C. DAPI was added at concentration of 1 μg/ml during the last 10 

min of incubation. After washing with PBS-1% FBS, flow cytometry analysis were performed 

using Gallios flow cytometer (Beckman Coulter). At least 5 x 104 events were counted for all 

samples. The analysis of percentage of CD44+CD24- cells was estimated after excluding dead 
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cells (DAPI positive cells) and gating on eGFP and tRFP positive cells. The results were 

analysed using FlowJo software. Three independent experiments were performed. 

 

3.3.10. Colony forming assay 

Cells were trypsinized and about three hundred cells were seeded in 6 well/plates. Each 

group of cells was measured in triplicates. Cells were cultured for 2 weeks and then fixed 

with 1 ml of 4% formaldehyde for 10 min at room temperature and stained with 1 ml of 

0.1% crystal violet for 10 min. After washing with PBS, each well was photographed.  

 

3.3.11. Migration assay 

Cell migration was determined using cell culture inserts (BD Falcon) with 8 µm pore size. 

Briefly, the cells were harvested and resuspended in serum-free medium, 5 x 104 cells were 

plated into the top of inserts placed in 24 well/plates. At the bottom well of the inserts were 

added 500 μL medium supplemented with 10% FBS. After 48 hours of incubation, the non-

migrating cells were removed with a cotton swab and the migrating cells (on the lower 

surface of the insert) were fixed with 1 ml of 4% formaldehyde and then stained with 1 ml of 

0.1% crystal violet for 10 min. After washed 3 times with PBS, the migrating cells were 

counted under ten random high-power microscopic fields per insert and the mean number 

of migrating cells was calculated for each group of cells. 

 

3.3.12. Chemo-sensitivity and cell proliferation assays 

In vitro growth inhibition effect of 5-Fluorouracil (5-FU) on cells after BORIS silencing was 

determined by MTT assay. Briefly, each group of cells was seeded in triplicate at the density 

of 1 x 104 cells/well in 96 well/plates in doxycycline-containing medium. The day after, 5-FU 
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(Sigma) was added at different concentrations: 0.5, 5, 50 and 500 μg/ml. Cells were 

incubated for 2 days and then cell viability was measured by MTT assay. Growth inhibition or 

surviving fraction was expressed as a percentage of the untreated controls that were 

measured at once, using the equation: (absorbance of treated sample/absorbance of 

untreated sample) x 100.  

Cell proliferation analysis after BORIS silencing and BORIS induction were assessed by 

MTT assay as previously described (Alberti et al. submitted). 

 

3.3.13. Statistical analysis 

Statistical significance was evaluated using two-tailed student t-test analysis. P-value <0.05 

was considered statistically significant. 
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3.4. Results 

 

3.4.1. Co-localization of BORIS mRNA with side population  

Hoechst side population (SP) analysis is demonstrated to be a proven technique to enrich 

stem and early progenitor cells in different cell lines (Hirschmann-Jax, Foster et al. 2004; 

Kondo, Setoguchi et al. 2004; Chiba, Kita et al. 2006). Fluorescence imaging analysis was 

performed using Hoechst 33342 in combination with in vivo BORIS mRNA detection. 

Expression of BORIS was observed using BORIS-MB (BORIS-Molecular Beacon), as previously 

described (Alberti et al, submitted). The human tumor cell lines, HeLa (cervical), HT29 

(colon), MCF7 (non-invasive breast) and MDA-MB-231 (invasive breast) were investigated. 

All these cells are classified as BORIS-low expressing cells. qRT-PCR confirmed low level of 

BORIS mRNA in HeLa and HT29, while in MCF7 and MDA-MBA-231 cells BORIS mRNA was 

almost undetectable (Figure 1A). 

Fluorescence imaging confirmed BORIS qRT-PCR results and more specifically showed 

that all analysed cell lines constituted mixed population with only a very few cells expressing 

high levels of BORIS, and all resting cells lacking BORIS expression (Figures 1B). The 

estimated frequency of BORIS positive cells is approximately 0.02% for MCF7 and MDA-

MBA-231, and 0.1%-0.5% for HeLa and HT29 cells. These observations were consistent with 

the results already obtained in embryonic (NCCIT) and ovarian (OVCAR3) tumor cell lines, in 

which BORIS mRNA was not present at the same level in all cells but rather occurs at higher 

level only in subset of cells. Interestingly, fluorescence imaging also showed that mostly all 

the BORIS positive cells were even Hoechst negative (white arrows, Figures 1A and S1). 

Therefore, BORIS expression was associated with SP phenotype (Hoechst negative cells) in 
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cervical, colon and breast tumor cells. This observation suggests that BORIS could be 

classified as a CSC marker. 

 

3.4.2. Expression of BORIS in side population of HeLa cells 

The presence of BORIS in CSC-enriched populations was firstly investigated in detail in HeLa 

cells. ABCG2 is described as the major responsible for Hoechst negative phenotype in HeLa 

SP cells (Katayama, Koike et al. 2009). Therefore, a possible co-expression of BORIS with the 

chemoresistance ABCG2 transporter protein was first investigated. HeLa cells were 

incubated with BORIS-MB and then with ABCG2 antibody. Figure 2A shows that mostly all 

the BORIS positive cells are both negative for Hoechst (white arrows) and positive for ABCG2 

protein. This result indicates that BORIS is mainly expressed in the CSC-enriched population 

of HeLa cells.  

To confirm this observation, the SP and NSP (non-SP) cell fractions were sorted from 

HeLa cells. Consistent with previous reports (Kondo, Setoguchi et al. 2004; Katayama, Koike 

et al. 2009), Hela contained from 0.5% to 1.5% SP cells (Figure 2B). The SP fraction was 

completely reduced by adding verapamil, an inhibitor of the ABC-transporters, indicating 

that the populations was bona fide SP. The qRT-PCR showed that ABCG2 expression in SP 

cells was higher (about 1.5 fold) than that in NSP and parental HeLa cells (Figure 2C). 

Notable, BORIS expression analysis showed that BORIS mRNA level was significantly higher 

(about 12 fold) in SP sorted cells compared to that from NSP and parental cells (Figure 2D).  

To further confirm the presence of BORIS in the CSCs enriched population, the 

frequency of SP was analyzed in pCMVBORIS-transfected HeLa cells (Figure 2E). As expected, 

the overexpressing BORIS cells were significantly more (2 fold, p=0.01) enriched in the SP 

cells than the HeLa parental cells. All these results strongly suggested that the isolation of 
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BORIS-positive cells could lead to a significant enrichment of the CSC populations in HeLa 

tumor cells.  

 

3.4.3. Colon-sphere and mammo-sphere express high levels of BORIS mRNA 

The ability of cells to grow in suspension in a serum-free medium is a common approach to 

CSC-enrichment (Singh, Hawkins et al. 2004; Ricci-Vitiani, Lombardi et al. 2007) and this 

property was reported to be restricted to stem/progenitor cells (Dontu, Abdallah et al. 

2003). Therefore, BORIS expression was also investigated in forming-spheres of colon (HT29) 

and breast (MCF7) tumor cells. Cells were seeded at low density (1,000 cells/ml) in sphere 

culture medium in low attachment plates. After 10 days, the formed spheres were collected 

and an aliquot of spheres were seeded in serum-medium to allow the differentiation. 

Interestingly, BORIS expression analysis revealed a significant higher expression of BORIS in 

colon-spheres (from 5 to 45 fold, n=4) as well as in mammo-spheres (from 15 to 67 fold, n=4) 

compared to parental cells and to differentiated-spheres (Figure 3). These results indicated 

that BORIS is mainly expressed in CSC-enriched populations of colon and breast tumor cells. 

 

3.4.4. Knockdown of BORIS reduces expression of stem cell and CSC marker genes, and 

affects hTERT expression and CD44+CD24- phenotype in MCF7 cells 

To establish a possible role of BORIS in CSCs, we selected a knockdown strategy using 

lentiviral system with inducible expressing shRNAs targeting human BORIS mRNA (Alberti et 

al. submitted). BORIS sh-3, BORIS sh-4 and scrambled-shRNA (CTRL sh) lentivirus were used 

to infect HeLa, HT29, MCF7 and MBA-MD-231 cells. According to the figure 1A all these cells 

are low-expressing BORIS. We has previously proven a direct role of BORIS in regulating 

hTERT and stem cell genes in NCCIT, a high-expressing BORIS cell line, and a similar relation 
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could be expected also in BORIS low-expressing cells. Interestingly, after 2 weeks of BORIS 

knockdown, hTERT expression was significantly down-regulated in all cells at the exception 

of MCF7, in which a strong up-regulation (13 fold) was observed (Figure 4A). CTCF expression 

was moderately decreased in all cells (from 40% to 20% compared to control). Notably, 

absence of BORIS trigged dramatic decrease of the chemoresistance ABCG2 transporter 

(25% for MDA-MB-231, 60% for HeLa, 80% for HT29 and 93% for MCF7). Concerning the 

other CSC marker, CD44 was down-regulated in all but one cell line, MCF7 in which a 2.5 fold 

increase was observed compared to control. ALDH1 (aldehyde dehydrogenase isoform 1) 

was decreased in all cells. Analysis of expression of stem cell genes (NANOG, OCT4, SOX2 and 

BMI1) showed generally decrease for all cells when BORIS was depleted. Graph in figure 4A 

shows for all analyzed genes, the mean of the fold induction of both BORIS shRNA for each 

cell line. All together, these results suggested that BORIS could affect the regulation of the 

hTERT telomerase gene and the stem cell and CSC marker genes in BORIS low-expressing 

epithelial tumor cell lines. 

CD44+CD24- subpopulation has been found to be enriched with tumor-initiating 

features, especially in breast cancer cells (Al-Hajj, Wicha et al. 2003; Sheridan, Kishimoto et 

al. 2006). Therefore, we were interested to analyze by flow cytometry this CSC 

subpopulation in BORIS-knockdown tumor cells. A different behavior of MCF7 compared to 

the other cells was observed (Figure 4B). Of note, these analysis showed a remarkable 

acquisition of CD44+CD24- phenotype (red rings) in BORIS-knockdown MCF7-derived cells. 

Indeed, from none CD44+CD24- in the control cells to about 70% of the total cells in BORIS-

knockdown cells. A decrease of CD44+CD24- subpopulation was observed in BORIS-shRNA 

MDA-MB-231-derived cells, even if it was not significant. No change of expression was 
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noticed for HT29 and HeLa which displayed a typical CD44+CD24+ epithelial phenotype 

(Figure 4B).  

 

3.4.5. Knockdown of BORIS affects cell proliferation in MCF7 breast cells 

In NCCIT embryonic tumor cells, we have shown that BORIS silencing had an impact on cell 

survival and, in these BORIS high-expressing cells, the cell proliferation was inhibited through 

cellular senescence (Alberti et al. submitted). The impact of BORIS knockdown on cell 

survival was also analyzed in BORIS low-expressing tumor cell lines. Cell proliferation and the 

capacity to form colonies were measured each week during one month, after doxycycline-

induced BORIS knockdown. For all, but one of cell lines, no significant differences on cell 

proliferation were observed (Figure 5A). The exception was MCF7 cells, in which the cell 

proliferation was dramatically increased 3-4 fold compared to control, already after 1 week 

of BORIS silencing. Colony formation assay confirmed these results (Figure 5B). After one 

month of BORIS-knockdown, the numbers of colonies were similar or slightly lower for HeLa, 

HT29 and MDA-MB-231, compared to controls. In contrast, the number of colonies was 

higher in MCF7. These results indicated that BORIS silencing in epithelial BORIS low-

expressing tumor cells has not a significant impact on cell survival, at the exception of MCF7 

breast cancer cells. 

 

3.4.6. Knockdown of BORIS impairs the sphere formation capacity of colon and breast 

tumor cells  

The effect of BORIS knockdown on self-renewal capacity of tumor spheres was investigated 

after BORIS silencing. Notable, the total number of tumor spheres was significantly 

decreased in all BORIS-shRNA derived cells (Figure 6). The number of spheres formed from 
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BORIS-shRNA engineered derived cells were decreased 90-95% for MCF7, 30-40% for MDA-

MB-231 and 60% for HT29 compared to control. Representative images of spheres show that 

the size was similar between BORIS-sh and CTR sh derived spheres of MDA-MB-231 and 

HT29 (Figure 6B and C, right). However, the average size of spheres from BORIS-shRNA 

engineered MCF7-derived cells were found larger compared to the spheres from control-

derived cells (Figure 6A, right). Indeed, the diameter of BORIS-depleted spheres was in 

average ≥ 400 μm and that of control spheres was ≤ 200 μm. Interestingly, it emerged that 

BORIS depletion had a negative effect on tumor sphere formation capacity in colon and in 

breast cancer cells in which the number of spheres were dramatically reduced. This result 

indicated that BORIS could have a role on the tumor self-renewal capacity of colon and 

breast cancers. 

Analysis of expression profile was also investigated in formed spheres after BORIS 

silencing. The spheres formed by BORIS-depleted in HT29 and MDA-MB-231 cells showed a 

moderate down-regulation of hTERT expression (15-20% less expression compared to 

control) (Figure 6D). In contrast, BORIS depleted-MCF7 spheres displayed a strongly increase 

of hTERT expression (11 fold). No significant difference was observed for CTCF in the 

different cancer cell lines. These observations were consistent with the findings observed 

already in BORIS knockdown cells (Figure 4A).  

The expression profile of stem cell and CSC markers genes of BORIS-depleted spheres 

showed that NANOG, OCT4 and SOX2 genes were dramatically down-regulated in both 

breast and colon tumor cells. However, BMI1 was down-regulated in breast cells but 

moderately up-regulated in colon derived spheres. Expression of the chemoresistance 

transporter ABCG2 was decreased for all BORIS-silenced spheres. For CD44 and ALDH1, an 

up-regulation was observed only in the BORIS-depleted breast spheres (3 and 4.4 for MCF7 
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and 1.8 and 1.2 fold for MDA-MB-231 spheres, respectively compared to control spheres). In 

contrast, CD44 and ALDH1 expression were down-regulated in BORIS-depleted HT29 

spheres. All these results demonstrated a different phenotype of formed spheres in which 

BORIS was knockdown. All the most important stem cell genes were down-regulated, which 

could explain the significant decrease of sphere formation capacity. Furthermore, a decrease 

of ABCG2, one of the most representative marker of CSCs, was observed. 

 

3.4.7. Knockdown of BORIS up-regulates the epithelial-mesenchymal-transition (EMT)-

related genes in MCF7, a luminal-like breast non-invasive tumor cell line 

Analysis of BORIS-shRNA engineered MCF7-derived cells showed a remarkable difference of 

phenotype compared to the other breast cancer cell type as well to the other BORIS low-

expressing cells. In BORIS-depleted MCF7 cells, we observed an increase of hTERT 

transcription, an acquisition of the CSC phenotype (CD44+CD24-) and an increase of cell 

survival. Interestingly, a change in morphology was also observed in BORIS-depleted MCF7 

cells (Figure 7A). These cells formed structures irregular in shape with a unique spindle 

morphology. Considering that this particular morphology is characteristic of the 

mesenchymal cells, as MDA-MB-231 cells (Figure 7A), we further investigated to determine 

whether a modification of genes, controlling epithelial–mesenchymal transition (EMT) 

cellular process, occurred. EMT is a morphogenic cellular program in which epithelial cells 

acquire a mesenchymal phenotype characterized by dramatically alteration of their shape 

and increase of motility (Thiery 2002).  

Expression of a panel of representative genes considered important during EMT 

program were analyzed by qRT-PCR after BORIS silencing in breast cancer cells (Figure 7B). 

Interestingly, it emerged that BORIS-depleted MCF7 cells acquired EMT gene signature. As 
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expected, the mesenchymal MDA-MB-231 cells neither changed of morphology (Figure 7A) 

nor modified significantly EMT gene profile (Figure 7B). In contrast, MCF7 cells after BORIS 

silencing, lost expression of epithelial markers, such as cytokeratin-19 (CK19), epithelial 

cellular adhesion molecule (EpCAM) and especially E-cadherin (ECADH). Simultaneously, we 

observed a remarkable up-regulation of several mesenchymal markers, including SNAI1 

(SNAIL), Twist-related protein 1 (TWIST) and vimentin (43, 238 and 3567 fold increase, 

respectively). No significant change in expression was noticed in the other EMT-related 

genes, SNAI2 (SLUG), N-cadherin and fibronectin. All these results suggested that BORIS 

could affect the EMT process in breast cancer cells. Indeed, some of the most important 

EMT-related genes were transcriptionally up-regulated after BORIS silencing. However, our 

data indicated that BORIS may regulate some of the EMT-related genes, such as CDH1 (E-

cadherin), SNAIL, TWIST and VIMENTIN, but apparently, only in luminal-like non-invasive 

breast cancer cells.  

To confirm the acquisition of EMT phenotype of MCF7 cells after BORIS knockdown, 

we analyzed the migration capacity of these cells. As expected, the non-invasive breast 

MCF7 cells, which normally do not migrate, acquired the capacity to migrate after BORIS 

silencing (Figure 7C). This last finding confirmed the results obtained with expression 

analysis of epithelial and mesenchymal marker genes and the acquisition of EMT gene 

signature of MCF7 cells after BORIS silencing.  

 

3.4.8. Evaluation of cell proliferation in BORIS knockdown-derived cells after 5-FU 

treatment 

The impact of BORIS silencing on cell survival was also analyzed after treatment with a 

chemotherapeutic drug. We decided to use a drug among the most used in chemotherapy, 
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the 5-Fluorouracil (5-FU) (Sargent, Sobrero et al. 2009). This drug was applied for decades for 

the treatment of high risk stage colon cancer and also in breast, ovarian, head and neck and 

liver cancers at different stage. 

After 2 weeks of BORIS silencing, the derived cells were treated with different 

concentration of 5-FU (0.5, 5, 50 and 500 μg/ml). The cell viability was determined by MTT 

assay and was expressed as the percentage of surviving 5-FU-treated cells compared with 

that of non-treated cells (Figure 8). As expected, BORIS-depleted MCF7 cells were significant 

(p<0.01) more resistant to 5-FU compared to the control cells at all concentrations, at 

exception of the highest concentration, where they were not significant different. BORIS-

depleted MDA-MB-231 cells acquired chemoresistance only at low concentration of 5-FU. 

For HT29 and HeLa cells the treatment with 5-FU did not change the cell viability of the 

BORIS-depleted cells compared to control cells.  

The increasing of chemoresistance of MCF7-BORIS depleted cells could be explained by 

the increasing of CSC-enriched population, CD44+CD24- (Figure 4B). In contrast, the absence 

of 5-FU effect for HT29 and HeLa-BORIS depleted cells, was consistent with the none 

variation of the CD44+CD24- profile. 

 

3.4.9. At the exception of MCF7, the induction of BORIS expression inhibits cell growth of 

cancer cells and increases hTERT expression 

In order to further investigate the biological effects of BORIS in the tumor cells, we 

generated stable cells in which BORIS cDNA was inducible expressed. Interestingly, the 

analysis of cell proliferation showed a significant decreasing of cell growth after BORIS-

induction, at the exception of HT29 where no change was noticed (Figure 9A). The inhibition 

of cell proliferation was dramatically affected in MCF7 cells, already after 5 days of BORIS 
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induction. These results were in agreement with the analysis of colony formation (Figure 9B), 

which demonstrated a decreasing of clonogenic cell potential for all cells, at the exception of 

HT29. These data suggest a role of BORIS in tumor cell proliferation as a tumor suppressor 

gene. 

The cell morphology after BORIS induction of all analyzed cells was not modified (data 

not shown). The analysis of expression profile after 10 days of BORIS induction showed that 

hTERT expression was significantly increased in MDA-MB-231, HT29 and HeLa cells (8.7, 3.3 

and 4.8 fold, respectively) (Figure 9C). In contrast, a decrease of hTERT expression was 

observed in MCF7 cells compared to control cells. These findings are in correlation with the 

data found in BORIS-depleted cells in which hTERT expression was changed in an opposite 

manner. No significant change expression was found for CTCF, ABCG2 and CD44. For ALDH1 

and stem cell genes, a cell-dependent behavior was observed with an up- or a down-

regulation. However, a significant up-regulation was seen for SOX2 and NANOG expression 

but not for all cell lines. 

The analysis of CSCs-enriched population (CD44+CD24- expression profile), showed that 

BORIS-induced cells did not have a different phenotype compared to control cells (data not 

shown). 

All these data further confirm that BORIS plays an important role in the regulation of 

hTERT expression and stem cell genes, and in a cell type dependent manner. 

 

3.4.10. BORIS induction can affect sphere formation capacity and sphere expression profile 

The effect of BORIS induction was investigated on tumor sphere formation capacity. As 

expected, the spheres derived from BORIS-induced MCF7 cells formed 37% fewer spheres. 

Surprisingly, the number of formed spheres were significantly higher (2.6 fold, p<0.01) in 
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BORIS-induced HT29 cells compared to control (Figure 10A). MDA-MB-231 cells formed 44% 

fewer spheres. The analysis of expression prolife of formed spheres showed an up-regulation 

of hTERT expression, at the exception of MCF7 (Figure 10B). Interestingly, HT29-derived 

spheres showed a significant up-regulation of all analyzed genes. In contrast, for MCF7 and 

MDA-MB-231-derived spheres, a down-regulation was observed for all the investigated 

genes, at the exception of CD44 and ABCG2.  

The morphology of all spheres after BORIS induction was not modified compared to 

that of control spheres (data not shown). HeLa cells, that normally are not able to form 

spheres, were essayed to form spheres after BORIS induction, but were still not able to form 

spheres (data not shown). 

All these data indicate that BORIS could increase the self-renewal of tumor cells, 

especially in colon tumor cells.  
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Figure 1. Analysis of SP and BORIS expression in human tumor cell lines using BORIS-MB. (A) BORIS 
expression in human tumor cell lines. Total RNA from NCCIT (embryonic), HeLa (cervical), HT29 (colon), MCF7 
(non-invasive breast) and MDA-MB-231 (invasive breast) tumor cells were extracted and BORIS expression was 
analyzed by qRT-PCR. The results were normalized to GAPDH and were related to NCCIT cells. Error bars 
represent the mean ± SD (n=3). (B) Representative images of HeLa, HT29, MCF7 and MB-MDA 231 cells, 20X 
magnification. Cells were incubated with Cy3-BORIS MB (200 nM) and Hoechst 33342 (5 µg/mL) at 37°C for 1.5 
hour in serum-free medium and then examined under fluorescent microscopy. In the merged images, we 
observed the localisation of BORIS mRNA in the Hoechst negative cells (indicated with white arrows in the 
Hoechst images).  
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Figure S1. SP and BORIS expression analysis in HeLa and HT29 tumor cell lines. Representative images of HeLa 
and HT29 cells after incubation of BORIS-MB and Hoechst 33342. Cells were examined under confocal 
microscopy, 63X magnification. 
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Figure 2. Expression of BORIS mRNA in isolated SP HeLa cells. (A) Immunolocalization of ABCG2 protein and 
BORIS mRNA in SP HeLa cells. The cells were incubated with BORIS-MB and Hoechst 33342 at 37°C for 1.5 h in 
serum-free medium. After cytocentrifugation the slides were fixed with cold acetone and then incubated with 
rabbit polyclonal ABCG2 antibody. The BORIS positive (red)-ABCG2 positive (green) - Hoechst negative cells are 
indicated with white arrows. 10X magnification. (B) Representative dot plot of flow cytometry analysis of SP. 
HeLa cells were staining with Hoechst 33342 (12.5 µg/mL) either alone or in combination with verapamil (50 
µM). The analysis was performed using LSRII and the sorting using FACS Aria. The gates in each panel indicate 
the SP and NSP cells that were sorted. (C) ABCG2 and (D) BORIS expression in SP and NSP isolated from HeLa. 
RNA was extracted from sorted SP and NSP HeLa cells and analysed by qRT-PCR. Graphics indicate the mRNA 
expression levels of the genes normalized with GAPDH and related to the parental HeLa cells. Data are 
represented as mean ± SD from 3 experiments. Asterisk indicates p<0.05. (E) SP analysis in BORIS 
overexpressed cells. HeLa cells were transiently transfected with a BORIS expression vector (HeLa pCMV 
BORIS). After 2 days, 1 x 10

6
 cells were staining with Hoechst 33342 (12.5 µg/mL) either alone (top) or in 

combination (bottom) with 50 µM verapamil. The analysis was performed using LSRII flow cytometry and 
graphics shown one representative experiment of 3 independent experiments. 
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Figure 3. BORIS expression in colon-spheres and mammo-spheres. (A) BORIS expression was analyzed by qRT 
PCR in colon-spheres (HT29 sphere) and differentiated-spheres (HT29 DIFF sphere). (B) BORIS expression in 
mammo-sphere (MCF7 sphere) and differentiated-spheres (MCF7 DIFF sphere). Data were normalized to 
GAPDH and related to parental cells (cells). Graphics show one representative experiment of 4 independent 
experiments. Asterisks indicate statistically significant difference (p<0.05) between spheres and cells. Below the 
graphics are shown representative images of colon-spheres from HT29 (left) and mammo-spheres from MCF7 
(right). 4X magnification. Black scale bars indicate 250 μm. 

 

 

  

0

5

10

15

20

25

30

35

40

HT29 cells HT29
sphere

HT29 DIFF
sphere

B
O

R
IS

re
la

ti
ve

 e
xp

re
ss

io
n

0

5

10

15

20

25

30

35

40

MCF7 cells MCF7
sphere

MCF7 DIFF
sphere

B
O

R
IS

re
la

ti
ve

 e
xp

re
ss

io
n

A B

⃰

⃰

HT29 spheres MCF7 spheres



89 
 

 

Figure 4. Impact of BORIS-knockdown on gene expression and CSCs profile. (A) MCF7, MDA-MB-231, HT29 
and HeLa cells were engineered to stably exhibit knocked-down BORIS mRNA. BORIS sh-3, sh-4 and CTR sh 
(control with scrambled sequence) lentivirus were used to infect these cells. Each transduced cells were 
cultured with doxycycline to induce BORIS shRNA expression. Medium containing doxycycline was replaced 
every 3 days. After 2 weeks RNA was isolated from BORIS sh-3, sh-4 and CTR sh of each transduced cell line. 
mRNA levels of the indicated genes were analysed by qRT-PCR. Graphs represent for each gene the means of 
fold induction of both BORIS shRNA (BORIS sh-3 and sh-4) related to that of control of any cells. Standard errors 
were calculated considering error propagation of both BORIS shRNA analysis. Graphs show one representative 
experiment of 2 independent experiments. (B) Provided are representative flow cytometry dot plots of CD44 
and CD24 expression of MCF7, MDA-MB-231, HT29 and HeLa cells engineered to stably exhibit knocked-down 
BORIS mRNA. CD44 and CD24 expression patterns of the two BORIS shRNA (BORIS sh-3 and sh-4) and the 
control (CTR sh) are shown. Anti-CD24 antibody labeled with AlexaFluor 647 and anti-CD44 antibody labeled 
with APC-H7 were used. The percentage of CD44

+
CD24

- 
population was estimated after gating on eGFP and 

tRFP positive cells (transduced and dox-induced shRNA, respectively) and the final gates are based on the 
isotype control corresponding to each cell line. All experiments were conducted independently 3 times and one 
representative experiment is shown for each group of cells. 
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Figure 5. Impact of BORIS knockdown on cell survival in BORIS low-expressing cells. (A) Cell proliferation, over 
1 month of dox-induced BORIS- and CTR- shRNA cells, were analysed by MTT assay at each week. Results of the 
two specific BORIS-shRNA (BORIS sh-3 and sh-4) are indicated as a percentage compare to the cell proliferation 
of control cells (scrambled shRNA, CTR sh). Error bars represent the mean ± SD (n=3). Asterisks indicate 
statistically significant difference (p<0.05) between BORIS sh and CTR sh. (B) Representative images of colony 
formation assay after 1 month of doxycycline induction. Three hundred cells were seeded in each well of 6 
well/plates with medium containing doxycycline, each group were prepared in triplicate. Cells were cultured 
for 2 weeks, then were fixed and stained with crystal violet. 
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 Figure 6. Knockdown of BORIS reduces the ability to form spheres of breast and colon tumor cells and 
decrease expression of stem cell genes. (A) MCF7, (B) MDA-MB-231 and (C) HT29 cells were engineered to 
stably exhibit knocked-down BORIS mRNA. After 2 weeks of dox-induction of BORIS- and CTR- shRNA cells were 
seeded at low density (1000 cells/ml) in sphere serum-free medium into ultra-low attachment 6 well/plates in 
triplicates. Doxycycline was added every 3 days to maintain the shRNA induction. After 10 days the total 
number of formed spheres were counted. Error bars represent the mean ± SD (n=3). One asterisk (p<0.05) or 
two asterisks (p<0.001) indicate statistically significant difference between BORIS sh and CTR sh spheres. On 
the right are shown representative images of spheres. MCF7-spheres and HT29-spheres, 4X magnification. 
MDA-MB-231-spheres, 10X magnification. Black scale bars indicate 250 μm. (D) Expression analysis of BORIS-
depleted spheres. RNA was isolated from BORIS sh-3, sh-4 and CTR sh formed spheres of each cells. mRNA 
levels of the indicated genes were analysed by qRT-PCR. Graphs represent for each gene the means of fold 
induction of both BORIS shRNA (BORIS sh-3 and sh-4) related to that of control. Standard errors were 
calculated considering error propagation of both BORIS shRNA analysis. Graphs show one representative 
experiment of 2 independent experiments. 
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Figure 7. Acquisition of EMT phenotype and gene signature of MCF7 cells after BORIS silencing. (A) 
Representative images of MCF7- and MDA-MB-231- derived cells after dox-induction of BORIS- and CTR- 
shRNA. 10X magnification. Black scale bars indicate 250 μm. (B) After 2 weeks of dox-induction of BORIS- and 
CTR- shRNA, mRNA levels of the indicated genes were analysed by qRT-PCR. Graphs represent for each gene 
the means of fold induction of both BORIS shRNA (BORIS sh-3 and sh-4) related to that of control. Standard 
errors were calculated considering error propagation of both BORIS shRNA analysis. Graphs show one 
representative experiment out of 2 independent experiments. Results are shown in logarithmic scale. (C) Cell 
migration assay of MCF7 cells after BORIS knockdown. Graph shows the mean of cell number visualized in 10 
different fields ± SD (n=3). One asterisk (p<0.05) or two asterisks (p<0.001) indicate statistically significant 
difference between BORIS sh and CTR sh. On the right, representative images. 10X magnification. 
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Figure 8. Effect of 5-FU on cell proliferation of BORIS-depleted tumor cell lines. MCF7, MDA-MB-231, HT29 
and HeLa cells were engineered to stably exhibit knocked-down BORIS mRNA. After 2 weeks of dox-induction 
of BORIS- and CTR- shRNA cells were seeded (1 x 10

4
 cells/well) in 96 well/plates in doxycycline-containing 

medium. The day after was added 5-FU at different concentrations: 0.5, 5, 50 and 500 μg/ml. Cells were 
incubated for 2 days and then cell viability was measured by MTT assay. The percentage of viable cells (% of 
surviving fraction) at each different concentration, is shown relative to that of the untreated control. Error bars 
represent the mean ± SD (n=3). One asterisk (p<0.05) or two asterisks (p<0.01) indicate statistically significant 
difference between BORIS sh and CTR sh cells. 
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Figure 9. Inhibition of cell growth and increases of expression of hTERT and some stem cell genes, after 
BORIS-induction in cancer cells. MCF7, MDA-MB-231, HT29 and HeLa cells were engineered to stably express 
BORIS cDNA. After transduction with lentivirus harbour BORIS cDNA (BORIS) and control lentivirus (CTR), cells 
were selected by incubation with G418 for at least 2 weeks. (A) Cell proliferation analysis after 5 and 10 days of 
dox-induction of BORIS expression. MTT assay results of the BORIS cells are indicated as a percentage compare 
to the control cells (CTR). Error bars represent the mean ± SD (n=3). One asterisk (p<0.05) or two asterisks 
(p<0.01) indicate statistically significant difference between BORIS and CTR cells. (B) Representative images of 
colony formation assay. Three hundred cells were seeded in each well of 6 well/plates with medium containing 
doxycycline, each group were prepared in triplicate. Cells were cultured for 2 weeks, then were fixed and 
stained with crystal violet. (C) After 2 weeks of dox-induction of BORIS and CTR cells, mRNA levels of the 
indicated genes were analysed by qRT-PCR. Graph represents for each gene the fold induction of BORIS cells 
related to control cells. Error bars represent the mean ± SD (n=3).  
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Figure 10. After BORIS induction, formed spheres and expression of stem cell genes were decreased in breast 
cancer cells and increases in colon cancer cells. (A) MCF7, MDA-MB-231 and HT29 cells that stably express 
BORIS cDNA were seeded at low density (1,000 cells/ml) in sphere serum-free medium into ultra-low 
attachment 6 well/plates. Doxycycline was added every 3 days to maintain the BORIS cDNA induction. After 10 
days the total number of formed spheres were counted. Error bars represent the mean ± SD (n=3). Two 
asterisks (p<0.01) indicate statistically significant difference between BORIS and CTR spheres. (B) Expression 
analysis of spheres. RNA was isolated from BORIS-induced and CTR formed spheres of each cells. mRNA levels 
of the indicated genes were analysed by qRT-PCR. Graph represents for each gene the fold induction of BORIS 
cells related to control cells. Error bars represent the mean ± SD (n=3).  
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3.5. Discussion 

 

Our study supports the evidence that BORIS could be classified as a CSC marker in epithelial 

tumors, including cervical, breast and colon cancers. Firstly, we analyzed BORIS mRNA 

expression by using BORIS-MB (Molecular beacon) in SP of different tumor cell lines, 

classified as BORIS-low expressing cells. We found a strong association between BORIS-

positive cells and SP phenotype (Hoechst negative). In the same imaging analysis, we further 

demonstrated the presence of a small subset of BORIS-positive cells in the entire bulk tumor 

cells. Indeed, we found a significant high BORIS expression in the CSC-enriched populations 

isolated from HeLa SP cells and colon-spheres and mammo-spheres. Our data clearly 

demonstrated that BORIS-positive cells are only a rare subpopulation (0.02-0.5%) and this 

small cell fraction is CSC-enriched, supporting the hypothesis that BORIS could emerge as a 

novel CSC marker. These observations are consistent with recent reports showing a 

correlation of BORIS expression with poor outcome of survival in cancer patients 

(Woloszynska-Read, James et al. 2010; Okabayashi, Fujita et al. 2012; Chen, Huang et al. 

2013). Interestingly, a correlation  between BORIS expression and the CSC marker CD90 was 

recently found in hepatocellular carcinoma tissues (Chen, Huang et al. 2013).  

BORIS knockdown significantly impairs the capacity to form spheres in colon and 

breast tumor cells, thus demonstrating a critical role of BORIS in self-renewal of tumor cells. 

These results could be a consequence of the down-regulation of hTERT, stem cell and CSC 

marker genes, that we observed after BORIS silencing, in the analyzed cells and derived 

spheres. Furthermore, these results confirm that BORIS could play an important role on the 

regulation of hTERT and stem cell genes, as already showed in embryonic tumor cells (Alberti 

et al, submitted).  
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Nevertheless, BORIS silencing did not lead a significant inhibition of cell proliferation, 

even after a relatively long time of BORIS silencing (2-3 months, data not shown). This is 

inconsistent with a previous work (Dougherty, Ichim et al. 2008) which has shown an 

increasing of apoptosis after BORIS-knockdown in MDA-MB-231 cells. This difference could 

be due to the different experimental conditions and settings. In our study, the experiments 

have been designed to minimize the risk of false or ambiguous results. For each cell line, we 

generated two different stable BORIS-depleted cells, and the analysis were done after 2 

weeks of BORIS silencing. Notably, all the assays were performed with FACS-isolated 

transduced cells. Furthermore, the selected shRNA BORIS do not overlap with the homolog 

sequences of CTCF and target the exon 9, which is present in almost all the BORIS mRNA 

isoforms (Pugacheva, Suzuki et al. 2010). Although, we detected a moderate decreasing of 

clonogenic potential, we did not observed a significant inhibition of cell growth in HT29, 

HeLa and MDA-MB-231 cells. This result could be explained by the fact that these cell lines 

are BORIS-low expressing; hence, an inhibition of the very low subpopulation of BORIS 

positive cells would take long time to have a significant impact on cell proliferation of the 

entire bulk of tumor cells.  

Conversely, a completely different phenotype after BORIS knockdown was observed in 

the non-invasive breast cell line (MCF7). First of all, we observed a remarkable different 

morphology in both of the two stable BORIS-shRNA engineered MCF7-derived cells 

compared to control cells and a significant enhancement of cell proliferation. The expression 

profile revealed a notable up-regulation of hTERT and also an up-regulation of CD44 and 

ALDH1 genes in formed spheres. Importantly, an acquisition of the CSC phenotype 

(CD44+CD24-) and an increasing of chemoresistance after 5-FU treatment, were observed. 

Although, we observed a decrease of sphere formation capacity, the size of spheres was 
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larger compared to those of control. This is correlated with the morphologic modification of 

the MCF7 cells after BORIS silencing and likely, these spheres are more tumorigenic than 

those of the control. Since a morphologic change to a mesenchymal phenotype was 

detected in MCF7 cells, we further explored the expression of the genes involved in EMT 

program. Interestingly, but also expected, we observed a down-regulation of epithelial genes 

(E-cadherin, CYTOKERATIN-19 and EpCAM) and an up-regulation of the most important 

mesenchymal marker genes (SNAIL, TWIST and VIMENTIN). The increasing of migration 

capacity confirmed the acquisition of EMT signature observed in expression analysis.  

A remarkable increase of hTERT expression was also observed. A putative explanation 

for all these observations, is that this phenotype modification in MCF7 cells is mediated by 

hTERT regulation. Indeed, it has been demonstrated that hTERT/telomerase has also 

telomere-independent functions (Stewart, Hahn et al. 2002) and some of these functions 

could explained our data. Overexpression of hTERT led cells more resistant to several insults, 

such as treatment with chemotherapeutic (Luiten, Pene et al. 2003; Dudognon, Pendino et 

al. 2004), and this observation is consistent with our data obtained with MCF7 cells. We and 

others have demonstrated an enhancement of cell proliferation and also a resistance to 

apoptosis after ectopic hTERT expression (Kang, Choi et al. 2004; Bollmann 2008; Renaud, 

Loukinov et al. 2011). Recent studies have shown that hTERT can also act as transcriptional 

modulator of Wnt/β-catenin signaling pathway (Park, Venteicher et al. 2009; Liu, Li et al. 

2013). The Wnt pathway regulates EMT program that is involved in normal development 

during the embryogenesis process (Kim, Lu et al. 2002; Thiery, Acloque et al. 2009). As well, 

Wnt signaling aberrantly drives EMT genes to tumor formation in experimental models 

(Muller, Bain et al. 2002). EMT is a morphogenic cellular program, in which epithelial cells 

acquire a mesenchymal phenotype, characterized by dramatically alteration of their shape 
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and increase of motility (Thiery 2002). EMT is considered the first step in the metastasis 

process. Cells that undergo to EMT process acquire CD44+CD24- expression profile pattern 

and the ability to form spheres (Mani, Guo et al. 2008). We found all these phenotypes in 

BORIS-depleted MCF7 derived cells and in addition, we observed a significant down-

regulation of CDH1 (E-cadherin) gene. The adhesive glycoprotein E-cadherin is the master-

regulator of the epithelial phenotype and its loss is considered a hallmark of EMT. CDH1 has 

been shown transcriptionally silenced by its transcriptional repressors, including SNAI1 

(SNAIL), SNAI2 (SLUG) and TWIST (Peinado, Olmeda et al. 2007). Another important marker 

of EMT, which was up-regulated in BORIS-depleted MCF7 cells, is VIMENTIN, a major 

constituent of the intermediate filament family of proteins. VIMENTIN is ubiquitously 

expressed in normal mesenchymal cells and its overexpression is frequently associated with 

increased migratory and invasive capacity of cancer cells (Satelli and Li 2011). This is 

consistent with our finding that BORIS knockdown in MCF7 cells resulted in an increase of 

migration capacity.  

Another putative explanation for this different phenotype, is that BORIS could regulate 

epigenetically other target genes. It has been shown that BORIS is involved in the epigenetic 

reprogramming in normal development in spermatocytes, during male germ line 

development (Klenova, Morse et al. 2002; Loukinov, Pugacheva et al. 2002; Jelinic, Stehle et 

al. 2006; Suzuki, Kosaka-Suzuki et al. 2010). Additionally, BORIS has been found to involve in 

the activation of several Cancer Testis genes (CTA) in cancers. CTA is a class of genes 

normally expressed in germinal tissues and up-regulated in many tumors by promoter 

hypomethylation (Caballero and Chen 2009). Several studies have demonstrated a direct 

role of BORIS in the regulation of the expression of some CTA genes. Indeed, overexpression 

of BORIS in normal cells allows MAGEA1 expression by its promoter demethylation (Vatolin, 
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Abdullaev et al. 2005). It has been shown a correlation between BORIS and expression of 

CTA genes in non-small cell lung cancer and head and neck squamous cell carcinoma (Glazer, 

Smith et al. 2009; Smith, Glazer et al. 2009) and specifically, BORIS was implicated in the 

coordinated promoter demethylation and transcriptional activation of putative oncogenes. 

Consistent with all these evidences, BORIS could play a role in epigenetic regulation of some 

important genes implicated in the modification of phenotype.  

In summary, all these data suggest that BORIS could have a critical role on the 

regulation of EMT process either by hTERT-mediated or by epigenetically regulation of other 

key-target genes. 

Clearly more studies are required to connect BORIS to EMT process but another aspect 

to highlight is that, we did not observe the same phenotype in both of the two analyzed 

breast cell lines and this is due to a different origin of cancer. Indeed, MCF7 cells are luminal-

like breast cancer cells, weakly proliferative and non-invasive, display epithelial phenotypic 

markers and express the nuclear hormone receptor, ERα. Instead, MDA-MB-231 cells are 

basal-like breast cancer cells, invasive with ability to migrate, display a mesenchymal 

phenotype and are ERα-negative. These cell lines are phenotypically and genetically 

different, therefore BORIS could affect target genes that are not present in both cell lines 

and this could explain the different phenotypes observed after BORIS silencing. 

Furthermore, MCF7 cells after BORIS-silencing were analysed for 2-3 weeks without 

induction of BORIS-shRNA (thus, without doxycycline in the culture medium) and 

surprisingly, cells did not revert the phenotype and remained with the mesenchymal 

characteristics (data not shown). This result was unexpected as EMT is reversible process. 

Supplementary studies are needed to further understand the mechanism by which BORIS 

regulated this process. 
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To go further in the biological functions of BORIS in tumorigenesis, we induced BORIS 

expression in BORIS-low expressing cells. Another function in tumorigenesis was highlighted 

for BORIS. Indeed, cell proliferation analysis indicated that BORIS could act as a tumor 

suppressor gene, since we observed an inhibition of cell growth. These results were 

confirmed with the colony formation assay. Our data with MCF7, MDA-MB-231 and HeLa 

were consistent with those of recent reports in which BORIS overexpression inhibits cell 

growth (Gaykalova, Vatapalli et al. 2012; Rosa-Garrido, Ceballos et al. 2012; Tiffen, Bailey et 

al. 2013). Contradictory results have been shown in relation to the cell cycle progression in 

BORIS-overexpressing cells. One study demonstrated that BORIS induction did not alter the 

cell cycle profile of both normal and cancer cell lines (Tiffen, Bailey et al. 2013). Another 

study reported that BORIS overexpression in normal cells (HEK293 cells) led to an 

accumulation of cells in S phase, increase of cell size and a decrease of cell cycle markers 

PCNA and Cyclin A (Rosa-Garrido, Ceballos et al. 2012). In our experiments, no change in cell 

size was observed by flow cytometry analysis after BORIS-induction. 

The expression profile analysis shows that BORIS induction promotes hTERT expression 

in MDA-MB-231, HT29 and HeLa cells. These results are consistent with the data already 

observed (Renaud, Loukinov et al. 2011; Alberti et al. submitted) and with our last BORIS-

silencing experiments in which hTERT was down-regulated. All together these data support 

again the evidence that BORIS has a role on transcriptional regulation of hTERT gene.  

In addition, it has been shown that BORIS can be expressed in 23 different isoforms 

and translated in 17 different proteins, each isoprotein has a unique combination of zinc-

finger domains and N- and C- termini (Pugacheva, Suzuki et al. 2010). Furthermore, BORIS is 

transcriptionally controlled by three alternative promoters (Renaud, Pugacheva et al. 2007). 

MCF7 cells have a different promoter usage compared the other analyzed cells. The 
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promoters A and C are equally active in MCF7, whereas in the other cell lines, BORIS is 

transcriptionally regulated mainly by promoter C. Taken together, all these evidences could 

suggest another explanation for the different data obtained with the all analyzed cells. 

Different BORIS protein expressed in the diverse cells could lead to diverse biological 

functions. 

In the experiments of BORIS induction, we observed a significant increasing of sphere 

formation capacity in colon tumor cells (HT29) and also an up-regulation of stem cell genes 

in the formed spheres. On the contrary, in both breast tumor cells BORIS induction led to 

decreasing of formed spheres and down-regulation of stem cell genes expression. This 

observation demonstrates again a different role of BORIS in breast and colon tumor cells. 

In summary, our results support the evidence that BORIS can be classified as a CSC 

marker and reveal a novel mechanism in which BORIS plays a critical role in tumorigenesis by 

transcriptional regulation of hTERT, stem cell genes and genes involved in the EMT process. 

This study opens new findings to better understand of tumor development and provides the 

opportunity for a potential new anti-tumor therapy against BORIS that can simultaneously 

target multiple tumorigenic pathways.  
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4. CONCLUSIONS AND PROSPECTIVES 
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Recent evidences support the view that cancers are complex tissues where aberrant cell 

growth is driven by a small population defined as cancer stem cells (CSCs) (Reya, Morrison et 

al. 2001; Jordan, Guzman et al. 2006; Dalerba, Cho et al. 2007). CSCs are characterized by 

stem cell proprieties and allow tumor metastasis and drug resistance. Their presence could 

explain the recurrent tumor relapses and the failures of cancer treatments (chemotherapy, 

radiotherapy). Numerous markers have been proposed as possible new CSCs-targeted 

therapies. Despite the enormous efforts in research, almost of these CSCs markers are 

expressed also in normal cells.  

BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a gene 

expressed in normal tissues only in germinal cells and it is re-expressed in a wide variety of 

tumors. Furthermore, recent studies have showed an association of BORIS expression with a 

poor prognosis in different type of cancer patients (Woloszynska-Read, James et al. 2010; 

Okabayashi, Fujita et al. 2012; Chen, Huang et al. 2013).  

Although the expression of BORIS in tumors is well documented, there were still 

several open questions. Firstly, it was not known the frequency of BORIS-expressing cells 

within the tumors. Secondly, it was not known the roles of the population of BORIS-

expressing cells in tumor development. 

To address the first question, we developed a new technology to target specifically 

BORIS mRNA expressing cells. Using the BORIS-MB (Molecular Beacon), we demonstrated 

that the BORIS expressing cells represent only a subset of tumor cell population. The 

estimated frequency of BORIS expressing cells depends on the origin of the tumor cells. In 

embryonic and ovarian tumor cells is about 3-5%, in HeLa and HT29 cells is 0.1-0.5% and in 

breast tumor cells is about 0.02%. This different number of BORIS expressing cells could 

explain the different phenotype that we observed in the functional studies. 
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The first indication that BORIS could be considered as a CSC marker was the finding we 

observed in the isolated BORIS-high expressing cells in embryonic tumor cells. Indeed, this 

cell fraction expressed high level of hTERT and stem cell genes (NANOG, SOX2 and OCT4). 

The embryonic tumor cells was a good model to study the eventual association of BORIS 

with CSC, as they are BORIS-high expressing cells and they show gene expression profiles 

close to those of human embryonic stem cells (Sperger, Chen et al. 2003). By using BORIS-

MB, we demonstrated that BORIS expressing cells co-localize with the side population 

(Hoechst 33342 negative cells) in different human tumor cells. Furthermore, we found a high 

expression of BORIS in the SP population of the isolated HeLa cells, as well an increase of SP 

in BORIS-overexpressing HeLa cells. We further investigated the presence of BORIS 

expression in other CSC-enriched populations. A significant high BORIS expression was 

observed in colon- and mammo-spheres. Taken together, all these evidences support the 

hypothesis that BORIS could become a CSC marker, as it is expressed only in a small fraction 

of tumor cells and this fraction is CSC-enriched. Obviously, further in vivo studies are needed 

to demonstrate the tumorigenic capacity of these BORIS-positive tumor cells. 

The functional studies have showed that BORIS could play different roles in 

tumorigenesis according to tumor cell type. In one hand, BORIS gene has a behavior of 

oncogene, such as in embryonic tumor cells, where its inhibition allows a decreasing of cell 

growth. In another hand, BORIS acts like a tumor suppressor gene, such as in breast cells and 

HeLa cells, where BORIS overexpression inhibits cell proliferation. Different expression 

profiles were also observed in the tumor cells analyzed after knockdown or induction of 

BORIS. From our experimental data emerges the fact that BORIS is an important factor that 

regulates the expression of key-target genes for tumor development and progression. One 

crucial gene is hTERT, which was down- and up-regulation after knockdown and induction of 
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BORIS, respectively. The only exception was observed with MCF7 cells, in which an opposite 

behavior was noticed concerning the hTERT regulation. Interestingly, after BORIS silencing 

we observed an acquisition of mesenchymal phenotype in MCF7 cells. Likely, BORIS has an 

important function on the genes involved in EMT process. This phenotype of the non-

invasive epithelial breast cancer cells was unique and we did not observed an opposite 

phenotype in the invasive mesenchymal breast cells (MDA-MB-231). Understanding the 

different mechanisms through BORIS acts in the EMT process would be interesting. The stem 

cell genes are another group of genes that we detected to be transcriptionally modified. We 

observed that their transcriptional modifications were generally comparable with those of 

hTERT gene. A significant down-regulation of stem cell genes was noticed after BORIS 

silencing in embryonic cancer cells, this reveals an evident association of BORIS on the 

transcriptional regulation of these genes. Consistent with this, an important up-regulation 

was observed after BORIS induction in colon tumor cells and furthermore, as mention above, 

we observed a high expression of stem cell genes in the BORIS-high fraction. To better 

understand which other genes and pathways could be affected by BORIS, it is required a 

gene expression analysis by microarrays that could provide a snapshot of all the 

transcriptional activities. Using BORIS-MB it could be possible to isolate BORIS-positive cells 

from different tumor cell types and by microarray analysis, we could analyze their 

differences in gene expression. To complete the study, it will be necessary to investigate by 

microarray analysis also the diverse gene expression profiles after BORIS silencing and BORIS 

induction, especially in MCF7 cells which displayed a particular phenotype.  

In human malignancies the difference of gene expression of cancer specific genes has 

been frequently associated with epigenetic alterations (promoter methylation, histone 

acetylation). The main mechanism of the inactivation of tumor suppressor genes is the DNA 
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hypermethylation, nevertheless, in almost all tumors a global hypomethylation has been 

reported (Ehrlich 2002; Dunn 2003; Das and Singal 2004). Recent reports provide evidences 

that BORIS has an important role on controlling the epigenetic modification of cancer target 

genes (cancer testis antigens, hTERT) and commonly these alterations are associated with 

promoter demethylation and gene reactivation. This BORIS function, as demethylation 

promoting factor, could explain all the gene expression modifications that we observed after 

BORIS silencing or induction. We speculate that BORIS could contribute to tumorigenesis 

through epigenetic modification, such as hypomethylation of cancer target genes. The 

methylation profile of the cancer target genes need to be investigated in the future, to 

highlight the correlation with methylation and gene expression profiles. Another epigenetic 

mechanism by which BORIS could regulate gene expression is by histone modification. 

Indeed, it has been shown that the binding of BORIS to cancer testis antigen genes leads to 

an enrichment of modification of two histones, H3K9 and H3K4 (Bhan, Negi et al. 2011). 

Another study showed that the binding of BORIS causes changes in the local chromatin 

organization allowing altered Rb2/p130 expression (Fiorentino, Macaluso et al. 2011). Likely, 

the BORIS binding leads to modify the conformation of chromatin from a close state to open 

state. It has been reported that during development and differentiation, numerous events 

could be regulated by a complex system of transcription factors, chromatin regulators and 

coordinated chromatin states (Suva, Riggi et al. 2013). In pluripotent cells the chromatin is 

more open, generally accessible and hyper-dynamic, instead, after differentiation, histone 

modifications and transcriptional activities lead to inactive genomic regions and change of 

chromatin configuration to a more close state. It could be interesting to identify the 

downstream transcription factors for which BORIS cooperates in the change of chromatin 

configuration state. This may help to further define the pathways in which BORIS is involved 
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during differentiation and the pluripotent cells. A difference of pathways regulated by BORIS 

among differentiated and stem cells could explain the different phenotypes observed 

between the two breast cancer cells. Indeed, the two analyzed breast cancer cell lines have 

different origin, MCF7 cells are luminal tumor cells and more differentiated, compared to 

the other breast cancer cell line (MDA-MB-231), which is derived from luminal progenitor 

cells (Perou 2010).  

 

In summary, the experiments performed during this PhD research project validate the 

classification of BORIS as a new CSC marker and support the hypothesis that BORIS plays a 

critical role in tumorigenesis. The molecular mechanisms that cause modifications in 

phenotype and gene expression should provide a resource for future studies addressing to 

better understand the specific pathways regulated by BORIS. Our results can also open the 

way to the development of new anti-cancer therapies.  
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