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Résumé destiné au large public 

 

Les muqueuses sont les membranes tapissant les cavités du corps, tel que le tube digestif, et sont en 
contact direct avec l'environnement extérieur. Ces surfaces subissent de nombreuses agressions pouvant 
être provoquées par des agents pathogènes (bactéries, toxines ou virus). Cela étant, les muqueuses sont 
munies de divers mécanismes de protection dont notamment deux protéines-clés permettant de neutraliser 
les agents pathogènes : les anticorps ou immunoglobulines sécrétoires A (SIgA) et M (SIgM). Ces 
anticorps sont, d’une part, fabriqués au niveau de la muqueuse sous forme d'IgA et IgM. Lorsqu'ils sont 
sécrétés dans l’intestin, ils se lient à une protéine appelée pièce sécrétoire et deviennent ainsi SIgA et 
SIgM. La présence de la pièce sécrétoire est essentielle pour que les anticorps puissent fonctionner au 
niveau de la muqueuse. D'autre part, ces anticorps sont également fabriqués dans d’autres parties du corps 
en général et se retrouvent dans le sang sous forme d'IgA et IgM 

Chez l'homme, des thérapies basées sur l'injection d'anticorps donnent de bons résultats depuis de 
nombreuses années notamment dans le traitement des infections. Bien qu’un certain nombre d’études ont 
montré le rôle protecteur des anticorps de type IgA et IgM, ceux-ci ne sont que rarement utilisés dans les 
thérapies actuelles. La principale raison de cette faible utilisation réside dans la production ou la 
purification des IgA/IgM ou SIgA/SIgM (la forme active au niveau des muqueuses) qui est difficile à 
réaliser à large échelle. Ainsi, le but de la thèse était (1) d’étudier la possibilité d'employer des IgA et des 
IgM provenant du sang humain pour générer des SIgA et SIgM et (2) de voir si ces anticorps reconstitués 
pouvaient neutraliser certains agents pathogènes au niveau des muqueuses. 

Tout d'abord, une analyse biochimique des IgA et des IgM issues du sang a été effectuée. Nous avons 
observé que ces anticorps avaient des caractéristiques similaires aux anticorps naturellement présents au 
niveau des muqueuses. De plus, nous avons confirmé que ces anticorps pouvaient être associés à une pièce 
sécrétoire produite en laboratoire pour ainsi donner des SIgA et SIgM reconstituées. Ensuite, la 
fonctionnalité des anticorps reconstitués a été testée grâce à un modèle de couche unique de cellules 
intestinales différenciées (monocouches) en laboratoire imitant la paroi de l’intestin. Ces monocouches ont 
été infectées par une bactérie pathogène, Shigella flexneri, responsable de la shigellose, une maladie qui 
provoque des diarrhées sanglantes chez l’homme. L'infection des monocouches par les bactéries seules ou 
combinées aux SIgA et SIgM reconstituées a été analysée. Nous avons observé que les dommages des 
cellules étaient moins importants lorsque les SIgA étaient présentes. Il apparaît que les SIgA neutralisent 
les bactéries en se fixant dessus, ce qui provoque leur agrégation, et diminuent l'inflammation des cellules. 
La protection s'est montrée encore plus efficace avec les SIgM. De plus, nous avons vu que les SIgA et 
SIgM pouvaient diminuer la sécrétion de facteurs nocifs produits par les bactéries.  

Utilisant le même modèle des monocouches, la fonctionnalité des IgA issues du sang  humain a aussi 
été testée contre une toxine sécrétée par une bactérie appelée Clostridium difficile. Cette bactérie peut être 
présente naturellement dans l'intestin de personnes saines, cependant elle peut devenir pathogène dans 
certaines conditions et être à l’origine de diarrhées et d’inflammations de l’intestin via la sécrétion de 
toxines. Des préparations d’anticorps contenant une certaine proportion de SIgA reconstituées ont amené à 
une diminution des dommages et de l'inflammation des monocouches causés par la toxine.  

L'ensemble de ces résultats prometteurs, montrant que des SIgA et SIgM reconstituées peuvent 
protéger la paroi de l’intestin des infections bactériennes, nous conduisent à approfondir la recherche sur 
ces anticorps dans des modèles animaux. L’aboutissement de ce type de recherche permettrait de tester, 
par la suite, l’efficacité sur l’homme de traitements des infections des muqueuses par injection d’anticorps 
de type SIgA et SIgM reconstituées. 
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Résumé 

 

Les muqueuses, telle que la muqueuse gastrointestinale, sont des surfaces constamment exposées à 
l'environnement et leur protection est garantie par une combinaison de barrières mécaniques, 
physicochimiques et immunologiques. Parmi les divers mécanismes de protection immunologiques, la 
réponse humorale spécifique joue un rôle prépondérant et est assurée par les immunoglobulines sécrétoires 
de type A (SIgA) et M (SIgM). 

Les thérapies basées sur l’administration d’IgG apportent d'importants bénéfices dans le domaine de la 
santé. Bien que des études sur les animaux aient montré que l'administration par voie muqueuse d'IgA 
polymérique (pIgA) ou SIgA pouvaient protéger des infections, des IgA/SIgA n’ont été utilisées 
qu’occasionnellement dans les thérapies. De plus, des études précliniques et cliniques ont démontré que 
l’administration par voie systémique de préparations enrichies en IgM pouvait aussi protéger des 
infections. Cependant, l’administration par voie muqueuse d’IgM/SIgM purifiées n’a pas été examinée 
jusqu’à présent. La principale raison est que la purification ou la production des IgA/SIgA et IgM/SIgM 
est difficile à réaliser à large échelle. Le but de ce travail de thèse était d'examiner la possibilité d'associer 
des IgA et IgM polyclonales purifiées à partir du plasma humain avec une pièce sécrétoire recombinante 
humaine afin de générer des SIgA et SIgM reconstituées fonctionnelles.  

Tout d’abord, une analyse biochimique des IgA et IgM issues du plasma humain a été effectuée par 
buvardage de western et chromatographie. Ces molécules avaient des caractéristiques biochimiques 
similaires à celles des immunoglobulines issues de la muqueuse. L'association entre pIgA ou IgM issues 
du plasma humain et la pièce sécrétoire recombinante humaine a été confirmée, ainsi que la 
stoechiométrie 1:1 de l'association. Comme dans les conditions physiologiques, cette association 
permettait de retarder la dégradation des SIgA et SIgM reconstituées exposées à des protéases intestinales. 
Ensuite, la fonctionnalité et le mode d'action des IgA et IgM issues du plasma humain, ainsi que des SIgA 
et SIgM reconstituées, ont été explorés grâce à un modèle in vitro de monocouches de cellules intestinales 
épithéliales polarisées de type Caco-2, qui imite l'épithélium intestinal. Les monocouches ont été infectées 
par un pathogène entérique, Shigella flexneri, seul ou combiné aux immunoglobulines issues du plasma 
humain ou aux immunoglobulines sécrétoires reconstituées. Bien que les dommages des monocouches 
aient été retardés par les pIgA et SIgA reconstituées, les IgM et SIgM reconstituées se sont montrées 
supérieures dans le maintien de l'intégrité des cellules. Une agrégation bactérienne et une diminution de 
l'inflammation des monocouches ont été observées avec les pIgA et SIgA reconstituées. Ces effets étaient 
augmentés avec les IgM et SIgM reconstituées. De plus, il s’est révélé que les deux types 
d'immunoglobulines de type sécrétoire reconstituées agissaient directement sur la virulence des bactéries 
en réduisant leur sécrétion de facteurs de virulence. La fonctionnalité des IgA issues du plasma humain a 
aussi été testée contre la toxine A de Clostridium difficile grâce au même modèle de monocouches de 
cellules épithéliales. Nous avons démontré que des préparations enrichies en IgA provenant du plasma 
humain pouvaient diminuer les dommages et l’inflammation des monocouches induits par la toxine. 

L'ensemble de ces résultats démontrent que des IgA et IgM de type sécrétoire peuvent être générées à 
partir d'IgA et IgM issues du plasma humain en les associant à la pièce sécrétoire et que ces molécules 
protègent l’épithélium intestinal contre des bactéries pathogènes. Ces molécules pourraient dès lors être 
testées dans des modèles in vivo. Le but final serait de les utiliser chez l’homme à des fins d'immunisation 
passive dans le traitement de pathologies associées à la muqueuse telles que les infections. 
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Abstract 

 

Mucosal surfaces, such as gastrointestinal mucosa, are constantly exposed to the external environment 
and their protection is ensured by a combination of mechanical, physicochemical and immunological 
barriers. Among the various immunological defense mechanisms, specific humoral mucosal response 
plays a crucial role and is mediated by secretory immunoglobulins A (SIgA) and M (SIgM).  

Immunoglobulin therapy based on the administration of IgG molecules leads important health benefits. 
Even though animal studies have shown that mucosal application of polymeric IgA (pIgA) or SIgA 
provided protection against infections, IgA/SIgA have been only used occasionally for therapeutic 
application. Moreover, preclinical and clinical studies have demonstrated that systemic administration of 
IgM-enriched preparations could also afford protection against infections. Nevertheless, mucosal 
application of purified IgM/SIgM has not been examined. The main reason is that the purification or 
production of IgA/SIgA and IgM/SIgM at large scale is difficult to achieve. The aim of this PhD project 
was to examine the possibility to associate polyclonal human plasma-derived IgA and IgM with 
recombinant human secretory component (SC) to generate functional secretory-like IgA and IgM.  

First, biochemical analysis of human plasma IgA and IgM was performed by western blotting and 
chromatography. These molecules exhibited the same biochemical features as mucosa-derived antibodies 
(Abs). The association between human plasma pIgA or IgM and recombinant human SC was confirmed, 
as well as the 1:1 stoichiometry of association. Similarly to physiological conditions, this association 
delayed the degradation of secretory-like IgA or IgM by intestinal proteases. Secondly, the function 
activity and the mode of action of human plasma IgA and IgM, as well as secretory-like IgA and IgM 
were explored using an in vitro model of polarized intestinal epithelial Caco-2 cell monolayers mimicking 
intestinal epithelium. Cell monolayers were infected with an enteropathogen, Shigella flexneri, alone or in 
combination to plasma Abs or secretory-like Abs. Even though plasma pIgA and secretory-like IgA 
resulted in a delay of bacteria-induced damages of cell monolayers, plasma IgM and secretory-like IgM 
were shown to be superior in maintenance of cell integrity. Polymeric IgA and secretory-like IgA induced 
bacterial aggregation and decreased cell monolayer inflammation, effects further amplified with IgM and 
secretory-like IgM. In addition, both secretory-like Abs directly impacted on bacterial virulence leading 
to a reduction in secretion of virulence factors by bacteria. The functionality of human plasma IgA was 
also tested against Clostridium difficile toxin A using Caco-2 cell monolayers. Human plasma IgA-
enriched preparations led to a diminution of cell monolayer damages and a decrease of cellular 
inflammation induced by the toxin. 

The sum of these results demonstrates that secretory-like IgA and IgM can be generated from purified 
human plasma IgA and IgM associated to SC and that these molecules are functional to protect intestinal 
epithelium from bacterial infections. These molecules could be now tested using in vivo models. The final 
goal would be to use them by passive immunization in the treatment of mucosa-associated pathologies 
like infections in humans. 
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 Introduction 

 

1.		The	gastrointestinal	tract	

1.1	General	overview	

The gastrointestinal (GI) tract is a part of digestive system that also comprises associated digestive 

organs including pancreas, liver, gallbladder and the salivary glands. The GI tract has a surface equal to 

400 m2 and its primary functions are digestion, absorption and assimilation of nutrients1,2.  

The GI tract is subdivided into six major parts: oral cavity, pharynx, esophagus, stomach, small 

intestine and large intestine. The digestive process begins in the oral cavity. The ingested material is 

physically broken by chewing and starts to be chemically digested by enzymes found in the saliva. By 

peristalsis, the material comes through the pharynx and esophagus, then arrives in the stomach. At this 

level, the material is mixed with water and gastric juices containing enzymes to form what it is called 

chyme. In addition, specialized cells such as parietal, chief and goblet cells take part in digestion process. 

Parietal cells secrete hydrochloric acid (HCl) that leads to a reduction of pH and allows to denaturate 

proteins and kill bacteria entered with food. Chief cells secrete pepsinogen that is splitted in pepsin under 

the effect of HCl and that is involved in protein digestion. Finally, goblet cells secrete mucus forming a 

protective layer between the gastric mucosa and acidic environment. After the stomach, chyme is 

delivered into the small intestine. The small intestine is formed of a particular structure comprising 

numerous folds and villi that allows to increase the absorption surface of nutrients. The small intestine is 

subdivided into three parts: duodenum, jejunum and ileum. The duodenum and the proximal half of the 

jejunum are the major sites for digestion and absorption of water, nutrients and electrolytes. Intestinal 

enzymes, but also the pancreatic juice and the bile delivered into the duodenum, take part in digestion. 

Specifically, the pancreatic enzymes are essential for digestion of fats, proteins and carbohydrates, while 

the bile is mainly involved in the neutralization of acid and solubilizes fats. After the ileum, the chyme 

reaches the large intestine composed of the cecum, appendix, colon, rectum and anal canal. The large 
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Figure 1: Anatomy of human gastrointestinal tract. The esophagus enters the stomach. The small intestine 
is divided into three segments: duodenum, jejenum and ileum. The ileum ends up into the large intestine 
subdivided into the cecum, colon (ascending, transverse, descending and sigmoid colon), rectum and anal 
canal (adapted from DeSesso and Jacobson, 2001)3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overview of the wall of gastrointestinal tract. The gastrointestinal tract is composed of four 
main layers: mucosa, submucosa, muscularis and serosa (adapted from Reed and Wickham, 2009)2.  
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intestine predominantly plays an important role in water reabsoption. Moreover, the colon is colonized by 

numerous commensal bacteria that are crucial to finish metabolizing nutrients. Finally, undigested 

material is expulsed by the rectum and anus2,3 (Figure 1). 

1.2	The	intestinal	mucosa	

The intestinal mucosa is composed of epithelium, lamina propria and muscularis mucosa. The 

mucosal epithelium differs according to the region of the tract. At the level of the oral cavity, esophagus 

and anal canal, the epithelium consists of stratified squamous epithelial cells. In the stomach, the small 

intestine and colon, the epithelium is made up of simple columnar or glandular epithelial cells. The 

lamina propria is a connective tissue in which blood and lymphatic vessels are present to support the 

epithelium and deliver it various nutrients. In addition, the lamina propria plays a role in internalization of 

luminal digestion products and hormones by the epithelium. Specialized structures called gut-associated 

lymphoid tissues (GALTs) are also found in the lamina propria. These structures orchestrate intestinal 

immune responses and will be presented in the section 2 of Introduction. The muscularis mucosa is the 

third sub-layer of the mucosa. It is a layer of smooth muscle that is well developed in the small intestine. 

Its main role is to give rhythm to million of villi, which promote absorption of chyme (Figure 2).  

The intestinal mucosa is supported by a connective tissue layer called submucosa. It comprises blood 

and lymphatic vessels, various glands and a nerve network called Meissner’s plexus that acts on the 

muscularis externa. This latter comprises a striated muscle in the mouth, pharynx and upper esophagus, 

whereas in other regions of the tract it is constituted of a smooth muscle circular layer and a longitudinal 

smooth muscle layer. Auerbach’s plexus coordinates the movements of layers allowing the peristalsis of 

the gastrointestinal tract. Finally, the outermost layer of the tract is the serosa that is composed of a 

connective tissue layer and the peritoneum2,3,4 (Figure 2). 
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Figure 3: Intestinal epithelium. The intestine is lined by a single layer of epithelial cells organized into 
crypts and villi. It is constituted of four main cell types: mucus-secreting goblet cells, hormone-secreting 
enteroendocrine cells, antimicrobial-secreting paneth cells and absorptive enterocytes. These cells 
differentiate from stem cells found in the crypts. A) The schema shows the organization of the intestinal 
epithelium and the position of each cell type. B) Hematoxylin and eosin staining shows the morphology 
of the mouse intestine cells (adapted from Li et al., 2009 and Van Der Flier and Clevers, 2009)4,5.  
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1.3	The	intestinal	epithelium	

This part will be deliberately focused on the description of the small intestine’s epithelium. This 

epithelium is organized into crypts and villi and four cell types are found within it: Paneth cells, goblet 

cells, enteroendocrine cells and enterocytes (Figures 3 A and B). 

Paneth cells are found in the crypt base. They are composed of granules that contain mainly 

antimicrobial peptides, lysozymes and defensins crucial to protect from microbial invasion. These cells 

were also shown to impact on microbiota composition and to play a role in production of vital factors for 

the stem cells of the small intestine4,6. Goblet cells are present in the duodenum and the colon. Their 

proportion among all epithelial cells is close to ca. 4% in the duodenum and ca. 16% in the distal colon. 

These cells synthesize mucin glycoproteins allowing the formation of an outer and inner mucus layers 

that provide a protection against damages of epithelium. The outer mucus layer is colonized by 

commensal bacteria, whereas the bacteria are nearly absent from the inner mucus layer. These cells also 

secrete trefoil proteins essential for epithelial repair, Resistin-like molecule β (small cystine-rich secreted 

proteins) with antiparasitic effects and Fc-γ binding proteins leading to a stabilization of the mucin 

network. Finally, the microflora is shown to modulate goblet cell functions4,7. The enteroendocrine cells 

are located within the crypts and villi and represent ca. 1% of epithelial cells. Fifteen subtypes of 

enteroendocrine cells secrete specific hormones involved in physiological functions such as motility of 

the gastrointestinal tract. These cells are sensors of luminal contents, mainly nutrients, and transmit 

chemical signals by exocytosis of hormones to afferent nervous fibres. These cells are also immune 

sensors and therefore express Toll-like receptors. In addition, a role for enteroendocrine cells in GI repair 

was also described4,8. Enterocytes represent more than 80% of epithelial cells and form the basis of the 

intestinal epithelial barrier. These cells are columnar and polarized with an apical brush-border side. Their 

main role is the absorption and the transfer of nutrients across the epithelium. Dietary antigens such as 

amino acids, sugars, ions are transported into the enterocytes either by transcellular transport (receptor- 
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Figure 4: Intercellular junctions interconnecting the intestinal epithelial cells. The three main junctions, 
from the luminal to the lamina propria side, are the tight junctions (A), the adherens junctions (B) and the 
desmosomes (C). A. The tight junctions localized at the apical-lateral membrane junction, are composed 
of transmembrane proteins (claudins, occludin and junctional adhesion molecules (JAMs)) connected to 
the actin cytoskeleton through the Zonula occludens-1,2,3 proteins (ZO-1,2,3) or partitioning defective 
adaptor proteins (PARs). B. The adherens junctions consist of cadherin-catenin interactions. C. The 
desmosomes are anchoring sites for keratin filaments (Adapted from Henderson et al., 2010)9. 
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mediated endocytosis or pinocytosis) or by paracellular transport. In the transcellular pathway, the 

molecules are degraded by enzymes found in the lysosomes, whereas in the paracellular pathway, the 

molecules are not degraded and are delivered as such into the interstitial space. Enterocytes were also 

demonstrated to play a role in the antigen presentation to T cells within the epithelium or in the lamina 

propria9,10 (Figure 3 B). 

For the renewal of intestinal cells, progenitor cells are found in the crypts. The stem cells are 

pluripotent and after a few rounds of cell division, they differentiate and migrate out of the crypts onto the 

villi4,11,12 (Figure 3 A). 

Intercellular junctions 

The epithelial cells are connected by intercellular junctions crucial for the maintenance of the intestinal 

barrier. The three main junctions, from the apical to the basolateral side, are the tight junctions, the 

adherens junctions and the desmosomes (Figure 4).  

The tight junctions (TJs) are localized at the apical-lateral membrane junction and are composed of 

more than 50 transmembrane and plaque proteins. Transmembrane proteins are claudins, occludin and 

junctional adhesion molecules (JAMs). They are divided into tetra-span proteins such as occludin and 

claudins, and single span proteins such as JAMs. Transmembrane proteins close the space between 

epithelial cells and mediate the intercellular adhesion. Occludin is especially involved in the regulation of 

paracellular and intermembrane diffusion of molecules. The presence of an additional protein called 

tricellulin allows to increase the resistance of the barrier at the level of junctions of three epithelial cells. 

The claudins play a role of backbone for the TJs but also seems to play a role in regulation of paracellular 

transport. Finally, JAM family proteins are involved in TJ assembly and also regulate the function of the 

intestinal barrier. Transmembrane proteins are connected to the actin cytoskeleton through the plaque 

proteins called Zonula occludens-1,2,3 proteins (ZO-1,2,3) or partitioning defective adaptor proteins 

(PARs). Plaque proteins allow the stabilization and clustering of transmembrane proteins but are also  
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Figure 5: Structure of tight junctions. Tight junctions are composed of transmembrane proteins and 
plaque proteins. Transmembrane proteins such as occludin, claudins and junctional adhesion molecules 
(JAMs) seal the paracellular space between epithelial cells. Plaque proteins such as Zonula occludens 
(ZO) proteins allow to link transmembrane proteins to the actin cytoskeleton (adapted from Ulluwishewa 
et al., 2011)13. 
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essential in TJ regulation. Indeed, TJs can be remodeled by the interaction of external stimuli like 

commensal and pathogenic bacteria, as well as food antigens. Several signaling proteins are involved in 

this TJ regulation such as protein kinase C, mitogen-activated protein kinases, myosin light chain kinase 

and Rho GTPases9,13,14 (Figures 4 A and 5).  

The adherens junctions (AJs) mainly consist of cadherin-catenin interactions. E-cadherin is the main 

transmembrane protein that associates to α- and β-catenins or p120 catenin. Catenins make a link between 

cadherin and actin. AJs are particularly involved in cell-cell adhesion and intracellular signaling15,16 

(Figure 4 B).  

The desmosomes (DMs) are subjacent to AJs. They are composed of desmosomal cadherins: 

desmogleins and desmocollins. These proteins link plakophilins that bind keratin filaments through 

desmoplakin proteins. Similarly to AJs, DMs are regulators of cell adhesion and intracellular signaling. In 

addition, they regulate cellular morphogenesis and differentiation13,17 (Figure 4 C).  

2.		Gut‐associated	lymphoid	tissues	

The mucosal epithelium of the gastrointestinal tract is constantly in contact with the commensal 

microbiota, as well as numerous pathogens such as bacteria, viruses, protozoan parasites or toxins. The 

intestinal immune system has two major tasks: 1) It has to remain tolerant against commensal 

microorganisms, food antigens and self antigens. 2) At the same time, it has to be able to rapidly mount 

protective responses against enteric pathogens. Protection of this surface is ensured by a combination of 

mechanical, physicochemical and immunological barriers. Mechanical and physicochemical barriers 

include mucus, lactoferrin, glycocalyx, defensins, peroxidases, as well as peristalsis  

Specific immune responses are produced in specialized structures called GALTs18,19. GALTs are 

divided into inductive and effector sites. Inductive sites are sites where antigens are sampled and 

comprise cryptopatches (CPs), isolated lymphoid follicles (ILFs), mesenteric lymph nodes (MLNs) and  
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Figure 6: GALT. Cryptopatches are small structures containing innate lymphoid cells and dendritic cells. 
These can mature in isolated lymphoid follicles containing B cells and germinal centres. Peyer’s patches 
are lymphoid aggregates consisting in organized T and B cell areas (Adapted from Pearson et al., 2012)20. 

 

 

 

 

 

 

Figure 7: Schematic representation of GALTs. Isolated lymphoid follicles (ILFs), Peyer’s patches (PPs) 
and mesenteric lymph nodes (MLNs) are GALTs with organized lymphoid structures. A. and B. ILFs and 
PPs are composed of follicle-associated epithelium (FAE) containing microfold cells (M cells) that 
sample antigens and a subepithelial dome (SED) rich in dendritic cells (DCs) and B cell follicles that 
contain germinal centres (GCs). Interfollicular areas contain T cells but also high endothelial venule 
(HEVs) where migration of naive cells takes place. C. MLNs are also composed of B cell zones with 
GCs, regions containing T cells and HEVs. Antigens are translocated into the MLNs via lymph vessels. 
Interstitial fluid passes through trabecular and subcapsular sinuses that converge into the medullary 
sinuses  (adapted from Fagarasan and Honjo, 2003; Von Adrian and Mempel, 2003)21,22. 
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Peyer’s patches (PPs), this latter is the most organized structure (Figure 6). Effector sites are where 

cellular responses mediated by T cells and humoral responses take place. These sites are located within 

the lamina propria and the intestinal epithelium23. 

2.1	Cryptopatches	and	isolated	lymphoid	follicles	

CPs and ILFs are small structures found in the small intestine and colon with an average of 30 000 

CPs and ILFs in humans20,24.  

CPs mainly contain innate lymphoid cells such as lymphoid tissue inducer cells, common lymphoid 

progenitors (Lin-cKit+Il-7Rα+) and dendritic cells (DCs). Lymphoid tissue inducer cells orchestrate the 

development of GALTs. They play a crucial role in the recruitment of B and T cells leading to the 

maturation of CPs into ILFs through signaling from commensal bacteria (Figure 6).  

ILFs are found in the small intestine and colon of mice and humans. They are constituted of a follicle-

associated epithelium (FAE) that contains microfold cells (M cells) specialized for antigen sampling and a 

subepithelial dome (SED) where abundant B cell zones containing germinal centres are found21 (Figures 

6 and 7 A). 

2.2	Peyer’s	patches	

PPs are aggregated lymphoid follicles. More than 100-300 PPs are irregularly distributed in the small 

intestine of humans with the greatest density of them found in the ileum and jejenum. In mice, between 5 

and 14 PPs are present in the ileum and jejunum20,25. PPs are composed of three distinct domains: the 

FAE, the follicular area and the interfollicular area. The follicular area contains B cells, as well as 

follicular DCs (FDCs) and macrophages. The interfollicular area is composed of T cells, interdigitating 

DCs (IDCs) and macrophages. The FAE of PPs differs from the epithelium at other sites. The mucus 

layer is thinner, the digestive enzymes are lightly expressed and the composition of glycocalyx is 

particular. The main feature of FAE is the presence of M cells that are enterocytes poorly endowed with 

brush-border specialized in transcytosis of luminal material26. Finally, located between the FAE and the 
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Figure 8: Induction of immune responses in GALT. 1) M cells sample luminal antigens and transfer them 
to DCs. After their maturation, DC migrate to the T cell zones (interfollicular regions, IFR). 2) 
Intraepithelial DCs are also able to directly uptake antigens by extending their dendrites through tight 
junctions and then migrate to the MLNs. 3) Depending on the context (inflammation, tolerance), various 
cytokines are produced by immune cells. 4) Activated T cells stimulate B cells and, in the lamina propria, 
plasma cells produce polymeric IgA that are translocated as SIgA (Adapted from Corthésy et al., 2007)18. 

 

 

 

 

 

 

Figure 9: T cell-dependent and - independent IgA-induction in Peyer’s patches. Antigens are captured by 
M cells and sample by DCs in the SED. In T cell-dependent IgA induction, activated DCs stimulate T 
cells. Effector T cells enter the B cell follicles and activate B cells via receptor mediated-interaction, as 
well as by secreting IgA-inducing cytokines. Nitric oxide (NO) secreted by DCs upregulated the 
expression of TGF-β receptor (TFGβR) on B cells. Finally, the expression of activation-induced cytidine 
deaminase (AID) is induced, then class-switch recombination (CSR) occurs. In T cell-independent IgA 
response, DCs and FDCs directly activate B cells in SED and in follicles by presenting antigens and by 
secreting cytokines such as BAFF and APRIL leading to CSR (adapted from Pabst et al., 2012)29.  
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follicular area, a SED is present which contains plasma cells, T and B cells, as well as macrophages, 

monocytes and IDCs25 (Figures 6 and 7 B). 

2.3	Mesenteric	lymph	nodes	

MLNs are encapsulated structures present along the GI tract. Their architecture shared with other types 

of lymph nodes can be divided into two main sites: the cortex and medulla. The cortex is splitted into the 

paracortex (region with diffused T cells) and B cell areas containing primary follicles and germinal 

centres formed after encounter with an antigen. Free antigens or antigens within DCs are transferred to 

the lymph node from peripheral tissues via afferent lymphatic vessels and naive lymphocytes enter the 

lymph node from the blood via high endothelial venules (HEVs). The paracortex is the region where T 

cells and DCs interact, while humoral responses mainly take place in these B cell zones. An important 

network of lymph draining sinuses is present in the medulla. Interstitial fluid passes through trabecular 

and subcapsular sinuses that converge into the medullary sinuses. The sinuses are separated by medullary 

cords containing plasma cells, macrophages and memory T cells22 (Figures 6 and 7 C). 

2.4	Induction	of	immune	responses	in	GALTs	

T cell activation 

M cells capture antigens in the lumen and convey them to the SED for sampling by DCs or elimination 

by macrophages. After antigen capture, DCs mature and migrate to T cell zones (interfollicular region, 

IFR) in PPs, ILFs or MLNs. A subset of DCs called intraepithelial DCs are also able to directly take the 

antigens in the intestinal lumen by extending their dendrites through tight junctions before migrating to 

the MLNs. In all cases, DCs activate naive T cells that differentiate into effector cells (Figures 8 and 9 

(left panel)). Depending on the cytokine environment, various subsets of T cells are generated: T helper 

(Th) 2 mainly involved in Ab response, Th1 mainly require in intracellular pathogen responses, regulatory 

T cells that lead to tolerance27 and Th17 cells that can play pathogenic or protective roles depending on 

the context28. 
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B cell activation and antibody response 

1) T cell-dependent Ig-induction: activated T cells, mainly Th2 cells, enter the B cell follicles to 

stimulate B cells via a receptor-mediated interactions and secretion of IgA-inducing cytokines. 

Subsequently, B cells proliferate into germinal centres and activation-induced cytidine deaminase (AID) 

is expressed in B cells leading to IgA class-switch recombination29,30 (Figures 8 and 9 (left panel)). In 

addition, transforming growth factor beta (TGF-β) seems to be particularly important in class switching to 

IgA. In this context, DCs are able to increase the expression of the TGF-β receptor on B cells by 

producing nitric oxide (NO) (Figure 9 (left panel)).  

2) T cell-independent Ig-induction: in this case, luminal antigens are directly sampled by M cells, 

transferred to DCs present in SED or to FDCs, which subsequently present them to B cells. The secretion 

of cytokines such as B-cell activating factor (BAFF), a proliferating-inducing ligand (APRIL) and TGF-β 

by DCs leads to IgA class-switch recombination (Figure 9 (right panel)).  

Finally, IgA+ B cells migrate through the bloodstream to effector sites and in the lamina propria, IgA+ 

B cells differentiate into plasma cells that produce and secrete dimeric IgA and pIgA29,30. Dimeric IgA 

(dIgA) and pIgA are then transported across the epithelium by the polymeric immunoglobulin receptor 

(pIgR) expressed on the basolateral surface of mucosal epithelial cells. At luminal surfaces, secretory IgA 

(SIgA) is released as a complex of pIgA and the cleaved extracellular domain of the pIgR, called 

secretory component (SC)31,32 (Figure 8). Even though SIgA is the most abundant Ab found at mucosal 

surfaces33,34, plasma cells also produce pentameric IgM that will be secreted in the form of secretory IgM 

(SIgM) in the same way as SIgA35. 

3.	Immunoglobulin	A	

Among all immunoglobulin (Ig) subclasses, IgA is the most abundantly produced Ig (66 mg/kg/day in 

humans)33. It is the main antibody found at mucosal surfaces in the form of SIgA and is the second most 

prevalent in serum, due to IgA production by bone marrow plasma cells36.  
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Figure 10: Structure of human IgA. A. IgA1 and IgA2. B. Dimeric IgA1 (dIgA1) and SIgA1. IgA heavy-
chain domains are shown in pink, light-chain domains in light blue, J chain in yellow and secretory 
component in dark blue. N- and O-linked oligosaccharides are shown in red and green, respectively 
(adapted from Woof and Russell, 2011)31. 

 

 

 

A 

B 

28



3.1	Structure	

IgA can be found in three different molecular forms: monomeric, dimeric or polymeric. The general 

arrangement of monomer is similar to all Abs composed of two identical Fab regions and a Fc region. The 

monomer is formed of two heavy alpha chains composed of four globular domains (VH, Cα1, Cα2, Cα3) 

and two light chains (kappa or lambda chains) composed of two globular domains (VL and CL). The 

structure is stabilized by inter-chain disulphide bonds31. In addition, IgA is characterized by an elongation 

of the α chain C-terminus composed of 18 amino acids called tailpiece37 (Figure 10 A). 

In humans and higher apes, two subclasses have been described: IgA1 and IgA2. In addition, IgA2 is 

observed in two allotypic forms, IgA2m (1) and IgA2m(2). A third form IgA2m(3) was also described but 

has been less studied38. The various subclasses and allotypic versions differ by the arrangement of their 

disulphide bridges. Disulfide bonds are present between the heavy and light chains in IgA1 and 

IgA2m(2), whereas these disulfide bridges are absent between the heavy chains but exist between the 

light chains in IgA2m(1). IgA1 is characterized by a 16-amino acid insertion forming a hinge that carries 

between 3-6 O-linked oligosaccharides. These oligosaccharides are mainly constituted of sialic acid, 

galactose and N-acetyl galactosamine. Both IgA1 and IgA2 heavy-chain domains carry N-linked 

oligosaccharides. IgA1 carries these glycans on the Cα2 domain (Asparagin (Asn) 263) and the tailpiece 

(Asn 459). IgA2m(1) has additional glycans bound to Asn 166 of the Cα1 domain and Asn 337 of the 

Cα2 domain (Figure 10 A). Finally, IgA2m(2) bears supplementary glycans at Asn 211 of Cα1 domain. 

Glycans provide 6-10% of molecular mass of IgA31,37,39,40,.  

In dIgA, a single joining (J) chain of 15-16 kilodalton (kDa) binds two monomers via tailpiece. The J 

chain has eight Cystein (Cys) residues. Six residues form intra-chain disulfide bonds, whereas Cys 14 and 

Cys 68 of J chain binds the tailpieces (Cys 471) of each monomer. This polypeptide is also decorated by a 

N-linked oligosaccharide at Asn 48. In addition, the J chain directly interacts with pIgR and is required 

for the association of pIgA with SC to generate SIgA31,37,41 (Figure 10 B). 
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Figure 11: Tertiary structure of dIgA and secondary structure of SIgA showing covalent/non-covalent 
interactions in SIgA. A. The tertiary structure of dIgA shows the Fab and Fc regions, as well as the J 
chain. B. Non-covalent interactions (black circles) are present between the J chain and the domain D1 of 
SC, as well as between the domain D1 of SC and the domain Cα3 of one IgA subunit. Disulphide 

covalent bonds (s-s) exist between Cys 467 or 502 in the domain D5 of SC and Cys 311 in the Cα2 
domain of one IgA subunit (adapted from Brandtzaeg, 2013)42.  
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In SIgA, SC derived from pIgR is a glycoprotein of 70-80 kDa with five Ig-like domains (D1-D5)37. 

Seven surface N-oligosaccharides are exposed and represent 20% of its molecular weight43. SC is bound 

to pIgA through non-covalent and covalent interactions. Non-covalent bonds take place between the  

domain D1 of SC and the J chain and between the domain D1 of SC and the Cα3 domain of one IgA 

subunit. Covalent binding is present between the domain D5 of SC (Cys 467 or 502) and the domain Cα2 

of the other IgA subunit (Cys 311)42,44. The domains D2 and D3 of SC are involved in the formation of 

this covalent bond by properly positioning the domain D545 (Figure 11).  

Distribution of IgA molecular forms and subclasses 

The abundance of molecular forms and IgA subclasses varies according to the sites in the body. While 

IgA is mainly released in dimeric or polymeric form in mucosal secretions, it is mainly found as 

monomers in serum (85-90% of total serum IgA).  At mucosal sites, the subclass proportion varies: 80-

90% IgA1 in nasal and male genital secretions; ca. 60% IgA1 in saliva; to 60% IgA2 in colostrum and 

female genital secretions. In serum, the subclass IgA1 is predominant (ca. 90% IgA1)31,36. 

3.2	Roles	of	SIgA	at	mucosal	surfaces	during	infections	

SIgA is a multi-facet Ab with numerous roles in defense against infections and in homeostasis of 

mucosal surfaces. Indeed, it is essential in the control of host-commensal relationship and its interaction 

with M, epithelial cells and DCs allows a modulation of inflammatory responses46. The next pages are 

deliberately focused on the role of SIgA in protection against bacterial and toxin infections because the 

thesis work mainly deals with these aspects. 

The main mechanism of protection conferred by SIgA is the neutralization of pathogenic 

microorganisms and antigens by a process called immune exclusion and their clearance by peristalsis. 

Immune exclusion allows to prevent contacts between the pathogenic microorganisms and mucosal 

surfaces, as well as a subsequent invasion of mucosal tissues. Studies using in vitro and in vivo models 

strongly demonstrated the primordial role of this mechanism against bacterial and toxin infections19,46.  
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The use of in vitro reconstituted polarized epithelial cell monolayers that mimick mucosal epithelium 

has been a crucial tool to dissect the ability of immune exclusion of IgA/SIgA46. Specific anti-cholera 

toxin IgA efficiently blocked the binding of the toxin to intestinal epithelial cell monolayers and 

subsequently, prevented the toxin-induced response of enterocytes47. Monoclonal IgA directed against 

ricin allowed neutralization of ricin and protection of epithelial cells monolayers48. In the lab, similar 

results were obtained with IgA specific for Clostridium difficile (C. difficile) toxin A49. Interestingly, in 

this study, the various molecular forms of IgA were tested and it is interesting to underline that pIgA was 

superior to monomers to neutralize toxin A and consequently, to protect epithelial cell monolayers. The 

neutralization of bacteria by IgA was also assessed. Monoclonal anti-Salmonella IgA prevented binding 

of bacteria and subsequent infection of epithelial cell monolayers50. Finally, in order to examine the 

possibility to use polyclonal SIgA against infections, Cravioto et al. (1991)51 and Carbonare et al. (2005)52 

showed that human colostrum- and milk-derived SIgA were able to inhibit the adhesion of 

enteropathogenic Escherichia coli (E. coli) to epithelial cell monolayers and to prevent cell invasion. 

The immune exclusion properties of SIgA were also demonstrated using in vivo models. Passive oral 

administration of specific anti-lipopolysaccharide (LPS) IgA directed against Vibrio cholerae (V. 

cholerae) prevented V. cholerae-induced diarrhea in mice53.  Specific monoclonal IgA preincubated with 

Helicobacter felis neutralized the bacteria, which in turn did not colonize mice54. Similar results were 

observed with Shigella flexneri (S. flexneri) and Salmonella typhimurium. Specific anti-LPS IgA against 

S. flexneri protected from experimental shigellosis in mice55 and specific anti-LPS IgA prevented from 

oral56 or intranasal Salmonella challenge57. Interestingly, passive administration of polyclonal SIgA 

protected mice against infections. Indeed, intranasal delivery of human colostrum-purified SIgA led to 

protection of mice against pulmonary Mycobacterium tuberculosis infection58. In the context of luminal 

pathogen-neutralization, the presence of SC is essential to SIgA to reduce its sensitivity to proteases and 

acid59,60. Moreover, SC ensures a correct localization of the molecule within the lumen61. The presence  
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Figure 12: Roles of SIgA in protection of mucosal surfaces. A. SIgA mainly acts by immune exclusion in 
the lumen and allows the antigen clearance by peristalsis. B. SIgA is able to neutralize intracellular 

antigens like viruses. C. SIgA is able to bind an antigen in the lamina propria, transports it through 
epithelial cells and excretes it to the luminal side using transcytosis by pIgR (Adapted from Strugnell and 
Wijburg, 2010)62. 
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of N-glycans is thought to be crucial for the interaction with the mucus 46 and plays a role in interaction 

with toxins and bacterial compounds such as adhesin63.  

In addition to the role of SIgA in neutralization of pathogenic antigens in the lumen, pIgA is also able 

to bind antigens in the lamina propria, transports them through epithelial cells and excretes them to the 

luminal side using transcytosis by pIgR64. Moreover, SIgA is involved in intracellular neutralization of 

infectious agents such as viruses65 and of proinflammatory antigens in the apical recycling endosome 

compartment66 (Figure 12). Finally, SIgA has anti-inflammatory properties. A study highlighted this 

phenomenon using a rabbit ileal loop model for S. flexneri infection. The authors demonstrated that 

bacteria were neutralized by specific anti-LPS SIgA but some immune complexes entered the PPs and 

were internalized by PP DCs. Remarkably, immune complexes composed of SIgA down-regulated 

inflammatory responses and prevented damage of the intestinal barrier67.  

3.3	 Description	 of	 enteric	 infections	 and	 the	 roles	 of	 IgA/SIgA	 in	 the	 control	 of	
specific	infections	

Shigella flexneri  

Shigella is a gram-negative facultative anaerobe belonging to Enterobacteriacceae family. This genus 

is divided into four species: S. flexneri, S. sonnei, S. boydii and S. dysenteriae. S. flexneri is the major 

ethiological agent of shigellosis and is divided into 13 serotypes according to the O-antigen side chain of 

outer membrane LPS. Shigellosis is a diarrheal disease causing over 160 million cases per year and 1.1 

million deaths, mainly in developing countries68.  

Infections are transmitted by fecal-oral route via ingestion of contaminated food and only 10-100 

bacteria are sufficient to cause disease69. Once in the gastrointestinal tract, bacteria mainly translocate 

across the epithelium by transcytosis through M cells70. However, a translocation independent of M cells 

by paracellular passage through the intestinal barrier was also demonstrated. In this process, the bacteria 

modulate the function of tight junctions71. Once in PPs, they invade macrophages, multiply within their  
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Figure 13: Shigella infection of intestinal epithelium. Shigella translocates across the epithelium by 
transcytosis through M cells and invades macrophages. It multiplies within their cytoplasm, which results 
in massive inflammation (release of IL-1β/IL-18) and finally induction of macrophage’s death. The 
bacteria released from killed macrophages are then able to invade the contiguous intestinal cells from the 
basolateral surface of the epithelium. Within epithelial cells, they disrupt the vacuole membrane 
surrounding them, disseminate into the cytoplasm of cells and spread into the adjacent epithelial cells 
with cytokine release. Spreading cell by cell, bacteria release LPS, peptidoglycan (PGN), or other virulent 
factors recognized by pattern-recognition receptor like Nucleotide-binding oligomerization domain 
(NOD) leading to secretion of IL-8 trough NF-κB activation (Adapted from Sasakawa, 2010)72. 
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cytoplasm, resulting in initial massive inflammation (e.g. IL-1β, IL-18 release), followed by induction of 

apoptosis. The bacteria released from killed macrophages are then able to invade the contiguous 

enterocytes from the basolateral side of the epithelium. Within epithelial cells, they disrupt the vacuole 

membrane that surround them, disseminate into the cytoplasm of cells and spread into the adjacent 

epithelial cells69,72,73,74. Epithelial cells respond by producing chemokines (mostly IL-8) that recruit 

polymorphonuclear cells involved in clearance of bacteria75 (Figure 13). 

The molecular “equipement” crucial for bacterial invasion and survival is encoded by a virulence 

plasmid of 200 kilobase (kb). A conserved plasmid region of 31 kb was demonstrated to be sufficient to 

invade intestinal epithelium and kill magrophages. This region is composed of 32 genes organized into 

two loci: the ipa locus and mxi-spa locus. The first locus encodes for secreted proteins called “invasion 

plasmid antigens” (Ipa): IpaA, IpaB, IpaC, IpaD68,69,76. These key virulence factors are secreted upon 

contact of bacteria with epithelial cells and mainly allow the entry into host cells. In addition, IpaB, C and 

D were shown to induce actin polymerization at the site of attachment77 and lysis of the vacuoles78. The 

second operon encodes for the constituents of a type-III secretion system (T3SS): membrane expression 

of Ipa (mxi) and surface presentation of Ipa (spa) antigens68,69. T3SS is a needle-like structure allowing 

the translocation of more than 50 effector proteins72 such as Ipa proteins from the bacterial cytoplasm into 

the host cell. Finally, the virulence plasmid also encodes for two transcriptional activators, VirB and 

MxiE, that control the transcription of T3SS-associated genes and four chaperones (IpgA, IpgC, IpgE, 

Spa15) that also have a regulatory role68,69. The contact with the intestinal epithelium leads to the 

activation of T3SS and effector proteins are secreted into host cells. These effectors stimulate signaling 

pathways involved in actin polymerization leading to the formation of large membrane ruffles that favor 

the endocytosis of bacteria into the host cell. Once endocytosed, bacteria move from one cell to another 

one thanks to a machinery allowing polymerization/depolymerization of actin. Indeed, bacteria are devoid 

of a flagellum and assemble an outer membrane protein called VirG, as well as N-WASP, Arp2/3  
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Figure 14: Shigella motility dependent on actin. The machinery necessary for Shigella motility is 
composed of VirG, N-WASP, Arp2/2 complex, Profilin and Toca-1. This machinery is formed at one 
pole of the bacterium to act on actin polymerization (adapted from Sasakawa, 2010)72. 
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complex, Profilin and Toca-1 at one pole72 (Figure 14). In addition, bacteria recruit the ZO-1 tight 

junction protein to form their actin tail79. Finally, once entered the host epithelial cells, bacteria 

circumvent the host immune response by modulating inflammatory responses, escaping from autophagy 

and extending the intestinal epithelial cell life72. 

Studies in animal models and with samples from infected humans have suggested that a serotype-

specific humoral immune response is the main component involved in protection against shigellosis with 

systemic and mucosal responses against LPS and proteins encoded by the virulence plasmid68. Consistent 

with the predominance of SIgA at mucosal surfaces, it was shown that the number of anti-LPS IgA 

secreting cells increased in infected patients81. Clemens et al., (1986)82 showed a decrease of severity of 

shigellosis in infected infants who received breast milk of mothers previously exposed to the pathogen. 

Anti-LPS SIgA seems to be involved in this partial protection. Studies using animal models demonstrated 

that a monoclonal dIgA specific for S. flexneri serotype 5a LPS called SIgAC5 led to the protection from 

S. flexneri infection. Indeed, SIgAC5 was sufficient to protect animals against a mucosal challenge by two 

main mechanisms: immune exclusion55,61 and decrease of inflammatory responses67. In addition, SIgAC5 

was shown to directly act on the bacterial virulence by suppressing the activity of the T3SS. 

Consequently, it reduced the secretion of IpaB and IpaC, as well as the bacterial membrane potential and 

intracellular adenosine triphosphate levels83.  

Clostridium difficile infection (focus on toxin A) 

C. difficile is a gram-positive bacterium that belongs to the Clostridium genus comprising 181 species. 

Clostridia are present in the environment and in the gastrointestinal tract of humans and of many animals. 

Several species can be pathogenic such as C. difficile that is the primary cause of nosocomial antibiotic-

associated diarrhea and colitis84,85,86.  

C. difficile enters the organism via the fecal-oral route either in vegetative form or in spore form that 

survive in the acidic environment of the stomach. In the small intestine, spores develop into vegetative 
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Figure 15: Clostridium difficile pathogenicity locus and protein domain structures of TcdA and TcdB. A. 
TcdA and TcdB are encoded on the 19.6 kb pathogenicity locus. Three additional open reading frames are 
present: tcdD, a putative positive regulator; tcdC, a putative negative regulator and tcdE, a proposed holin 
protein. B. Toxins are composed of three domains: the C-terminus domain is involved in receptor-
binding. The N-terminus domain is the enzymatic domain including the glycosyltransferase activity. The 
middle domain is a putative translocation domain involved in membrane transolocation (Voth and 
Ballard, 2005)80.  
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form and C. difficile proliferate in the large intestine of patients with a disrupted microbiota87. Its 

pathogenicity is mainly based on the secretion of toxins A (308 kDa) and B (269 kDa). Toxin A and B are 

encoded by tcdA and tcdB located in a 19.6 kb pathogenicity locus, the PaLoc composed of five genes: 

tcdA, tcdB, tcdC - encoding for a potential negative regulator -  tcdD - encoding for a potential positive 

regulator - and a holing-like pore-forming protein, tcdE (Figure 15 A). Both toxins are 

glucosyltransfereases and are composed of three parts: N-terminal, C-terminal and central regions. The N-

terminal catalytic domain provides the biological activity to toxins. The C-terminal domain is involved in 

receptor binding (Figure 15 B). The receptor is not known but the presence of carbohydrates in toxin A 

seems to be important for binding. Finally, the hydrophobic central domain seems to be involved in 

membrane translocation process80,88,89. Uptake of toxins begins with the binding to the potential receptor 

via the C-terminal domain; then, the acidification of endosome induces a refolding of the toxin leading to 

an increase in hydrophobicity. The presentation of hydrophobic regions allows membrane penetration and 

formation of pores. Finally, the N-terminal catalytic domain is released from the endosome and enters the 

cytosol of intestinal epithelial cells89. Once entered, these toxins inactivate small GTPases (Rho, Rac and 

Cdc42) by monoglycosylating GTPases with uridine diphosphate (UDP)-glucose as co-substrate80,90. Rho, 

Rac and Cdc42 regulate several crucial cellular processes such as actin polymerization and maintenance 

of tight junctions ensuring cellular structural integrity but also cell cycle and signalization via mitogen-

activated protein kinases. Thus, the main consequences of toxin activity are actin condensation, alteration 

of structural integrity and finally, cell apoptosis80 (Figure 16 A). In addition, toxin A leads to neutrophil 

infiltration, release of inflammatory cyto- and chemokines such as IL-891, growth regulated oncogen 

(GRO)-alpha and monocyte chemoattractant protein (MCP)-192, as well as production of reactive-oxygen 

species. Both toxins induce disruption of tight junctions80,93, as highlighted by a loss of ZO-1, ZO-2 and 

occludin94 (Figure 16 B). Toxin A is an enterotoxin mainly causing fluid secretion and hemorrhage in 

animal models, whereas toxin B is a cytotoxin showing cythopathic effects in cell culture but showing 

little enterotoxicity in animals. It is generally accepted that toxin B access to enterocytes through the 

effect of toxin A49.  
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Figure 16: Effects of toxins A and B. A. Intracellular effects induced by toxin A (TcdA) and toxin B 
(TcdB): after receptor-mediated endocytosis, the toxins act as glycosyltransferases. They inactivate Rho 

GTPases via a sugar moiety transfer, which leads to actin condensation and apoptosis of the cell. B. 
Downstream effects of toxin A and B in intestinal epithelial cells: toxin A leads to neutrophil infiltration, 
as well as chemokine release and reactive-oxygen species production. Both toxins lead to disruption of 
tight junctions. The consequence is a fluid accumulation and inflammation in the host (Adapted from 
Voth and Ballard, 2005)80. 
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The level of Ab responses to toxins, and mainly toxin A, was shown to be related to the severity and 

the duration of clinical manifestations. Indeed, acutely ill patients show higher anti-toxin A titers in sera 

compared to healthy patients95 and the inability of a patient to mount an Ab response to the toxins can be 

essential for the predisposition to recurrent episodes of disease after a primary resolution of symptoms96. 

Moreover, studies performed in hamster model showed that passive immunization with anti-toxin A Abs97 

or with avian anti-toxin A and B Abs98 led to protection. Regarding the role of IgA, it was demonstrated 

that serum IgA, but not IgG, from patients was able to in vitro neutralize toxin A99. A few years later, 

another study carried out with polarized human intestinal cell monolayers, showed that pIgA was superior 

to mIgA or IgG, even though both specific for toxin A, in prevention of damages caused by toxin A49. 

Finally, in clinical trials, some positive effects such as resolution of diarrhea or relapse prevention were 

obtained with administration of anti-toxin A and B Abs100, as well as with intravenous immunoglobulin 

(IVIg) administration97. 

3.4	Roles	of	serum	IgA	

Serum IgA mainly found in the monomeric form seems to have predominantly an anti-inflammatory 

role36. A 30-year-old study demonstrated that human serum IgA inhibited the IgG-dependent 

phagocytosis of Candida albicans blastopores by human polymorphonuclear leucocytes101. A more recent 

study described the same process using human neutrophils, as well as an inhibition of the production of 

superoxide when antigens are complexed to serum IgA102. Human serum IgA was also shown to 

downregulate the release of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and IL-6 by 

activated human monocytes103. Additional evidences of the anti-inflammatory roles of serum IgA are also 

illustrated by patients with selective IgA-deficiency who display an increased susceptibility to 

autoimmune and allergic disorders36. 

FcαRI (CD89) 

The discovery of the IgA Fc receptor type 1 FcαRI (CD89) in humans allowed to better understand the 

anti-inflammatory action of serum IgA36. FcαRI is a receptor expressed on monocytes/macrophages,  
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Figure 17: Roles of FcαRI in the immune system. A. Under physiological conditions, mIgA binds to 
FcRγ-associated FcαRI and induces partial phosphorylation of the FcRγ. This leads to an inhibitory 
immunoreceptor tyrosine-based activation motif (ITAMi) configuration that allows the recruitment of 
spleen tyrosine kinase (Syk), then Src homology region 2 domain-containing phosphatase-1 (SHP-1). 
This process conducts to a cellular inhibition state. B. Under pathological conditions, IgA-immune 

complexes induce FcαRI aggregation and leads to an activating state via an activated ITAM configuration 
(adapted from Monteiro, 2010)36.  
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neutrophils, DCs, liver macrophages (Kupffer cells) and eosinophils33,36. FcαRI has a size varying 

between 55 and 100 kDa according to its glycosylation pattern and is formed by two extracellular Ig-like 

domains. It is also composed of a transmembrane region and a small cytoplasmic tail. This receptor 

associates with the signaling FcRγ chain subunit that forms a heterotrimer FcαRI/γγ. Both Fc regions of 

IgA1 and IgA2 bind to FcαRI. Monomeric IgA poorly binds to FcαRI, whereas pIgA and IgA-immune 

complexes strongly bind to FcαRI33. This receptor plays a dual role in the immune system. Under 

physiological conditions, serum mIgA binds to FcRγ-associated FcαRI via its domains Cα2 and Cα3104,105 

and allows to transmit inhibitory signals via phosphorylation of FcRγ (Figure 17 A). Under pathological 

conditions, FcαRI is aggregated by IgA-immune complexes that induce cell activation (phagocytosis, 

superoxide release, cytokine release, antibody-dependent cellular cytotoxicity) through crosslinking of 

transmembrane FcRγ-associated FcαRI and recruitment of various effectors (Figure 17 B). The 

immunoreceptor tyrosine-based activation motif (ITAM) found on FcRγ adaptor is involved in both 

above-mentioned processes and mediates the recruitment of Spleen tyrosine kinase (Syk) and Src 

homology region 2 domain-containing phosphatase-1 (SHP-1) leading to inhibitory or activation 

processes36. Interestingly, two types of soluble FcαRI were described. The first type of soluble receptor is 

associated with pIgA and is found in serum of healthy humans106. The second type was found in patients 

with IgA nephropathy107.  

3.5	IgA	receptors	

In addition to FcαRI, several other IgA receptors have been identified.  

Polymeric immunoglobulin receptor (pIgR) 

Polymeric immunoglobulin receptor mainly produced by intestinal epithelial cells (IECs) allows the 

transcytosis of p/dIgA from the lamina propria into the intestinal lumen. The pIgR is a type I 

transmembrane protein of approximately 120 kDa and has five homologous extracellular transmembrane 

domains (domains 1-5), as well as a non-homologous domain (domain 6) and a transmembrane segment. 

The domain 1 seems to be the most important for IgA binding. This domain is highly conserved, whereas  
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Figure 18: Pathway of pIgR through a polarized epithelial cell. Newly synthesized pIgR is found at the 
basolateral surface. Polymeric IgA-bound or free pIgR is endocytosed and transported through several 
intracellular vesicles. At the apical surface, pIgR is cleaved and SC is released. If pIgR transports pIgA, 
SC remains bound to this one and if pIgR is free, free SC is delivered into the lumen (adapted from 
Kaetzel, 2005)108. 
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the domain 6 is highly variable among species and contains a potential proteolytic cleavages site109. The 

receptor binds dIgA at the basolateral surface of IECs, then receptor-mediated endocytosis of the dIgA-

pIgR complex occurs and the transport across the cells is performed via intracellular vesicles. When the 

dIgA-pIgR complex reaches the apical surface of the cells, the extracellular portion of pIgR is cleaved to 

give SC, which allows the generation of SIgA. Interestingly, the receptor can be transcytosed in IECs 

without ligand and the result of cleavage is the release of free SC108 (Figure 18). Several studies 

described that pIgR expression could be regulated by several cytokines such as interferon (IFN)-γ, TNF, 

IL-4 and IL-1110 but also hormones, microbial factors and dietary factors108. 

Fcα/µ receptor (Fcα/µR) 

Fcα/µR is a type I transmembrane protein that binds IgA and IgM and was first characterized in mice. 

Mouse Fcα/µR is constitutively expressed on B cells and macrophages and was firstly described 

mediating endocytosis of immune complexes with IgM. The human homolog was isolated from a human 

lymph node complementary DNA library and has 49% of homology with the murine receptor 111. Human 

Fcα/µR is expressed on follicular DCs in tonsil, macrophages, plasma cells, intestinal Paneth cells and 

germinal centres112.  

Fcα/µR and pIgR display some similarities. In particular, the N-terminal Ig-like domain of this 

receptor shares homology with D1 of pIgR111. Mouse Fcα/µR binds mIgA and pIgA, whereas human 

Fcα/µR binds only the polymeric forms and does neither bind to mIgA, IgG nor SIgA113. The Cα3 domain 

of IgA seems to be essential for the interaction with the receptor113 .  

Transferrin receptor (CD71)  

The transferrin receptor (Tfr) is a homodimeric glycoprotein of 760 kDa mediating the uptake of 

transferrin-iron complexes. Tfr is mostly expressed on hematopoietic cells in fetal liver and bone marrow, 

but also in lymphocytic and myeloid cells lines114. A few years ago, it was found that this receptor was 

also able to selectively bind IgA1 and that it was upregulated on cultured renal mesangial cells in patients  
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with IgA nephropathy. This overexpression of Tfr might be involved in IgA deposits in the kidney of 

these patients115. Tfr is also expressed on epithelial cells and, in celiac disease patients, an overexpression 

and a reorganisation of Trf is involved in retrotransport of SIgA complexes from the apical surface to the 

lamina propria causing inflammation116,117,118.  

Asialoglycoprotein receptor (ASGP‐R) 

The ASGP-R is expressed on hepatocyte membrane and participates in the hepatic metabolism of 

serum glycoproteins including IgA119. This receptor seems to be involved in the clearance of IgA and, 

mainly IgA2, from the blood. This fast clearance of IgA2, and not IgA1, may explain the higher level of 

IgA1 in serum120. 

M cell IgA receptor 

A few years ago, a study demonstrated that human serum or colostrum-derived IgA/SIgA bound 

mouse M cells and that some M cells of the human ileum were coated with IgA. As ASPG-R or other 

lectin-like receptors were not expressed on the apical surface of M cells, the presence of (an) IgA-specific 

receptor(s) on the apical surface of M cells was suggested121. Recently, Rochereau et al. (2013)122 

identified that Dectin-1 receptor was expressed on M cells and was involved in SIgA transcytosis. 

Secretory component receptor (SCR) 

A functional receptor specific for SC expressed on the eosinophil membrane has been described. SC 

and SIgA interact with this receptor, which induce degranulation of eosinophils, whereas serum IgA does 

not induce this phenomenon123. SIgA also induces degranulation of IL-3 primed basophils that might 

express SCR124. 

Fc receptor like 4 (FcRL4) 

FcRL4 belongs to the family of cellular receptor homologous to FcγRI. This receptor is expressed on 

memory B cells found on mucosal lymphoid tissues125,126 and has an inhibitory potential127. Its expression 

was shown to be increase in peripheral B cells of HIV-infected viremic individuals128. Interestingly, 
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Figure 19: Structure of one IgM subunit, pentameric IgM, SIgM and spatial disposition of pentameric 
IgM. A. The figure represents an IgM subunit. Heavy chain domains are represented by white ovales and 
light chain domains are represented by grey ovales. Black lines and associated numbers indicate positions 
of cystein residues and disulphide bonds. Grey circles and associated numbers indicate positions of 
glycosylated asparagin residues. B. Pentameric IgM (up) and SIgM (down) C. The figure shows the 
spatial disposition of pentameric IgM as proposed in Czajkowsky et al., 2009136. Two subunits are 
represented. Heavy chains are indicated by light grey ovals and light chains are shown by dark ovals. 
Small dark circles represent the localization of C1q binding sites (adapted from Klimovich, 2011)129. 
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Wilson et al. (2012)130 identified that FcRL4 was able to bind IgA. The importance of this binding in B 

cell regulation remains poorly understood. 

Other receptors 

IgA receptors were described on human natural killer cells131 and a particular kind of pIgR found on a 

murine B cells lymphoma was also identified. This latter receptor is able to preferentially bind IgM over 

IgA in a J chain-dependent manner132. 

4.		Immunoglobulin	M	

IgM is a crucial Ab as it is the first to appear in organism development and it is the first to be produced 

by humoral immune responses133. IgM is found as a membrane-bound form on B cells but also secreted in 

blood and at the level of mucosal surfaces. At this level, IgM is present as SIgM134.  

4.1	Structure	

Similarly to other Ab classes, the monomeric IgM molecule of 180 kDa is composed of two heavy and 

two light chains. The light chains are constituted of two domains (VL, CL), whereas the heavy µ-chains 

are constituted of one variable domain (Vµ) and four constant domains (Cµ1-4) with a tailpiece of 18 

amino acids linked to the Cµ4 domain. Mu-chains carry five regions of N-glycosylation. Oligomannose 

glycans are present at positions Asn 402 and 563 and more complex glycans are attached to Asn 171, 332 

and 395. Seven to twelve per cent of the molecular mass of IgM is due to glycosylation 135. A disulfide 

bond is present between the Cµ1 domain (Cys 140) and a light chain, as well as between both Cµ2 

domains (Cys 337) (Figure 19 A). IgM is present either as pentamer (900 kDa) (Figure 19 B, up), the 

predominant form found in blood and the only form found at mucosal surfaces, or hexamer. Subunits are 

associated together by cystein residues. S-S bridges are localized between the tailpieces (Cys 575) of 

subunits and Cµ3 domains (Cys 414) of neighboring monomers. The J chain only present in pentamers, is 

incorporated between two subunits and also forms a bond with Cys 575 residues129,136,137. 
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The structure of pentamers was first described as a planar star-shaped complex138,139. However, a more 

recent model described a non-planar, mushroom-shaped structure with the C-terminal regions that 

protrude out from the plane constituted by the Fab-regions and Cµ2 domains136 (Figure 19 C). 

SIgM found at mucosal surfaces is composed of pentameric IgM and SC (Figure 19 B, down). As for 

SIgA, SC is bound to IgM during transcytosis into the luminal compartment via pIgR. IgM and SC are 

bound by covalent and noncovalent interactions140,141. Binding of IgM especially depends on strong 

interactions with domain D1 of SC142 but Prinsloo et al., (2009)143 also pinpointed the role of DII-V for 

high affinity IgM binding.  

4.2	Roles	of	IgM	in	infections	

IgM were shown to play a role in protection against infections134 and development of secreted IgM-

deficient mice largely contributed to understand this role144,145. However, models of infections aiming at 

testing the role of IgM are often models of systemic infections, instead of mucosal infections. Boes et al., 

(1998b)146 demonstrated that secreted IgM-deficient mice were more susceptible to acute septic peritonitis 

induced by cecal ligation and puncture but their resistance was restored by administration of polyclonal 

IgM from wild type mouse serum. Along the same line, IgM exhibited protective effects against Nocardia 

brasiliensis147, contributed to resolve Borrelia hermsii infection148 and provided protection against 

Streptococcus pneumonia via the activation of complement149. The level of serum IgM also seems to play 

a role in protection against Pseudomonas aeruginosa150. Moreover, IgM plays a role in protection against 

intranasal infection by influenza virus151,152,153. Secreted IgM-deficient mice are more susceptible to West 

Nile Virus infection and intraperitoneal administration of polyclonal anti-West Nile Virus IgM protected 

them154. Finally, the role of IgM Abs was demonstrated in protection against fungus and parasite 

infections. The absence of serum IgM increased the susceptibility of mice to pulmonary challenge with 

Cryptococcus neoformans155. Couper et al., (2005 and 2005b)156,157 revealed that immune IgM allowed to 

limit Toxoplasma gondii-dissemination and to restrain Plasmodium chabaudi-replication. And Baral et 

al., (2007)158 described a control of Trypanosoma evansi infection mediated by IgM.  
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Pre-clinical studies have also investigated the efficacy of monoclonal IgM Abs against bacterial or 

parasitic infections. Passive immunization with a human monoclonal IgM reduced bacteremia and 

inflammation in a mouse model of systemic pneumococcal infection159. Another study showed that a 

monoclonal IgM Ab against Pseudomonas aeruginosa LPS provided protection in a murine pulmonary 

infection model160. Finally, Nouir et al., (2012)161 demonstrated that passive administration of a 

monoclonal IgM Ab specific for Strongyloides ratti heat shock protein 60 protected mice against 

challenge infection. In these three studies, IgM was administered by intraperitoneal route.  

A few pre-clinical and clinical studies reported effects of passive administration of polyclonal IgM-

enriched preparations in case of sepsis. Using an acute respiratory distress syndrome rat model, 

Lachmann et al., (2004)162 demonstrated that intravenous (i.v.) administration of IgM-enriched 

preparations reduced Klebsiella pneumonia infection. Some improvements were also observed in a rabbit 

model of sepsis induced by E. Coli163. Contrasting results were nevertheless obtained in clinical trials, 

possibly due to the study design and microbiological aetiology164. Some studies indicated non-significant 

results165,166, whereas other ones showed significant recovery of the infected subjects. IgM-enriched 

preparation therapy led to a decrease of mortality in neonatal sepsis167 and neonate short-term mortality168, 

while Schedel et al. (1991)169 showed a reduction of mortality in patients with endotoxin-positive septic 

shock. Behre et al. (1992)170 also suggested a potential effect of i.v injection of IgM-enriched preparations 

with a decrease in endotoxin levels in plasma within the initial treatment period. Jackson et al. (1993)171 

examined the effect of IgM-enriched preparations used as prophylactic agent. The authors showed a 

significant reduction in endotoxaemia in bone marrow transplant patients. In order to dissect the 

mechanisms of these enriched preparations, a study compared the neutralization effects of IgM-, IgA and 

IgG-enriched preparations on streptococcal antigens. The authors concluded that IgM- and IgA-enriched 

preparations were the most potent inhibitors of specific streptococcal antigens172. Interestingly, two  
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clinical studies tested the use of IgM-enriched IVIg as additional treatment in the case of Crohn’s disease. 

Even though the results of the first one were moderate173,174, the second study174,175 showed a marked 

improvement in Crohn’s disease activity index in patients who received these preparations compared to 

the control group. 

The mechanisms of protection conferred by monoclonal and polyclonal IgM injected via systemic 

route are not completely understood. Features of antigen neutralization and agglutination were naturally 

evoked but its capacity to activate the complement cascade was also mentioned. Modulation of Fc 

receptor expression, cytokine responses, immune cell functions and inflammation could be also 

involved129,134,164,176. 

4.3	IgM	receptors	

Polymeric immunoglobulin receptor (pIgR) 

As previously mentioned, pIgR can bind pentameric IgM. The presence of the Cµ4 domain of IgM and 

J chain were shown to be crucial for pIgR binding129.  

Fcα/µ receptor (Fcα/µR) 

As previously described, Fcα/µR is able to bind IgM. The Cµ3 and 4 domains of IgM seem to be 

essential for the interaction with the receptor113. However, in contrast to pIgR, the binding of IgM to 

Fcα/µR does not require J chain177 and interestingly, the site of IgA-or IgM-binding on human Fcα/µR is 

thought to be in the same region111,113.  

Fcµ receptor (FcµR) 

Kubagawa et al. (2009)178 identified a complementary DNA that encoded a bona fide FcµR in human 

B-lineage complementary DNA libraries. FcµR is a transmembrane protein of ca. 60 kDa expressed on B 

and T cells. This receptor is an extracellular Ig-like domain homolog to pIgR and Fcα/µR but it binds 

only IgM.  
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5.		Polyclonal	immunoglobulin‐based	therapy		

Polyclonal immunoglobulin preparations were prepared as a prophylactic treatment against measle 

infections 60 years ago179. Next, these preparations were used to treat immunodeficient patients180 in order 

to prevent microbial infections during their life181. For numerous years, immunoglobulin therapies mainly 

based on IgG IVIg preparations, have been used with improvement of a large panel of additional disease 

conditions including autoimmune diseases, neurologic disorders, asthma, infectious diseases or even 

following transplantations182. In the context of intestinal diseases, a study described resolution of severe 

C. difficile diarrhea in 64% of elderly patients treated with IVIg who were refractory to antibiotic 

therapy183. In addition, a few studies reported significant improvements of Crohn’s disease by IVIg 

administration with a drop of symptoms and an improved Crohn's disease activity index174.  

5.1	IVIg	preparations	

IVIg preparations consist mostly of IgG molecules that are purified from a pool of human plasma 

obtained from healthy donors (3,000-10,000 donors). Healthy people are by essence exposed to a panel of 

infections and vaccines and consequently, the nature of the Ab molecules they produce covers a broad 

range of specificity i.e are polyclonal181. IgG fraction is mainly obtained by ethanol precipitation and 

various steps of viral clearance184. Depending on the preparations, varying amounts of IgG aggregates are 

present but are in general removed to limit the risk of cytokine storm mediated via activation of Fcγ 

receptors181. 

5.2	Modes	of	action	

Numerous modes of action have been described for IVIg. The F(ab')2 region is able to neutralize 

cytokines, elements of complement and autoantibodies. In addition, via this region, IgG molecules are 

also able to block cell-cell interactions and to kill target cells via antibody-dependent cytotoxicity. The Fc 

 

 

59



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Modes of action of IVIg mediated by F(ab')2 and Fc-dependent pathways. F(ab’)2-dependent 
pathways include: neutralization of cytokines and autoantibodies; blockade of cell-cell interactions 
mediated by cell-surface receptors; scavenging of complement elements (anaphylatoxins C3a and C5a); 
killing of target cells by antibody-dependent cytotoxicity (ADCC). Fc-dependent pathways include: 
saturation of the neonatal Fc receptor (FcRn); blockade of immune complex binding to Fcγ receptors 
(FcγRs); modulation of DC activation via FcγR; modulation of activating and inhibitory FcγR expression 
on innate immune and B cells; effect on expansion of Treg cells (adapted from Schwab and Nimmerjahn, 
2013)181. 
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region is able to associate with FcγR expressed on macrophages, monocytes, polymorphonuclear cells 

and DCs and therefore block immune complex binding, modulate DC activation and modulate activating 

or inhibitory FcγR expression on innate immune and B cells.  The neonatal Fc receptor (FcRn) can be 

satured by IVIg administration and regulatory T cell expansion can be affected181. In case of infections, 

direct interactions with pathogens leading to activation of complement or Fc-mediated phagocytosis by 

antigen-presenting cells have been also described185 (Figure 20).  

5.3	Route	of	administration,	doses	and	side	effects	

Igs were first intramuscularly administered but the risk of sometimes fatal systemic adverse reactions 

led to consider i.v administration in eighties. To further decrease the risk of adverse reactions, the 

possibility to inject Igs by subcutaneous route has been also examined179. The first study of SCIg therapy 

was reported in 1991186, and less systemic adverse effects and a better maintenance of IgG levels were 

observed. The low rates of systemic reactions were confirmed in additional studies187,188. The results of 

these studies encouraged the use of SCIg. An additional advantage of SCIg is the possibility of self-

infusions. This could increase the compliance of patients and reduce healthcare costs189.  

The dose and volume of injected Igs, as well as infusion intervals vary according to the individuals 

and the clinical context. However, most national and international guidelines recommend a starting dose 

of 0.4 g/kg per month for IVIg and SCIg179.  

The most frequent side effects are headaches, fever and nausea. Severe adverse reactions such as 

anaphylaxis or acute cardiovascular events are rare (<5% of patients treated with IVIg) 181,185,190 . 
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Aims of this work 

	

IVIg therapy based on IgG Abs leads to significant clinical benefits. Indeed, IgG supplementation 

prevents important systemic infections in immunodeficient patients. However, despite IgG 

supplementation, they often experience recurrent airway infections191 and gastrointestinal infections or 

inflammations192. On the one hand, animal studies have shown that mucosal application of pIgA or SIgA 

could prevent, diminish or even cure bacterial and viral infections46. In addition, demonstrated anti-

inflammatory effects of IgA might also play an important role in the treatment of chronic mucosal 

infections and inflammations193. However, IgA/SIgA has been only used occasionally for therapeutic 

application. On the other hand, administration of polyclonal IgM-enriched preparations via the systemic 

route provided protection against infections in preclinical and clinical studies. However, potential benefits 

of polyclonal purified IgM/SIgM administered by mucosal route have never been studied.  

The aim of this thesis project has been to determine if polyclonal human plasma-derived IgA and IgM 

can be used as a source of Abs to generate functional secretory-like IgA and IgM molecules, respectively. 

These molecules could be delivered to mucosal surfaces by passive immunization in order to fight a large 

panel of mucosal infections. 

First, the work aimed at determining if IgA and IgM could be converted into secretory-like IgA and 

IgM molecules by association with SC and at establishing if these molecules had the same biochemical 

features as mucosa-derived Abs. Second, the functionality and the modes of action of human plasma IgA 

and IgM, as well as secretory-like IgA- and IgM molecules against a virulent strain of S. flexneri were 

examined using an in vitro model mimicking the GI epithelial barrier. Additionally, the functionality of 

human plasma IgA against another type of antigen, C. difficile toxin A, was also explored.  
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Part I: Human plasma‐derived polymeric IgA and IgM antibodies associate with 

secretory component to yield biologically active secretory‐like antibodies 

 

Overview	of	this	part	

This work aimed at evaluating the biochemical and functional characteristics of human plasma-derived 

IgA and IgM. First, we confirmed the presence of expected heavy and light chains, as well as the J chain 

in IgA and IgM-enriched preparations containing a mixture of various molecular forms of IgA and IgM, 

respectively. The presence of the J chain indicated that polymeric molecular forms were found in the 

preparations. Knowing that the association with SC is essential for a potential mucosal application, we 

demonstrated the specific interaction between recombinant human SC (hSC) and pIgA or IgM present in 

IgA- or IgM-enriched preparations, respectively. In order to evaluate more finely the association, pIgA 

was separated from mIgA, and IgM was purified by size-exclusion chromatography. The covalent 

interaction between purified pIgA or IgM and hSC was confirmed, as well as the 1:1 stoichiometry of 

association. As it had been already shown with IgA from other sources, we confirmed that the association 

between purified pIgA or IgM and hSC increased the stability of the Ab in the presence of intestinal 

proteases. Finally, we demonstrated the protective effect of pIgA and SIgA-like molecules using an in 

vitro model of reconstituted intestinal epithelial Caco-2 cell monolayers infected with a pathogenic strain 

of S. flexneri. As plasma-derived Abs are intrinsically polyreactive, these results open the way to assess 

their protective abilities against a large panel of pathogens using in vitro and in vivo models of infection. 
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Experimental	procedures,	results,	discussion	

The results obtained in this part are compiled in the paper published in the Journal of Biological 

Chemistry and entitled:  

Human plasma-derived polymeric IgA and IgM antibodies associate with secretory component to 

yield biologically active secretory-like antibodies. Longet S (see author contribution), Miled S, 

Loetscher M, Miescher SM, Zuercher AW, Corthésy B. J Biol Chem. 2013 Feb 8;288(6):4085-94. 
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I have been involved in experiments dealing with biochemical analyses of antibodies, as well as in 

culture, stimulation, observations of cell monolayers and related analyses. 
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Human Plasma-derived Polymeric IgA and IgM Antibodies
Associate with Secretory Component to Yield Biologically
Active Secretory-like Antibodies*
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Background: Production of SIgA or SIgM for therapeutic application remains an unsolved issue.
Results: Human plasma-derived polyclonal, polymeric IgA and IgM associate with recombinant or colostrum-derived human
secretory component to form digestion-resistant, functionally active SIgA- and SIgM-like molecules.
Conclusion: SIgA and SIgM can be rebuilt ex vivo from plasma-derived IgA/IgM.
Significance: This would enable development of SIgA/SIgM-based mucosal therapeutics.

Immunotherapy with monoclonal and polyclonal immuno-
globulin is successfully applied to improve many clinical condi-
tions, including infection, autoimmune diseases, or immunode-
ficiency. Most immunoglobulin products, recombinant or
plasma-derived, are based on IgG antibodies, whereas to date,
the use of IgA for therapeutic application has remained anec-
dotal. In particular, purification or production of large quanti-
ties of secretory IgA (SIgA) for potential mucosal application
has not been achieved. In this work, we sought to investigate
whether polymeric IgA (pIgA) recovered from human plasma is
able to associate with secretory component (SC) to generate
SIgA-like molecules. We found that �15% of plasma pIgA car-
ried J chain and displayed selective SC binding capacity either in
amixturewithmonomeric IgA (mIgA) or after purification. The
recombinant SC associated covalently in a 1:1 stoichiometry
with pIgA and with similar efficacy as colostrum-derived SC. In
comparison with pIgA, the association with SC delayed degra-
dation of SIgA by intestinal proteases. Similar results were
obtainedwith plasma-derived IgM. In vitro, plasma-derived IgA
andSIgAneutralized Shigella flexneriused as amodel pathogen,
resulting in a delay of bacteria-induced damage targeted to
polarized Caco-2 cell monolayers. The sum of these novel data
demonstrates that association of plasma-derived IgA or IgM
with recombinant/colostrum-derived SC is feasible and yields
SIgA- and SIgM-like molecules with similar biochemical and
functional characteristics asmucosa-derived immunoglobulins.

Mucosal surfaces of the digestive, respiratory, and urogenital
tracts, as well as the ducts of exocrine glands are lined by layers
of epithelial cells that form a tight barrier separating the inter-
nal compartments of the body from the outside environment.

In humans, these vast surfaces cover 400 m2, an area that is
permanently exposed to exogenous pathogens (1). The combi-
nation of innate and inducible cellular and molecular mecha-
nisms ensures protection against colonization and entry/inva-
sion by microbes (2). In healthy individuals, secretory IgA
(SIgA)3 is the most abundant antibody (Ab) fulfilling the func-
tion of immune exclusion on the luminal side of mucosal sur-
faces (3), whereas secretory IgM (SIgM) Abs take over in IgA-
deficient patients. To exert their specific protective function in
mucosal secretions, polymeric IgA (pIgA) and IgMproduced at
effector sites are transported across the epithelium by the
polymeric immunoglobulin receptor (pIgR) expressed on the
basolateral side of epithelial cells (4). During transport, the pIgR
is proteolytically cleaved, and the extracellular portion of the
molecule, referred to as the secretory component (SC), is
released in association with pIgA and IgM to form SIgA and
SIgM (5, 6). Both secretory Abs are thus essential to maintain
epithelial integrity.
As an alternative to vaccination, protective levels of Abs

might directly be delivered to mucosal surfaces by passive
immunization. In nature, this occurs physiologically in many
mammalian species by transfer of maternal Abs to their off-
spring via milk (7, 8). Human and animal studies dealing with
passive mucosal immunization have demonstrated that pIgA
and SIgA Ab molecules administered by oral, intranasal, intra-
uterine, or lung instillation can prevent, diminish, or cure bac-
terial and viral infections (9). However, the secretory form nat-
urally found at mucosal surfaces was rarely used, and
purification/production of SIgA still remains a challenging task
(10). In this study, we sought to determine whether polyclonal
plasma-derived pIgA and IgM Abs can be transformed into
secretory-like Abs in vitro. We found that IgA- and IgM-en-
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riched plasma preparations, or purified plasma pIgA and IgM,
are able to associate with recombinant or colostrum-derived
human SC (hSC). As in nature, disulfide bridges between hSC
and the Abs formed with a 1:1 stoichiometry. Association with
hSC delayed degradation of either pIgA or IgM upon exposure
to intestinal washes rich in proteases. Biological activity of plas-
ma-derived molecules was demonstrated in neutralization
assays based on the protection of polarized Caco-2 epithelial
cells used as a mimic of the intestinal epithelium against inva-
sion by Shigella flexneri. Together, the data demonstrate that
both reconstituted SIgA and SIgM display many biochemical
features of secretory Abs and open the path to explore their
protective function in in vivomodels of infection.

EXPERIMENTAL PROCEDURES

Preparation of Human Plasma IgA- and IgM-enriched
Fractions—IgA and IgMwere purified from process intermedi-
ates of immunoglobulins manufactured from human plasma
(11) by affinity chromatography using CaptureSelect Human
IgA and CaptureSelect Human IgM resins (Bioaffinity Com-
pany BAC). Three different starting materials were used: 1)
cryo-poor human plasma (termed “plasma”); 2) immunoglobu-
lin-enriched cold ethanol precipitate (termed “paste”), a proc-
ess intermediate obtained during large scale ethanol fraction-
ation of human plasma proteins; 3) a chromatography side
fraction (termed “column strip”), consisting of the strip fraction
from an ion-exchange chromatography column used in the
large scalemanufacture of IgG from human plasma. The differ-
ent starting materials were diluted in PBS to a target protein
(IgA or IgM) concentration of �1 mg/ml and then loaded onto
a CaptureSelect Human IgA or IgM column pre-equilibrated
with PBS, without exceeding the IgA- or IgM-binding capacity
of the column. After loading, the columnwas washed with PBS,
and IgA or IgM was eluted with glycine buffer at pH 3.0. The
eluate was adjusted with 0.5 M Tris-base (pH 8.0) to pH 4.5 and
concentrated up to 16 mg/ml protein.
Production/Purification of Recombinant Proteins and Colos-

tral Human SC—Recombinant hSC (hSCrec) was produced
from a CHO clone stably transfected with an expression cas-
sette coding for the protein (12). Colostrum-derived hSC (hSC-
col) was obtained as described (13). Mouse IgAC5 specific for
S. flexneri LPS serotype 5a and recombinant mouse SC (mSC)
were produced and purified as described (12, 14).
Western blot analysis—SDS-PAGE and transfer onto PVDF

membranes was carried out as described (15). The membranes
were then blocked for 30 min in PBS-0.05% Tween 20 solution
(PBS-T) containing 1% BSA. Detection of the polypeptides in
IgA- and IgM-enriched or purified IgA and IgM preparations
was carried out with: 1) rabbit IgG anti-human alpha chain,
HRP-conjugated (Dako, 1/5,000 dilution); 2) rabbit IgG anti-
human mu chain, HRP-conjugated (Dako, 1:5,000 dilution); 3)
goat anti-human kappa chain (Cappel, 1/3,000 dilution), fol-
lowed by secondary anti-goat HRP-conjugated antiserum
(Pierce, 1/5,000 dilution); 4) rabbit anti-J chain antiserum
(1/3,000 dilution) (16), followed by secondary anti-rabbit HRP-
conjugated antiserum (Sigma, 1/3,000 dilution). In reconsti-
tuted SIgA or SIgM, the presence of hSC was assessed using
rabbit anti-hSC antiserum (1/3,000 dilution) (17), followed by

secondary anti-rabbit HRP-conjugated antiserum (Sigma,
1/10,000 dilution). In reconstituted SIgAC5, the presence of
mouse SC (mSC)was assessed using rabbit anti-mSCantiserum
(1/3,000 dilution) (14), followed by secondary anti-rabbit HRP-
conjugated antiserum (Sigma, 1/5,000). All incubations were
performed in PBS-T containing 0.1% BSA at ambient temper-
ature for 1–2 h. After final washing with PBS-T, immune com-
plexes on membranes were detected by chemiluminescence
and exposure on autoradiographic films.
Dot Blot Reassociation Assay—Dot blot reassociation assays

were essentially carried out as described (17) with the following
modifications: blotting membranes consisted of PVDF; block-
ing solution was PBS-T containing 1% BSA; IgA- and IgM-en-
riched preparations were used for overlay incubation in 200 �l
of PBS-T containing 0.1% BSA; and detection Abs were directly
coupled to HRP.
Separation of Plasma-derived pIgA and mIgA and Purifica-

tion of Plasma-derived IgM—IgA-enriched preparations con-
taining a mixture of mIgA and pIgA were diluted in PBS to a
final volume of 10 ml suitable for injection onto the
ÄKTAprime chromatography system (GE Healthcare). The
flow rate was set at 1 ml/min with PBS as the mobile phase for
all runs. To resolve the two molecular forms of IgA from other
plasma components, the material was initially applied onto a
1-meter-long column filled with Superdex 200 resin (GE
Healthcare). Separation of the two molecular forms of IgA was
also performed on two serially coupled 1-meter-long columns
filled with Sephacryl S-300 HR beads (18). The IgA content of
3.5-ml fractions was verified by immunodetection, and pools of
mIgA and pIgA were obtained. IgM-enriched preparations run
under identical conditions yielded a single fully excluded peak.
Concentration was performed using the Labscale system (Mil-
lipore) connected to a 100-kDa cut-off cartridge and stored at
4 °C until further use.
In Vitro Association of Polymeric Ig and hSC—SIgA mole-

cules were obtained by combining in vitro 10 �g of purified
pIgA molecules with 2.5 �g of either hSCrec or hSCcol. SIgM
molecules were obtained by combining in vitro 10 �g of puri-
fied IgM molecules with 1.5 �g of either hSCrec or hSCcol.
SIgAC5moleculeswere obtained by combining in vitro 10�g of
purified pIgAC5 molecules with 2 �g of mSC. Association was
performed in PBS for 30 min at ambient temperature as
described previously (19). Integrity and correct assembly of the
molecules into possible covalent complexes was examined by
SDS-PAGE under non-reducing and reducing conditions, fol-
lowed by Western blotting and immunodetection with antise-
rum specific for SC as indicated above.
FPLC Sizing Column Chromatography—To further assess

the assembly of purified pIgA with hSCrec or hSCcol, com-
plexes with a 1:1 and 1:2 stoichiometry were prepared in a final
volume of 100 �l (total amount of protein: 10 �g) and passed
over a 1 � 30-cm Superose 12 HR prepacked column (GE
Healthcare) hooked to the ÄKTAprime chromatography sys-
tem at a constant flow rate of 0.2 ml/min. Co-elution of bound
hSC with pIgA, reflecting covalent association, was verified by
immunodetection specific for hSC, and quantification of IgA
and hSC in pooled fractions was carried out by ELISA (20).
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Digestion of Abs with Mouse Intestinal Washes—Collection
of intestinal washes form BALB/c mice (4–6 weeks old) was
done according to the published procedure (19). For in vitro
digestion, 125 ng of purified pIgA and reconstituted SIgA, or
purified IgM and reconstituted SIgM, weremixed or not with 1
or 2 �l of intestinal washes in a final volume of 20 �l of PBS and
incubated at 37 °C for various periods of time. Reactions were
stopped by the addition of 2 �l of CompleteTM protease inhib-
itor mixture (Roche Applied Science) and kept frozen prior to
analysis by immunoblot detecting the reduced form of the
heavy chain of the antibody.
Caco-2 Cell Culture and Growth as a Polarized Monolayer—

The human colonic adenocarcinoma epithelial Caco-2 cells
(American Type Tissue Collection) were grown in complete
DMEM consisting of DMEM-Glutamax (Invitrogen) supple-
mented with 10% FCS (Sigma), 10 mM HEPES (Invitrogen), 1%
non essential amino acids (Invitrogen), 1% sodium pyruvate
(Invitrogen), 1% L-glutamine (Sigma), 1% penicillin/streptomy-
cin (Sigma), and 0.1% transferrin (Invitrogen), and used
between passages 32 and 40. Cells cultivated up to 80% conflu-
ency were seeded on polyester Snapwell filters (diameter, 12
mm; pore size, 0.4�m;CorningCostar) at a density of 0.8� 105
cells/cm2. At week 3, the Caco-2 cell monolayer integrity was
checked by measuring the transepithelial electrical resistance
(TER) using the Millicell-ERS device (Millipore) (21). TER val-
ues of well differentiatedmonolayers were in the range of 380–
550 ohms � cm2.
Bacterial Strain andCulture Conditions—Bacteria usedwere

the virulent strain of serotype 5a LPS S. flexneri M90T consti-
tutively expressing GFP (22). Bacteria from frozen stock were
grown in Luria-Bertani (LB) agar plate containing 0.1‰Congo
Red (Applichem) and 50 �g/ml ampicillin (Sigma-Aldrich), for
30 h at 37 °C. Three red colonies were amplified in 10 ml of LB
liquid broth supplementedwith 50�g/ml ampicillin (LB liquid/
ampicillin) for 16 h at 37 °C and 200 rpm. The culture was
centrifuged at 2,000 � g for 5 min, resuspended in PBS, diluted
1/10 in 10 ml LB liquid/ampicillin and then cultured for 2 h at
37 °C with shaking (200 rpm). Finally, bacteria in the exponen-
tial phase were washed twice in PBS by centrifugation at
2,000 � g for 5 min and resuspended in PBS. Assessment of
cfu/ml was carried out bymeasurement of the optical density at
600 nmwith the knowledge that 1 optical density unit at 600 nm
corresponds to 5 � 108 cfu/ml.
Incubation of Bacteria with Different Ab Preparations—2 �

107 bacteria were mixed with 0.049 �M of SIgAC5 specific for
S. flexneri LPS serotype 5 or with human plasma-derived pIgA
(0.61 �M), SIgA (0.61 �M), or mIgA (0.61 �M), respectively, in a
final volume of 500 �l of plain DMEM (DMEM complemented
with 10 mM HEPES (Invitrogen), 1% non essential amino acids
(Invitrogen), 1% sodium pyruvate (Invitrogen), 1% L-glutamine
(Sigma), and 0.1% transferrin (Invitrogen)). The mixtures were
incubated for 1 h at ambient temperature under gentle
agitation.
Protection Assay—1 h before the use of polarized Caco-2 cell

monolayers, complete DMEMwas replaced by plain DMEM in
both the apical and basolateral compartments. Polarized
Caco-2 cell monolayers were infected apically with S. flexneri
serotype 5a alone or in combination with the Ab preparations.

Exposure of Caco-2 cells to S. flexneri or the various immune
complexes was performed for up to 13 h, and bacteria-induced
damage was tracked by measuring TER decrease over time.
Laser-scanning Confocal Microscopy (LSCM) Observation of

Caco-2 Cell Monolayers—To examine the integrity of Caco-2
cell monolayers, Snapwells were washed twice with PBS, prior
to fixation overnight with 5 ml of 4% paraformaldehyde at 4 °C.
After washing, filters were permeabilized, and nonspecific
binding sites were blocked using PBS containing 5% FCS and
0.2% Triton X-100 for 30 min at ambient temperature. All Abs
were diluted in PBS-T. Filters were incubated with rabbit anti-
humanZonula occludens-1 (ZO-1) (1/200 dilution, Invitrogen)
for 2 h at ambient temperature, washed in PBS, followed by goat
anti-rabbit IgG conjugated with Alexa Fluor® 647 (1/100 dilu-
tion, Invitrogen) for 90 min at ambient temperature. To visual-
ize cells, filters were finally incubated with 200 ng/ml of 4�,6�-
diamidino-2-phenylindole (DAPI; Invitrogen) in PBS for 30
min. Filters were cut out of their holders and mounted in
Vectashield solution (Vector Laboratories) for observation
using Zeiss LSM 710 Meta confocal microscope (Carl Zeiss)
equippedwith a 40� objective. Three-dimensional reconstruc-
tions along the xy plans were performed with the Zeiss ZEN
2009 light software.
Quantification of the Infected Areas—Observation of whole

filters was carried out with the 10� objective using Zeiss ZEN
2009 light software. The sum of infected areas was determined
using the particle analysis tool of ImageJ software applied onto
the channel associated with the bacteria.
Statistical Analysis—Results were expressed as means � S.E.

of the mean. Student’s t test analysis was performed using
GraphPad Prism software (version 5). Differences were consid-
ered as significant when p � 0.05.

RESULTS

Plasma-derived IgA and IgM Contain J Chain and Assemble
as Polymers—Human blood is known to contain mostly mIgA,
with a minor proportion of pIgA (12–15% range) (23). We first
analyzed whether plasma-derived, polyclonal pIgA contained J
chain, as this is a prerequisite for subsequent assembly with SC
(24). Immunoblot analysis of various plasma IgA-enriched
preparations confirmed that in addition to the major mIgA
fraction, an SDS-resistant polymer-fraction was present that
carried all three expected polypeptides, i.e. the � and � chains,
and the J chain (Fig. 1A). Interestingly, the immunoreactivity
toward the J chain depended on the starting material used to
obtain the IgA-enriched fractions, suggesting varying content
of pIgA in the different source materials. Incorporation of J
chain in monomeric forms resulting from partly covalently
assembled pIgA was also observed (20). Most of the pIgA in
all three preparations contained covalently bound � chain.
As expected, plasma IgM Abs contained J chain, a feature of
the pentameric molecular form, as well as the � and � chains
(Fig. 1B).
Plasma-derived IgA and IgM Both Bind to Immobilized hSC

in Vitro—We have demonstrated previously that dot blot reas-
sociation assay is an appropriate assay to test interaction of
polymeric Abs with SC, even when relatively crude material is
used (17). The multistep assay (Fig. 2A) was thus used to assess
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the ability of purified hSCrec to bindwith pIgA and IgMpresent
in IgA- and IgM-enriched preparations, respectively. Immobi-
lization of hSCrec on membranes followed by overlay incuba-
tion with preparations enriched in plasma IgA led to specific
detection of IgA-positive signals only when all partners were
incubated sequentially (Fig. 2B). The samewas true when prep-
arations enriched in plasma IgM were added in the overlay
phase, yielding positive signals only in the presence of all com-
ponents (Fig. 2C). In control experiments with human plasma-
derived IgG, no signal was obtained, even at a 10-fold molar
excess of the IgG or SC (data not shown). Binding to immobi-
lized hSCcol yielded the same results, confirming the validity of
hSCrec as a surrogate for the natural protein (data not shown)
(25). Specific interaction between hSCrec or hSCcol and IgA-
and IgM-enriched preparations prompted us to separate pIgA
from mIgA and to purify IgM to more precisely analyze the
association.
Fractionation of pIgA and mIgA Present in Plasma-derived

Preparations—Size exclusion chromatography is a robust tech-
nique to separate pIgA from mIgA recovered from hybridoma
cell supernatants (15) and from cell clones engineered to pro-
duce IgA (26). Two different resins and column sizes were used
in the present study. Superdex 200with a fractionation range of
10–600 kDa yielded several fractions containing J chain-reac-
tive material indicative of the presence of pIgA (Fig. 3A). �
chain-positive bands migrating at the position of mIgA
co-eluted with pIgA, due to either insufficient resolution or the
presence of non-covalently associated pIgAmolecules that dis-

sociate during non-reducing SDS-PAGE. To resolve this issue,
Sephacryl S-300 HR (fractionation range, 10–1,500 kDa) was
tested. J chain-positive pIgA was recovered in fractions in the
first elution peak, whereas mIgA lacking J chain (data not
shown) represented the major species in the second peak (Fig.
3B). Again, some apparent mIgA co-eluted with the pIgA frac-
tion, likely representing non-covalently associated mIgAmole-
cules that dissociated during SDS-PAGE. In support of this
hypothesis, the non-covalent nature of human pIgA1 has been
reported after analysis by SDS-PAGE under reducing and non-
reducing conditions (27). In sizing chromatography run under
native conditions, we found that the mixture of pIgA1 and
pIgA2 naturally present in the plasma-derived preparations
co-eluted.
Purified pIgA and IgM Assemble in Covalent Complexes with

SC—In mucosal secretions and following in vitro association
between monoclonal pIgA and hSC or mSC, SIgA exists as a
covalent complex involving single disulfide bridges that can be
identified by SDS-PAGE under non-reducing conditions.
Equimolar amounts of purified pIgA and either hSCrec or
hSCcol were allowed to associate for 30 min. They were then
run on a denaturing polyacrylamide gel, transferred onto PVDF
membranes, and immunodetected with anti-hSC antiserum.
As for SIgA isolated from colostrum (13) and reconstituted
recombinant SIgA Abs (15), we found partial covalency to
occur, as indicated by the detection of SC signals at the position
of migration of pIgA (Fig. 4A). Incubation of mIgA or IgG with
hSCdid not result in a covalent association, as therewas no shift

FIGURE 1. Biochemical characterization of plasma IgA- and IgM-enriched preparations. Immunoblot analysis under non-reducing conditions of IgA (A;
lanes 1–3) and IgM (B; lanes 4 – 6) recovered from various IgA- and IgM-enriched preparations obtained from plasma (1 and 4), paste (2 and 5), or column strip
(3 and 6) as described under “Experimental Procedures.” The specificity of the antisera used is indicated below the respective panels. A, 200 ng of IgA was used
for detection with anti-� chain antiserum, 500 ng for detection with anti-J chain antiserum, and 400 ng with anti-� chain antiserum. B, 250 ng of IgM was loaded
per lane, and signals were obtained using detection with anti-� chain antiserum, and anti-J chain and � chain antisera as for IgA. The position of migration of
molecular weight markers is indicated alongside the panels.
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in position of hSC on the blot (data not shown). The same
analysis of purified IgM associated with hSC resulted in the
formation of covalent SIgM (Fig. 4A). This confirmed that pen-
tameric IgM containing J chain is the major molecular form of
the Ab in plasma (28). Of note, the immunoreactivity of bound
hSC in SIgA is known to be strongly reduced, and thus, the true
percentage of covalent binding is much higher than it appears
by hSC-specific immunodetection (15). The involvement of
disulfide bridges in covalent association between hSC and
either IgA or IgM was confirmed by treatment with DTT,
resulting in the detection of free hSC only (Fig. 4A).
Stoichiometry of Association between hSC and Plasma-de-

rived pIgA or IgM—One can argue that the partial covalency
observed upon association of the IgA/IgM and hSC is due to a
portion of binding-incompetent, possibly denatured, mole-
cules. To exclude this hypothesis, reconstituted SIgA prepared
from a 1:1 and 1:2 ratio of Ab to hSC was separated on a sizing
column (fractionation range, 10–2,000 kDa) using fast-protein
liquid chromatography (Fig. 4B). Determination by ELISA of
the IgA content of the fraction yielded identical values for 1:1
and 1:2 associated preparations, indicating an equimolar stoi-
chiometry of association (Fig. 4C). Use of a 2-fold molar excess
of hSC resulted in the additional appearance of late-eluting free
hSC (Fig. 4B, inset), further indicating a specific, saturable level
of interaction. Both recombinant and colostrum-purified hSC
exhibit the samebinding properties (Fig. 4C) (19). Thus, incom-
plete covalent association in SIgA most likely reflects intrinsic
properties of the proteins and not major differences between
the natural hSCcol and recombinant hSC. This also demon-
strates that plasma-derived pIgA display all of the necessary
structural features to serve as a ligand to hSC. The same set of

FIGURE 2. Dot blot association assay of plasma-derived IgA and IgM
with hSCrec. A, schematic representation of dot blot reassociation assay.
The successive incubation steps are depicted. B and C, binding of the
various preparations enriched in plasma-derived IgA (lanes 4 – 6; B) and
IgM (lanes 10 –12; C) to immobilized hSCrec. Lanes 4 and 10, Ig from
plasma; lanes 5 and 11, Ig from paste; lanes 6 and 12, Ig from column strip,
as described under “Experimental Procedures.” Control conditions (lanes
1–3 and 7–9) include lack of hSCrec ligand, lack of IgA or IgM, or lack of
detection antiserum.

FIGURE 3. Fractionation of polymeric versus monomeric plasma IgA. A, elution profile of the 500-ml Superdex 200 column run in PBS. Immunoblot analysis
of a selection of fractions confirmed the presence of J chain-containing pIgA (purified from column strip) in the first elution peak, whereas mIgA was eluted
later. B, elution profile of the tandem (2 � 500-ml) Sephacryl S-300 HR columns run in PBS. Immunoblot analysis performed as for A demonstrates a better
resolution of (J chain-containing) polymeric and mIgA. Pooled fractions of pIgA were used for in vitro association experiments with hSC.
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experiments was carried out with reconstituted SIgM, yielding
identical association results (Fig. 4, A and D).
Reduced Sensitivity of SIgA and SIgM to Proteases Indicates

Correct Assembly as Secretory Abs—To test whether associa-
tion of plasmapIgAor IgMwith hSCrecwould confer increased
stability for potential mucosal application, the susceptibility of
pIgA, SIgA, IgM, and SIgM to digestion with intestinal washes
was examined as described previously (19). Changes in the
migration profile of the � and � heavy chains reflecting degra-
dation were assessed by immunoblot after separation by SDS-
PAGE under reducing conditions. Initially, conversion of the
62-kDa� chain into a bandmigrating at 40 kDawas observed at
2 h (Fig. 5A). This intermediate degradation product disap-
peared at 4 h, an effect due to the stringent conditions encoun-
tered in intestinal washes (19). At 6 h,most of the� chain in IgA
was degraded, whereas the SIgA material displayed preserved
integrity. In contrast to IgA, the SIgA counterpart survived
overnight digestion (16-h time point, Fig. 5A). Generally, IgM
appeared to be less sensitive to the action of intestinal washes
(Fig. 5B). Nevertheless, as revealed in Fig. 5B, appearance of
degradedmu chain fragments occurredmore rapidly andmore
extensively for IgM comparedwith SIgM. To confirm this, den-

sitometric analyses of the immunoblot films were performed.
The sum of signals resulting from the degraded� chain divided
by the sum of signals corresponding to all immunoreactive spe-
cies in the individual lane (�100) yielded the percentage
reported in Fig. 5C. We conclude that although the phenome-
non is not as marked as for SIgA, the sensitivity of SIgM to
intestinal washes is reduced in comparison with IgM.
Human Plasma-derived IgA Protects Polarized Caco-2 Cell

Monolayers from Damage by S. flexneri—To study the protec-
tive potential of human plasma-derived IgA, an in vitro model
of reconstituted intestinal epithelial cell monolayers infected
with a virulent strain of S. flexneri was used. The advantage of
this model is that it reflects epithelial cell infection resulting
from exposure to bacteria, viruses, and bacterial toxins and has
proven very valuable to examine the neutralizing properties of
Abs of various isotypes and in particular IgA (26, 29–31). The
extent towhich plasma-derived polyclonalmIgA, pIgA, or SIgA
confer protection of epithelial cells was evaluated in compari-
son with an anti-Shigella protective mAb (IgAC5). TER values,
LSCM observations, and quantification of infected areas were
independently assessed to determine the integrity of Caco-2
cell monolayers. TER reflects the increased passage of ions and

FIGURE 4. Analysis of in vitro reconstituted SIgA and SIgM. A, covalent association of purified pIgA and IgM (purified from column strip) with hSCrec and
hSCcol. The formation of covalent complexes was detected by immunoblot using anti-hSC antiserum. After treatment of covalent complexes with the reducing
agent DTT (�DTT) only the free hSC was detected on the immunoblot. The position of migration of molecular weight markers is indicated alongside the panels.
B, elution profiles after molecular sieve chromatography in PBS solution of reconstituted SIgA in 1:1 (dotted line) and 1:2 (black line) ratio of pIgA to hSC; the inset
shows immunodetection of hSC in a mixture at a 1:2 ratio, demonstrating the presence of co-eluting covalent and noncovalent hSC with pIgA. The excess of
free hSC is eluted as an independent peak in late fractions. C, quantification by ELISA of pIgA, hSCrec and hSCcol (expressed in �g) in pooled fractions
corresponding to peaks containing reconstituted SIgA or excess of free hSC. �, below level of detection.
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indirectly damage to the epithelial monolayer. A similar weak
reduction in TERwasmeasuredwhen either the IgAC5mAb or
a 10- to 12.5-fold higher concentration of plasma-derived pIgA
or SIgA were examined, whereas bacteria alone or in combina-
tion with mIgA led to a marked drop within 13 h (Fig. 6A).
Additionally, LSCM observations were performed 13 h post-
infection. S. flexneri alone induced extensive damage reflected
by widespread areas of the Transwell membrane devoid of cells
(Fig. 6B, representative pattern).Maintenance of the cellmono-
layer integrity with human plasma pIgA and SIgA was very
close to that obtainedwith SIgAC5,with occasional holes form-
ing (Fig. 6B, representative pattern). Strikingly, mIgA does not
offer the same degree of protection (Fig. 6B). In a more quanti-
tative approach, the sum of infected areas of all sizes was deter-
mined for each individual whole filter (n � 4) at 13 h and is
expressed as the surface (in mm2) devoid of organized Caco-2
cell monolayers (Fig. 6C).

DISCUSSION

For IgA Abs to be effective upon mucosal application, the
association with SC is essential (9). In the airways and the gut,
SC-mediated anchoring to mucosal epithelial cells ensures
optimal protective function (12), whereas in the intestine, SC
confers improved stability to the IgA molecule (19). Purifica-
tion of SIgA from a natural source, such asmilk, intestinal fluid,
or saliva is possible at small scale, but these materials are not
appropriate sources for IgA/IgM-production on a larger scale.
The possibility to associate plasma-derived pIgA Abs with
hSCrec as described in this work indicates that it might be fea-

sible to develop a plasma IgA-based product for mucosal
application.
The detection of low levels of IgA monomers by SDS-

PAGE in the plasma-derived pIgA fraction after separation
by size exclusion chromatography suggests that a portion of
pIgA is assembled as a non-covalent species sensitive to the
presence of the detergent. This material is devoid of J chain
and has been reported in analyses of hybridoma cell culture
supernatants (15), in samples of bile and feces (16), in CHO
cell line clones expressing pIgA (20), and even in human
colostrum (13).
One can argue that due to different environments of biosyn-

thesis for mucosal and serum IgA, the structure of the poly-
meric formmay be different, resulting in a different capacity to
recognize pIgR/SC in vivo and in vitro. However, the fact that
hSCrec and “natural” hSCcol both effectively associate with
plasma pIgA indicates that existence of intrinsic conforma-
tional plasticity in interacting partners is adequate to promote
in vitro reconstitution of SIgA. This is in keepingwith the deliv-
ery of pIgA in the mouse circulation, which allows the recovery
of SIgA in secretions (32). We have established that covalent,
disulfide bridge-mediated binding between plasma pIgA and
hSC occurs, further demonstrating the efficiency of the in vitro
assembly process. Similar results were observed for SIgA recov-
ered from human colostrum (13, 33) and may be due to the
reduced capacity of SC in SIgA2 to form covalent complexes, as
comparedwith SIgA1 (27). Alternatively, in rodent species with
a single IgA subtype, partial covalency is observed systemati-

FIGURE 5. Pattern of digestion of pIgA, SIgA, IgM, and SIgM incubated with intestinal washes. Immunoblot analysis under reducing conditions of various
preparations of purified IgA (purified from paste (P) or column strip (CS) as indicated in the figure; A) and IgM (purified from column strip; B) left as such or
reconstituted into secretory Ab exposed to intestinal washes for increasing periods of time. Disappearance of � chain and degradation of � chain reflects the
action of proteases in the intestinal washes. The nature of digested proteins and the time course of incubation are indicated above the lanes. The position of
migration of molecular weight markers is indicated alongside the panels. C, percentage of degraded � chain in B analyzed by densitometry of the immunoblot.
Calculated values are indicated on the top of columns.
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cally (34) and may reflect intrinsic exchange between disulfide
bonds in the � chain and domain 5 in SC (19).
In secretions, only pentameric, J chain-containing IgM is

released as SIgM. It is therefore highly likely that thismolecular
form in blood is responsible for the interaction we have
detected with hSC. Our data are the first to show that partially
covalent, disulfide bridge-mediated interaction indeed takes
place between IgMand hSC. Reconstitution as SIgMallowed us
to address the positive impact SC has on the stability of SIgM
when exposed to proteases. Hence, the “sacrificial” transport of
IgM by pIgR may be similarly beneficial to the half-life of the
Ab, as already known for SIgA. In conclusion, although it has
never been formally demonstrated that pIgR and SC bind iden-
tically to pIgA/IgM (35), and despite the presence of mIgA in
the plasma preparation, in vitro association with SCrec and
SCcol is able to take place with both IgA and IgM.
The sum of these data indicates that essential biochemical

properties, including J chain-dependent binding specificity to

SC (recombinant as well as colostrum-derived), increased sta-
bility in protease-rich intestinal washes, and covalent associa-
tion occur after association between SCrec/SCcol and plasma-
derived IgA/IgM. In addition, the remarkable protective
potential against S. flexneriwith humanplasma-derived reasso-
ciated SIgA but also pIgA using an in vitro model of intestinal
Caco-2 cell monolayers shows that the polyreactive Abs are
functional. Remarkably, only a 10- to 12.5-fold higher concen-
tration was required to reach similar degrees of protection as
the specific SIgAC5 mAb via a mechanism of action relying on
Ab-mediated bacterial aggregation. Both pIgA and reconsti-
tuted SIgA exhibit a similar neutralizing capacity at concentra-
tion (0.61�M) close to thatmeasured in human gut lavage fluids
(36), thus opening up a therapeutic possibility for passive
immunization with the optimal molecular form, i.e. reconsti-
tuted SIgA. As plasma-derived Abs are intrinsically polyreac-
tive, future work will evaluate their protective capabilities
against a large panel of pathogens infecting mucosae, using

FIGURE 6. Integrity of Caco-2 cell monolayers infected with Shigella flexneri alone or in combination with various IgA preparations. A, TER of intestinal
Caco-2 cell monolayers exposed to 2 � 107 S. flexneri M90T alone or in combination with purified column strip-derived pIgA, SIgA, or mIgA, determined at four
time-points. The TER values for each condition and each time point were normalized with the TER values at the beginning of the experiment and are expressed
in percentage. Protection offered by SIgAC5 specific for S. flexneri LPS and non-infected Caco-2 cell monolayers (no bacteria) serve as controls. The panel is
representative of one individual triplicate experiment performed three times. Significant statistical differences calculated by comparison with the condition
S. flexneri alone (Sf) are indicated above the columns: **, p � 0.01; ***, p � 0.001. B, LSCM three-dimensional reconstructed images (snapshot) of Caco-2 cell
monolayers exposed to 2 � 107 S. flexneri M90T alone or in combination with human plasma-derived pIgA, SIgA, or mIgA for 13 h. Tight junctions stabilizing
the monolayer are visualized with ZO-1 labeling (red). Caco-2 cells are visualized via nuclear staining with DAPI (blue) and bacteria constitutively expressing GFP
stain (green). Control monolayers are the non-infected Caco-2 cell monolayers (no bacteria). Scale bars, 50 �m. C, for each condition, the sum of infected areas
was determined from LSCM pictures of whole filters using ImageJ software. B and C are representative of two independent experiments performed in
duplicates.
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both in vitro models (21, 37, 38) and more demanding in vivo
models of infection (39–41).
Plasma is an appropriate source of rare proteins with a tre-

mendous field of application in human medicine. Clotting fac-
tors, albumin, IgGAbs are already used compounds with estab-
lished health benefits. In patients with primary or secondary
immunodeficiency, replacement therapy with IgG effectively
prevents severe systemic infection. However, despite appropri-
ate IgG supplementation, frequently occurring chronic infec-
tion/inflammation of the respiratory and gastrointestinal
mucosae has been linked to low serum IgA levels (42–44). The
inherent structural features of SIgA would make it a logical
agent to fill this therapeutic gap in combination with standard
therapy (e.g. antibiotics, anti-virals, and IgG). Importantly, the
combination of two crucial functional properties, namely anti-
gen recognition via Fab (similar to IgG), and anti-inflammatory
effector function via Fc is an additional argument to consider
IgA in prevention/treatment of mucosal infection and particu-
larly of inflammation associated with chronic infection (45–
47). Starting from 1 liter of plasma, current purification proce-
dures allow to recover 40–50 mg of J chain-containing pIgA
and up to 100 mg of IgM. Production from 10,000 liters as this
is classically performed will yield Abs in sufficient amounts to
consider clinical applications. In conclusion, passive topical
administration of polyreactive SIgA as well as SIgMmay repre-
sent a valuable therapeutic approach to control infection before
the immune system of the host can take over.
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Part  II:  Reconstituted  human  polyspecific  plasma‐derived  secretory‐

like IgM and IgA regulate homeostasis of epithelial cells infected with 

an enteropathogen 

 

Overview	of	this	part	

We previously established that human plasma can be used as a source of polyreactive pIgA and IgM to 

generate secretory-like IgA and IgM Abs. In addition, we demonstrated that pIgA and secretory-like IgA 

delayed damage to intestinal epithelial polarized Caco-2 cell monolayers induced by a pathogenic strain 

of S. flexneri. Using the same experimental setting, we further dissected the mechanisms of protection of 

human plasma IgA and secretory-like IgA and examined the functionality of human plasma IgM and 

secretory-like IgM. We found that human plasma IgM and secretory-like IgM were superior to plasma 

pIgA and secretory-like IgA in maintaining transepithelial electrical resistance (TER) and in preventing 

damage of cell monolayers induced by S. flexneri infection. We demonstrated that all polyreactive Abs 

were able to interact with S. flexneri but bacterial aggregation was only observed with pIgA and 

secretory-like IgA, and further amplified with IgM and secretory-like IgM. We observed that all Ab 

isotypes and molecular forms tested reduced bacterial internalization into Caco-2 cell monolayers. 

However, only polymeric and secretory-like Abs diminished secretion of pro-inflammatory mediators by 

cell monolayers. Moreover, we demonstrated that secretory-like IgA and IgM led to a diminution in 

secretion of S. flexneri “virulence” factors IpaB and IpaC. The sum of these data suggests a dual 

mechanism of action of these Abs combining a direct action on virulence of bacteria and protection of the 

target epithelium. 
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Experimental	procedures,	results,	discussion	

The results obtained in this part are compiled in the manuscript to be submitted entitled:  

Reconstituted human polyspecific plasma-derived secretory-like IgM and IgA regulate homeostasis 

of epithelial cells infected with an enteropathogen. Longet S (see author contribution), Vonarburg C, 

Loetscher M, Miescher SM, Zuercher AW, Corthésy B. 

 
Author contribution 

I have performed all experiments and analyses related to the study. I have substantially contributed to 

the writing of the paper under the supervision of Blaise CORTHESY, thesis director. 
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Abstract  

Intravenous administration of polyclonal and monoclonal antibodies has proven a 

clinically valid approach in the treatment or at least relief, of many acute and chronic 

pathologies including infection, immunodeficiency, and a broad range of autoimmune 

conditions. IgG immunoglobulins isolated from plasma or from recombinant origin finds 

the largest application, with occasional use of IgM in therapeutic protocols. We have 

lately established that secretory-like IgA and IgM can be produced upon association of 

plasma-derived polymeric IgA and IgM with recombinant secretory component (Longet 

et al., 2013). As a first step toward future mucosal administration, we sought to unravel 

the mechanisms whereby these secretory Igs achieve their function of protection toward 

epithelial cells at the interface between the environment and the inside of the body. By 

using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model 

enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many 

protection function including dose-dependent recognition of the antigen via formation of 

aggregated immune complexes, maintenance of the epithelial cell integrity, reduction of 

bacterial infectivity, and inhibition of pro-inflammatory mediators by epithelial cell. In this 

in vitro model devoid of other cellular or molecular interfering partners, bacterial 

neutralization by IgM and secretory IgM resulted in better protection than secretory IgA. 

The sum of these data provides evidence that mucosal passive delivery of antibody 

preparations will have to rely on both secretory-like IgA and IgM, which together play a 

crucial role in preserving multi-layers of epithelial cell integrity. 
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Introduction 

Mucosal surfaces constantly exposed to a large variety of pathogens are protected by 

multi-layer defense mechanisms. Among these, specific humoral mucosal immunity is 

dominated by secretory antibodies (Abs): secretory immunoglobulin A (SIgA) and 

secretory immunoglobulin M (SIgM). SIgM results from the transport across the 

epithelium of J chain-containing pentameric IgM by the polymeric immunoglobulin 

receptor and exerts a role of neutralizing antibody (1) (2). As the most conserved Ab 

among vertebrate species, the importance of IgM has been appreciated for several 

decades. It combines the properties of existing at the beginning of the immune 

development (3) and is known to be crucial in the primary mucosal immune response  

(4). Moreover, IgM is able to compensate for the lack of IgA in IgA-deficient individuals 

(5). 

In vitro and in vivo studies have established the potential of specific, antigen-induced 

IgM in systemic neutralization of viruses (2) (6) (7), bacteria (8) (9) (10), fungi (11) and 

parasites (12) (13) (14). Important advances have especially come from the use of IgM-

deficient mice (15), which exhibited high sensitivity to bacterial and viral infections (16), 

a condition that could be partly controlled upon administration of normal mouse immune 

serum (6). 

Immunotherapy based on the passive administration of human plasma-derived IgG has 

been used for three decades in clinical applications with improvement of a large panel 

of disease conditions like immunodeficiencies, infections or autoimmune diseases (17) 

(18). Pre-clinical and clinical studies have underscored the efficacy against various 

infectious agents of polyclonal IgM-enriched preparations administered by the systemic 
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route (19) (20) (21) (22) (23). Similar to SIgA, SIgM can be seen as a valid candidate 

immunoglobulin for mucosal application, given its ability to bind antigens with strong 

avidity, its potential to ensure long-term protection (24), as well as its resistance to 

proteases (25). We have recently demonstrated that human plasma can serve as a 

source of polyreactive, polymeric IgA (pIgA) and IgM to generate secretory-like IgA and 

IgM Abs, the natural molecular form found in secretions. We found that plasma-derived 

purified pIgA and IgM can associate recombinant secretory component (SC) with a 1:1 

stoichiometry and this association delayed degradation of pIgA or IgM toward intestinal 

washes containing proteases. In addition to these essential biochemical features, we 

showed that pIgA and secretory-like IgA delayed damages to epithelial polarized Caco-

2 cell monolayers induced by a virulent strain of enteropathogenic Shigella flexneri (S. 

flexneri) (25). However, how the plasma-derived Ab operates to block the bacterium and 

contributes to epithelial homeostasis was not addressed in this study. 

To provide answers to these open questions, we sought to further dissect the 

mechanisms of protection conferred by plasma-derived pIgA and secretory-like IgA, and 

in addition to evaluate the functionality of human plasma IgM and secretory-like IgM in 

the same experimental setting. We found a superior ability of IgM or secretory-like IgM 

compared to pIgA or secretory-like IgA to maintain transepithelial electrical resistance 

(TER) and to prevent damage of cell monolayers resulting from S. flexneri infection. 

Bacterial aggregates formed with both plasma pIgA and secretory-like IgA, a 

phenomenon amplified upon association with IgM and secretory-like IgM, consistent 

with the capacity of all polyreactive Ab molecules to recognize S. flexneri. Diminished 

intracellular bacterial load varies as a function of the Ab isotype, and resulted in 
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differential production of pro-inflammatory mediators by the Caco-2 cell monolayers. In 

addition, incubation of secretory-like IgA and IgM resulted in reduced secretion of S. 

flexneri virulence factors IpaB and IpaC, overall suggesting a dual mode of action of the 

Abs combining disabling of the bacteria and shielding of the target epithelium. 
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Materials and methods 

Preparation of human plasma IgA-, IgM- and IgG-enriched fractions - IgA and IgM 

were purified from process intermediates of immunoglobulins manufactured from human 

plasma (26) by affinity chromatography using CaptureSelect Human IgA and 

CaptureSelect Human IgM resins (Bioaffinity Company BAC). Starting materials used 

was a chromatography side fraction consisting of the strip fraction from an ion-exchange 

chromatography column used in the large scale manufacture of IgG from human 

plasma. The different starting materials were diluted in PBS to a target protein (IgA or 

IgM) concentration of approximately 1 mg/ml and then loaded onto a CaptureSelect 

Human IgA or IgM column pre-equilibrated with PBS, without exceeding the IgA- or IgM-

binding capacity of the column. After loading the column was washed with PBS, and IgA 

or IgM was eluted with glycine buffer at pH 3.0. The eluate was adjusted with 0.5 M 

Tris-base (pH 8.0) to pH 4.5 and concentrated up to 16 mg/ml protein. Human plasma 

IgG preparations (IgPro10, Privigen) were prepared as described (26). 

Separation of plasma-derived pIgA and mIgA and purification of plasma-derived IgM 

- IgA-enriched preparations containing a mixture of monomeric (mIgA) and pIgA were 

diluted in PBS to a final volume of 10 ml suitable for injection onto the ÄKTAprime 

chromatography system (GE Healthcare). The flow rate was set at 1 ml/min with PBS 

as mobile phase for all runs. Separation of the two molecular forms of IgA was 

performed on two serially coupled 1-meter long columns filled with Sephacryl S-300 HR 

beads (27). The IgA content of 3.5-ml fractions was verified by immunodetection using 

polyclonal rabbit anti-human IgA/HRP (1/3000, Dako) and pools of mIgA and pIgA were 

obtained. IgM-enriched preparations run under identical conditions yielded a single fully-
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excluded peak. The IgM content of 3.5-ml fractions was verified by immunodetection 

using polyclonal rabbit anti-human IgM/HRP (1/3000, Dako). Concentration was 

performed using the Labscale system (Millipore) connected to a 100-kDa cut-off 

cartridge, and stored at 4 °C until further use. 

In vitro association of polymeric Ig and SC - Recombinant hSC (hSCrec) was 

produced from a CHO clone stably transfected with an expression cassette coding for 

the protein (28). Plasma-derived SIgA and SIgM molecules were obtained by combining 

in vitro 10 g of purified pIgA or IgM molecules with 2.5 g or 1.5 g of hSCrec, 

respectively. Mouse SIgAC5 specific for S. flexneri LPS serotype 5a was obtained by 

combining in vitro 10 g of purified pIgAC5 molecules with 2.5 g of mSC. Association 

and characterization of SIgA and SIgM Abs were performed in PBS for 30 min at room 

temperature (RT) as previously described (25). 

Caco-2 cell culture and growth as polarized monolayer - The human colonic 

adenocarcinoma epithelial Caco-2 cells (American Type Tissue Collection) were grown 

in complete DMEM consisting of DMEM-Glutamax (Invitrogen) supplemented with 10% 

FCS (Sigma), 10 mM HEPES (Invitrogen), 1% non essential amino acids (Invitrogen), 

1% Sodium Pyruvate (Invitrogen), 1% L-glutamine (Sigma), 1% penicillin/streptomycin 

(Sigma) and 0.1% transferrin (Invitrogen), and used between passages 32 and 40. Cells 

cultivated up to 80% confluency were seeded on polyester Snapwell filters (diameter, 12 

mm; pore size, 0.4 µm; Corning Costar) at a density of 0.8 x 105 cells/cm2. At week 3, 

the Caco-2 cell monolayer integrity was checked by measuring the TER using the 

Millicell-ERS device (Millipore) (29). TER values of well differentiated monolayers were 

in the range of 400-500 ohms per cm2.  
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Bacterial strain and culture conditions - Bacteria used were the virulent strain of 

serotype 5a LPS S. flexneri M90T constitutively expressing green fluorescent protein 

(GFP) (30). Bacteria from frozen stock were grown in Luria-Bertani (LB) agar plate 

containing 0.1‰ Congo Red (Applichem) and 50 µg/ml ampicillin (Sigma-Aldrich), for 30 

h at 37 °C. Three red colonies were amplified in 10 ml LB liquid broth supplemented 

with 50 µg/ml ampicillin for 16 h at 37 °C and 200 rpm. The culture was centrifuged at 

2’000 x g for 5 min, resuspended in PBS, diluted 1/10 in 10 ml LB liquid/ampicillin and 

then cultured for 2 h at 37 °C with shaking (200 rpm). Finally, bacteria in the exponential 

phase were washed twice in PBS by centrifugation at 2’000 x g for 5 min and 

resuspended in PBS. Assessment of colony forming unit (cfu)/ml was carried out by 

measurement of the optical density (OD) at 600 nm with the knowledge that 1 OD unit 

at 600 nm corresponds to 5 x 108 cfu/ml. 

Incubation of bacteria with different Ab preparations - 2 x 107 bacteria were mixed 

with 0.049 µM of SIgAC5 specific for S. flexneri LPS serotype 5a or with human plasma-

derived pIgA (0.61 µM), reconstituted SIgA (0.61 µM), mIgA (0.61 µM), IgM (0.61 µM), 

reconstituted SIgM (0.61 µM) or IgG (0.61 µM). All mixtures were prepared in a final 

volume of 500 µl of plain DMEM (P-DMEM: DMEM complemented with 10 mM HEPES, 

1% non essential amino acids, 1% sodium pyruvate, 1% L-glutamine and 0.1% 

transferrin). The mixtures were incubated for 1 h at RT under gentle agitation. 

Protection assay - One h before the use of polarized Caco-2 cell monolayers, C-

DMEM was replaced by P-DMEM in both the apical and basolateral compartments. 

Polarized Caco-2 cell monolayers were infected apically with S. flexneri serotype 5a 

alone or in combination with the Ab preparations. Exposure of Caco-2 cells to antigens 
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or the various immune complexes was performed overnight (O/N) and pathogen-

induced damages were tracked by measuring TER decrease timewise. 

Counting of associated bacteria to cell monolayers – To numerate internalized 

bacteria, cells on Snapwell filters were washed in PBS, and incubated for 30 min with 

50 µg/ml gentamicin. Following incubation in 500 µl of cold lysis buffer [10 mM Tris-HCl 

(pH 7), 0.2 % Nonidet P-40, 50 mM NaCl, 2 mM EDTA (pH 8)] for 5 min on ice and 

lysed by up-and-down pipetting. S. flexneri present in cell lysates were numerated from 

serial dilutions seeded onto LB-agar plates. 

Laser-scanning confocal microscopy (LSCM) observation of Caco-2 cell monolayers - 

To examine the integrity of Caco-2 cell monolayers, Snapwells were washed twice with 

PBS, prior to fixation O/N with 5 ml of 4% paraformaldehyde at 4 °C. After washing, 

filters were permeabilized and non-specific binding sites were blocked using PBS 

containing 5% FCS and 0.2% Triton X-100 for 30 min at RT. All Abs were diluted in PBS 

containing 0.05% of Tween 20 (PBS-T). Filters were incubated with phalloidin 

associated to Fluoprobes 547H (1/200, Interchim) for 90 min at RT and washed in PBS. 

To visualize cells, filters were finally incubated with 200 ng/ml of 4',6'-diamidino-2-

phenylindole (DAPI; Invitrogen) in PBS for 30 min. Filters were cut out of their holders, 

and mounted in Vectashield solution (Vector Laboratories) for observation using Zeiss 

LSM 710 Meta confocal microscope (Carl Zeiss, Germany) equipped with a 40x 

objective. Snapshots of x-plan slices were performed with the Zeiss ZEN 2009 light 

software. 

Quantification of the infected areas and the number of infection foci - Observation of 

whole filters was carried out with the 10x objective using Zeiss ZEN 2009 light software. 
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The sum of infected areas and the number of infection foci were determined using the 

particle analysis tool of Image J software applied onto the channel associated with the 

bacteria. 

LSCM observations of immune complexes - The formation of immune complexes 

was verified after incubation with biotinylated mouse anti-human IgA1/IgA2 (1/10, BD) 

for 30 min at RT under gentle agitation, followed by cyanine 5-conjugated Streptavidin 

(1/400, GE HealthCare) for 30 min at RT under gentle agitation. Three washes with 

PBS were performed between each step and all Abs were diluted in PBS/5% FCS. 

Labeled immune complexes as such were laid onto glass slides (Thermo Scientific), 

mounted and immediately visualized using a Zeiss LSM 710 Meta confocal microscope 

(Carl Zeiss, Germany) equipped with a 40x objectives. Images were processed with the 

Zeiss ZEN 2009 light software.  

Enzyme-linked immunosorbent assay (ELISA) - Human CXCL8, TNF-α, and CCL3 in 

the basolateral compartment of polarized Caco-2 cell monolayers infected by S. flexneri 

alone or combined to Abs were measured by ELISA using commercial kits (BD 

Biosciences and R&D Systems, respectively). To examine the binding capacity of 

human plasma IgA/IgM to bacteria, 96-well plates (MaxiSorp, Nunc) were coated with 4 

x 107 cfu/well of S. flexneri serotype 5a in PBS O/N at 4°C. After three washes in PBS-

T, wells were blocked with PBS-T containing 1% bovine serum albumin (BSA, Fluka) for 

1 h at RT. Serial dilutions of human plasma IgA, SIgA, IgM, SIgM, IgG or mouse 

SIgAC5 (from 0.61 µM) were incubated in wells for 2 h at RT, washed with PBS-T, and 

detection was performed by incubation with isotype-specific Abs: mouse anti-human 

IgA1/IgA2 biotinylated IgG (BD, 1/1000), goat anti-human mu chain biotinylated IgG 
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(KPL, 1/1’000), goat anti-human gamma chain biotinylated IgG (Sigma, 1/1’000) or goat 

anti-mouse alpha chain biotinylated IgG (KPL, 1/1’000 dilution) for 2 h at RT followed by 

Extravidin-HRP (Sigma, 1/5’000 dilution) for 1 h at RT. All samples and Ab dilutions 

were performed in PBS-T/0.1% BSA. Finally, detection was performed with 

citrate/phosphate solution (44.4 mM citric acid, 103 nM Na2HPO4, pH 5.0) containing 1 

mg/ml O-phenylenediamine (Sigma) and 0.01% H2O2. The reactions were stopped with 

1 M H2SO4. Absorbance was read at 490 nm with 630 nm as reference. 

Measurement of virulence factors IpaB and IpaC secreted by Shigella flexneri - To 

examine the impact of Abs on the expression of virulence factors, the immune 

complexes bacteria-Abs were formed as previously described, and left for another h at 

RT. To induce T3SS-mediated secretion of invasion plasmid antigens (Ipas), bacteria 

and immune complexes were exposed to 6 µg/ml Congo red for 10 min at 37 °C (31) 

(32). The supernatants were recovered by centrifugation and kept at -20 °C prior to use. 

The presence of secreted IpaB and IpaC in the supernatant was analyzed by 

immunodetection using 1/1’000 dilutions of specific mouse monoclonal Abs (kindly 

provided by Dr. Edwin Oaks, WRAIR, Silver Spring, MD), followed by HRP-conjugated 

rabbit anti-mouse IgG (Sigma, 1/3’000). 

Statistical analysis - Results were expressed as mean ± standard error of the mean. 

Student’s t-test analysis was performed using GraphPad 6 Prism software. Differences 

were considered as significant when p values < 0.05. 
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Results 

Human plasma pIgA and SIgA Abs induce bacterial agglutination leading to a decrease 

of the bacterial load in Caco-2 cell monolayers and of cell-produced pro-inflammatory 

mediators 

We previously demonstrated that human plasma-derived pIgA and reconstituted SIgA, 

but not plasma mIgA, allowed a significant maintenance of Caco-2 cell intestinal 

epithelial monolayer integrity after O/N infection with S. flexneri, as reflected by 1) weak 

reduction of TER; 2) preservation of the tight junction network; 3) limited detachment of 

filter-bound Caco-2 cells (25). However, the underlying mechanisms explaining 

protection were not tackled. To better define the mode of action of human plasma pIgA 

and SIgA, we first got interested in the nature of the interaction between the bacteria 

and the Abs. The binding capacity of the various molecular forms of plasma IgA to S. 

flexneri was compared by ELISA. All molecular forms of IgA demonstrated a 

concentration-dependent ability to recognize the bacteria. At identical concentrations, 

the signal for pIgA or SIgA was 3 to 4-fold more important compared to the signal 

observed with mIgA (Fig. 1A), emphasizing the avidity effect associated with the 

polymeric structure of the Ab. To get insight into the nature of the interaction, immune 

complexes between Cy5-labeled Abs and GFP-expressing bacteria were formed and 

directly visualized by LSCM. Specific SIgAC5 and plasma-derived IgG were assessed 

for comparison. All molecular forms bound to S. flexneri, yet bacterial aggregates of 

increasing size formed upon association with human plasma pIgA and SIgA, suggesting 

that only tetravalent IgA’s molecular structures were prone to trigger the assembly of 
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complex lattices (Fig. 1B). Interestingly, the large aggregate pattern resembles that 

formed with S. flexneri LPS-specific SIgAC5 (33). 

As differences in Caco-2 cell monolayer integrity (25) and pattern of immune complexes 

were identified (Fig. 1B) as a function of the various molecular forms, we examined 

whether this correlated with infection by S. flexneri. We found that the number of 

internalized bacteria by cell monolayers was on an average 3 times less when either of 

the polyreactive Abs was present on the top of S. flexneri, while specific SIgAC5 mAb 

offered the best blocking to bacterial entry (Fig. 2A). In the same experimental setting, 

we then studied the effect of the molecular forms of plasma IgA on the inflammatory 

response of infected cell monolayers. In the presence of pIgA or SIgA, basolateral 

secretion of TNF-α, CCL3 and CXCL8 fell to less than half the level of production 

measured upon infection with S. flexneri alone (Fig. 2B). This drop in 

cytokine/chemokine production was in the same range as that obtained with specific 

SIgAC5, whereas mIgA and (monomeric) IgG had little effect on CXCL8 secretion only 

(Fig. 2B). We conclude that the various molecular forms of plasma IgA and plasma IgG 

directly bind to bacteria, yet with various consequences on infection or responsiveness 

of target epithelial cells that appears to individually depend on the size of formed 

immune complexes. The implication of such data on protection against invading 

enteropathogens is discussed in the final section of the paper. 

Human plasma IgM and SIgM Abs efficiently prevent damages to epithelial Caco-2 cell 

monolayers infected by S. flexneri 

As the avidity properties of polyspecific pIgA/SIgA are crucial to protect Caco-2 cell 

monolayers with the best efficacy against infection by S. flexneri, we sought to 
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determine whether polyreactive plasma-derived pentameric IgM of even higher avidity 

would achieve improved performance. To this aim, human plasma-derived IgM and 

reconstituted SIgM at the same molar concentration as SIgA serving as a reference 

control were combined with S. flexneri, and incubated O/N with Caco-2 cell monolayers. 

The resulting integrity of cell monolayers was assessed by TER value measurement, 

cell morphology, as well as through the number of, and total surface of, infected foci on 

whole filters. In contrast to S. flexneri alone, TER was maintained when the bacteria 

were mixed with IgM or SIgM, close to values measured with SIgA (Fig. 3A). 

Representative snapshots of transversal sections obtained along the x-axis of 

monolayers showed that the infected areas deprived of cells were systematically 

smaller after incubation with immune complexes comprising IgM and SIgM than with 

those based on association with SIgA, or with S. flexneri alone (Fig. 3B). The same 

hierarchy in maintenance of the integrity of monolayers was visualized upon staining of 

the preserved, well-organized actin network (Fig. 3B). When compared with bacteria 

alone, complexes with plasma SIgA diminished the total surface of infection foci 4 times, 

while slightly reducing their number (Fig. 3C and D). Plasma IgM and SIgM showed a 

10-fold and 6-fold drop for these two parameters, respectively, reflecting low damages 

inflicted to the monolayer (Figure 3C and D). We conclude that both IgM and SIgM 

prevent destruction of Caco-2 cell monolayers exposed to infectious S. flexneri to a 

degree overpassing SIgA. 

Human plasma IgM and SIgM Abs induce bacterial agglutination reducing interactions 

between bacteria and Caco-2 cell monolayers 
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Data in Longet et al. (2013) (25) and Fig. 1 indicate that neutralization by SIgA through 

bacterial aggregation provides the most comprehensive protection of Caco-2 cell 

monolayers based on the several parameters assayed. Together with the positive 

impact both IgM and SIgM Abs have on maintaining the organization of the Caco-2 cell 

monolayer (Fig. 3), we sought to investigate further by which mechanisms the Ab 

achieves protection. In term of binding, ELISA data demonstrated a similar 

concentration-dependent capacity of IgM and SIgM to interact with S. flexneri (Fig. 4A). 

LSCM images allowed to visualize large aggregates comprising bacteria and either IgM 

or SIgM Abs (Fig. 4B), whose size was well above that detected upon incubation with 

SIgA. Integrity of the epithelial cell monolayer was highly preserved, with occasional and 

limited actin fiber depolymerization (Fig. 3B). 

This prompted us to speculate that such a strong agglutination capacity may result in 

blocking internalization of S. flexneri by Caco-2 cell monolayers. After O/N infection with 

the bacteria alone, or in complex with IgM, SIgM and SIgA, cells were treated with 

gentamicin for 30 min, lysed, and the lysate was plated on a selective medium for 

numeration. In comparison with bacteria alone, a 10-fold reduction in the number of cell-

associated bacteria was measured when complexed with either IgM or SIgM (Fig. 5A), 

whereas a reproducible 4-fold decrease was observed in the presence of SIgA (Fig. 2A 

and Fig. 5A). These results illustrate a strong ability of IgM and SIgM to neutralize the 

bacteria via aggregation and explain data in Fig. 3B which show limited binding and 

spreading of green S. flexneri. 

Human plasma IgM and SIgM Abs diminish the secretion of pro-inflammatory chemo- 

and cytokines by Caco-2 cell monolayers 
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The finding that plasma IgM and SIgM Abs appear superior to SIgA for all parameters 

tested so far led us to hypothesize that this should hold true when examining the pro-

inflammatory responsiveness of Caco-2 cell monolayers exposed to the bacterium 

alone or in complex with Abs. Basolateral secretion of TNF-α, CCL3 and CXCL8 

measured by ELISA after O/N incubation showed that cell monolayers infected by IgM- 

or SIgM-S. flexneri complexes released 4-fold less of TNF-α and CCXL8, as well as 3-

fold less of CCL3 than monolayers infected by the bacteria alone (Fig. 5B). SIgA led to 

a significantly less important diminution of TNF-α and CCL3 secretion than IgM and 

SIgM. Hence, neutralization of S. flexneri by either IgM or SIgM displays the more 

marked effect on the pro-inflammatory response of polarized Caco-2 cell monolayer of 

all Abs tested, and importantly, this occurs in the absence of any other cell partner that 

could have biased the analysis. 

Human plasma secretory-like Abs impact on the secretion of virulence factors IpaB and 

IpaC released by S. flexneri  

In addition to its protective properties, the specific anti-S. flexneri IgAC5 mAb allowed a 

transient suppression of the type 3 secretion system (T3SS) of the bacterium, leading to 

a decrease in secretion of the virulence factor known as invasion plasmid antigen B 

(IpaB) (32). In order to examine whether polyspecific human plasma-derived IgA and 

IgM could act via a similar mechanism, we evaluated the secretion of IpaB and IpaC 

under conditions used to form immune complexes. S. flexneri was associated with 

human plasma pIgA, SIgA, mIgA, IgM, SIgM, IgG and specific IgAC5 mAb for 1 h, or left 

as such. While bacteria not exposed to Congo red secreted a low basal level of IpaB 

and no IpaC, exposure to Congo red led to secretion of various levels of IpaB and IpaC 
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in supernatants as a function of the complexing Ab. Noteworthy, the level of secretion of 

IpaB by bacteria in complex with human plasma SIgA, and SIgM was decreased (Fig. 

6A and C), while IpaC was affected by SIgA, IgM and SIgM (Fig. 6B and C). In 

comparison with the bacterium alone, the other molecular forms of IgA, IgM, as well as 

IgG and SIgAC5 did not lead to detectable changes (Fig. 6). This result suggests that 

the secretory form of plasma-derived IgA and IgM may contribute indirectly to protection 

of target epithelial surfaces through its impact on bacterial virulence. 
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Discussion 

We previously established that human plasma-derived pIgA and IgM can be assembled 

into secretory-like Abs (25). Further, we established that pIgA and SIgA, but not 

monomeric IgA, reduced damages of polarized Caco-2 cell monolayers infected by a 

virulent strain of S. flexneri (25). However, how the various molecular forms of the Ab 

displayed differential protection was not evaluated at the cellular and molecular level. 

The current study addresses these issues, and further extends the analysis to plasma-

derived IgM and SIgM. We found that pIgA and IgM or the secretory form of the Ab 

recognized S. flexneri to the same extent, and the interaction led to the formation of 

aggregates with a size dependent on the valence of the Ab. While reduced bacteria 

internalization into cell monolayer occurred with all Ab isotypes and molecular forms 

tested, bacteria-induced damages to the monolayer organization was significantly 

diminished with polymeric and secretory-like Abs only, as identified by TER 

measurement, cell imaging, quantification of infectious foci and assessment of areas 

exhibiting monolayer destruction, as well as secretion of pro-inflammatory mediators. 

Moreover, plasma-derived Abs were found to disable S. flexneri in its capacity to 

produce IpaB and IpaC, two proteins involved in invasion of epithelial cells. Direct 

comparison with SIgA led to the conclusion that IgM and SIgM Ab molecules prove 

superior in preserving the integrity and responsiveness to infection of polarized Caco-2 

cell monolayers used as a mimic of the gut mucosal epithelium. 

Similar in vitro models have previously been used to compare the neutralizing function 

of IgG and their IgA/SIgA counterpart (33) (34) (35), yet the studies focused on Abs of 

well-defined monoclonal specificity on one hand, and IgM/SIgM was not evaluated in 
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parallel on another hand. The availability of polyreactive IgA and IgM Abs with well 

characterized biochemical properties (25) turned out to be an asset to address unsolved 

issues as to their mode of action on polarized epithelial cells serving as a model target 

mimicking mucosal surfaces. In addition, the various Abs could be examined in the 

absence of any other cellular and molecular partners involved in clearance of S. 

flexneri, allowing to draw straight conclusions when comparing their respective 

functional characteristics. 

Remarkably, for most of the parameters examined, in comparison with the specific 

protective SIgAC5 mAb, polyreactive pIgA and SIgA displayed similar degrees of 

protection at a 10-fold higher concentration only. Both IgM and SIgM prove even more 

potent; this is particularly true for blocking of internalization, maintenance of the 

polarized Caco-2 cell monolayer integrity, and reduction in the production of cellular pro-

inflammatory mediators. This finds a rationale explanation in the observation that apical 

immune exclusion appears the most potent for multivalent IgM Abs of the highest 

valence. Strikingly, agglutination mediated by pIgA and SIgA did not translate in 

different levels of bacteria internalization in comparison with mIgA and IgG. This 

contrasts with the observation that LPS-specific monomeric IgAC5 and IgGC20 mAbs 

performs more poorly than their SIgA counterpart recognizing the same epitope (33). 

This suggests that the polyspecific nature of plasma-derived mIgA and IgG masking 

both LPS and bacterial adhesins prevents bacterial entry more efficiently. Alternatively, 

it may block intracellular bacterial proliferation without impacting on epithelial cell 

responsiveness, such as morphological changes and secretion of pro-inflammatory 

mediators. An side observation from this work, this reveals that the sensing of antigens 
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by epithelial cells might differ according to the molecular form of the Abs found in the 

immune complexes, as for instance intracellular processing pathways (36). 

The presence of SC on reconstituted SIgA and SIgM did not modify by any mean the 

function of the Ab molecule as assessed inhere, with the notable exception of the effect 

on IpaB and IpaC secretion by S. flexneri. However, one has to remember that in the in 

vivo context, the presence of bound SC will be essential to the stability and anchoring of 

the molecule at mucosal surfaces (37). Furthermore, in addition to interfere with 

bacterial targeting of epithelial cells via carbohydrates abundantly found on its surface 

(38), SC associated with pIgA and IgM appears to intervene negatively in the secretion 

of S. flexneri virulence factors crucial for infection of epithelial cells (39) (40). These 

results suggest the unexpected role of polyclonal SIgA and SIgM mostly in altering 

bacterial metabolism, which adds to identified mechanisms of protection effective at the 

level of the mucosal epithelium. 

Previous animal studies have demonstrated that administration of polyclonal IgM 

molecules, especially derived from human plasma, could be beneficial in case of sepsis.  

Lachmann et al. (2004) (22) showed that IgM-enriched preparations reduced Klebsiella 

pneumoniae infection using a distress syndrome rat model. Stehr and colleagues (23) 

emphasized the benefits of polyclonal IgM-enriched solution by using a rabbit model of 

bacteremia (2008). Clinical trials showed that IgM-enriched preparations were able to 

significantly decrease endotoxin levels in plasma (20) and even reduce mortality (19) 

during early phase of septic shock. Norbby-Teglund et al. (2000) (41) showed that IgM-

enriched preparations were able to inhibit specific streptococcal antigens. However, a 

limitation in the strict interpretation of these results, IgM-enriched preparations 
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contained significant amounts of IgG and/or IgA Ab molecules, thus making it difficult to 

assign the intrinsic role of polyspecific IgM as such. It remains that these in vivo studies 

relying on intravenous and intraperitoneal administration, together with the 

demonstration that IgM/SIgM Abs exhibit functional protective functions toward epithelial 

cells exposed to an enteropathogen, pave the way to consider mucosal passive delivery 

of the Ab along the gastrointestinal and nasal routes. This would combine protection 

and low pro-inflammatory responses by the epithelial cells located at the interface 

between the environment and the inside of the body. Additionally, given the similar 

potential of SIgA in quenching pro-inflammatory cellular responses, it seems an 

interesting development to consider topical application of such molecules to 

compensate for IgA deficiency often associated with autoimmunity (42). 

By interfering with early events resulting from epithelial infection by S. flexneri, 

polyreactive SIgA/SIgM given therapeutically may facilitate epithelial healing by 

inhibiting destructive process occurring in the frame of infection. More generally, due to 

their broad range of antigen recognition, both reconstituted secretory Abs deserve now 

to be evaluated in in vivo models of mucosal pathologies such as infectious diseases 

and inflammation with well-founded chances of success. 
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Figure legends 

Figure 1: Association of human plasma-derived IgA/SIgA with Shigella flexneri. A) 

Binding of equimolar concentrations of pIgA, reconstituted SIgA or mIgA to immoblized 

S. flexneri as determined by ELISA. Successive dilutions of the various molecular forms 

of IgA were assessed, with the 1/1 ratio corresponding to 0.61 µM of each respective 

Ab. The panel is representative of two independent experiments performed in 

duplicates. B) LSCM images of immune complexes of bacteria associated to human 

plasma-derived pIgA, SIgA, mIgA, IgG or anti-S. flexneri LPS-specific SIgAC5 mAb. 

Bacteria constitutively expressing GFP appear in green. Bound Abs were detected by 

antisera directed against the  or  chain, followed by Abs conjugated to fluorophores 

yielding red signals after image processing. Displayed pictures are representative of 

one representative field obtained from 15 observations from three independent slides 

per experiment. Scale bar, 10 µm. 

Figure 2: Modulatory effect of various human plasma-derived IgA/SIgA 

preparations on Caco-2 cells infected by Shigella flexneri. A) Internalization of S. 

flexneri alone or associated with SIgAC5 mAb, and with plasma-derived pIgA, 

reconstituted SIgA, mIgA and IgG to polarized Caco-2 cell monolayers as determined 

after O/N incubation, with addition of gentamicin for the last 30 min. Data are expressed 

on a “per filter” basis, and correspond to one representative experiment (n=2) for each 

tested condition performed in triplicates. B) Basolateral secretion of TNF-, CXCL8 and 

CCL3 by polarized Caco-2 cells monolayers after an O/N incubation with S. flexneri 

alone, or associated to plasma-derived pIgA, SIgA, mIgA, IgG, or anti-Shigella LPS-

specific SIgAC5 mAb. The concentration of pro-inflammatory mediators was determined 
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by ELISA. Non-infected Caco-2 cell monolayers (No bacteria) serve as control. Data are 

the pool of three experiments performed in duplicates (n=6). For both panels A and B, 

significant statistical differences calculated by comparison with the condition S. flexneri 

alone (Sf) are indicated above the columns: *, p < 0.05; **, p < 0.01; ***, p < 0.001. nd = 

non-detectable. 

Figure 3: Integrity of Caco-2 cell monolayers infected with Shigella flexneri alone 

or in combination with human plasma-derived IgM/SIgM. A) TER of Caco-2 cell 

monolayers exposed O/N to S. flexneri alone or associated to human IgM, reconstituted 

SIgM, and plasma-derived SIgA (control), as determined at three time-points. The TER 

values for each condition and each time-point were normalized to the TER values at 

time 0, and are expressed as percentages. The panel is representative of one individual 

experiment (out of five) performed in duplicate. Significant statistical differences 

calculated by comparison with the condition S. flexneri alone (Sf) are indicated above 

the columns: *, p < 0.05; **, p < 0.01. B) LSCM pictures (snapshot) of transversal 

sections obtained along the x-axis of Caco-2 cell monolayers exposed O/N to S. flexneri 

alone or in complex with IgM, SIgM and SIgA. Actin fibers are visualized by phalloidin 

labeling (red), Caco-2 cells are visualized via nuclear staining with DAPI (blue) and 

bacteria constitutively expressing GFP stain green. Scale bar, 50 µm. For quantitative 

analysis, the sum of infected areas (C) and the number of infection foci (D) were 

determined from LSCM pictures of whole filters using Image J software. Significant 

statistical differences calculated by comparison with the conditions S. flexneri alone (Sf) 

are indicated above the columns: *, p < 0.05; **, p < 0.01. Data in panels C and D are 

representative of three independent experiments performed in duplicates. 
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Figure 4: Association of human plasma-derived IgM/SIgM with Shigella flexneri.   

A) Binding of IgM and SIgM to S. flexneri determined by ELISA. Bacteria coated in well 

plates were incubated with IgM or reconstituted SIgM at decreasing concentrations, with 

the 1/1 ratio corresponding to 0.61 µM of either Ab. This panel is representative of two 

experiments performed in duplicates. B) LSCM pictures of immune complexes formed 

between bacteria and human plasma-derived IgM or SIgM. Bacteria constitutively 

expressing GFP show in green, while IgM and SIgM detected  chain-specific and 

fluorescent Abs appear in red. Displayed pictures are representative of one 

representative field obtained from 10 observations from two independent slides per 

experiment. Scale bar, 10 µm. 

Figure 5: Modulatory effect of various human plasma-derived IgM/SIgM 

preparations on Caco-2 cells infected by Shigella flexneri. A) Bacteria internalized 

within Caco-2 cell monolayers determined after O/N infection by S. flexneri alone or in 

complex with human plasma IgM, reconstituted SIgM or SIgA. Bacterial counts were 

carried out after addition of gentamicin for the last 30 min of incubation. Data are 

expressed on a “per filter” basis, and correspond to one representative experiment 

(n=4) for each tested condition performed in duplicates. B) Basolateral secretion of 

TNF-, CXCL8 and CCL3 by polarized Caco-2 cells monolayers after an O/N incubation 

with S. flexneri alone, or associated to plasma-derived IgM, SIgM and SIgA. The 

concentration of pro-inflammatory mediators was determined by ELISA. Non-infected 

Caco-2 cell monolayers (No bacteria) serve as control. Data are the pool of two 

experiments performed in triplicates (n=6). For both panels A and B, significant 

statistical differences calculated by comparison with the condition S. flexneri alone (Sf) 
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are indicated above the columns: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ***, p < 0.0001. 

nd = non-detectable. 

Figure 6: Impact of human plasma-derived IgA and IgM preparations on the 

secretion of virulence factors IpaB and IpaC by Shigella flexneri. Immune 

complexes between bacteria and human plasma-derived pIgA, SIgA, mIgA, IgG, IgM, 

SIgM or anti-Shigella LPS-specific SIgAC5 mAb were formed for 1 h as described in 

"Materials and Methods" and expression of virulence factor was induced by Congo red. 

The secretion of IpaB (A) and IpaC (B) was examined by immunoblot analysis using 

mAbs directed against IpaB and IpaC. The images are representative of one individual 

experiment performed in duplicates. C) Densitometric analysis of immunoblots depicted 

in panels A and B exposed for optimal times to avoid saturation of the photographic film. 

The intensity of the signals reached with S. flexneri alone exposed to Congo red was 

fixed at 100%. 
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Part III: Human plasma IgA-enriched preparations are functional 

against Clostridium difficile toxin A  

 

Introduction 

C. difficile is a gram-positive bacterium that is the primary cause of nosocomial antibiotic-associated 

diarrhea and colitis. Indeed, C. difficile proliferates in the intestine of patients with a disrupted 

microbiota86. The current treatment relies on antibiotics to eradicate C. difficile infection. However, 

relapse of disease is a continuing challenge194. Consequently, other strategies to fight these infections need 

to be developed.  As pathogenicity is based on toxins, especially toxin A, secreted by this bacterium, and 

as human plasma polyreactive IgA showed remarkable protective effects against an enteropathogenic 

bacterium141, the functionality of human plasma IgA was then explored against C. difficile toxin A using 

intestinal epithelial Caco-2 cell monolayers. Protection of cell monolayers was assessed by monitoring of 

TER, confocal microscopy analysis and measurement of cell monolayer inflammation. We found that 

human plasma IgA-enriched preparations containing pIgA or reconstituted SIgA led to a remarkable 

maintenance of TER and a diminution of cell monolayer damage for up to 36 h post-exposure to the toxin. 

Finally, we demonstrated that these IgA-enriched preparations allowed a reduction of pro-inflammatory 

mediator secretion by cell monolayers. The sum of these results shows that these molecules are functional 

against toxin A. Further studies should be performed to dissect the mode of action of these molecules 

against toxin A. 
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Materials and methods 

Preparation of human plasma IgA-enriched fractions - IgA molecules were purified from process 

intermediates of immunoglobulins manufactured from human plasma by affinity chromatography using 

CaptureSelect Human IgA (Bioaffinity Company BAC)184. The starting material used was a 

chromatography side fraction consisting of the strip fraction from an ion-exchange chromatography 

column used in the large scale manufacture of IgG from human plasma. The different starting materials 

were diluted in phosphate buffered saline (PBS) to IgA concentration of approximately 1 mg/ml and then 

loaded onto a CaptureSelect Human IgA column pre-equilibrated with PBS, without exceeding the IgA-

binding capacity of the column. After loading, the column was washed with PBS and IgA was eluted with 

glycine buffer at pH 3.0. The eluate was adjusted with 0.5 M Tris-base (pH 8.0) to pH 4.5 and 

concentrated up to 16 mg/ml protein.  

Separation of plasma-derived pIgA and mIgA - IgA-enriched preparations containing a mixture of 

mIgA and pIgA were diluted in PBS to a final volume of 10 ml suitable for injection onto the ÄKTAprime 

chromatography system (GE Healthcare). The flow rate was set at 1 ml/min with PBS as mobile phase for 

all runs. Separation of the two molecular forms of IgA was performed on two serially coupled 1-meter 

long columns filled with Sephacryl S-300 HR beads195. The IgA content of 3.5-ml fractions was verified 

by immunodetection using polyclonal rabbit anti-human IgA/HRP (1/3000, Dako) and pools of mIgA and 

pIgA were obtained. Concentration was performed using the Labscale system (Millipore) connected to a 

100-kDa cut-off cartridge, and stored at 4 °C until further use. 

Proteins - Chimeric mouse-human pIgA PCG-4 specific for C. difficile toxin A were produced and 

purified as described49. Recombinant hSC was produced from a Chinese hamster ovary clone stably 

transfected with an expression cassette coding for the protein61. C. difficile toxin A was purchased from 

Calbiochem. Lyophilised toxin A was gently resuspended in H2O just before using it. Note: a new 

provider of toxin A should be found because problems related to toxin activity were encountered during 

this thesis work.  
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In vitro reassociation of polymeric IgA and hSC - SIgA molecules were obtained by combining in vitro 

human plasma-derived pIgA molecules purified or contained in IgA-enriched preparations with hSC 

(referred as SIgA or SIgA in IgA-enriched preparations, respectively all along the text) with a 

stoichiometry 1:1 in PBS for 30 min at room temperature (RT) as previously described59. The 

reassociation was verified by immunodetection141. 

Caco-2 cell culture and growth as polarized monolayer - The human colonic adenocarcinoma 

epithelial Caco-2 cells (American Type Tissue Collection) were grown in complete Dulbecco's modified 

eagle medium (C-DMEM) consisting of DMEM-Glutamax (Invitrogen) supplemented with 10% fetal calf 

serum (FCS, Sigma), 10 mM HEPES (Invitrogen), 1% non essential amino acids (Gibco), 1% Sodium 

Pyruvate (Gibco), 1% L-glutamine (Sigma), 1% penicillin/streptomycin (Sigma) and 0.1% transferrin 

(Invitrogen). The cells were seeded on polyester Snapwell filters (diameter, 12 mm; pore size, 0.4 µm; 

Corning Costar) as previously described196. The Caco-2 cell monolayer integrity was checked by 

measuring the TER using Millicell-ERS device (Millipore)197.  

Formation of immune complexes - 0.3 nM of toxin A was mixed with pIgA PCG-4 (7.5 nM) or with 

human plasma pIgA, SIgA or mIgA (1.82 µM). Toxin A was also mixed with pIgA or SIgA (1.82 µM) in 

IgA-enriched preparations (also containing 11.27 µM of mIgA). All mixtures were prepared in a final 

volume of 500 µl of plain DMEM (p-DMEM: DMEM complemented with 10 mM HEPES (Invitrogen), 

1% non essential amino acids (Gibco), 1% Sodium Pyruvate (Gibco), 1% L-glutamine (Sigma) and 0.1% 

transferrin (Invitrogen)). The mixtures were incubated for 30 min at RT under gentle agitation. 

Protection assay - 1 h before the use of polarized Caco-2 cell monolayers, C-DMEM was replaced by 

P-DMEM in both the apical and basolateral compartments. Polarized Caco-2 cell monolayers were 

infected apically with C. difficile toxin A alone or in combination with the Ab preparations. Exposure of 

Caco-2 cells to antigens or the various immune complexes was performed for up to 36 h and toxin A-

induced damages were tracked by measuring TER decrease timewise.  
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Laser-scanning confocal microscopy (LSCM) observation of Caco-2 cell monolayers - To examine the 

integrity of Caco-2 cell monolayers, Snapwells were washed twice with PBS, prior to fixation overnight 

with 5 ml of 4% paraformaldehyde at 4 °C. After washing, filters were permeabilized and non-specific 

binding sites were blocked using PBS containing 5% FCS and 0.2% Triton X-100 for 30 min at RT. All 

Abs were diluted in this solution. Filters were incubated with rabbit anti-human ZO-1 (1/200, Invitrogen) 

for 2 h at RT, washed in PBS, followed by goat anti-rabbit IgG conjugated with Alex Fluor® 647 (1/100, 

Invitrogen) for 90 min at RT. To visualize the actin network, Phalloidin associated with Fluoroprobes 

547H (1/200, Interchim) was incubated concomitantly with the secondary Ab. To visualize cells, filters 

were finally incubated with 200 ng/ml of 4’,6-diamidino-2-phenylindole (DAPI, Invitrogen) in PBS for 30 

min. Filters were cut out of their holders, and mounted in Vectashield solution for observation using Zeiss 

LSM 710 Meta confocal microscope (Carl Zeiss, Germany) equipped with 40x objective. 3D 

reconstructions along the xy plans, as well as orthogonal projections along the z plan were performed 

using the Zeiss ZEN 2009 light software.  

Enzyme-linked immunosorbent assay (ELISA) - Human CXCL8, GRO-α and MCP-1 concentrations in 

the basolateral compartment of polarized Caco-2 cell monolayers infected by C. difficile toxin A alone or 

combined to Abs were measured by ELISA using commercial kits (BD Biosciences and R&D Systems, 

respectively). 
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Results 

Human plasma IgA-enriched preparations reduce damage of Caco-2 cell monolayers exposed to C. 

difficile toxin A 

In order to examine if polyspecific human plasma-derived IgA could be functional against C. difficile 

toxin A, Caco-2 cell monolayers were exposed to C. difficile toxin A alone or complexed to human plasma 

IgA. The range of concentrations of purified pIgA and SIgA protecting Caco-2 cell monolayers against S. 

flexneri failed to protect monolayers from toxin A exposure (data not shown). Consequently, we decided 

to consider the protective effect of IgA-enriched preparations containing higher concentrations of IgA in 

order to demonstrate toxin A neutralization. Several concentrations of IgA-enriched preparations used as 

such or complemented with hSC were evaluated in comparison with anti-toxin A protective pIgA PCG-4 

by monitoring TER changes. Similar maintenance of TER was obtained with 7.5 nM of pIgA PCG-4 and 

with 18, 6.07, 3.64 and 1.82 µM of human plasma pIgA or SIgA in IgA-enriched preparations up to 28 h 

post-exposure to the toxin (data not shown). In order to further evaluate the role of the various molecular 

forms in this protective effect, 1.82 µM of purified human plasma pIgA, SIgA and mIgA were evaluated 

in comparison with the same concentrations of pIgA and SIgA included in IgA-enriched preparations. A 

significant and long-term maintenance of TER was observed with pIgA and SIgA in IgA-enriched 

preparations, whereas toxin A alone or complexed with purified mIgA led to a drop of TER within 36 h 

post-exposure. Even though a drop of TER was observed with purified pIgA and SIgA, the decrease of 

TER was delayed as compared to the one observed with toxin A alone (Figure 1). This difference was 

close to be significant at numerous time-points.  

In order to examine the integrity of Caco-2 cell monolayers, LSCM observations (snapshots) of cell 

monolayers were performed 36 h after exposure to toxin A alone or associated with 1.82 µM of purified 

pIgA, SIgA or mIgA, as well as the same concentration of pIgA or SIgA in enriched-preparations. Purified 

pIgA and SIgA, as well as pIgA and SIgA in enriched-preparations similarly reduced the areas devoid of 

nuclei compared to the condition with toxin A alone. While the actin network shown via phalloidin 
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labeling was preserved under all conditions, tight junction network visualized via ZO-1 labeling was 

similarly maintained with purified pIgA and SIgA, as well as IgA-enriched preparations. Consistent with 

data of TER measurement, purified mIgA did not preserve the integrity of the monolayer. Even though the 

areas devoid of nuclei are reduced, distortions of the tight junction network suggest significant damages of 

cell monolayers (Figure 2). The sum of this data shows that human plasma IgA-enriched preparations, as 

well as purified pIgA and SIgA to a lesser extent, are able to reduce damage of cell monolayers induced 

by toxin A incubation.  
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Figure 1: Monitoring of TER changes of Caco-2 cell monolayers exposed to C. difficile toxin A alone or 

complexed with human plasma IgA. TER of intestinal Caco-2 cell monolayers exposed to 0.3 nM of toxin 

A alone or in combination with purified human plasma pIgA, SIgA, mIgA, or pIgA, SIgA in IgA-enriched 

preparations determined at six time-points. The TER values for each condition and each time-point were 

normalized to the TER values at the beginning of the experiment and are expressed in percentage. 

Protection offered by chimeric anti-toxin A pIgA PCG-4 and non-infected Caco-2 cell monolayers (No 

toxin A) serve as controls. The panel is representative of one individual experiment performed in 

triplicates. Mean values + SEM are shown. Significant statistical differences calculated by comparison 

with the condition toxin A alone (Toxin A) are indicated above the columns: *p<0.05; **p<0.01; 

***p<0.001. 
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Figure 2: LSCM observations of Caco-2 cell monolayers exposed to C. difficile toxin A alone or in 

combination to human plasma IgA. LSCM 3D reconstructed images (snapshots) of Caco-2 cell monolayers 

exposed to 0.3 nM of toxin A alone or in combination with human plasma-derived pIgA, SIgA or mIgA, as 

well as pIgA or SIgA in IgA-enriched preparations for 36 h. Tight junctions stabilizing the monolayer are 

visualized by ZO-1 labeling (3D top view, red) and actin network is visualized by phalloidin labeling (side 

views, green). Caco-2 cells are visualized via nuclear staining with DAPI (blue). Protection offered by 

chimeric anti-toxin A pIgA PCG-4 and non-infected Caco-2 cell monolayers (No toxin A) serve as controls. 

The panel is representative of one individual experiment. Scale bars: 50 µm.  
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Human plasma IgA-enriched preparations diminish the secretion of pro-inflammatory mediators by cell 

monolayers 

Damages of cell monolayers in presence of toxin A were especially reduced with 1.82 µM of pIgA or 

SIgA in enriched-preparations. In order to investigate if these IgA-enriched preparations impact on the 

sensing of Caco-2 cell monolayers to toxin A, cell monolayers were exposed to toxin A alone or 

associated to 1.82 µM of pIgA or SIgA in enriched preparations for 36 h. Specific pIgA PCG-4 was used 

as positive control. The basolateral secretion of MCP-192, GRO-α92 and CXCL891 was measured by 

ELISA. Similarly to specific IgA PCG-4, pIgA and SIgA in IgA-enriched preparations led to a significant 

decrease of MCP-1, GRO-α and CXCL8 secretion by cell monolayers compared to the condition with 

toxin A alone (Figure 3). Therefore, human plasma IgA-enriched preparations are able to reduce 

inflammation of cell monolayers caused by toxin A exposure. These results suggest a neutralization of 

toxin A and a subsequent diminution of contacts between toxin A and Caco-2 cell monolayers.  
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Figure 3: Secretion of MCP-1, GRO-α and CXCL8 by Caco-2 cell monolayers exposed either to C. difficile 

toxin A alone or complexed with human plasma IgA. Caco-2 cell monolayers exposed to 0.3 nM of C. 

difficile toxin A alone or in combination with human plasma-derived pIgA or SIgA in IgA-enriched 

preparations for 36 h. At this time-point, secretion of MCP-1, GRO-α and CXCL8 was measured in the 

medium of the basolateral compartment of Caco-2 cell monolayers. Data of two experiments performed 

in triplicates (n=6). Data obtained with chimeric anti-toxin A pIgA PCG-4 serve as control. Mean values + 

SEM are shown. Significant statistical differences calculated by comparison with the condition C. difficile 

toxin A alone (Toxin A) are indicated above the columns: ****p<0.0001.  
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Discussion 

In this study, we have demonstrated that IgA-enriched preparations efficiently maintained the integrity 

of Caco-2 cell monolayers and reduced their inflammatory responses in presence of C. difficile toxin A for 

up to 36 h post-exposure. These data underscore the protective effect of human plasma polyclonal IgA 

against an enteropathogenic toxin and are consistent with data described by Johnson et al., (1995)99. 

Indeed, this study demonstrated that serum IgA neutralized the cytotoxicity of toxin A on cells in vitro but 

also in a rabbit ileal loop model. Strikingly, higher concentrations of human plasma IgA have to be used 

compared to the ones needed to protect cell monolayers from infection by S. flexneri. This difference of 

IgA concentration required for protection may be due to the fact that more epitopes can be targeted by 

polyreactive IgA in the case of a whole bacterium than for a toxin alone.  

Stubbe and colleagues (2000)49 showed that specific anti-toxin A pIgA was superior to mIgA carrying 

the same variable domain to protect polarized intestinal cell monolayers from C. difficile toxin A. In this 

present study using polyreactive Abs, purified pIgA and SIgA led to a better maintenance of TER than 

purified mIgA but this difference was not significant. Tight junction network of cell monolayers was also 

slightly better maintained with purified pIgA and SIgA than with mIgA. However, the best protection of 

cell monolayers was obtained with pIgA and SIgA in enriched-preparations that contain also numerous 

mIgA molecules. The protective effect may be due to the additive effects of mIgA and pIgA or SIgA 

molecules. But it is also crucial to keep in mind that in these IgA-enriched preparations small amounts of 

IgG and IgM still remain. We cannot exclude that these molecules, especially IgM, do not contribute to 

the protective functions observed with these preparations.  

Consistent with the data obtained in experiments dealing with S. flexneri, the presence of hSC did not 

modify the protective effect conferred by purified pIgA or pIgA in enriched-preparations. However, it is 

known that in the in vivo context, the presence of bound SC is crucial to the stability and anchoring of the 

molecule at mucosal surfaces46. In addition, Perrier et al. (2006)63 showed that SC alone could protect 

Caco-2 cell monolayers from cytopathic effects of toxin A thanks to glycans present on it. 
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Further studies should be performed to unravel the modes of action of IgA-enriched preparations 

involved in their protective functions. Particularly, interaction between toxin A and human plasma IgA 

should be studied. Finally, the functionality of human plasma IgM against toxin A could be also evaluated 

using Caco-2 cell monolayers. 
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Patent: Compositions comprising secretory‐like immunoglobulins 

 

Parts I-III of this thesis manuscript are compiled in the published patent entitled:  

Corthésy, Blaise. Longet, Stéphanie. Loetscher, Marius. Miescher, Sylvia. Zuercher, Adrian. 

Compositions comprising secretory-like immunoglobulins. WO 2013/132052 A1, filed March 8, 2013, 

and published September 12, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

139



 

 

 

 

 

 

 

140



141



142



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

143



 

 

Figure 1: Demonstrated protective effects of secretory-like IgA and IgM and unknown aspects to be 
explored. At mucosal surfaces, secretory-like IgA and IgM prevent invasion of intestinal epithelium by S. 

flexneri via the formation of aggregated immune complexes. This leads to maintenance of epithelial cell 
integrity by preserving tight junctions and actin network (1), and a decrease of pro-inflammatory mediator 
secretion by epithelial cells (2). Both secretory-like Abs also act on bacterial virulence by diminishing 
virulence factor secretion by bacteria (3). The intracellular mechanisms involved in cellular sensing of 
bacteria-SIgA complexes have to be explored. In addition, the potential transport of immune complexes 
into the lamina propria and the subsequent impact on innate and adaptive immune cells remain in need of 
investigation. Finally, the influence of secretory-like Abs on commensal flora also remains to be 
explored. Red arrows: impacts of bacteria on cells. Red dashed arrows: reactions of cells to infection. 
Black lines: impact of antibodies. Blue arrows: questions to be addressed. Nuclei of cells are deliberately 
not depicted. Not drawn to scale. 
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Outlooks and concluding remarks 

 

In this work, we have demonstrated that secretory-like IgA and IgM could be generated by associating 

polyreactive human plasma-derived pIgA and IgM with recombinant human SC. In addition, we 

established that pIgA and secretory-like IgA, as well as IgM and secretory-like IgM were functional to 

protect in vitro Caco-2 cell monolayers from S. flexneri infection. Indeed, via formation of aggregated 

immune complexes, these molecules led to maintenance of the epithelial cell integrity (Figure 1: 1), 

decrease of pro-inflammatory mediator secretion by epithelial cells (Figure 1: 2) and reduction of 

bacterial infectivity (Figure 1: 3). Finally, we reported that human plasma IgA molecules were also 

functional against C. difficile toxin A.  

The next step will be to focus on the generation of an animal model to evaluate the functionality of 

human plasma IgA and IgM, as well as secretory-like IgA and IgM in the in vivo context. As the 

protective effects of the molecules were particularly highlighted in our in vitro model using S. flexneri, the 

use of a bacterium as model of pathogen will be favored in in vivo models. 1) An ileal loop mouse model 

to test the protective functions of secretory-like Abs would represent a first approach. Infection of ileal 

loops with Salmonella alone or Salmonella complexed to secretory-like Abs will be performed. The 

bacterial load of PPs will be numerated by plating to test whether the presence of Abs can reduce bacteria 

invasion of PPs. Additional read-outs to analyze infection such as confocal microscopy or analysis of 

cytokine expression by qPCR could also be considered. 2) An alternative mouse protection assay based on 

intranasal infection by S. flexneri
61 could also be considered. Intranasal infection by S. flexneri alone or in 

combination with secretory-like Abs will be performed and a few hours later the bacterial load of lungs 

will be assessed by plating, confocal microscopy and histological studies. Inflammatory response will be 

examined by measuring pro-inflammatory mediator secretion in bronchoalveolar lavages. This latter 

model could also be used to test the role of secretory-like Abs in prophylactic administration. 3) As 

alternative to mucosal application, i.v. administration of secretory-like Abs could also be considered. In 
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order to investigate if i.v. administration of human plasma IgA or IgM can protect from Salmonella 

infection, human plasma IgA or IgM will be injected i.v. into mice, the transport of human Abs into 

mucosal secretions will be analyzed and mice will be infected with Salmonella by oral gavage. Salmonella 

translocated into the SED in PPs will be quantified by confocal microscopy. In addition, plating of the 

PPs, MLNs and spleen will be also performed in order to numerate bacteria in these tissues and assess a 

potential modulation of bacterial load in mice administered with Abs. However, using these protection 

models, it is essential to keep in mind that murine endogenous secretory Abs may mask the effect of the 

exogenously delivered secretory-like Abs. Several of these analyses have been initiated during the last 

months of the thesis work. 

It will be also crucial to study the modes of action of secretory-like Abs using in vivo models. On the 

one hand, the results obtained by in vitro experiments performed in this thesis work suggest that immune 

exclusion should be the main mechanism involved in protection against microbial infections at mucosal 

surfaces (Figure 1). This mode of action could even be increased by the presence of additional partners 

found in an in vivo context such as mucus46. In this context, the type of interactions between secretory-like 

Abs and antigens (F(ab')2 or Fc-dependent) and the involvement of carbohydrates in interactions remain to 

be explored. On the other hand, our in vitro data also suggest additional cellular mechanisms involved in 

protection, especially with IgA. Whether these polyreactive secretory-like Abs form immune complexes 

that can be internalized in vivo by PP DCs and whether once entered, these immune complexes are able to 

down-regulate inflammatory circuits induced by an infection, as demonstrated with specific SIgA67,198, has 

to be determined. This process can possibly take place with secretory-like IgA as a selective IgA receptor 

described on M cells was shown to interact with plasma IgA121,122. Similar mechanisms for IgM have not 

been described. Whether polyreactive secretory-like Abs are able to lead changes in endogenous 

microflora, e.g. improve adherence of some commensal bacterial strains, has to be explored. Polyreactive 

human milk-derived SIgA was shown to increase adherence of some commensal bacteria and formation of 

biofilm in the gut, we may hypothesize that such changes could be observed with secretory-like Abs199. In 
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a potential context of i.v. administration, additional mechanisms involving the binding of the molecules to 

IgA and IgM receptors found on various immune cells could take place. Like endogenous Abs, human 

plasma IgA and/or IgM could bind Fc receptors such as FcαRI36, Fcα/µR111, FcµR178 or other Fc receptors 

and potentially could modulate cellular and inflammatory responses.  

In addition to intrinsic functions of IgA and IgM, the great advantage of human plasma-derived Abs is 

their polyspecificity. Contrary to monoclonal Abs (e.g. IgAC5 directed against S. flexneri 5a LPS), these 

molecules target numerous epitopes of many pathogens. Therefore, numerous types of infection could be 

fought using these molecules. The results obtained in this work suggest that the amount of polyreactive 

Abs required to protect from infections varies according to the type of antigens/microorganisms involved 

in infection. As compared to IVIg administration (ca. 0.4g/kg), it may be hypothesized that mucosal 

application of secretory-like IgA/IgM could lead to reduce the dose of administered molecules because 

these ones would be directly delivered at the effector site of infection. Moreover, the type of infections 

will likely also impact on the administration route, e.g. to prevent gastrointestinal infections, oral route 

could be favored, whereas in case of respiratory tract infection, intranasal administration could be chosen. 

However, in case of sepsis, i.v administration could be preferred in order to act at mucosal and systemic 

levels. Finally, another important aspect to consider is how long the molecules will be detected at mucosal 

and/or systemic levels after administration. The obtained results will probably also impact on the 

administered dose and the administration intervals in case of a potent future clinical application. 

Related to the potential administered doses in clinical applications, the amount of generated secretory-

like Abs will not be a limiting factor. Indeed, pIgA purified from 10,000 liters of human plasma will 

provide enough Abs for clinical application141. In addition, recombinant human SC is produced by 

Chinese hamster ovary clones generated under good manufacturing practice conditions and resulting in 

sufficient amounts of SC for the association with purified pIgA. 

Another important point towards clinical applications is the potential adverse effects of Ig preparations. 

Probably similar adverse effects observed with plasma IgG preparations could be expected with plasma 
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IgA and IgM190 even though they could depend on the administration route. In addition, the structure of 

polymeric IgA and IgM may impact on the formation of aggregates in the preparations compared to IgG 

preparations, thus increasing the risk of innate immune cell activation and subsequent cytokine storm 

induction. This risk could be favored by a systemic administration of the molecules therefore, it is an 

additional reason why mucosal application is preferred. 

In this PhD thesis, the use of polyreactive human plasma secretory-like Abs were successfully tested 

against mucosal infections and the decrease of pro-inflammatory mediator secretion observed in several 

experiments favors the evaluation of these molecules using in vitro and in vivo models of mucosal 

inflammations.  

Knowing the various functions of IgA and IgM and the results presented here, secretory-like Abs 

obviously appear to be promising molecules to consider among therapeutic Abs. Their application in 

humans would certainly allow to target a very large panel of mucosal infections and inflammations. 
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Significant contribution to an additional research project  

 

I contributed to a project aiming at dissecting the modes of action of SIgAC5 monoclonal Ab specific 

for S. flexneri LPS. The molecular mechanisms involved in the maintenance of epithelial integrity were 

investigated using polarized Caco-2 cell monolayers as model of intestinal epithelium. Caco-2 cell 

monolayers were infected by S. flexneri alone or complexed to SIgAC5. Damage and inflammatory 

responses of cell monolayers were tracked. 

Experimental	procedures,	results,	discussion	

The results obtained in this part are compiled in the paper published in Infection and Immunity and 

entitled:  

Agglutinating secretory IgA preserves intestinal epithelial cell integrity during apical infection by 

Shigella flexneri. Mathias A, Longet S, Corthésy B. Infect Immun. 2013 Aug;81(8):3027-34. 

Take-home messages of the paper 

 Interaction of virulent S. flexneri with the apical pole of polarized Caco-2 cell monolayers led to a 

disorganization of tight junctions and actin network, as well as cell death 

 Agglutinating features of anti-LPS SIgAC5 Ab conducted to a delay in this disruption process 

 Neutralization of S. flexneri by SIgAC5 interfered with cellular responsiveness: decrease in NF-

κβ nuclear translocation and cytokine/chemokine release 

 Similar results were not observed with monomeric IgAC5 and IgGC20 monoclonal Abs of the 

same specificity or SIgASal4 specific to Salmonella typhimurium 
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Agglutinating Secretory IgA Preserves Intestinal Epithelial Cell
Integrity during Apical Infection by Shigella flexneri

Amandine Mathias, Stéphanie Longet, Blaise Corthésy

R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

Shigella flexneri, by invading intestinal epithelial cells (IECs) and inducing inflammatory responses of the colonic mucosa,
causes bacillary dysentery. Although M cells overlying Peyer’s patches are commonly considered the primary site of entry of S.
flexneri, indirect evidence suggests that bacteria can also use IECs as a portal of entry to the lamina propria. Passive delivery of
secretory IgA (SIgA), the major immunoglobulin secreted at mucosal surfaces, has been shown to protect rabbits from experi-
mental shigellosis, but no information exists as to its molecular role in maintaining luminal epithelial integrity. We have estab-
lished that the interaction of virulent S. flexneri with the apical pole of a model intestinal epithelium consisting of polarized
Caco-2 cell monolayers resulted in the progressive disruption of the tight junction network and actin depolymerization, eventu-
ally resulting in cell death. The lipopolysaccharide (LPS)-specific agglutinating SIgAC5 monoclonal antibody (MAb), but not
monomeric IgAC5 or IgGC20 MAbs of the same specificity, achieved protective functions through combined mechanisms, in-
cluding limitation of the interaction between S. flexneri and epithelial cells, maintenance of the tight junction seal, preservation
of the cell morphology, reduction of NF-�B nuclear translocation, and inhibition of proinflammatory mediator secretion. Our
results add to the understanding of the function of SIgA-mediated immune exclusion by identifying a mode of action whereby
the formation of immune complexes translates into maintenance of the integrity of epithelial cells lining the mucosa. This novel
mechanism of protection mediated by SIgA is important to extend the arsenal of effective strategies to fight against S. flexneri
mucosal invasion.

Shigella flexneri, the causative agent of bacillary dysentery, in-
vades nonphagocytic cells through the type III secretion sys-

tem (T3SS), which delivers bacterial effectors that trigger severe
inflammatory reactions, eventually leading to epithelium destruc-
tion (1). Successive events, including Peyer’s patch (PP) M cell-
mediated entry (2), apoptosis of infected macrophages (3), and
recruitment of polymorphonuclear cells that further amplify local
damage (4), promote the access of S. flexneri to the basolateral
surface of epithelial cells. Subversion of host cell architecture
through the injection of effector proteins promotes the cell-to-cell
propagation of infection, a process accompanied by the epithelial
production of proinflammatory mediators (5). In vitro models
using enterocyte-derived monolayers partially or not differenti-
ated have led to the most-favored conclusion, that S. flexneri in-
vades intestinal epithelial cell (IEC) monolayers exclusively from
the basolateral pole (6). However, both in vitro and in vivo models
have identified the effectiveness of epithelial infection from the
apical brush border, arguing for an alternative site of entry for the
bacterium besides PPs (7–9). Although rapid remodeling of tight
junction organization by S. flexneri has been documented (9), the
more long-term effect on IEC responsiveness is in need of inves-
tigation.

Both innate and acquired types of immune responses have
been implicated in combating S. flexneri infection, reflecting the
complexity of the protection processes (10–12). In the gastroin-
testinal tract, the local adaptive humoral response is essentially
mediated by secretory IgA (SIgA), the main immunoglobulin
found at the mucosal surface. The protective function of specific
SIgA against S. flexneri has been described in vivo using rabbit ileal
loops, as well as in samples from infected patients (12–17), and
relies on immune exclusion, preventing epithelial damage. How-
ever, how the protective role of the antibody (Ab) is relayed to IEC
wellness and, thus, its essential barrier function is not known.

Recently published data demonstrated a transient suppression of
the T3SS when the bacteria were incubated with the lipopolysac-
charide (LPS)-specific monoclonal antibody (MAb) IgAC5 (18).
This feature and the role of T3SS in initial infectious processes
prompted us to examine the mechanisms by which SIgA-based
protection can be mediated at the intestinal luminal surface. Po-
larized Caco-2 cell monolayers, serving as a mimic of the intestinal
epithelium for controlling the passage of antigens and potentially
harmful microorganisms, were infected with bacteria either alone
or in complexes with LPS-specific SIgAC5, monomeric IgAC5,
IgGC20, and the Salmonella enterica serovar Typhimurium-spe-
cific SIgASal4 as a nonspecific control. We found that apical ex-
posure of Caco-2 cells to S. flexneri triggered progressive cytoskel-
etal and tight junction disorganization that favors bacterial
diffusion, a chronologic process that was specifically delayed by
the agglutination properties of the anti-LPS SIgAC5 MAb. SIgA-
mediated neutralization of S. flexneri interfered with IEC respon-
siveness, as mapped by altered NF-�B nuclear translocation and a
drop in cytokine/chemokine release. As such preventive actions
did not occur in the presence of monomeric IgAC5, IgGC20, or
SIgASal4, our study demonstrates the specific functions of SIgAC5
in limiting bacterial binding, maintaining epithelial cell integrity,
preventing cellular dissemination of the bacterium, and reducing

Received 13 March 2013 Returned for modification 27 April 2013
Accepted 2 June 2013

Published ahead of print 10 June 2013

Editor: S. M. Payne

Address correspondence to Blaise Corthésy, blaise.corthesy@chuv.ch.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.

doi:10.1128/IAI.00303-13

August 2013 Volume 81 Number 8 Infection and Immunity p. 3027–3034 iai.asm.org 3027

 on S
eptem

ber 12, 2013 by U
N

IV
E

R
S

IT
Y

 O
F

 LA
U

S
A

N
N

E
http://iai.asm

.org/
D

ow
nloaded from

 

151

http://dx.doi.org/10.1128/IAI.00303-13
http://iai.asm.org
http://iai.asm.org/


subsequent activation of proinflammatory messengers, a series of
events involved in S. flexneri infection from the apical epithelial
surface.

MATERIALS AND METHODS
Caco-2 cell culture and transepithelial electrical resistance measure-
ments. The human colonic adenocarcinoma epithelial Caco-2 cell line
(American Type Tissue Collection) was seeded on polyester Snapwell fil-
ters (diameter, 12 mm; pore size, 0.4 �m; Corning Costar) as described
previously (19). The cells were grown in complete Dulbecco’s modified
Eagle’s medium DMEM (C-DMEM) supplemented with 10% fetal calf
serum (FCS; Sigma), 1% nonessential amino acids (Gibco), 1% glu-
tamine, 10 mM HEPES (Invitrogen), 0.1% transferrin (Invitrogen), and
1% streptomycin-penicillin (Sigma). The integrity of the polarized
Caco-2 cell monolayers was checked by measuring the transepithelial
electrical resistance (TER) with a Millicell electrical resistance system
(ERS) (Millipore). The TER values of well-differentiated monolayers
ranged from 450 to 550 �/cm2. A drop in TER values below 250 �/cm2 is
indicative of damaged cellular integrity.

Microorganisms and growth conditions. The serotype 5a, LPS-pro-
ducing virulent S. flexneri strain M90T constitutively expressing green
fluorescent protein (GFP) (20) was cultured and quantified as described
previously (21).

Cell lines and protein production. Mouse IgAC5 (22) and IgGC20
(23) MAbs that are specific for S. flexneri serotype 5a LPS and mouse
IgASal4 (24) MAb that is specific for Salmonella Typhimurium surface
carbohydrates were cultured as described previously (25). Polymeric and
monomeric forms of the IgAC5 Ab were separated by size exclusion chro-
matography (25). The mouse secretory component obtained from hy-
bridoma 2H2 (26) was combined with equimolar amounts of polymeric
IgA (pIgA) MAbs in phosphate-buffered saline (PBS) at room tempera-
ture (RT) to generate SIgAC5 and SIgASal4, respectively (27).

Antibody association to bacteria. Amounts of 2 � 107 bacteria were
mixed with 10 �g of SIgAC5 or SIgASal4 or 2 �g of IgGC20 or monomeric
IgAC5 in a final volume of 500 �l of PBS and incubated for 1 h at RT under
gentle agitation. The immune complexes were washed 3 times in PBS and
resuspended in plain DMEM (P-DMEM) complemented with 10 mM
HEPES for analysis of MAb-mediated agglutination or bacterial growth or
to infect polarized Caco-2 cell monolayers (multiplicity of infection
[MOI] � 20).

The stability of immune complexes was visualized at 1 h and after
overnight incubation with biotinylated goat anti-mouse Ig � chain (1/10;
Cappel) or biotinylated goat anti-mouse Ig � chain (1/50, Invitrogen),
followed by cyanine 5 (Cy5)-conjugated streptavidin (1/500; GE Health-
Care). Labeled immune complexes were laid onto glass slides (Thermo
Scientific), fixed in 2% paraformaldehyde in PBS for 25 min at RT,
mounted in Vectashield solution (Vector Laboratories), and visualized
using a Zeiss LSM 710 Meta confocal microscope (Carl Zeiss, Germany)
equipped with a 63� objective (imaging facility, UNI-Lausanne). Images
were processed with Zeiss ZEN 2009 light software.

To measure the direct impact of the MAbs on bacterial growth, sus-
pensions of bacteria alone or associated in immune complexes were eval-
uated by measuring optical density (OD; 1 OD unit at 600 nm corre-
sponds to 1 � 108 S. flexneri) 3 and 6 h after the formation of immune
complexes and after overnight incubation in solution at 37°C. As aggluti-
nation resulted in sedimentation of bacteria, OD was measured after re-
suspension. We favored this method instead of plating because agglutina-
tion by SIgAC5 might have led to a bias due to overlapping colonies
emanating from immune complexes containing several bacteria.

Exposure of Caco-2 cells to bacteria. One hour before the use of po-
larized Caco-2 cell monolayers, C-DMEM was replaced by P-DMEM in
both the apical and basolateral compartments. The apical medium was
then replaced by 500 �l of bacterial suspensions (2 � 107 bacteria, MOI �
20) as such or in the form of immune complexes. TER values were mea-
sured at selected time points from the beginning of the infection onward.

In selected experiments, Caco-2 cells were treated or not with 50 �g/ml
gentamicin for 30 min, washed in sterile PBS, and incubated for 3 min in
lysis buffer (10 mM Tris-HCl [pH 7], 0.2% Nonidet P-40, 50 mM NaCl, 2
mM EDTA [pH 8]). Lysates were seeded on LB agar plates containing 50
�g/ml of ampicillin, and CFU were determined after overnight incuba-
tion at 37°C.

Laser scanning confocal microscopy (LSCM) observation of Caco-2
cell monolayers. Infected polarized Caco-2 cell monolayers grown in
Snapwell filters were washed with PBS prior to fixation overnight with 5
ml of 4% paraformaldehyde at 4°C. After washing with PBS, nonspecific
binding sites on filters were blocked with PBS containing 5% FCS and
0.2% Triton X-100 (PBS-T) for 30 min at RT. All Abs were diluted in
PBS-T. Filters were incubated with rabbit anti-human ZO-1 antibody
(1/200, Invitrogen) for 2 h at RT and washed in PBS, followed by incuba-
tion with goat anti-rabbit IgG conjugated with Alexa Fluor 647 (1/100;
Invitrogen) for 90 min at RT. When assessed, phalloidin associated with
Fluoprobes 547H (1/200; Interchim) was incubated concomitantly with
the secondary Ab. To visualize cells, filters were finally incubated with 100
ng/ml of 4=,6=-diamidino-2-phenylindole (DAPI) in PBS (Invitrogen) for
30 min. Filters were cut out of their holders and mounted in Vectashield
solution for observation with a Zeiss LSM 710 Meta confocal microscope
(Carl Zeiss) equipped with either a 10� or a 40� objective. Images were
processed with Zeiss ZEN 2009 light software.

Quantification of the number of invasion foci and the overall infec-
tion area. The observation of whole filters was carried out with the 10�
objective using Zeiss ZEN 2009 light software. The number of invasion
foci and the sum of infected areas were automatically determined with the
particle analysis tool of ImageJ software in the channel detecting GFP-
expressing bacteria. When the area affected by the bacteria reached a mac-
roscopically observable loss of the polarized monolayers, the remaining
areas covered by adherent cells were determined with the differential in-
terference contrast (DIC) channel as a substitute for the channel measur-
ing green fluorescence.

ELISA. Human CCL3, tumor necrosis factor alpha (TNF-�), and
CXCL8 in the basolateral compartment of polarized Caco-2 cell mono-
layers were quantitated by enzyme-linked immunosorbent assay (ELISA)
with commercial kits (BD Biosciences and R&D Systems).

Analysis of NF-�B nuclear translocation. Preparation of Caco-2 cell
small-scale nuclear extracts was carried out as described previously (28).
Members of the NF-�B family present in the nuclei from Caco-2 cells were
identified by immunoblotting (28) with rabbit antiserum directed against
the p50 or p65 subunit (1/500; Santa Cruz Biotechnology) followed by
horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (1/5,000;
Sigma-Aldrich) and using the chemiluminescence UptiLight kit (Inter-
chim).

Statistical analysis. The results are given as means � standard errors
of the means (SEM). Two-tailed nonparametric Mann-Whitney U-test
analysis was performed using GraphPad Prism 5 software. Differences
were considered significant when P values of 	0.05 were obtained.

RESULTS
Only specific anti-LPS SIgAC5 interferes with the apical infec-
tion pattern of Shigella in polarized Caco-2 cell monolayers. Po-
larized Caco-2 cell monolayers were apically exposed to virulent S.
flexneri strain M90T alone or in complexes with specific anti-LPS
SIgAC5, IgGC20, monomeric IgAC5, or irrelevant SIgASal4
MAbs. Combined measurements of TER values and numeration
of bacteria present in cell lysates were used to assess the integrity of
the IEC monolayers and the degree of infection, respectively. With
the notable exception of incubation with M90T-SIgAC5, over-
night apical infection with M90T alone or in combination with
other various MAbs triggered a 70% reduction in TER values (200
�/cm2), indicative of a drastic alteration of the Caco-2 monolayer
(Fig. 1A). The presence of the invasion plasmid antigens in M90T
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was required for IEC infection, as incubation with the avirulent S.
flexneri mutant BS176 (29) did not affect TER (not shown). Be-
cause IgGC20 or monomeric IgAC5 with the same specificity as
SIgAC5 could not compensate for the TER drop, this suggests that
both the isotype and the molecular form of the Ab were essential
to its protective function in vitro. However, antigen binding spec-
ificity was required, as SIgASal4 recognizing Salmonella Typhimu-
rium surface carbohydrates did not prevent TER drop either; this

further indicated that secretory component present in SIgAC5 was
not involved in the preservation of Caco-2 cell monolayer integ-
rity. Under conditions of incubation with M90T-SIgAC5, the TER
was still at 70% of its original value at 24 h and dropped to 200
�/cm2 after 40 h of incubation (not shown). Together, these data
argue for the functional superiority of SIgA in retarding IEC in-
fection from the apical pole and suggest that the mere presence of
SIgAC5 MAb with a single specificity contributes to time-depen-
dent, yet time-limited protection. In addition to unraveling the
unique properties of a specific SIgA MAb to preserve Caco-2 cell
integrity, these results demonstrate that the entry of S. flexneri is
not restricted to the basolateral pole of IECs, in contradiction to
the study of Mounier et al. (6). Various adjustments in the exper-
imental settings, including the period of differentiation of epithe-
lial cells on Transwell membranes, may justify such subtle differ-
ences and changes in the paradigm of the mode of infection of S.
flexneri.

As S. flexneri is a nonmotile bacterium, the bacterial loads pres-
ent in the cell lysates reflect the ability of the apically inoculated
bacteria to adhere and infect cells. Following contact with IECs,
capture of S. flexneri is a very rapid process (15 min) that necessi-
tates the functional assembly of the T3SS for subsequent invasion
(8). As our data (Fig. 1A) show that SIgAC5 is capable of delaying
damage to polarized Caco-2 cell monolayers and that binding of
pIgAC5 to S. flexneri results in the transient suppression of the
T3SS proteins (18), we speculated that one of the functions of the
MAb would be to inhibit either the binding to or/and the entry
into IECs. Following overnight incubation, a marked reduction in
the bacterial counts of whole-Caco-2 cell lysates was observed in
the presence of SIgAC5 (Fig. 1B), whereas incubation with the
other control MAbs yielded values similar to those of Caco-2 cells
infected with the bacteria only (Fig. 1B). Upon treatment with
gentamicin to eliminate surface-bound bacteria, the lysates of
Caco-2 cells exposed to M90T-SIgAC5 (Fig. 1C) contained very
low counts, suggesting that entry was efficiently inhibited, in
agreement with MAb-mediated reduced attachment, a mecha-
nism ensured by immune exclusion. Similar to TER values, these
differences leveled off with increased incubation times (not
shown), in support of the transient inhibition of the T3SS ensured
by SIgAC5. Consistent with the lack of effect observed in the ab-
sence of antibiotic, the levels of internalized M90T in the presence
of other MAbs resembled that of bacteria alone (Fig. 1C). Of note,
translocated bacteria accumulated in the bottom of the wells of the
basolateral compartment, preventing a potential cross-infection
of the monolayers from the basolateral pole receptors for S. flex-
neri (4).

Diminished bacterial growth as a consequence of SIgAC5-
mediated agglutination. In comparison with IgGC20 and mono-
meric IgAC5 (mIgAC5) with the same specificity, SIgAC5 proved
to differentially protect the Caco-2 cell monolayer by more effi-
ciently inhibiting S. flexneri attachment and entry. The avidity of
polymeric IgA was shown to justify such an isotype- and molecu-
lar form-dependent difference in neutralizing Clostridium difficile
toxin A (30). We hypothesized that in the context of a bacterium,
additional features of SIgA, including its effect on bacterial growth
and masking in large immune complexes, may explain its better
functionality. As mentioned above, pIgAC5 suppresses the T3SS
proteins and diminishes the biosynthesis of ATP (18); we there-
fore tested whether this can affect bacterial growth in solution as a
function of time. Using the same bacterium-to-MAb ratio as in

FIG 1 SIgAC5 maintains the integrity of polarized Caco-2 cell monolayers by
retarding infection by virulent S. flexneri. (A) TER changes of intestinal Caco-2
cell monolayers exposed overnight (O/N) to S. flexneri M90T alone or in im-
mune complexes with anti-LPS SIgAC5, IgGC20, or monomeric IgAC5
(mIgAC5) and irrelevant SIgASal4 as a control were monitored. Data corre-
spond to one representative experiment (n � 3) for each tested condition
performed in triplicates. TER of noninfected Caco-2 cell monolayers was ar-
bitrarily set at 100%. (B, C) Adhesion/internalization of S. flexneri M90T alone
or associated with SIgAC5, IgGC20, mIgAC5, and SIgASal4 to polarized
Caco-2 cell monolayers as determined after overnight incubation in the ab-
sence (B) or presence (C) of gentamicin treatment for 30 min. Data are ex-
pressed on a per-filter basis and correspond to one representative experiment
(n � 3) for each tested condition performed in triplicates. Mean values � SEM
are shown. Statistically significant differences calculated by comparison with
M90T-SIgAC5 are indicated above the columns as follows: *, P � 0.05; **, P �
0.01.
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the experiments whose results are depicted in Figure 1, we found
that a 3-h incubation with SIgAC5 reduced the bacterial counts by
a factor of 1.4 compared with the results using M90T alone, while
equimolar amounts of IgGC20, monomeric IgAC5, and SIgASal4
MAbs had no effect (Fig. 2A). In addition to the effect on bacterial
growth, we found that aggregates formed within 1 h in the pres-
ence of tetravalent SIgAC5 only but not upon incubation with

divalent specific IgGC20 or monomeric IgAC5 or nonspecific
SIgASal4 of identical structure (Fig. 2B). At 6 h, only cells incu-
bated with M90T-SIgAC5 exhibited a 2-fold reduction in bacterial
counts in comparison with the counts in cells incubated with the
bacteria grown alone or with the other MAbs, an effect that am-
plified further (up to 9-fold decrease) after overnight incubation
(Fig. 2A). This strongly suggests that the impact on S. flexneri
proliferation can account for reduced infection.

In agreement with the tetrameric valence of SIgAC5, the red-
labeled MAb was present all over the opsonized lattice of M90T; in
comparison, with IgGC20 and mIgAC5, the coating was limited to
the surface of individual bacteria and no binding was detected for
SIgASal4 (Fig. 2B). A similar pattern of immune complexes were
still seen after overnight culture (data not shown), together with
low levels of single bacteria, suggesting that a limited number of
bacteria can escape SIgA-mediated agglutination over time. The
agglutination-based capacity of anti-LPS-specific SIgAC5 to re-
duce binding to IECs, combined with its negative impact on S.
flexneri growth, explains molecularly why SIgA exhibits protective
functions toward sensitive IECs that are superior to those of the
other MAbs tested.

SIgAC5 controls disruption of the Caco-2 cell monolayer by
limiting the sites of productive infection. While the agglutina-
tion properties of SIgAC5 can justify its effect on bacteria, the
beneficial impact on target IECs infected from the apical pole re-
mains to be understood. The preserved TER and low bacterial
counts (Fig. 1) strongly suggest that the neutralizing function of
SIgA makes it more difficult for M90T to invade Caco-2 cells and
allows the maintenance of the IEC monolayer integrity for a pro-
longed period. We thus analyzed quantitatively the beneficial pro-
tective role of SIgAC5 in comparison with the effects of other
MAbs using LSCM images from whole Transwell filters (Fig. 3A
and B). Incubation with M90T-SIgAC5 was the sole experimental
condition to display a significant reduction in both the overall
infected area and the number of infection foci after overnight
exposure to polarized Caco-2 cell monolayers compared to the
results for incubation with M90T alone and M90T in complex
with the other MAbs tested. Upon analysis of LSCM images re-
flecting the representative pattern of each experimental condition,
we found that surface-bound bacteria were neutralized by the
SIgAC5 MAb only, while unlimited spreading occurred all over
the monolayers in the other scenarios (Fig. 3C). SIgAC5 also dras-
tically limited the expansion of infected foci and the development
of large areas devoid of cells, as was observed with M90T alone or
in complex with the other MAbs (Fig. 3C). Taken together, these
results suggest that the agglutinating features of SIgAC5 restrict
bacterial dissemination among neighbor cells (Fig. 3C), further
supporting the concept that SIgA Abs elicited upon primary
M90T infection are important in protecting against IEC reinfec-
tion and that this occurs by ensuring morphological integrity.

SIgAC5 delays destruction of the tight junction network and
actin-based cell architecture. The data shown in Figure 3C sug-
gest that IECs infected with S. flexneri undergo important struc-
tural changes, as revealed by the disappearance of the tight junc-
tion network and formation of areas devoid of cells. Within hours
postinfection, the architecture of actin fibers changed drastically
only in the periphery of the sites of interaction with M90T, sup-
porting the idea that rearrangement of the cytoskeleton is induced
by virulence factors expressed by the invading bacteria (Fig. 4A,
arrowheads). Actin remodeling would aim at preventing excessive

FIG 2 Bacterial agglutination occurs in the presence of LPS-specific SIgAC5
MAb only. (A) Growth of S. flexneri alone or in the presence of various MAbs
as a function of time. Mean values � SEM are shown. Statistical differences are
shown for the overnight (O/N) condition. OD600, optical density at 600 nm. **,
P � 0.01. (B) M90T expressing GFP was incubated with SIgAC5, IgGC20,
monomeric IgAC5 (mIgAC5), and SIgASal4 stained with � chain- or � chain-
specific Abs and visualized by LSCM. Bacteria agglutinate only in the presence
of SIgAC5, which contributes to the formation of immune complexes, result-
ing in large aggregates. Only surface coating (IgGC20 and mIgAC5) or no
binding (SIgASal4) was observed with control MAbs. One representative field,
obtained from 10 different observations following analysis of 3 different slides,
is shown. Scale bars, 5 �m.
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cellular damage during intracellular bacterial proliferation, allow-
ing transient maintenance of local cohesion (ZO-1 distribution is
preserved), a stratagem most likely achieved by the recently de-
scribed OspE virulence factor (31, 32). The loss of the ZO-1 signal
after overnight incubation reflects the beginning of the destruc-
tion of intercellular junctions (Fig. 4B) and is accompanied by the
disappearance of the cell architecture, as mapped by the complete

extinction of phalloidin detection. The S. flexneri-induced loss of
the tight junction network and actin fiber depolymerization sug-
gest a novel mode of invasion from the apical surface which pro-
motes rapid bacterial propagation and dissemination within the
monolayers, a process that may synergize with bacteria invading
from the basolateral pole after M cell-mediated entry.

In sharp contrast, the aggregation mediated by SIgAC5 re-

FIG 3 SIgA maintains Caco-2 cell monolayer integrity and limits M90T cellular dissemination. Damage inflicted on Caco-2 cell monolayers by apical addition
of M90T alone or combined with various MAbs after overnight incubation was determined by measuring the sum of infected areas (A) and the number of
infection foci (B) from LSCM images using ImageJ software. Data are expressed on a per-filter basis. Mean values � SEM are shown; n � 3 experiments carried
out in triplicates. Statistically significant differences calculated by comparison with M90T-SIgAC5 are indicated above the columns as follows: **, P � 0.01; *, P �
0.05. (C) LSCM 3-dimensional reconstructed images (snapshot) of Caco-2 cell monolayers exposed overnight to M90T alone or in combination with various
MAbs. Limited dissemination of bacteria (green) and maintenance of tight junctions stabilizing the monolayer (ZO-1 red labeling) was visualized with SIgAC5
only, while tight junction disappearance induced by uncontrolled infection is observed for all other experimental conditions. Caco-2 cell nuclei were stained with
DAPI (blue). One representative field obtained from the observation of whole Transwell filters recovered from 3 experiments performed in triplicates is shown.
Scale bars, 50 �m.

FIG 4 SIgA-mediated protection delays the disruption of tight junctions and depolymerization of actin fibers. LSCM 3-dimensional reconstructed images
(snapshot) of Caco-2 cell monolayers exposed to M90T alone or in combination with SIgAC5 are shown; views are from the top (top panels) and along the ZX
plan (bottom panels). (A) Invasive M90T (green) located intracellularly triggers actin remodeling at 10 h, as tracked by phalloidin staining (red, bottom panels).
(B) Destruction of tight junctions (red, top panel) occurs 6 h later. (C) Limited infection in the presence of SIgAC5 prevents destruction of tight junctions and
organized actin fibers. (D) Neutralization by the Ab results in delayed damage after overnight exposure. (E) Noninfected Caco-2 cell monolayers are depicted for
comparison. The basal side of the Caco-2 cell monolayer is displayed as hatching on the bottom images. Sites of extensive actin remodeling are pinpointed by
white arrowheads. Images are one example of 90 observed among 3 filters prepared from 3 independent experiments performed in triplicates. Scale bars, 50 �m.
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sulted in punctate surface binding and prevented bacterial spread-
ing, thus ensuring limited damage to a few targeted epithelial cells
(Fig. 4C and D). Strikingly, outside the infected foci and despite a
slight decrease in the detection of pericellular ZO-1 and organized
actin fibers, exposure of Caco-2 cells to M90T-SIgAC5 overnight
resulted in patterns similar to those in uninfected filters (Fig. 4D
and E). Similar control experiments performed with M90T-
IgGC20 revealed infection patterns similar to those observed for
M90T alone (not shown).

SIgAC5 represses CCL3, TNF-�, and CXCL8 secretion by
IECs via blocking of NF-�B nuclear translocation. We next hy-
pothesized that the neutralizing ability of SIgAC5 would result in
moderate apical sensing of the M90T strain by polarized Caco-2
cell monolayers. The production of CCL3 (macrophage inflam-
matory protein-1�), TNF-�, and CXCL8 (interleukin-8 [IL-8]) in
the basolateral compartment, as well as the nuclear translocation
of NF-�B, known to regulate the expression of the three media-
tors, were examined as markers of the Caco-2 cell proinflamma-
tory response (5, 11, 33). SIgAC5 interacting with the M90T strain
significantly reduced the production of CCL3 (
70%), TNF-�
(
70%), and CXCL8 (
35%) by Caco-2 cells compared with the
levels obtained by incubation with M90T alone or in complex with
the other MAbs tested (Fig. 5A, B, and C). This reflects in IECs the
situation observed in the rabbit model, in which the expression of

proinflammatory mediators in the Peyer’s patch tissue is
quenched when S. flexneri is administered as a complex with
SIgAC5 (13). High nuclear translocation of the transcription fac-
tor NF-�B subunits p50 and p65 occurred after incubation with
M90T alone or in complex with specific IgGC20 (Fig. 5D and E),
whereas the exposure of Caco-2 cells to SIgAC5-based immune
complexes led to a marked drop in the nuclear detection of either
NF-�B subunit (Fig. 5D and E). The data reveal the prominent
role of neutralizing extracellular SIgA in controlling the onset of
cellular proinflammatory responses (7), a feature that contributes
to maintaining the physical integrity of the epithelial barrier.

DISCUSSION

The functions of SIgA at mucosal surfaces are manifold, extending
from transport of immune complexes across PPs, control of in-
flammatory circuits, intracellular neutralization of invading
pathogens, and regulation of the microbiota to classical/paradigm
immune exclusion (34). Despite the in vivo and in vitro demon-
stration of the importance of SIgA in the latter process, it remains
unclear by which underlying mechanisms extracellular SIgA capa-
ble of preventing invasion can maintain short-range epithelial in-
tegrity. The results of the present study demonstrate that aggluti-
nating SIgA precludes contact of the enteropathogen S. flexneri
with target IECs, resulting in maintenance of tight junctions and

FIG 5 Anti-inflammatory properties of SIgA reduce secretion of proinflammatory mediators by polarized Caco-2 cell monolayers through inhibition of NF-�B
nuclear translocation. Production of CCL3 (A), TNF-� (B), and CXCL8 (C) was measured in the basolateral compartment of Caco-2 cell monolayers incubated
under various conditions after overnight incubation. Mean values � SEM are shown; n � 3 experiments in triplicate. ***, P � 0.001. (D) Immunoblotting of the
NF-�B subunits p50 and p65/RelA in the nuclear extracts from Caco-2 cell monolayers apically incubated overnight with M90T alone or in complex with
LPS-specific SIgAC5 and IgGC20 as a control. Panels are representative of one individual experiment performed in triplicate (n � 3). (E) Densitometric analysis
of immunoblots described for panel D, exposed for optimal times to avoid saturation of the photographic film. The intensity of the signal reached with M90T
alone was fixed at 100%. nd, not detectable.
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cell morphology and silencing of cellular proinflammatory path-
ways. Remarkably, this occurs in the absence of other immune
partners usually involved in combating S. flexneri infection. Fur-
thermore, the lack of mucus, known to contribute to repelling
bacteria (35) and anchoring SIgA for improved functionality (36),
does not negate the crucial role of SIgA in ensuring prolonged
preservation of the polarized IEC monolayer. Similarly to SIgA-
controlled entry of immune complexes through PPs, our data
pave the way to exploring whether selective entry into IECs via
CD71 (37) may contribute to the modulation of immune reac-
tions, for example, allergy or gut inflammation.

It has been shown that the association of pIgAC5 with S. flex-
neri de-energized the T3SS by affecting the proton motive force
and reducing cellular levels of ATP (18). Temporary incapacity of
the bacterium to invade epithelial cells was suggested yet not ex-
perimentally tackled. Our results indicate that perturbation of the
bacterial bioenergetics by SIgAC5-mediated agglutination leads to
decreased growth rate, and this translates into delayed invasion of
IECs compared to the time to invade their uncoated counterparts.
Inhibition of other bacterial functions by IgA, i.e., motility, ulti-
mately affecting bacterial entry into IECs has been reported for
Salmonella enterica (38). Interestingly, masking of LPS and ad-
hesins by Ab coating is not sufficient to disarm S. flexneri, as
IgGC20 does not interfere with IEC invasion; this suggests that the
lattice formed by bound SIgA may trigger mechanical constraints
on the bacterial wall (39), leading to metabolic alterations not seen
with monomeric IgA or IgG. This is reflected by the unique prop-
erty of SIgAC5 to significantly lower the levels of CCL-3, TNF-�,
and CXCL8 secreted by IECs when bound to S. flexneri in immune
complexes. Reduced epithelial secretions due to SIgA-neutralized
S. flexneri would be indicative of the ongoing immune response,
with downregulation of proinflammatory signaling (13).

Another finding of our work resides in the observation that an
LPS-specific SIgA MAb, but not IgA or IgG MAbs of the same
specificity, inhibits the sequential lesions induced by luminal ap-
plication of the virulent S. flexneri M90T strain in an intestinal
epithelium model. The experimental setting was designed to study
the effect of M90T-triggered damage after overnight infection,
well beyond the time course usually accessible in in vivo models
(13, 22). Bacteria were initially found to infect a limited number of
polarized cells, leading to preferential targeting of the tight junc-
tion’s seal; such a feature has been described for S. flexneri serotype
2 and also for other pathogens, such as enterohemorrhagic Esch-
erichia coli and Salmonella strains (8, 9, 39), yet at very high MOI
that do not reflect the low doses sufficient to infect the human gut.
Over time, the progressive overwhelming proliferation of S. flex-
neri induced irreversible damage to the cell architecture, as re-
flected by the complete depolymerization of actin fibers. Loss of
epithelial integrity is a well-accepted consequence of bacillary dys-
entery (40), and it appears to be mimicked in the in vitro model
after bacterial exposure limited to the apical epithelial cell surface.

In vitro dissection turned out to be appropriate to evaluate the
multilevel neutralizing properties of SIgAC5 directed against LPS
from S. flexneri, as reflected in the delay of infection via mecha-
nisms that included blocking of interaction with IEC monolayers,
the reduction of bacterial growth and proliferation inside polar-
ized Caco-2 cells, maintenance of the tight junction network,
slowing down of actin fiber depolymerization, and interference
with the activation of proinflammatory gene products, a sum of
properties that can be assigned to the agglutinating characteristics

of the SIgAC5 Ab isotype. Indeed, the combination of M90T with
an LPS-specific IgGC20 and mIgAC5 MAb resulted in the same
pattern of sequential IEC destruction as observed with M90T
alone. However, following parenteral vaccination with O-specific
polysaccharide 2a, transudating polyclonal IgG was found to pro-
tect the vaccinees (41), suggesting that multiple mechanisms stag-
gered over time may be involved. In the absence of other levels of
immune protection, this work sheds light on the functional role of
luminal SIgA in interfering with infection by S. flexneri from the
apical surface. This also suggests that by interfering with the very
first and destructive steps of infection, LPS-specific SIgA must be
considered an asset in the battery of molecular and cellular agents
required in immunity against S. flexneri.
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