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1. Abstract

Computed tomography (CT) has deeply affected the approach to diagnosis in medical
practice and is heavily relied on for numerous therapeutic decisions. Meanwhile,
diagnostic imaging and CT in particular remains at the core of medical innovation, not
least due to remarkable developments on the imaging chain. After three decades of
conventional CT — intrinsically disregarding energy-dependency of X-ray attenuation —
spectral CT became available clinically, fostering research and improvement of patient
management. Spectral CT is regarded as a disruptive technology that can affect workflow,
patient safety, and diagnostic accuracy but needs validation. With this in mind, we sought

to explore the potential benefits of spectral CT for evaluating cardiovascular disease.

To provide a thorough assessment of spectral CT in evaluating vascular lumen and wall,
we designed several phantom experiments to assess the feasibility of dedicated tasks
and expanded our research to clinical studies for validation. To this end, we used both
clinically available dual-energy CT (DECT) and pre-clinical multi-energy (spectral photon-

counting detector CT [SPCCT]) platforms.

We confirmed that DECT can save radiation dose thanks to virtual non-contrast
reconstructions, reduce iodine doses considerably for coronary artery imaging, and task-
oriented material decomposition reconstructions improve aortic wall conspicuity, notably
in aortic intramural hematoma. We also showed that SPCCT coronary angiography
outperforms DECT in terms of noise, spatial resolution, and diagnostic performance.
These findings advance both patient safety and the clinical value of spectral CT in

cardiovascular imaging.
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Résumé

La tomodensitométrie (TDM) a profondément affecté I'approche diagnostique et
thérapeutiqgue pour nombre de pathologies. Parallelement, I'imagerie diagnostique et la
TDM en particulier restent au cceur de l'innovation médicale, notamment grace aux
progres technologiques. Apres trois décennies de TDM conventionnelle ignorant
I'atténuation différentielle des rayons X en fonction de leur énergie, la TDM spectrale est
apparue, favorisant la recherche et I'optimisation de la prise en charge des patients. La
TDM spectrale peut affecter le flux de travail, la sécurité des patients et la précision du
diagnostic, mais nécessite d’étre validée. Nous avons donc exploré les avantages
potentiels de la TDM spectrale pour I'évaluation des maladies cardiovasculaires. Pour
étudier la TDM spectrale dans I'évaluation de la lumiére et de la paroi vasculaires, nous
avons congu plusieurs expériences de faisabilité sur fantbmes et avons ensuite étendu
notre recherche a des études cliniques, en utilisant a la fois des plateformes TDM a
double énergie (« DECT ») disponibles en cliniqgue et des plateformes multi-énergies

précliniques (détecteurs a comptage de photons spectraux [« SPCCT »]).

Nous avons confimé que le DECT permet de réduire lirradiation grace aux
reconstructions virtuellement sans contraste, que les doses diode peuvent étre
considérablement réduites pour limagerie des artéres coronaires, et que les
reconstructions en décomposition matériaux peuvent améliorer la visibilité de la paroi
aortique. Nous avons également montré que l'imagerie des coronaires en SPCCT
surpasse le DECT en termes de bruit, de résolution spatiale et de performances
diagnostiques. Ces résultats font progresser a la fois la sécurité des patients et la valeur

clinique de la tomodensitométrie spectrale en imagerie cardiovasculaire.
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Résumeée public

En un demi-siecle d’existence, la tomodensitométrie (TDM) — communément appelée
« scanner » — a révolutionné le diagnostic et la prise en charge médicale, en permettant
d’obtenir des images de l'intérieur du corps humain sous formes de coupes consécutives
détaillant I'intégralité de 'anatomie en trois dimensions. La technique de la TDM repose
sur le principe de la mesure de I'absorption du faisceau de rayons X ; celui-ci traverse le
corps humain et subit une atténuation plus ou moins forte en fonction de la composition
des tissus et de I'épaisseur traversée. Cette mesure d’atténuation se fait en continu au
cours d’'un balayage qui consiste a faire tourner un couple tube a rayons X - récepteurs
autour du patient, et les données brutes ainsi obtenues sont transférées a un ordinateur.
Un traitement informatique des données brutes permet de reconstruire des images 2
dimensions des tissus humains, et des vues en 3 dimensions d’organes ou de lésions.
Toutefois, les équipements de TDM conventionnels ne prennent pas en compte le fait
que le faisceau de rayons est composé d’'un mélange de photons X d’énergie trés
variable, alors méme que l'atténuation des rayons X dépend directement de leur énergie.
La TDM multi-énergie (spectrale) exploite cette propriété physique et permet de
reconstituer, dans une certaine mesure, la composition chimique des tissus scannés. La
TDM spectrale est une innovation relativement récente, et il est essentiel d’étudier ses
avantages et inconvénients avant de I'appliquer sur I'étre humain. Le but de cette thése
est de mettre en lumiére certains bénéfices de la TDM spectrale en imagerie
cardiovasculaire. Nous montrons notamment que la TDM spectrale permet de réduire la
dose de produit de contraste injecté et la dose d’irradiation, tout en apportant des

informations diagnostiques additionnelles.
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3. Introduction

4.1 Background

Computed tomography (CT) for medical purposes was first reported in 1973 [1, 2] and
became more widely available in the 80s. CT was an instant success in the medical field,
being the first imaging technique to render 3-dimensional images of the human body,
casting aside the limitations of projectional imaging. The new imaging area CT established
has profoundly altered diagnostic approaches over the last four decades, disrupting both
the diagnostic workup and treatment strategies. Despite astonishing technological
improvements made to the initial so-called “EMI CT scanner,” the system Godfrey
Hounsfield and his team developed [3], CT is far from reaching its foreseeable
fundamental physical limits. This thesis is about leveraging the latest available CT

technology by transposing innovative techniques into clinical applications.

CT uses X-ray beams consisting of a continuous spectrum of photon energies that
undergo absorption when traveling through tissue and interacting with matter. Photons
reaching the detector located on the opposite side of the X-ray tube are quantified at
multiple 2-dimensional angular projections to recover the 3-dimensional internal structure
of the subject being scanned [4]. Until recently, photon detection occurred by so-called
"conventional CT detectors," referred to as "energy integrating," because they sum up all

the photons reaching the detector regardless of their energy.

4.2 lodine in X-ray imaging
lodinated contrast medium (CM) has been used for angiography since 1920, and

nowadays, an estimated 75 million procedures are performed per year [5]. In CT, first
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reports describing the use of iodinated were published very soon, i.e. two years after the
introduction of CT [6]. Since the early 1920s, CM safety has improved dramatically,
leading to much lower toxicity, better tolerability, and improved angiographic contrast.
Nevertheless, adverse reactions still occur in 1-3% of procedures, and as a result, the use
of CM cannot be considered harmless [6]. Because some adverse reactions to CM are
dose-dependent, including post-injection heart failure, acute pulmonary edema, and

nephrotoxicity, limiting the volume of CM is a relevant approach [7].

Furthermore, it has been shown that the DNA damage resulting from ionizing radiation is
adversely affected by the use of iodine, further supporting CM dose reduction [8]. Finally,
the use of CM comes at a cost, and a potential decrease of the financial burden can be
achieved by reducing the total volume used per procedure. Nevertheless, over one
hundred years after its introduction, iodinated CM remains a unigue tool to image patients,
make accurate diagnoses, and support decision-making. This is especially true for
cardiovascular imaging, where CM helps identify both the vascular lumen and its wall.
Computed tomography angiography (CTA) has quickly established itself as the principal
imaging technique for large vessels and has also become a key player in cardiac
radiology. In recent years, coronary CTA has become the most widely used method for
the non-invasive assessment of coronary artery disease, of course, thanks to lumen

enhancement with iodine.

4.3 The advent of dual-energy CT
X-ray absorption from interaction with tissue mainly depends on two effects in the clinical
energy range: photoelectric absorption and Compton scattering [4, 9]. Conventional CT

systems measure the X-ray attenuation and can extract the linear attenuation coefficient
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of each voxel. When the latter is normalized against water, we obtain the voxels’ CT
number, which is expressed in Hounsfield Units [HU] and primarily depends on the energy
of the polychromatic X-ray spectrum, the materials’ mass density, and effective atomic
number (Zef). Compton scattering is predominant at high energy and mainly driven by
the electron density (p), providing most of the soft tissue contrast while interacting with
low-atomic number elements (i.e., oxygen, Z=8; nitrogen, Z=7; carbon, Z=6; hydrogen,
Z=1). On the other hand, photoelectric absorption is more likely to occur at low energy
and is proportional to the cube of atomic number. Conventional CT systems do not use
pulse detection but integrate the overall energy deposited in the detector during a
projection; this is why they are commonly referred to as energy integrating detectors
(EID). To translate X-rays into a digital signal, EID first converts X-ray photons to visible
light sensed by a photodiode and undergoes analog-to-digital conversion (Fig. 1). The
output signal of EIDs is proportional to the energy deposited by the sum of incident
photons, which means that the higher energy photons bearing the least contrast
information generate a stronger output, overriding valuable information from low-energy

photons.
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Fig. 1 Scintillator-photodiode detector (indirect X-ray detector). Photodiodes provide an analog

signal that is processed by analog-to-digital (A/D) converters.

When CT images are reconstructed, algorithms mathematically assume that a parallel
monoenergetic X-ray beam traverses the patient, which is not the case in reality since (a)
the beam is fan-shaped and (b) its composition is polyenergetic. Notably, the type and
magnitude of photon/material interaction and the resulting beam absorption strongly
depend on the energy level of the photons, which is not accounted for in conventional CT
systems. At conventional CT, samples with different elemental composition can still
exhibit similar mass densities [10] and identical CT numbers, making the materials difficult
or impossible to classify [11]. One way to overcome the often-overlapping nature of
attenuation coefficients and extract information related to the materials’ mass attenuation

is to collect absorption data in two or more different energy bands. The energy-
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dependency of X-ray attenuation was highlighted quickly after implementing the first CT
system in medicine, and physical characterization of the material being scanned —
including density and atomic number — had already been recognized and was reported at
the very beginning of CT [12, 13]. Additionally, pioneering DECT experiments assessing
tissue characterization, bone mineralization quantification, and computation of Zett and
electron density have taken place in the 70s [13-15]. Despite these early insights into the
physics of CT, the industrial implementation of spectral CT occurred more than three
decades later, and clinical CT systems offering X-ray energy gquantification were not
available until recently. Reasons for the prolonged time until DECT hit the market are
related to technical challenges at this time, including unstable CT numbers, longer scan

duration, and limited current at low tube potential [16].

This has changed with the introduction of dual-energy CT (DECT) systems about 15 years
ago [17, 18], which can distinguish two (often overlapping) energy bands. Spectral CT
detectors are generally referred to as "energy resolving” because they measure not only
the transmitted X-ray intensity but can, to a certain extent, measure the spectral
composition of X-rays exiting the object or subject being scanned [19]. An ideal DECT
system requires the use of two monochromatic X-ray beams with the same photon fluence
rate to measure tissue absorption in each band at the same time. Currently, such a design
is not suitable for clinical application; hence DECT systems still use less-than-perfect
polychromatic beams. CT manufacturers developed various techniques to collect
absorption data in two different energy bands. Table 1 summarizes the most widespread

approaches, all of which are emission-based except the dual-layer detector design that
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operates with standard beam composition and shaping, discriminating two energy bands

at the detector level.

Table 1. Commercially available DECT implementations

Type Manufacturer X-ray tube Detectors kVp range
Dual-source Siemens Two tubes with or Two arrays of 70-150 kVp
without beam filtration ~ energy-
integrating
detectors
Rapid kV- General Electric Single X-ray tube with  One array of 80 and 140 kvp
switching ultrafast voltage energy-
switching between low integrating
and high kvp detectors with
fast scintillator
speed
Dual-layer Philips Single X-ray tube One array of 120 or 140 kVp
detector dual-layer
energy-resolving
detectors
Twin-beam Siemens Single X-ray tube with  One array of 120 kVp (with
filter splitting the beam  energy- additional Au
in the Z-direction integrating and Sn filtration)
detectors
Sequential dual Canon Single X-ray tube; first  One array of 80-140 kVp

scans

rotation at low kVp,
second rotation at high
kVp

energy-
integrating

detectors
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4.3.1 Advantages and limitations of dual-energy CT

Single-energy CT has a fundamental limitation in differentiating soft tissue because the
CT number depends entirely on the linear attenuation coefficient (), which is strongly
overlapping between body tissues [20]. Only a handful of heavier elements, such as
calcium or iodine, exhibiting strong photoelectric absorption can be classified relatively
easily. DECT is a significant step forward with respect to soft tissue differentiation due to
its ability to measure materials’ differential attenuation as a function of photon energy.
Compared with conventional single-energy scanning, DECT has the advantage of
incorporating both lower (usually 70-80 kVp) and higher (usually 140-150 kVp) energy
images simultaneously, providing a new layer of information enabling the extraction of
optimized image features for various clinical scenarios. Practically, DECT can serve the
purpose of improving image quality itself, but also to save radiation dose and contrast
medium. In vascular radiology, DECT can improve diagnostic accuracy and even reduce

interpretation times [21].

On the other hand, DECT systems suffer from several fundamental limitations, including
a considerable overlap of energy spectra, the absence of notable improvement in spatial
resolution compared with single-energy CT, and high electronic noise precluding major
dose savings. Except for the detector-based DECT implementation, current DECT
systems also suffer from spatial and/or temporal misalignment of spectral data because
the high and low energy data are not acquired at the same location and at the exact same
moment. Moreover, DECT samples only have two spectral datapoints, limiting multi-
material decomposition. A typical example is the iodine density map (iodine versus water

material decomposition), which cannot reliably classify calcium as non-iodine material
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because calcium exhibits a substantial probability of photoelectric effect and will show up
as iodine. Furthermore, some systems have specific limitations directly depending on
engineering challenges. For instance, dual-source DECT systems, operating with two
distinct sets of tubes and detectors, have a partial spectral field-of-view coverage, which
can limit the use of bone subtraction or interpretation of liver lesions in large patients.
Such systems — whose strengths include a superior temporal resolution for cardiac
imaging — also need to cut back temporal resolution when used in DECT mode because

each tube/detector pair will be required to acquire data in a specific energy band.

One more critical point to address when considering DECT for routine use is the impact
on workflow: DECT can be time-saving or time-consuming. While spectral reconstructions
can speed up CT interpretation, e.g., by allowing a confident distinction between calcium
and iodine, and may avoid an additional late-phase acquisition, the implementation of
DECT in clinical workflows comes with additional image series. In cardiovascular imaging,
these usually include virtual non-contrast (VNC), low/high keV VMI, and iodine density
maps, all of which will be discussed later. Spectral image series take time to reconstruct,

transfer to PACS, and may interrupt the radiologist’s usual workflow.

4.3.2 Dual-energy CT data processing and image types

DECT systems and spectral CT systems in general provide qualitative and quantitative
information about tissue composition, offering a range of established and emerging
clinical applications. On the whole, spectral CT imaging can be divided into material-
specific and material-non-specific applications. The first includes effective atomic
mapping (Zef), electron density mapping, and material decomposition, which can serve to
detect, quantify or suppress materials from reconstructed images [22]. The second
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comprises virtual monochromatic imaging (VMI), which provides images whose voxels
express CT numbers (in HU) as on single-energy images. Still, the energy level at which
CT numbers are represented can be selected freely, usually between 40 and 200 keV.
This can be useful, for instance, to optimize lesion contrast-to-noise ratio (CNR), to reduce
the radiation or iodine dose [23]. VMI is sometimes referred to as “pseudo-
monochromatic” because it is a simplified version of true monochromatic imaging utilizing
a synchrotron. In VMI, the materials’ energy-dependent CT number is linearly
extrapolated from a limited number of data points — two in DECT — and does not represent
real-world measurements [24]. VNC images are a particular form of material-non-specific
reconstruction that simulates non-contrast CT derived from contrast-enhanced DECT
datasets. VNC makes use of the photon-absorption variation at two energy levels of high
atomic number elements, i.e., iodine, exhibiting a higher photoelectric to Compton ratio,

to selectively remove the contribution of iodine from reconstructed images [25].

Spectral CT post-processing can be done in the projection or the image domain.
Projection-based post-processing algorithms operate before the images are
reconstructed and yield lower beam-hardening artifacts. On the other hand, they require
high spatial and temporal registration of the acquired sinograms, which is only possible
with detector-based or fast kV-switching spectral CT [26]. In DECT data analysis, it
became apparent that one can decompose spectral CT datasets comprising attenuation
data of N energy bands into a set of N basis materials using a mathematical operation
called "material decomposition.”" Material decomposition algorithms assume that the
entire sample is composed of N preselected materials and that voxels contain a volume

fraction of each material in variable amounts. This means that mathematically, the sum of
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volume fractions must always be equal to 1. The fractional composition of a voxel can
then be computed based on (a) the measured CT number at each energy level and (b)
the energy-dependent attenuation of each material in pure form. The latter is a physical
constant that can be obtained from the National Institute of Standards and Technology
(NIST), among others. The concept of two-material decomposition (when N=2) has
translated from research into clinical routine with DECT systems, one of the most popular
material pairs being water-iodine (iodine density map), allowing iodine quantification [27].
Though, in theory, any material pair can be reconstructed using these algorithms,
depending on the materials present in the sample of interest (e.g., bone, fat, iodine) and

the clinical task [28, 29].

4.3.3 Clinical applications

Once DECT became clinically available, research groups have enthusiastically geared up
to find out where this technology could add value. Despite remarkable efforts from
institutions and researchers worldwide, the widespread use and integration of DECT in
clinical routine have occurred at a slow pace, likely due to concerns regarding healthcare
costs and radiation dose [30]. Meanwhile, the role of DECT in clinical care is continuously
developed and emphasized. In cardiovascular imaging, in particular, DECT has shown
the potential to improve patient safety (by reducing radiation and iodine doses) and
improve disease detection and classification. lodine dose reduction in large-vessel
examinations has been demonstrated [31] by using low-energy (40 keV) VMI. Sitill, the
same spectral imaging type also helped improve vessel opacification in cases of
suboptimal enhancement in pulmonary CT angiography [32]. Other studies confirmed

radiation dose saving potential with virtual non-contrast reconstruction for aortic endograft
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surveillance [33], a very specific clinical application whose promising results call for
broader concept validation. While dual-energy pulmonary CT angiography failed to prove
superior to single-energy for detecting pulmonary embolism [30], its use can provide
additional prognostic value derived from semi-quantitative perfusion beyond clot burden
guantification, with no additional contrast medium or radiation dose exposure [34, 35].
Thanks to its ability to optimize lesion-to-background contrast with VMI and iodine density
maps (iodine versus water material decomposition), DECT also offers advantages in the
characterization of myocardial ischemia [36] and the discrimination of left atrial
appendage thrombus from slow flow [37]. Furthermore, DECT enables accurate
myocardial late enhancement evaluation compared to late gadolinium enhancement, the
current gold standard [38], paving the way for the so-called “one-stop-shop” acute chest
pain imaging workup with the possibility to detect myocarditis using DECT [39].
Preliminary research also highlights the value of DECT to increase the conspicuity of
acute bowel ischemia in small cohorts. However, the optimal VMI energy level to use is
still debated [40, 41]. Finally, DECT has been proved efficient in reducing metal artifacts
that are highly prevalent in cardiovascular imaging due to the frequent presence of

electronic devices, leads, coils, and grafts containing metallic components [42].

Apart from these benefits directly related to cardiovascular medicine, DECT offers a
diverse spectrum of clinical applications in other fields such as musculoskeletal radiology,
neuroradiology, emergency radiology, to name only a few, extending even to forensic

imaging [43].
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4.3.4 Clinical examples of dual-energy CT
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Fig. 2 Small-axis multiplanar reformats of the heart from a pulmonary CTA acquired on a fast kV-

100 keV 115 keV

switching DECT without ECG-gating. VMI at six different energy levels show the dramatic increase
in heart chamber attenuation at lower energies (40 and 55 keV) and attenuation decrease at
higher energies (85, 100, and 115 keV). The 70 keV image can be considered equivalent to
conventional CT. Note the increase in myocardial tissue contrast, demonstrating heterogeneity at

40 keV.
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lodine/Water material decomposition Effective atomic number map (Zeff)

Fig. 3 Same pulmonary CTA examination as in Fig. 2 shows two other spectral reconstructions
highlighting acute myocardial ischemia in the septal wall (white star), in the form of decreased
iodine concentration on the lodine/Water material decomposition, and the form of a decreased

Zeff.
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100 keV / 115 keV

Fig. 4 Cerebral imaging in a patient with bilateral intracranial aneurysm clipping causing beam
hardening artifacts. The CTA was acquired on a fast kV-switching DECT system and
reconstructed as VMI at different energy levels. The strong beam hardening artifacts hampering

image analysis on the 40 keV VMI increasingly vanish with higher VMI energies.
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Conventional CTA CTA with metal artifact reduction

Fig. 5 Lower extremity CTA acquired on a fast kV-switching system without and with the vendor’s
proprietary metal artifact reduction software (MARS). This software segments and corrects metal
artifacts based on CT number thresholds [44]. Note the significant reduction of streak artifacts

(white arrows) due to metallic osteosynthesis material of the femur on the MARS reconstruction.
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Fig. 6 Cardiac CTA acquired on a dual-layer spectral detector system in a patient with acute chest
pain. Coronary CTA was unremarkable, and no perfusion abnormality was seen on first-pass
static perfusion (upper row), whether on conventional, low-energy VMI or iodine vs. water material
decomposition. On the other hand, late phase (late iodine enhancement) images showed almost
transmural enhancement of the lateral myocardial wall, better depicted on low-energy VMI and

iodine vs. water images, consistent with acute myocarditis [39].
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Fig. 7 Pulmonary CTA in a patient with post lung transplantation (day 5) dyspnea. While HU
images depicted right middle lobe sub segmental pulmonary embolism (orange circle), iodine
basis images (“iodine density maps”) representing iodine distribution (blue, no iodine, red
maximum iodine concentration) help diagnose multiple bilateral peripheral perfusion defects
throughout the lungs (not all defects are shown in the Figure), consistent with additional occlusive

pulmonary emboli.
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Fig. 8 Thoracic-abdominal CTA in a hemodynamically unstable patient presenting with acute

abdominal pain and beta blocker overdose. Questions asked to the emergency department's
radiologist included: acute aortic syndrome, acute pulmonary embolism, and mesenteric
ischemia. In this case, spectral CTA addresses all questions in a single acquisition; thoracic 55
keV VMiIs show right middle lobe segmental acute pulmonary embolism (a, orange circle), and
the absence of distal right coronary artery opacification (b, white arrowhead), indicating stent
occlusion, causing mid cavitary septal hypoperfusion as demonstrated on the iodine density map
(c, orange arrowheads). The same acquisition covering the abdomen (d) confirmed colon
ischemia likely due to the overall compromised hemodynamics, better visible on the colored iodine
density map where the left colon (e, white arrow) appears to be less perfused than its right portion

or the small bowel.
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4.4 Photon-counting CT

More recently, spectral photon-counting CT (PCCT) systems have been developed and
are currently undergoing prototype testing by medical researchers [45, 46]. Such systems
provide improved energy resolution over DECT, being able to classify photon energies
according to three or more energy bands with less overlap [46, 47]. PCCT is one of the
most advanced spectral CT techniques currently under investigation. Photon counting
detectors' (PCD)’s principle is to use semi-conductor detector materials operating without
the need of generating visible light inside detector elements, thereby getting rid of the
challenges related to scintillators and associated electronic noise while providing a refined
spectral analysis (Fig. 9). Incident X-ray photons create hole pairs in the semiconductor
material that travel to the anode under the influence of the (high) bias voltage applied
across the semiconductor and create directly measurable electric signals, whose pulse
amplitude is proportional to the photon’s energy; for this reason, PCD are considered
direct-conversion detectors. Each detector channel is equipped with an application-
specific integrated circuit (ASIC) that reads out the electric pulse and discriminates its
amplitude according to discrete thresholds called “energy bins.” The number of energy
bins is given by the ASIC’s design. PCD can reject electronic noise almost entirely by
using a threshold high enough to be above the noise floor and discriminate real photon

counts from noise.

Contrary to conventional energy-integrating detectors (EID) that measure the total energy
deposited in the detector and may corrupt part of the attenuation data due to electronic
noise, PCDs quantify the energy of each individual incident photon according to two or

more energy bins which are user-selectable energy sub-ranges that can be adjusted
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according to the clinical task. This results in a much better spectral sampling of X-ray
transmission. The scintillators used in EIDs suffer from reduced dose efficiency due to the
septa that isolate detector elements from each other; because PCDs do not require a
physical separation inside the detector material, they can be produced with a much
smaller detector element size to increase spatial resolution (150 um). For these reasons,
PCCT is expected to address major limitations of EID-based DECT [48].
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X-ray beam
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Cathode Pixellized anodes

Fig. 9 Photon counting (direct conversion) detector. Currently evaluated detector materials for CT
are Cadmium Zinc Telluride (CdzZnTe) and Silicon (Si). Ideally, each X-ray photon is detected

separately and assigned to an energy category.

The first large field-of-view PCCT ran cadmium zinc telluride (CdZnTe) detectors and was

tested for carotid CTA in 2007 [49]. At the time of writing, several more PCCT systems
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were being evaluated, most of which used Cd-based detectors, i.e., CdZnTe or Cadmium
Telluride (CdTe) [50-52]. Of note, one silicon-based (Si) PCCT system was being tested
as well [53, 54]. CdZnTe, CdTe, and Si detectors have their own advantages and
limitations. A hallmark of CdZnTe and CdTe is their high X-ray stopping power; less than
2 mm are enough to stop 95% of photons at 120 kVp after traveling through 30 cm of
water, while Si detectors have a lower atomic number and need 55 mm of thickness to
achieve the same absorption [47]. Another difference between Cd-based and Si detectors
is the predominance of different types of photon interaction within the semiconductor
material itself; the first will exhibit more photoelectric effect, while the latter has a much
higher probability of Compton scattering. Also, Cd-based detectors have a higher amount
of material imperfections, which can degrade detector performance [55]. Last but not
least, Cd is a highly toxic element [56], which should be taken into account when speaking

about the widespread production and handling of Cd-based PCDs.

4.4.1 Advantages and limitations

Apart from the strengths mentioned above — higher spatial resolution and severely
reduced electronic noise — PCD offers further versatility depending on the number of
energy bins available. Theoretically, a PCCT system should allow distinguishing more
than two materials in a non-contrast examination, which can be helpful in specific clinical
scenarios, such as imaging the vulnerable atherosclerotic plaque [57]. Because the PCD’s
energy bands are user-configurable, it is possible to collect data just above and below a
material’s K-edge, enabling “K-edge imaging” and introducing simultaneous imaging of
multiple CMs and potentially molecular imaging [58, 59]. This is true for materials whose

K-edge lies within the clinical energy range. Moreover, PCCT eliminates any spatial or
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temporal misregistration thanks to its detector-based nature, offering full-field-of-view
capability and can operate at various tube potentials. Finally, PCDs have no scintillator

afterglow, which can introduce measurement errors in EIDs.

Despite significant advantages, PCDs come with a number of limitations, including pulse
pile-up, K-escape, and charge sharing, some of which have been preventing PCCT from
becoming clinically useful until now. PCDs have been in use in nuclear medicine from the
beginning. Still, the much more tough challenge of the high count rate encountered in X-
ray CT prevented the technology from being clinically useful until recently [60]. The major
challenge for manufacturers has been to design a detector and readout electronic chain
capable of handling the high photon flux and exposure (X-ray fluence rates can be up to
10° mm2s1), Each photon must be separated and registered; otherwise, two pulses can
accidentally be read a single pulse, a condition referred to as “pulse pile-up,” causing
spectral resolution decrease. Another drawback is pulse sharing, which refers to the
distribution of the charge cluster produced by one incident photon into multiple detector
elements, misleading the system into counting several lower-energy photons. Finally, K-
escape happens when the characteristic fluorescence photon generated inside the
detector escapes and cannot contribute to the pulse amplitude. All those issues

deteriorate noise performance, spatial and spectral resolution [61].

4.4.2 Clinical applications
The rapid technological innovations currently serving the medical field are astonishing,
and by overcoming many of today’s challenges of conventional CT, PCCT will have a

profound impact on patient management. Currently, prototype systems operating with
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PCD have restricted availability but drive a worldwide enthusiasm, and some pre-clinical

and even early clinical studies are available.

One of the most direct clinical benefits of PCCT — with radiation hazards in mind — is to
save dose, which is easily achieved thanks to the low noise characteristics of PCDs.
Because PCDs reject electronic noise, the X-ray dose can be reduced substantially while
preserving diagnostic information [50, 62, 63]. Children who are extra sensitive to ionizing
radiation but whose clinical management still relies on CT will be prime beneficiaries of
the drastic dose savings PCCT can achieve [64]. Furthermore, improved CNR owing to a
selective weighting of lower-energy photons brings a broad range of clinical applications,
some of which have already been assessed in initial studies. These include lung nodule
assessment in asymptomatic volunteers [45] or improved visualization of blood vessels
and enhancing tumors [65]. The CNR improvement will be even more marked for heavier
elements like iodine or gadolinium since the attenuation due to the photoelectric effect is
proportional to the atomic number [66]. Better energy information and improved CNR can
be utilized either to achieve higher lesion conspicuity or can be translated into X-ray dose

reduction.

The intrinsically higher spatial resolution offered by PCCT may benefit lung,
musculoskeletal, inner ear, but above all cardiac imaging, although only phantom and ex-
vivo studies are currently available [67-69]. PCCT also showed promise for metal artifact
reduction in phantom studies [70], beam-hardening artifact reduction in cadaveric studies
[62], and nanoparticle-based blood pool imaging [71]. Radiomics, a promising research

field aiming to extract a large number of quantitative features from CT images, currently
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depends on acquisition parameters, thereby hampering widespread applicability.

Quantitative PCCT-derived maps have the potential to mitigate this limitation.

That being said, with the combination of high spatial resolution, low-noise, and versatile
multi-energy capabilities offered by PCCT, imaging will become increasingly task-driven.
One might go so far as to imagine patient-dependent energy bin configuration to optimize
detection or quantification tasks — and further improvements are ahead of us, especially

once the technology comes into the hands of radiologists and clinicians.

4.4.3 Clinical examples of photon-counting CT
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Fig. 10 Comparison of photon-counting and conventional CT for in vivo stent assessment in a
rabbit. Ultra-High Spatial Resolution images from PCCT (lower row) show a significantly improved

visualization of the rabbit aorta (about 4 mm diameter) compared with conventional CT (upper
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row). In particular, the stent and intrastent lumen can better be visualized—courtesy of Dr. M.

Sigovan, CREATIS Laboratory, Lyon University, France.
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Fig. 11 Cardiac images of a 48-year-old woman with chest pain, acquired on a single source CT
prototype with a photon-counting detector, after the injection of 45 mL of iodine (400 mg/mL) at a
rate of 4 mL/sec. Data acquisition: ECG gated helical mode with 64 x 0.27 mm collimation, 0.33 s
rotation time, CT Image reconstruction: sharp reconstruction kernel, 1024 x 1024 image matrix,
0.25 mm slice thickness. Excellent visualization of the coronary arteries, including small branches
in volume rendering (VR) and subtle peri-coronary fat infiltration consistent with inflammation on
short-axis multiplanar reformat (MPR) of the left circumflex (LCx) artery. Courtesy of Prof. Douek,

Hospices Civils de Lyon, France.
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Fig. 12 Cardiac PCCT reconstructed in volume rendering showing anatomical details of the mitral
valve an papillary muscle, and the aortic valve on 3-chamber (A), left ventricular outflow tract

(LVOT) 2 (B), and left ventricular short axis (C). Courtesy of Prof. Douek, Hospices Civils de Lyon,

France.
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4.5 Aims of the thesis

Despite significant efforts made to deliver improved patient care with the help of spectral
CT, a number of which are discussed above, numerous open questions remain regarding
both DECT and PCCT systems. While some advantages in using spectral CT have been
clearly identified, the rapid expansion of spectral CT systems for clinical practice must
happen with all due caution because inappropriate use of new technologies can harm the
diagnostic performance in clinical routine. Consequently, both new roles and limitations
of spectral CT have to be assessed thoroughly before clinical implementation. This is
especially true because the continuing efforts granted by the manufacturers result in
gradually improving technology; as a consequence, early concerns related to artifacts,
excessive radiation dose, or workflow issues do not necessarily hold true with more

modern systems hitting the market [72-74].

Patient security undergoing CT has been continuously improving. However, ionizing
radiation and iodinated contrast media exposure remain potential drawbacks to
unrestricted use of CT. The first is especially concerning for children and young adults
whose tissues are highly radiosensitive [75]. The latter is problematic for the elderly at
higher risk of cardiac or renal adverse reactions [76]. Strategies to reduce both ionizing

radiation and contrast media exposure will be explored.

Disease detection is usually the first task involved in radiological evaluation; a diagnostic
test with inappropriate detection performance is useless. Spectral capability redefines CT
imaging in many ways, and detection rates are expected to improve, as suggested by

preliminary DECT studies [27, 77]. We will assess lesion detectability with spectral CT in
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the field of cardiovascular imaging, such as atherosclerotic plaque and lipid core

detection.

Following lesion detection on CT, a second and often a third task that characterizes and
quantifies the disease is required to provide relevant information to drive therapeutic
decisions. Because spectral CT offers insights into tissue composition, striking advances
in lesion characterization are anticipated. Initial studies support this hypothesis, both
using DECT [78] and SPCCT [79]. In this respect, we will evaluate the potential roles of

spectral CT in improving the accuracy of quantitative tasks.

With this in mind, the goal of this thesis is to highlight the added value of spectral CT
compared with conventional to assess the vascular lumen (stenosis quantification) and
disease of the vascular wall (wall conspicuity, atheroma plaque size, and composition),
using the latest systems available clinically and pre-clinically. Expected benefits for patient
care are twofold: (a) to potentially reduce the ionizing radiation dose and/or intravenous
iodine dose associated with a CT examination; (b) to improve the detection,
characterization, and quantification of disease. The first set of benefits relates to patient
safety when undergoing a CT examination. The latter aims to provide higher diagnostic
accuracy by extracting more relevant information from X-ray imaging to drive therapeutic

decisions.

The practical approach to the project’s scientific part involves designing several phantom
experiments to address specific issues and evaluate the feasibility of spectral CT

techniques. When adequate evidence from phantom works and available peer-reviewed
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literature is gathered, the experimental approach translates into clinical studies that are

also part of the thesis. An overview is provided in section 5 of the dissertation.
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4. Thesis milestones

5.1 Building a collaborative project

The two mainstays (expected benefits) defined above are the thesis’ framework. Several
projects — including experimental and clinical studies — are designed to expand the current
understanding of cardiovascular spectral CT. To succeed in such a complex field, the
whole project had to rely on multiple international collaborations illustrated in Fig. 13. First
and foremost, a solid collaborative relationship between the University Hospitals and
Universities of Lausanne (UNIL/CHUV) and Lyon (UdL/HCL) constituted the project's
base. The UdL hosts a clinical DECT system and is one of the rare institutions to have a
pre-clinical prototype PCCT system. This privileged situation of UdL/HCL is the result of
a tight collaboration with an industrial partner (Philips Healthcare and Philips Research),
successful fundraising with H2020, and the launch of a multinational consortium aiming
to advance the science and technology of PCCT [80]. The UNIL/CHUV also hosts clinical
DECT systems and benefits from an expert Radiation Physics Institute developing
leading-edge image quality metrics in CT. Methods developed by the CHUV’s Radiation
Physics Institute can leverage the impact of novel technology, both in the form of
prototypes still under development or fully approved commercial products. The center for
biomedical imaging (CIBM), a partnership between the Universities of Lausanne, Geneva,
and the Swiss Federal Institute of Technology in Lausanne (EPFL), supported phantom
analyses conducted as part of this thesis. Needless to say, the industrial partners (Philips
Medical Systems, Haifa, Israel, and Philips Research Europe, Hamburg, Germany), in
charge of developing DECT and PCCT technology, were involved in the project and

provided technical support. Thanks to the long-lasting and reliable relationship between
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academic and industrial entities, the research was conducted smoothly, except for the
coronavirus disease 2019 (COVID-19) pandemic, which delayed critical sections of the

project (COROGOUT project, please refer to section 6.1.3).
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Fig. 13 Institutions and companies constituting an extensive international collaboration

made the thesis project possible.

5.2 Importance of experimental approaches

5.2.1 Assessing image quality in CT

The decision to implement new technology in medicine relies on two main pillars: it should
improve diagnostic accuracy and outcomes. Incidentally, its cost should be reasonable,
and the economic burden put on the community must be seriously counterbalanced by

apparent public health benefits [81]. Therefore, techniques and methods to assess the
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diagnostic performance of CT play a crucial role in ensuring a certain consistency in
system performance and highlighting advancements in imaging technology in the medical
field. Because technological innovation has been CT’s daily bread, continuing efforts have
been undertaken to put into practice the latest CT systems in medical care. However, CT
research, in general, has received criticism because producing a visually adequate image
of the human body may be an essential step but does not necessarily translate into better
outcomes, and the reporting of radiology studies was sometimes lacking [82]. What really
matters is the diagnostic information an imaging examination can grasp, and the doctor
in charge can recover. Only clinically relevant information can alter the decision-making
process, and ultimately, patient outcomes [83]. Despite this, much of the literature has
focused on describing new technology, especially in the early days of CT [84]. Radiology
research has since gone a long way, the scientific rigor and methodological robustness
of studies have improved steadily, and quality/safety research is now part of the

landscape in radiology [85].

Meanwhile, more than ever, technological advances in CT are underway, and previously
designed methods to quantitatively assess image quality in CT are no longer suitable.
This is especially true with the introduction of modern image reconstruction algorithms,
whose non-linear behavior threatens the interpretation and conclusions drawn from
classical image quality metrics [86]. In this context, spatial resolution in CT has classically
been evaluated using the modulation transform function (MTF) [87]. The MTF is usually
obtained by scanning a thin tungsten wire surrounded by air; in other words, a high object-
to-background contrast situation with low noise. Because such conditions are not

representative of clinical tasks, medical physicists have developed a more advanced
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target transfer function (TTF) technique. The TTF can measure the CT system’s
performance at lower contrast and higher noise (using water filtration) to approximate
specific clinical tasks [88, 89]. Likewise, image noise in CT is often assessed by
measuring the standard deviation of CT numbers in a region-of-interest taken in a
homogenous part of the object or patient. While this kind of metric can broadly
approximate the overall noise magnitude, it disregards a critical noise characterization
component: noise texture [90]. With constant noise texture, a lesion’s detectability is well

correlated to its contrast-to-noise ratio (CNR), as shown in Fig. 14.

CNR =45 CNR=35  CNR=25 CNR=15

Fig. 14 With increasing noise but constant texture, lesion detectability and contrast-to-noise ratio

(CNR) are correlated. Courtesy of Prof. Francis R. Verdun.

On the other hand, when noise texture changes — which is the case with modern CT
reconstruction — despite a constant CNR, lesion detectability can vary dramatically. In

other words, lesion detectability and CNR are no longer correlated, as shown in Fig. 15.
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Fig. 15 With noise texture deviation, lesion detectability and contrast-to-noise ratio (CNR) are no

longer correlated. Courtesy of Prof. Francis R. Verdun.

To overcome this limitation and account for noise texture, the recommended noise
measurement technique is the noise power spectrum (NPS). NPS allows for complete
noise characterization by decomposing it according to its spatial frequency components,
thereby indicating noise texture [88]. Fig. 16 Schematically represents the effect of

increasing noise magnitude with constant texture on the NPS.

CNR=45  CNR=35  CNR=25  CNR=15

NPS [HUZ2mm?]

Spatial frequency [mm]

Fig. 16 Schematic representation of the NPS for a low (green curve) and a high noise environment
(blue curve). The noise magnitude peak spatial frequency is constant, as indicated by the orange

dots.
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On the other hand, the effect of noise texture deviation is illustrated in Fig 17; despite
constant noise magnitude, the lesion detectability is profoundly altered when the noise

texture is shifted towards lower spatial frequencies.

Texture deviation

NPS [HUZmm?Z]

Spatial frequency [mm-1]

Fig. 17 Schematic representation of the NPS under constant noise magnitude conditions, but
texture deviation. When the peak spatial frequency is shifted towards lower spatial frequencies
(towards the left of the graph), as indicated by the orange dots, the lesion detectability decreases

despite constant noise magnitude (area under the curve) and CNR.

To account for combined effects of contrast-dependent spatial resolution and noise
characteristics, various mathematical model observers have been validated to provide the
missing link between physical metrics and the feasibility of a diagnostic task [86]. Such
model observers can simulate a lesion (by its size, shape, and object-to-background
contrast) and determine whether the lesion can be detected or not on a CT image under

specific radiation dose conditions [91].
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Using such state-of-the-art physical metrics (NPS, TTF, model observers) is not feasible
with any study design. Still, it is strongly encouraged when a thorough assessment of
image characteristics is needed, such as when a disruptive technology hits the market,
as is the case with PCCT. This is why we conducted a phantom study using these metrics

on a prototype PCCT.

5.2.2. Experimental assessment of tissue characteristics

One straightforward clinical application of DECT in cardiovascular medicine is the use of
virtual non-contrast (VNC) images. Such reconstructions can be derived from contrast-
enhanced CT and simulate non-contrast images by subtracting the attenuation
attributable to iodine, thereby offering the possibility to save the ionizing radiation from
acquiring true non-contrast images. Non-contrast CT provides value in many clinical
scenarios, of which aortic intramural hematoma (IMH) suspicion is typical. Acute IMH
classically appears as a spontaneously hyperdense eccentric regular aortic wall
thickening that can be obscured on contrast-enhanced images [92, 93]. In work co-
authored with Si-Mohamed S, Dupuis N, Tatard-Leitman V, Boccalini S, Dion M,
Vlassenbroek A, Coulon P, Yagil Y, Shapira N, Douek P, Boussel L [94], we designed a
phantom model of IMH using porcine bowel, clotted and heparinized blood and
demonstrated the ability of VNC to depict the above-mentioned hyperdense wall

thickening. This finding led the team to proceed with a clinical study [94].

Further use of DECT, receiving much attention from the rheumatological sphere, is
detecting and characterizing gout crystals in peripheral joints and other organs [95-97].
Several studies have shown that gout is a risk factor for the development of
atherosclerotic coronary artery disease and major cardiovascular events [98-103].
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Besides, it has been shown that monosodium urate (MSU) crystals can be demonstrated
ex vivo in coronary atherosclerotic plaques in hyperuricemic patients [104]. To date, no
study has been able to detect coronary deposits of MSU in vivo appropriately. Spectral
CT may be able to meet this challenge, and a project we refer to as “COROGOUT” is part
of this. COROGOUT is designed to evaluate the capability of spectral CT to detect
coronary MSU deposits in vitro and contribute to addressing the aims of better detecting
and characterizing the disease. To this end, precision phantoms were designed and
scanned both on a clinical DECT and pre-clinical PCCT systems. This project was still
underway at the time of writing, so no manuscript is available, but an abstract using one
of the phantoms was accepted by the Radiological Society of North America (RNSA)

annual meeting 2021. Furthermore, preliminary results are provided in section 6.

5.2.3. Experimental assessment of spatial resolution performance

A further application of DECT aiming to reduce the probability of unwanted side-effects
related to intravenous iodinated CM is to take advantage of virtual monochromatic images
(VMI). Because iodine exhibits a relatively strong photoelectric effect in the lower range
of energy clinically available with DECT (i.e., 40-60 keV), reading CTA studies with low-
energy VMI comes with remarkably higher CT numbers in opacified or enhanced
structures, which can be translated into CM reduction. While some studies attempted to
look into the advantage of using VMI in CCTA [105-108], spatial resolution properties of
VMI had not been assessed before proceeding to clinical studies. This led us to develop
a high-precision phantom to prove that VMI does not deteriorate the vessels’ cross-
sectional area quantification accuracy with CCTA in both regular and reduced iodine dose

settings. Instead, reduced CM DECT improved the vessel’'s cross-sectional quantification
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compared with standard CM dose conventional CT, advocating the implementation of
dual-layer DECT with VMI reconstruction in clinical routine. This work was co-authored
with Si-Mohamed SA, Yerly J, Boccalini S, Becce F, Boussel L, Meuli RA, Qanadli SD,

Douek PC [109].

Spatial resolution is of utmost importance in CCTA because coronary arteries are small
and exhibit complex anatomy requiring small isotropic voxels to resolve lumen, wall,
atherosclerotic plaques, and composition thereof [110]. On top of that, coronary arteries
are constantly moving, further challenging non-invasive imaging, requiring techniques that
can freeze motion thanks to high temporal resolution. For these reasons, CCTA exploits
CT systems at the edge of their technical capabilities and immediately integrates any
technological advance in image resolution, noise, or acquisition speed. Therefore, it is
self-evident that PCCT can bring numerous advances for CCTA at once. This includes
intrinsically lower noise, markedly higher spatial resolution, and the ability to provide
spectral images, including VNC (to obviate non-contrast CT) and VMI (to enable iodine
dose reduction or increase tissue contrast). Since no human data regarding photon-
counting coronary CT angiography currently exists, we sought to objectively evaluate
photon-counting-detector (PCD) CCTA in vitro and investigate its image quality
characteristics compared with a clinical energy-integrating-detector (EID) CT system. To
this end, we used a semi-anthropomorphic phantom simulating various patient sizes.
Objective image quality analysis was performed using state-of-the-art physical metrics
(noise power spectrum, target transfer function, model observer). Its encouraging results
are written up in a manuscript co-authored with Damien Racine, Fabio Becce, Elias

Lahoud, Klaus Erhard, Salim A. Si-Mohamed, Joél Greffier, Anais Viry, Loic Boussel,
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Reto A. Meuli, Yoad Yagil, Pascal Monnin, and Philippe C. Douek, under consideration

for publication in a peer-reviewed journal at time of writing.

5.3 Clinical studies and approaches
The various potential applications of DECT led us to design clinical studies tackling either
patient safety issues or diagnostic benefits and consolidating findings from experimental

studies.

First, we evaluated patients with confirmed aortic intramural hematoma, who underwent
both true non-contrast and contrast-enhanced DECT of the aorta. Arterial phase DECT
images were reconstructed as VNC and compared with true non-contrast regarding
diagnostic confidence and CNR. Results indicate that a single arterial-phase DECT-
angiography with VNC image reconstruction can replace the true non-contrast acquisition.
This study contributes to addressing the purpose of saving ionizing radiation avoiding the
true non-contrast acquisition. Furthermore, the implementation of such a protocol would
reduce the examination time. The manuscript, co-authored with Si-Mohamed S, Dupuis
N, Tatard-Leitman V, Boccalini S, Dion M, Vlassenbroek A, Coulon P, Yagil Y, Shapira N,

Douek P, and Boussel L, was published in a peer-reviewed scientific journal [94].

Having established VNC as a clinical standard to evaluate the aortic wall in the setting of
acute IMH, we sought to develop the technique further and optimize the use of contrast
information gathered in DECT datasets. Since DECT allows for material decomposition
(see section 4.3.2) of a pair of arbitrary materials, we concretized the idea of performing

a patient-oriented material decomposition to void the aortic lumen’s attenuation beyond
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the appearance of a non-contrast CT. To do this, we selected a region-of-interest in the
ascending aorta of patients referred to CTA for suspected acute aortic syndrome, and
defined the ROI's content as a material to be decomposed with water as would be done
with classic material decomposition. The water basis images obtained present a
hypodense aortic lumen, recalling the so-called “dark-blood” or “black-blood” MRI
sequences. The result is a stronger contrast between the aortic lumen and wall. We
assessed dark-blood CT images for aortic wall conspicuity in patients presenting with
acute IMH and control subjects. This work, co-authored with Si-Mohamed SA, Shapira N,
Douek PC, Meuli RA, and Boussel L, was published in a peer-reviewed scientific journal

[111].

An equally important facet of cardiovascular DECT is the readily available VMI that can
provide, to some extent, a layer of “lower-energy” information. As mentioned earlier, low-
energy photons convey more contrast information than their higher energy counterparts,
and separating them is relevant, especially in CM-enhanced examinations. VMI are
synthetic images extrapolated from DECT datasets and represent voxels whose CT
number is computed as if the X-ray beam was monochromatic and can be obtained down
to 40 keV on most systems, close to the K-absorption edge (“K-edge”) of iodine. The K-
edge describes a discrete energy level found just above the k-shell’s electron binding
energy, associated with an abrupt increase of the photoelectric effect of incident X-ray
photons. In X-ray computed tomography, this physical property can be used to gain tissue
contrast by reconstruction VMI as closely as possible to a material's K-edge or even to
perform specific imaging of a material whose K-edge falls within the available energy

range of a PCCT system. lodine’s (Z = 53) K-edge is at 33.2 keV, somewhat lower than
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the minimum energy level of 40 keV that can be reconstructed on most DECT systems,
yet 40 keV will provide much higher CT numbers than single energy CT. Higher CT
numbers can obviously be translated into lower iodine CM doses in CTA; however, the
extent of CM reduction and ideal VMI energy is still debated in the literature. Our paper
entitled “Reduced-iodine-dose dual-energy coronary CT angiography: qualitative and
guantitative comparison between virtual monochromatic and conventional CT images” co-
authored with Si-Mohamed SA, Yerly J, Boccalini S, Becce F, Boussel L, Meuli RA,
Qanadli SD, and Douek PC [109] addresses these questions by providing VMI image
analysis across an energy range from 40 to 130 keV, with quantitative and qualitative
image quality markers. Of note, we demonstrate that with a 40% CM dose reduction, 55
keV VMI provide non-inferior diagnostic quality compared with regular CM single energy
CT, and 40 keV’s strong boost of iodine CT number should be used carefully to avoid

obscuring calcified plaque.

Along the same lines, VMI and also iodine basis images (iodine versus water material
decomposition maps) can be used to assess static first-pass myocardial perfusion in any
CCTA performed with spectral CT. DECT can quantify the concentration of materials and,
therefore, is supposed to add relevant information regarding myocardial perfusion.
However, the impact of the injection protocol on the absolute iodine concentration
measured on first-pass DECT-myocardial perfusion may lead to variability and has never
been explored. The purpose of this clinical study was twofold: (a) to demonstrate the effect
of contrast material injection rate on the iodine distribution in healthy myocardium during
first-pass perfusion; (b) to evaluate the impact of virtual monochromatic images (VMI) on

image noise, signal-to-noise ratio, and contrast-to-noise ratio. This work raises awareness
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of the critical dependency of myocardial iodine content on contrast media injection rate
and dose; this is relevant and undermines the clinical applicability of previous studies
attempting at determining a normal range of iodine concentration measured on iodine
basis images [112, 113], but the tremendous effect of the injection protocol was
disregarded, at least until now. We even found that higher CM doses lead to increased
iodine inhomogeneity, potentially hampering perfusion and ischemia analysis. In other
words, this study provides another strong argument in favor of using DECT and reduced
CM doses for cardiac CT. Furthermore, the study’s secondary endpoints show a marked
contrast-to-noise improvement achieved with spectral CT. This work, co-authored with
Boccalini S, Si-Mohamed S, Matzuzzi M, Tillier M, Revel D, Boussel L, and Douek P, was

under review at the time of writing.
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6 Achieved results

6.1 Radiation and iodine dose

6.1.1 Virtual versus true non-contrast dual-energy CT imaging for the diagnosis of aortic
intramural hematoma [94]

Implications for patient care

DECT allows skipping the non-contrast acquisition usually performed as part of aortic

CTA. This saves radiation dose and examination time.

Author contribution

Co-author; participated in the phantom experiments, CT image assessment of the clinical

part of the study, and manuscript editing.
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Abstract

Purpose To assess whether virmal non-contrast (WVNC) images derived from contrast dual-layer dual-energy computed tomog-

raphy (DL-DECT) images could replace true non-contrast (TNC) images for aortic intrammural hematoma (IMH) diagnosis in

acute aortic syndrome (AAS) imaging protocols by performing quantitative as well as qualitative phantom and clinical studies.

Materials and methods Patients with confirmed IMH were included retrospectively in two centers. For in viro imaging, a

custom-made phantom of IMH was placed in a semi-anthropomorphic thomx phantom (QRM GmbH) and imaged on a DL-

DECT at 120 k'Vp under various conditions of patient size, radiation exposure, and reconstruction modes. For in vivo imaging, 21

patients (70 £ 13 years) who underwent AAS imaging protocols at 120 kVpwereinchuded. In both studies, contrast-to-noise ratio

(CNR) between hematoma and lumen was compared using a paired ¢ test. Diagnostic confidence (1 =non-diagnostic, 4=

exemplary) for VINC and TNC images was rated by two radiologists and compared. Effective radiation doses for each acquisition

were calculated.

Results In both the phantom and clinical studies, we observed that the CNRs were similar between the VNC and TNC images.

Moreover, both methods allowed differentiating the hyper-attenuation within the hematoma from the blood. Finally, we obtained

equivalent high diagnostic confidence with both VNC and TNC images (VNC =32 £0.7, TNC= 3.1 £0.7; p = 0.3 ). Finally, by

suppressing TNC acquisition and using VINC, the mean effective dose reduction would be 40%.

Conclusion DL-DECT offers similar performances with VNC and TNC images for IMH diagnosis without compromise in

diagnostic image quality.

Key Points

* Dual-laver dual-energy CT enables vimual non-conrast imaging from a conrast-enhanced aoguisition.

* Virtual non-contrast imaging with dual-laver dual-energy CT reduces the number of acquisiions and radiation exposure in
acute aortic syndrome imaging protocol.

* Dual-laver dual-energy CT has the potential to become a suitable imaging tool for acute aortic syndrome.
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Abbreviations

AAS Acute aortic syndrome

CNE Confrast-to-noise ratio

CTA CT angiography

CTDIvel  Volume CT dose index

DL-DECT Dual-layer dual-energy computed
tomography

DLP Dose-length product

DS-DECT  Dual-source dual-energy computed
tomography

IMH Intrammral hematoma

ROI Regions of mterest

SD Standard deviations

TNC True non-contrast

VMO virtual non-contrast

WED Water-equivalent diameter

Introduction

Aortic intramural hematoma (IMH) is a life-threatening con-
dition that belongs to the spectrum of acute aortic syndrome
(AAS). Itis cansed by micro-intimal tear or rupture of the vasa
vasorum that creates a hemorthage into the aortic media and
thickens the aortic wall. Between 16% and 47% of IMH will
progress to dissection often leading to patient’s death [1].
Therefore, it is essential to promptly diagnose IMH in order
to perform emergency surgery when necessary [2].

Today, dual-phase CT angiography (CTA) is considered
the best tool available for IMH diagnosis [3, 4]. Indeed,
while IMH appears as a circumference of hyper-
attenuation on non-contrast CT images, it is undetectable
on contrast CT images due to the masking effect of iodine
[1, 5-7]. Therefore, dual-phase CTA requires a non-
contrast scan for the detection of aortic IMH and a con-
trast scan during the arterial phase for the detection of
intimal tears, extension of an aortic disease, contrast leak-
age, and visceral ischemia [2, 4, &, 9]. However, a disad-
vantage of dual-phase CTA is the higher radiation dose
[10, 11]. To decrease the dose, Knollman et al have pro-
posed to replace the non-contrast phase using a threshold
to differentiate the IMH from the aortic himen [12].
Unfortunately, this method highly depends on attenuation
levels, which are affected by various factors such as mbe
voltage, patient size, or beam-hardening effects that make
the diagnosis of thin IMH particularly difficult due to the
high concentration of iodine within the blood pool [13].

Dual-energy CT (DECT), comparing two different en-
ergy levels, discriminates materials of different effective
atomic numbers [14-18]. Post-processing can create

ﬂ Springer

virmmal non-contrast images (VINC) that simulate true
non-contrast images (TNC) by subtracting the attenuation
due to iodine from the contrast-enhanced images [19, 20].
However, the comparability of VNC with TNC images
depends on the accuracy of iodine quantification. For ex-
ample, in the smdy of Hua et al [19]. iodine accuracy is
within 0.3 mg/mL (median) with a maximal deviation of
0.5 mg/mL. This translates into variation of up to 10
15 HU, in line with the results of previous studies [19,
21-26]. Therefore, since VNC is only an approximation
of TNC, it is important to check the usefulness of VNC
within specific clinical simations [20, 21, 235, 27, 28). The
rationale of replacing TNC by VNC images is to reduce
radiation exposure by waiving the non-enhanced acquisi-
tion. It serves also when the non-contrast acquisition was
erroneously omitted.

In the absence of previous demonstration in the literature,
we conducted this study to assess whether VNC images could
replace TNC images for aortic IMH diagnosis in AAS imag-
ing protocols, by performing phantom and clinical
ex periments.

Material and methods
Study design

This work consisted of an in vitro phantom study performed in
an academic hospital (Hopital Louis Pradel, Lyon) and an
in vivo clinical smdy carried out in two academic hospitals
(Hopital Louis Pradel, Lyon, and Clinique Universitaire UCL,
Brussels) and approved by the Instimtional Review Board of
both institutions. The patients were incloded retrospectively:
their data were anonymized and no informed consent was
required.

Dual-layer dual-energy CT

This study was carried out on a single source dual-layer
spectral CT (IQon, Philips Healthcare) equipped with
two separate scintillator layers. The top laver absorbs
the low-energy photons and the bottom layer the high-
energy ones. Therefore, both acquisitions are perfectly
simuftaneous and the spectral separation is not compro-
mised by any motion. An original feature of this tech-
nology is that it allows processing spectral data without
having to select a dual-energy protocol prior to an exam-
ination and delivers the same dose as a conventional
single-source CT [19, 22].
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Phantom study
IMH phantom

To compare the TNC and VINC image quality, a custom IMH
phantom was built using animal tissue and blood (Fig. 1).
Experimental details are provided in the Supplemental data.

Image aoguisition and reconstruction

The acquisition was carried out using a non-ECG gating aortic
protocol (Table 1). The acquisitions were performed at three
different CTDIved (2.5, 5, and 10 mGy) without automatic
current modulation in order to keep the dose constant between
different phantoms. These exposure levels were chosen to
match clinical AAS imaging protocols and correspond to a
dose right index at 15, 21, 27 and 6, 12, 18 for the small and
large phantoms, respectively. Each acquisition was repeated
three times and the standard deviations and ranges of the av-
eraged attenuation vahes were calculated. Conventional TNC
images of the non-contrast phantoms, VMNC images of the
contrast phantoms, and “iodine no water” images were recon-
structed using the proprietary iDose/Spectral iterative recon-
struction algorithm at levels 0 and 3 and obtained directly
from commercial software (Spectral Philips IntelliSpace
Portal 9.0). To obtain the VINC images. the reconstruction
algorithm subtracts the respective iodine component from
each of the base components and creates a monoenergetic
70 ke'V from the resulting base components [19]. Level 0
corresponds closely to an FBP reconstruction with a minimum
of additional fterative post-processing.

Image analysis

Images were analyzed on a clinical workstation with commer-
cial software (Spectral Philips Intellispace Portal 9.0). Regions
of interest (ROIs) of 0.8 o 2.0 cm® were drawn within the
hematoma, blood, and fat by a radiclogist with 6 years of
experience in cardiovascular imaging (S5M) to measure the

a b

Clamp
Intestine walls

Heparinized blood

Clotted blood

Stitches

Fig. 1 Representation of the aortic intramural hematoma (a) and
anthropomorphic (b, ¢) phantoms. The filse and inner lumen were
filled with blood with extra iodinated contrast media for the inner

mean attenuation values and standard deviations (SD). After
carefully matching each set of acquisition in the z-direction,
the ROIs were copied/pasted on the corresponding slice. The
absolute mean attenuation difference between TNC and VNC
attenuation vahies was calculated. The contrast-to-noise ratio
(CNR) between blood and hematoma on both images was
calculated for each conditions using the formula below:

_ [Mean HU (hematoma )—Mean HU (blood )|

CNR SD (fat)

The SD of the fat attenuation surmunding the IMH model
was chosen to assess image noise becanse of the homogeneity
of this tissue. The water-equivalent diameters (WED) of the
phantoms and the patients were calculated using custom
software.

Clinical study
Patient characteristics

We retrospectively reviewed clinical and imaging data for
patients who were suspected of having an acute aortic syn-
drome and who underwent a CTA between April 2017 and
November 2018. The inclision criterion was the presence of
an isolated inranmiral hematoma confirmed by the surgery.
When surgery had been declined, the diagnosis was based
on a final consensus between the clinical signs and the imag-
ing findings on CTA. Patients who underwent a single-phase
CTA examination were excluded from the study. Taken to-
gether, 21 patients were included. The information about the
population included in the study is shown in Table 2.

Image acquisition and reconstruction

All patients underwent a doal-phase CT according to the
European Society of Cardiology 2014 guidelines on the diag-
nosis and treament of aoric disease [¥] (Table 1). For the
arterial phase, bolus tracking and retrospective ECG gating
were used following intravenous administration of 60
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lumen to target an attenuation value of 80 HU and 350 HU,
respectively. Obese patients were simulated by adding an outer
extension ring (b)
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Table1 Acquisition and

reconstTuction pammeters for Parameters Phantom stady Clinical sudy
phantom and clinical studies
Acquisition Tube potential (kKVp) 120 120
Dictector collmation 64 = 625 64 = (L6253
Pitch 123 1234
Romtion time {s) 017 07
Exposure control None 3D modulation
Reconstruction Filter B
Section thickness {mm) 1.5 15
Field of view {mm) 300 300

%0 mL of iodinated contrast medmm (3-3.5 mL/s) followed
by 25 mL of physiologic saline solution. The image recon-
structions for all patient incloded TNC, VNC, and “iodine no
water” images, at iDose/Spectral level range 3.

Quantitative analysis

The images were analyzed similarly to what has been per-
formed for the in viro study. For each patient, a stack of 3
contiguous slices of 1.5 mm width was drawn at different
positions separated by 13 mm depending on the IMH size.
Measurements were performed within three different tissues:
hematoma, blood, and peri-aortic or peri-abdominal fat. The
CMNRs were calculated as described above.

Qualitative analysis

Two radiologists ( SSM, DR) with 6 years of experience in
cardiovascular imaging as well as respectively 4 years
(S5M) and no experience (DR) in dual-layer dual-energy CT
(DL-DECT) images read the patients’ cases. The readers were

not blinded to the type of images and scored them for each
patient at 4 different levels. The readers could change settings
and window according to their personal preferences. The
readers were asked to score the diagnostic confidence of the
hyper-attenuation of the aortic wall relative to the blood pool
based on a scale from 1 to 4: 1 =non-diagnostic, 2= limited,
3 =diagnostic, and 4 = exemplary (Fig. 2) [29].

Radiation dose

The dose-length product (DLP) and volumic CT dose index
(CTDIval) for the non-contrast and contrast acquisitions were
recorded. The effective dose (ED) was calculated as follows:
ED=DLP = 0.014 {Thorax conversion factor) [30].

Statistical analysis

Statistical analyses were performed using the software R (R
Foundation for Statistical Computing) [31]. All data are given
as mean + SD (Ist quartile; 3rd quartile). Attenuation and
CNR values were compared using a paired 7 test as the

Table 2 Patient charactenistics

{population, clinical data, Criteria Population
radiation dose data). Data are
represented with mean values + Population Patients (x) 21
stndard deviation (st quartile- Age (years) 024 128 (63.7-78.3)
3nd quertile) Gender 8M, 13F
BMI {m/kg™) 24K 40 (213-201)
WED {cm) 356+ 50(21.2-30.4)
Clinical dam IMH type { Stanford) 144, 7B
IMH thickness (mm) T =34 (50-56)
Surgery 13
Delay between OT and onset of AAS (days) 13.4= 362 {0.0-9.0)
Radiation dose data CTDmac (miliy) B3=6.1(61-93)
CTDhra (mliy) 11326.1(7.1-135)
mA s 11012675 (6T.0-113.0)
mA S 135.1 £ 67.9 (83 0-150.0)
Chverall DLP (miGy cm) 10166 £753.7 (6E20-1130.1)
Effoctive dose (mSv) 1422 106 (9 5-158)
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Fig. 3 CTscan of the in vitro IMH: the aortic wall hyper-atiemuation in the phantom could be observed on the THC (a, d) and VRNC (b, ) images but not
on the contrast images (¢, ) for the small {a—c) as well as the large (d-F) phantoms (WL, 100; WW, 350)

Diagnostic confidence

The diagnostic confidence scores were close to exemplary for
both the TNC and VINC images and were not significantly
different between the two (TNC=3.13+0.74; VNC =3.22
£0.73, p=030). The inter-radiologists agreement was high
for both images with TNC=96.51%, £=0.87; VNC=
03.80% ., k= 0.76, as well as for the intra-radio logist reliabi lity
with TNC =98.07%, k= 0.87; VNC = 96.74%, k=0.90.

Radiation dose

The calculated effective doses (mSv) were 5.5£3.7(3.7:63)
and 8.8:+£7.2 (4.3; 11.0), respectively, for non-contrast and
contrast scans leading to an overall dose of 14.24 10.6 (9.5
15.8) (Table 2). By suppressing TNC acquisition and using
VNC, mean effective dose reduoction would be 39.9 £ 10.8%
(33.1; 44.00.

Discussion

In the present study, we demonstrated that using a DL-DECT
system, it is possible to replace TNC images with VNC im-
ages and obtain reliable aortic IMH diagnosis while delivering
lower doses of radiation than a typically dual-phase CT AAS
protocol. The CNRs were comparable in both images between
the hematoma and the blood allowing for the visualization of
the relative hyper-attenuation of the hematoma in clinical
study and also for every experimental condition of the
in vitro study despite WED variations, CTDIw/ differences,
and iDose level choices.

In both studies. the attenuation values in the VNC
images were slightly different than in the TNC images
(up to ~ 10 HU ). Such differences are expected since the VINC
images mimic a monoenergetic image at 70 ke'V of non-contrast
acquisition while TNC values are derived from conventional
polychromatic images. HU values of comventional imapes are
impacted by the beam-hardening effect wbe k'Vp, post-tube

Table3 Hematmma and hlood

N ne T —— o | Attenuationei..a (HLT) il

BEE 0K (EE3-88.5) 56.42033 (79.3-79.5) 0.0001
T94 203 (793-79.5) 476202 (47.6-47.7) 0.0002
535 20,66 (83.1-83.9) 558228 (53.8-57.4) 0.0002
09 £12(E05-81.3) 52.1x046 {51.8-52.5) 0.0001

attenuation values for the small Phantom Images
phantom in THC and VRNC - - )
images with conditions ¢lossst to Small TN
clinical setings | similar WED VMNC
th:m..:lmlcaj study), CTDhead 10 Large THE
and iDose 3

VN
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Fig. 4 CT scan of a 64-year-old patient diagnosed with acrtic IMH ( fill
armowheads) on the THNC (a, d) and VMO (b, ) images, which was hardby
visible atf the level of the ascending aorta { empty amwheads), especialby

filration, and patient size. By definition, monoenergetic images
are viriually free from such beam-hardening effects. Indeed, the
VMNC attenuation values in the two different phantom
sizes are more consistent compared with the conventional
TNC values.

In the phantom study, the attenuation vahies in the VINC
images were lower than in the TNC images. This difference
was accentuated at low-dose levels and phantom size, in
agreement with previous smdies [19, 22]. This could be ex-
plained by two factors. First, in DECT, the VNC images are
derived from the water components based on a material de-
composition between two components (water-iodine) in
which any deviation from water-like attenuation is inter preted
as non-zero iodine component [ 19, 22]. Therefore, their atten-
uation vahies end up being decreased. For example, as for
bones, the calcifications are interpreted as a mixture of
water-like and iodine-like materials, and the WVNC algorithm
does not separate the bone from iodine, explaining that the
attenuation vahie of bone or calcification in VINC images is
roughly half of their value in the original 70-keV image.

on the conmrast images (e, f), where its presence was later confimed
during the surgery (WL, 100; WWw, 350)

Similady, the elevated protein, iron, and hemoglobin content
in the hematoma and blood, which increases the x-ray attenu-
ation [32], is interpreted as a mixture of water-like and iodine-
like material. Hence, the iodine content is overestimated
which leads to anunderestimation of the hematoma and blood
attenuation in the VINC image. Second, in low-dose condi-
tions (obese patients, low CTDIwel), the accuracy of iodine
quantification is biased which, as demonstrated in several
studies, also results in inaccurate attenuation vales [22, 33].
However, in such cases, we found similar CNE. probably ex-
plained by the noise suppression algorithms inchided in spec-
tral reconstructions which take advantage of known statistical
properties of the noise (anti-correlation between the two base
images) to target it and reduce it [22, 34).

In the clinical smdy. we found slightly different results in
comparison with the phantom study due to the difficulies
mimicking perfectly the hematoma composition, as well as
the heterogeneity of hematoma attenuation between patients.
Firstly, the attenuation values were closer between VNC and
THNC images in vivo, probably explained by the lower

Table4 Attermation and noise
walues in HU. Data ane

represented with mean values =
standand deviation { 1st quartle—
3nd quartile). Mean absolute dif-
ferences were calculated bebaeen
THC and VML images

Criteria THC VMO il

LR )1 —— - ME£T4(5089-595) 552 8.5 (49.1-60.2) 0440

Attenuation,,., (HLT) 3 =59(365-436) 32 £T0E59-43T) 0071

Mean absolute differenca,. e (HU) 50=4.2 NA

Mean absolute differencag..q (HLD 47£39 MA

Maise (HLT) 196260 (162-235) 181263 (132-22.3) 0041
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Fig. 5 Disribution of the in vitmo in vitro in vivo
{a, b) and in vivo (¢, d) mean CT @ {Small phantam, CTDI 10 mGy, iDose 3} c
attenuation values and contrast- 00036
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concentrations of hemoglobin, protein, and iron. Indeed, the
mean attenuations for hematoma and blood were lower in vivo
than in vitro. This decreased the overestimation of the iodine
content, as confimmed by the lower iodine concentrations pres-
ent in the hematoma, which led to a greater estimation of
hematoma attenuations in the VNC images. Secondly, the
percentages of absolute differences measurements of less than
3, 10, and 15 HU were found in more than 70, 92, and 98 % of
the cases, respectively, in line with recent studies [24, 35].
Finally, there was a significant difference in CNR between
VMNC and TNC images. This result was most likely due to
the different doses of radiation that were used between the
non-contrast and contrast acquisitions.

An important result of our work is the similar diagnostic
confidence for the hyper-attenuation ofthe aortic wall relative
to the blood pool on VINC compared with TNC images, inde-
pendently from the experience of the readers to DL-DECT
images. This finding, combined with the enhanced CTA,
would then end up with a similar diagnostic performance of
IMH toa standard CT protocol with two acquisitions. We also
observed good and excellent inter-rater agreement for the
VMNC and TNC images, respectively. This contrasts with pre-
vious studies that demonstrated inhomogeneous subtraction of
indine in VINC images [20, 36, 37]. We can explain our results
by a better correction of the beam hardening and management

ﬂ Springer

of the high iodine concentrations. Indeed, we took advantage
of a recent software update of the DL-DECT system that im-
proves image quality.

Altogether, our data appear to be consistent with previ-
ous studies from other fields that reported comparable
quality between VINC and TNC images [20, 21, 23, 28]
However, it is the first study to evaluate VINC images ob-
tained from clinically acquired examinations in an acute
condition setting. In addition, AAS have variable clinical
presentations that may overlap with other acute cardiovas-
cular events (e.g., myocardial infarction, pericarditis) that
are more frequent and only require enhanced CT to be
diagnosed. Unfortunately, IMH can be diagnosed only if
an unenhanced CT has been done first. Therefore, when a
radiologist is unexpectedly confronted to a thickened aortic
wall on an enhanced CT, it is not possible to reliably diag-
nose IMH. On the contrary, using DL-DECT, it would be
possible to use VNC images a posteriori and look for
hyper- attenuation relative to the blood pool to diagnose
IMH. This protocol also has the advantage of substantially
decreasing the radiation dose as shown here as well as in
other studies [20. 36].

Our work has some limitations such as static blood in the
phantom aortic lumen led to a greater heterogeneity of the
attenuation values. Secondly, our phantom, by the high
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attenuation found in the hematoma, was not reflecting the full
range attenuations of IMH. However, the acute ones were well
reflected. Finally, while the patients inchuded in the study rep-
resented a heterogeneous panel of the population with a great
diversity of WEDs and CTDI,,;. there were still only 21
subjects.

In conclusion, we demonstrate in the present study that it is
possible to use VNC images from DECT to diagnose IMH
while potentially decreasing the dose of radiation delivered to
the patients.
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6.1.2 Reduced-iodine-dose dual-energy coronary CT angiography: qualitative and

quantitative comparison between virtual monochromatic and polychromatic images [109]

Implications for patient care

First, DECT with standard and reduced iodine concentrations was evaluated in a high-
precision coronary artery phantom. This in vitro study demonstrated that reduced-iodine
DECT not only preserves but also improves cross-sectional area quantification accuracy
compared with conventional standard-dose CT. Cross-sectional area quantification is a
crucial figure of merit in coronary CTA because patient management directly depends on

stenosis assessment, which is derived from vessel diameter and section area.

Second, in a clinical study, the iodine reduction potential of coronary DECT angiography
was demonstrated. In other words, DECT allows for substantial iodine dose reductions

without cutting back on qualitative and quantitative image quality.
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Abstract

Objectives To quantitatively evaluate the impact of virtual monochromatic mages (VMI) on reduced-iodine-dose dual-energy

coronary computed tomography angiography (CCTA) in terms of coronary lumen segmentation in vitro, and secondly to assess

the image quality in vivo, compared with conventional CT obtained with regular iodine dose.

Materials and methods A phantom simulating regular and reduced 1odine mjection was used to determine the accuracy and

precision of himen area segmentation for vanous VMI energy levels. We retrospectively included 203 patients from December

2017 to August 2018 (mean age, 51.7 £ 16.8 years) who underwent CCTA using either standard (group A, » = 103) or reduced

(group B, n = 100) iodine doses. Conventional images (group A) were qualitatively and quantitatively compared with 55-keV

VMI (group B). We recorded the location of venous catheters.

Results Tn vitro, VMI outperformed conventional CT, with a segmentation accuracy of 0.998 vs. 1.684 mm?, respectively (p <

0.001 ), and a precision of 0.982 vs. 1.229 mm’, respectively (p < 0.001), n simulated overweight adult subjects. In vivo, the rate

of diagnostic CCTA m groups A and B was 88.4% (n=91/103) vs. 89% (n = 89/100), respectively, and nominfenonty of protocol

B was mferred. Contrast-to-nose ratios (CNR) of lumen versus fat and muscle were higher in group B (p < 0.001) and

comparable for lumen versus calcum (p = 0.423). Venous catheters were more often placed on the forearm or hand in group

B(p=<=0001)

Conclusion In vitro, low-keV VM improve vessel area segmentation. In vivo, low-keV VMI allows for a 40% iodine dose and

mjection rate reduction while mamtaining diagnostic image quality and improves the CNR between lumen versus fat and muscle.

Key Points

* Dual-energy coronary CT angiography is becoming increasingly available and might help improve patient management.

* Compared with regular-iodine-dose coronary CT angiography, reduced-iodine-dose dual-energy CT with low-keV monochro-
matic image reconstructions performed betier in phantom-based vessel cross-sectional segmentation and proved to be
Roninferior in W,

* Patients receiving reduced-indine-dose dual-energy covenary CT angiography ofien had the venous catheter placed on the
Sorearm or wrist without compromizsing image guality.
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ACCUrACY
Abbreviations

CCTA  Coronary computed tomography angiography
M Contrast medmm

CNR  Confrast-to-noise ratio

LAD  Left anterior descending

LCx Left circumflex

LM Left mam

RCA  Right coronary artery

ROIT Region of interest

VMI  Virtual monochromatic image

Introduction

Coronary computed tomography angiography (CCTA) has
become the most widely used method for non-invasive assess-
ment of coronary artery disease [1]. To mmimize adverse
effects from contrast medmum (CM) mjection, 1odine dose re-
duction should be a contmuing effort, especially for patients
with impaired kidney fimction or cardiopulmonary decom-
pensation [2]. but also m general, smee lower iodine usage
can reduce CT-induced DNA damage [3] and save costs.
Furthermore, using lower mmjection rates could help manage
patients with poor vein integrity when the catheter 1s inserted
in the forearm or the hand [4]. Then agam. efforts to save
iodinated CM should be mplemented with care in clinical
routine to mamtain CT exammations’ diagnostic performance
and ulomately patent outcomes.

Lately, dual-energy CT and virual monochromatic images
(VMI) have shown promise in reducing CM dose n phantoms
[5] and small patient cohorts, using fast KV switching [6, 7] or
dual-layer spectral detector [8, 9] technology. However. these
mitial studies failed to perform a sample size caleulation and
did not apply appropriate nonmfenonty statishcs to prove the
similanity between conventional CCTA and reduced-CM-
dose dual-energy CCTA [10]. Furthermore, data regarding
the impact of VMI on image quality. especially vessel diam-
eteraccuracy and precision, are still limited. Previous research
has attempted to assess the accuracy and precigon of vessel
lumen area measurements with conventional CT [1 1], but no
data exist regarding dual-energy/spectral image reconstruc-
tions. Some studies recommend vanous low- or mid-energy
VMI for CCTA [12-14], but to owr knowledge, segmentation
reliability for vessel lumen area quantification has not been
evaluated yet. VIMI have different contrast and noise charac-
tenistics than conventional CT images; since spatial resolution
strongly depends on contrast and noise [15, 16]. increased
image noise may be a concemn for vessel lumen quantification
tasks.

@ Springer

In the absence of previous demonstration, we used quan-
titative metrics to evaluate the impact of VMI on the accu-
racy and precision of coronary lumen segmentation in a
high-precision phantom. Secondly, we aimed to assess the
image quality of reduced-CM-dose dual-energy coronary
CCTA compared with conventional CT obtained with reg-
ular CM delivery rate and volume in a large patient cohort.

Materials and methods
Study design

This study consisted of a phantom expenment simulating cor-
onary arteries with high-precision vessel lnmen areas and clin-
ical research, mchuding patients referred for CCTA. The phan-
tom analyses were performed in an academic cardiovascular
imagng laboratory (Lausanne University Hospital and Center
for Biomedical Imaging, Switzerland). The clinical work was
a single-center refrospective observational study approved by
the local ethics committee, performed n an expert teriary
center (Hopital Louis Pradel, Hospices Civils de Lyon,
France). in which patients who received regular (range 50—
90 mL) CM delivery rate and volume were assigned to group
A and those who had a reduced -CM-dose protocol (range 30—
40 mL) constituted group B. Supplementary Figure A presents
the study flow diagram.

Phantom study

A previously described custom-designed resolution module
[17] imserted in the center of an anthropomorphic chest phan-
tom (QRM) simulating a normal (70 kg) or an overweight
(120 kg) adult patient was used (Supplementary Figure B).
The module consisted of a 2-cm-thick polymethyl methacry-
late (PMMA) slab drilled with 110 holes whose diameters
matched human coronary arteries, ranging from 3.00 +
0.004 to 342 = 0,004 mm [18], in 22 steps of 0.02 mm,
repeated five imes at different locations in the PMMA slab.
The choice of PMMA was related to the ultra-high dnlling
precision required to serve as a reliable groumd truth. The
holes were homogeneously filled with two different iodmated
CM concentrations (Tomeron 400, Bracco) mixed with sahne.
To build an experimental model recreating the lumen en-
hancement observed in vivo as closely as possible, we pre-
pared Iomepmol 400/salne mixtures that exhibit similar CT mime-
bers (at 120 kVp) as patents had n vivo (Le.. ~ 400 HU in goup
A, and ~242 HU m group B). This has brought us to use 18.5 mg
I'mL to smulate regular mjection and 10.5 mg I'mL to stmlate a
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reduced CM pmtocol. These concentrations were adjusted to sim-
ulate himen-to-gpicardial fat contrast obtamed i patients from
sroup A (1835 mgmL, 400 HU) and group B (10.5 mg/mL,
242 HU). The phantom was scammed using the same parameters
as i the climical sudy, and the resulting DICOM images were
automatically processed uang a Matlab mutine (MathWorks).
This routine automatically segmented the vessel lumen area based
on the full-width at half maximum method to outline the himen
mterface and cormpute vessel area [19] The difference between the
known and measured vessel area was assessed on smgle-energy/
conventional CT mmages (185 mg/mL) and 40-130%keV VMI
(105 mg/ml), in 15 keV mcrements to denve segmentation ac-
curacy and precision. The segmentation accuracy was defined as
the mean area’s difference from the ground truth (dnlled area)
whereas the segmentation precision was defined as the dandard
deviation of the area measurements [19]

Clinical study

We enrolled 203 consecutive patients referred for chmcally
indicated CCTA from December 2017 to August 2018,
Exclision crteria were as follows: age < 18 years, known
severe allergy to 1odinated CM, renal insufficiency with
eGFR < 30 mL/min, coronary arery calcium score > 400,
Patient characteristics and univanate compansons between
groups A and B are detailed in Table 1.

Contrast medium injection protocol

Iomeprol 400 mg I'mL (Tomeron®, Bracco) was the only CM
wsed, wammed beforehand, and mjected through an 18-G cath-
eter using a dual-head power injector. The best venous cathe-
ter insertion site was wsed, ideally in the nght antecubital
fossa Depending on the quality of venous access (catheter

location and salme test injection), the radiologmst determined
the CM injection rate according to the American College of
Radiology Manual On Contrast Media's recommendations
[4]. The total mjected CM volume was individualized based
on patient weight. The mjection protocols were as follows:
group A (n = 103) volume, | mLkg (maximum 90 mL);
iodme delivery rate, 2 gfs; flow rate, 5 mL/s; group B (n =
100): volume, 0.5 mL/kg (maximum 45 mL); iodine delivery
rate, 1 g/s; flow rate, 2.5 mL/s. The mjection duration was 185
in both groups and followed by a 20 mL salme fhush.

Coronary CT angiography protocols and image
reconstruction

All examinations were performed on a dual-layer spectral de-
tector CT system (IQon, Philips Healthcare), with patients
lying supine, arms above the head. in a single breath-hold. If
necessary, patients received inravenous beta-blockers to
achieve a pre-scan heart rate no higher than 65 bpm. Helical
mode CCTA with retrospective ECG-gatmg was performed.
Detailed CCTA parameters were as follows: tube potential,
120 kVp; tube load maximum 220 mAs; gantry revolution
time, 0.27 5; automatic exposure control (angular and longitu-
dmnal). combined xyz-axis; beam collimation geometry, 64 =
0.625 mm. Bolus racking was used, with a region of mterest
(ROT) placed m the descending aorta. and acquisiion was
triggered when an attenuation threshold of 130 HU was
reached. The occurrence of allergic reactions was recorded.
Volune CT dose mdexes and dose-length products were re-
trieved from the radiation-dose structured reports.
Conventional- and spectral-based images were reconstructed
using a standard kemel, iterative reconstruction (iDose 3.,
Philips Healthcare), and section thickness of 0.9 mm.

Table 1 Patient characteristics of the study populaton and univariate compansons

Owerall Group A, 5mlL/s Group B, 2. 5mL/s o value
n 203 103 100
Age [year] 53[23(18-8T) 50 [21 5] (18-86) 54.5 [22] (18-8T7) 0362
Female sex BT (42.8) 44 (427 42 (42.00 0967
Haght [em] 1693+ 152 (146-198) 169.8 = 9.0 (150-192) 168.7 = 196 ( 146-198) 0445
Weight [kg] T3I[21.3]) 41-164) 715 [23.8] (47-112) T4[1R](41-124) 0653
Body mass index [kg'm”] 251571 25[6.1] 255[58)] 0863
Obesity (BMI = 30 kgim®) 36 (17.6) 19(18.3) 17017.0) 0957
Current or past smoking 63(31) I7(350) 26(26.0) 0184
Hypartension 53(26.1) 200194) 330330 0037
Dibetes 21(10.3) 10(9.7) 1110 0924
Dryslipidemia IBCIRT) 19(18.5) 19.(19.0) 0581
Family history of CAD 46(22.7) 18(175) 28(28.0) 0097
Data are mems + sondand deviation or median [I0R], and (mnge)
BMT body mass index, CAD coronary artery disease
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Images were reviewed offlme utilizing the manufacturer’s
workstation (IntelliSpace Portal 10.0, Philips Healthcare).

Quantitative image analysis

A cardiothoracic radiologist (D.C.R.) with 7 years of expen-
ence performed all measurements. In group A, only conven-
tiomal CCTA images were analyzed, whereas m group B,
measurements were performed on VMI reconstructions rang-
mg between 40 and 130 keV in 15 keV increments. Circular
ROIs sparmmg at least 2 mm” were drawn in the proximal and
distal segments of the right coronary artery (RCA), left main
(LM}, left antenor descending (LAD), and left corcumflex
(LCx), to measure lumen attenuation, and special care was
taken to avoid any partial volume effect. These measurements
served to identify the VMI energy level providing the closest
atteruation to conventional CT images. Likewise, circular
ROTs of at least 2 cm” were drawn in homogeneous areas of
the ascending aorta epicardial fat adjacent to the proximal
RCA., trabecular bone m the center of a vertebra chosen m
the mid-thoracic region, and adjacent paravertebral muscles.
We selected a 2-cm” area to keep the noise-dependency of
values to a mmimum. Confrast-to-noise ratios (CNR) were
calculated usmg the following formula:

|mean CT numbery,,,—mean CT numbery ., |

CNR = ;
HP/;(s[:r;*m 4 SO

sse)

CNR was calculated between the imen and vanous tissues
o approximate several physiological or pathological climical
scenanios: CNR between the lumen and fat to assess the vessel
m its nommal environment, between lumen and muscle to ap-
proximate a non-caleified plague, and between lumen and
frabecular bone to approxmmate a calcified plague. In the phan-
tom, CNR between the vessel and sumoundmng back ground
matenial was computed.

Qualitative image analysis

Two radiologists (P.C.D. and 5.5-M.), with 25 and 7 years of
experience in cardiovascular imaging, respectively, indepen-
dently analyzed all CCTA mmages and could choose the best
temporal phase in the cardiac cycle and the optimal grayscale
windowing. Both were fully blinded to the CM injection pro-
tocol (patient groups) and clinical characteristics. In group A,
the analysis was performed on conventional sing le-energy im-
ages solely. whereas in group B the VMI exhibiting the closest
lumen attenuation compared with group A were used. Inter-
rater agreement was calculated based on the firs 100 patients.
The 18 coronary segments of the Society of Cardiovascular
Computed Tomography model were analyzed usmg a 4-point
Likert scale as previously published (9): excellent (no
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artifacts; score = 4), good (minor artifacts, good diagnostic
quality; score = 3), adequate (moderate artifacts, acceptable
for routine clinical diagnosis; score = 2), or poor (severe arti-
facts impamng accurate evaliation, segment classified as non-
evaluable; score = 1). A segment was deemed assessable if
scored > 2, and each non-assessable segment was categonzed
as insufficiently enhanced or artifact-related (motion or
streak). Artenes with a diameter smaller than 1.5 mm were
excluded from the analysis

Statistical analysis

Sample size was calculated for 80% power and a type-one
error rate of 5%, based on a noninfenonty margin of 10%
[20, 21]. To meet these requirements, we had to enroll at least
182 patients (91 in each group), assuming a 92% rate of pa-
tients with a diagnostic CCTA [21]. Results were expressed as
number of subjects (percentage), as mean (£ SD). or median
(IQR) for non-normally distnbuted data, unless otherwise
specified. Bivanate statistical analy=as was conducted using
chi-squared, Wilcoxon two-sample, or Student’s £ test where
appropnate. Variables with multaple levels were compared
using the Kruskal-Wallis test with post hoc testing, and p-
values were adjusted using the Holm method. Interobserver
agreement for qualitative ratings was evahiated using weight-
ed kappa coefficients, and mterpreted as follows: < 0, poor;
0.01-0.20, slight; 0.21-0.40, fair; 0.4 1-0.60, moderate; 0.61-
(.80, substantial; = 0.8 1, excellent. p values < 0.05 were con-
sidered statistically significant.

Results
Phantom study

For both iodme doses (18.5 mg/L and 10.5 mg/L), the algo-
rithm achieved wvisually adequate segmentation of cross-
sectional areas on conventional 1mages and VMI up to
&5 keV (Supplementary Figures C and D). The 55-keV VMI
reconstructions (at 10.5 mg/L iodine ) approximating group B
patients performed better than the conventional mmages (at
18.5 mg/L iodine) mimicking group A patients, for accuracy
(0,601 mm® vs. 0.342 mm’, respectively, p < 0.001), but not
for precision (0.597 mm” vs. 0.675 mm’, respectively, p <
0.002), for simulated 70 kg patient size. For simulated
120 kg patient size, low-iodine 55-keV VMI provided better
segmentation both regarding accuracy (0.998 vs. 1.684 mm®,
respectively, p < 0.001) and precision (0.982 vs. 1.229 .
respectively. p < 0.001). Regardless of the patient size and
CM concentration, the highest segmentation precision and
accuracy were achieved at lower VMI energy levels (1e., 40
and 55 keV), as shown m Fig. 1. The favorable effect of VMI
reconstructions in reduced-CM-dose dual-energy CCTA was

[
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Fig. 1 Invito accumey and preciston of vessd lumen ssgmentation as a
function of wdine dose (105 or 18.5 mg'mL) and patent st (70 or 120
kg, The conventional reconstruction “Ref” a 18,5 mL approximates
protocol A m the clinical study, whereas the virtual monochromatic

even larger with simulated 120 kg patient size. Besides dete-
norating the segmentation precision and accuracy themselves,
higher VMI reconstruction energy levels also increased the
measurement vanability as indicated by the ermor bars in Fig.
1. On the one hand, CNR between vessels and surrounding
background material indicated that low-lodine 55-keV VMI
preserve or mprove {depending on phantom size) the CNE
compared with regular-lodine conventional images and, on
the other hand, suggested substantial noise reduction on
VMI { Supplementary Figure E).

Clinical study

Thirty-two (13.6%) patients were excluded due to a calcium
score = 400, In the 203 patients included m the analysis, there
were no significant differences in age, sex, or patient size
between groups A and B (all p = 0.36; Table 1). Patients
group B more often had hypertension (p = 0.03); otherwise,
there were no differences regardmg risk factors between
groups. Examination-related charactenstics are detailed in

ToweY  BhkeV  100keY 115keV  130keV
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5 Precision (Weight = 120 kg)

—— Concantration = 10.5 mg Uimd
—8— Concentration = 10.% mg Fmid

]

dn

Precision [mm?]
L

Ref A0k amkat Tlkoa BikeY  10DkeY 11%keV  130keV
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mmages (VM at 1005 mg/mL approdmate protocol B, Whatever the
samning condition, low VM energies, up to a maxmmuom of 55 ke,
vielded peak sepmentation accumcy mnd precision

Table 2. In group B, the venous catheter was more often po-
sitioned in the left upper limb (p = 0.03) and more often m the
forearm or wnst (p < 0.001). Injected CM volume was sigmif-
icantly higher m protocol A thaninB (70.0 (IQR 8.8)mL and
40.0(IQR. 10.0) mL, respectively; p < 0.001). We observed no
extravasation and mild allergic reaction occwred m 3/203 pa-
tients, with no significant difference between groups.

Quantitative image analysis

The 55-keV VMI provided the closest attenuation compared
with conventional reconstructions and were used for the qual-
itative analysis. Mean coronary lumen attermation was signif-
icantly higher in protocol A (conventional image reconstruc-
tion) versus m B (55-keV VMI) (3974 (IQR 131.4) HU and
38001 (IQR. 136.4) HU, respectively: p =0.019). Detailed per-
segment and tissue attenuation values are presented in
Table 3. The attenuation m all vessel segments and tssues
(fat, muscle. and bone) was sigmficantly mfluenced by the
VMI reconstruction energy (all p < 0.001). CNR between
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Table 2 CT examination

L e —— CGroup A, 5 mL/s (n= 103) Group B, 2.5 mLss (n = 100) p value
COMPATSOnS
Venous catheter side, n (%)
Right B6 (R1.5%) 0 (705%) 0.031
Left 17 (16.5%) 30 (30
Catheter location, n (%)
Antecubital fossa RO (RA.45) B4 (G4 < 0,001
Forearm 12 (11.65%) 19 (195%:)
Hand or wrist 2 (1.9%) 17 (17%)
Heart rate before injection [bpm] 67 [16.5] 60 [14.5] 0.617
Heart rate dunng injection [bpm] 63 [14] 66 [13] 0.3
Contrast medium volume [mL] 70 [8.8] 40 [10] < 0,001
Contrast medium extravasation Mone None
Allergy (%)
Mild 1(0.9%) 2{1.8%) 0.973
Maoderate 0 0
Severs 0 0
CTDLg 231135 216 [13.6] 0.540
DLP 430.7 [266.1] W28 [251.7] 0.620

Data are medians [I)R ], or numbers (percentage). Spm beats per minute, CTO8, volume computed tomography

dose index, DLP dose-length product

lumen and fat was significantly lower n protocol A versus in
B {193 (IQR 11.6) and 249 (IQR 19.7), respectively; p <
0.001). CNR between lumen and muscle was significantly
lower in protocol A versus m B (12.2 (IQR 8.5) and 14.3
(IQR 12.4). respectively; p < 0.001). Fmally, CNR. between
lumen and bone was mamtamed with dual-energy CCTA (6.8
(TQR 7.3) (protocol A) and 6.7 (IQOR 8.9) (protocol B), respec-
tively: p = 0.423). A graphical representation (Fig. 2) across
all energy levels in group B shows that reduced-CM-dose
VMI reconstructions up to a maximum of 55 keV improve

CNE. compared with conventional CCTA (p=0.012, < 0.001,
and < 0.001 for lumen vs. fat, muscle, and bone, respectively).

Qualitative image analysis

Examples of CCTA in two patients from groups A and B are
illustrated i Fig. 3. While the image quality 1s excellent with
protocol B, note that the distal LAD has shightly less lumen
attenuation in protocol B than in A, Figure 4 and Table 4
summarize the results of the qualitative image analysis. The

Table 3 CTnumbers m HU of the vascular lumen, epicardial fat, and musde

Reconstruction o value
Conventional 40 ke 55 keV 0 ke BS keV 100 ke 115 keV 130 ke'V
M flow mate 5 25 25 25 25 25 25 25
[mLis]
Proximal R.CA 425T1169] 743.5[262] 4134 [1306] 2587[80.4]) 1882 [57.6] 14354521 1181[38.7 102 [36.8] <0001
Distal RCA A14071431] 6063 [2884] 346 [1433] 2227[79.1] 1639 [503] 1304[471] 1094457 05 [44]  <00M
LM 44501 [123] B2B[252] 4A35T1283]) 284[69.3] 205 [50.1] 1601 [429] 13113821 1148285 <000
Distal LAD 202 5[1358])  413[244] 2331 160 [70.9] 1198 [55.5] 94.6[52.4] B0 [48.6] 69,5 [453] <000
Distal LCx IVTOT1155]) 49,1 [265.6]) 2796 [1464] 1BS2[91.5] 1398 [638] 16T [56.7) 0o [52.09) 90.7 [49] =000
Ascending aora 466 [154.1] 871.9[2469] 486 [1306] 014[76.3) 2114 [523] 161.4[40.8] 13062051 1142273 <000
Medimn ITATI3 4] 6918 [259.9] 3801 [1364] 2432[77.9] 1726 [564] 1359[47.5) 1nar42.1 o0 [40.1] <00M
Epicardial fut —BTA[286] —178[476] —124[253] —101[199] -—90[17.3] —RBS5[164] —BL2[179] -TR5[155] <0001
Muscle 103 4[368]) 163.1[569] 108 [33.1] BLE[21.3] M5 [152]  631133]  s8414.1] 5613 <0001
Trabecularbone 2008 [100.1] 481.6[399.1] 2974 [3182] 2085[236.5] 1696 [142.6]) 149[126] I3 [112.5]) 1306 [103] <000

Data are median [KYR}—univanate companson with the Kruskal-Walhs test. IQR indicates data vanability across all patients in the group
CM contmst medium, LeV kilo-electronvol, #CA rght coronary antery, LA left main, LAD left anterior desscending, L0 left droumflex
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Fig. 2 Boxplots show contrast-to-
noise rtios (CNR) for different

Contrast-to-noise ratio (CNR)

seenanos: honen vs. fat to ap- £ |
provimate m epicandial vessel .
surrounded by fat, lumen vs.
muscle to approximate 4 non-
caleified plague, and lumen v,
trabecular bone to approximate a
calcified plague. When compar-
ing group A (5 mL/s) with group
B (2.5 mL/s reconstructad at 55
ke, no significant differencein
hunen to bone CNR was found,
but group B had significanthy
better lumen to fat and lumen to
muscle CNR
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overall success rate was 88.4% (r = 91/103) in group A and
89% (n = 89100} m group B (p = 0.884). Nonmferionty of
protocol B compared to A was mferred (95% CT of the differ-
ence=— 0.0937 to 0.0807), with a prespecified nonmienonty
margin of 10%. Among the segments deemed non-diagnostic,
B0% (44/55) in group A and 74.6% (47/63) n group B had
motion artifacts (p = 0.47). The inter-rater agreement was
substantial (x = 0,627 and 0.755 in groups A and B, respec-
tively). Per segment image quality analysis (Fig. 5) showed
that segments m group A had a slightly higher mean score
than in group B, except for the RCA and D2, where differ-
ences were not statistically significant. Nevertheless, the mean
scores were between good (score 3) and excellent (score 4) in
all segments and groups.

Table 4 CQualiative analvsis

Discussion

Our study aimed to compare conventional CCTA with
reduced-CM-dose dual-energy CCTA m both a resolution
phantom and large patient cohort; the reduced-iodme-dose
spectral CT protocol outperformed conventional CT m vitro
and was nonmnfenior m vivo. This 1s the largest sudy assesang
the potential to reduce CM with dual-energy CCTA, and the only
one using an appropaate nonmfenionty statistical analysis.
Today, CCTA 15 used m a broad range of chnical applica-
tions, even in high-nsk coronary artery disease [22]. That is,
upon plaque detection, quantification is required to guide pa-
tient management. Stenosis quantification must be precise,
whether through semi-automatic stenosis assessment by a

Group A, SmLs  Group B, 25 mL/s poalue
n patients 103 100
Patients with diagnostic CCTA, n (%) 91/103 (B8 . 45%) B 100 (89%) 0.884
Patiznts with non-diagnostic CCTA, n (%) 12/103 (11.6%) 11100 (11%)
MNon-diagnostic dus to motion artificts 10/12 (83.3%) 101 (90 .9%) 029
Non-diagnostic dus to madequate enhancement 212 (16.7%) 1A (9.1%)
Total sepments analyzed 1441 1310
Image quality scons
Excellent, n (%) 1220/ 1441 (B4.7%) 9491310 (72.4%)
Good, n (%) T4 1441 (5.19%) 26771310 (20.4%)
Adequate 3, n (%) 3571441 (2.4%) 31310 (2.4%)
Poor (non-evaluable), n (%) 55/1441 (3.8%) 631310 (4.8%)
Poar due 0 motion artifacts 44/55 (B05%) 47/63 (74.6%) 0.486
Poor due o inadeguate enhancement 11755 (20%) 1663 (25 4%)
Average image quality score per sepment (£ 51 39 = 04) 3705 < 0,001
Datn are numbers with percentages in parenthesess or mean + stndard deviation. CCTA coronary computad tomogmphy angiography
& Springer
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Fig.3 Coromnary CT angiography
obtained with 40 mL contrast
medium injected at 2.5 mLs md
reconstructed as virtual
monoenerzetic images at 55 keV,
depicting the LAD, LCx, and
RCA (a—c¢).in a 68-year-old male.
Coronary CT angiography ob-
taned with 70 mL contrast agent
mjected at 5 mL/s and recon-
structed as conventional poly-
chromatic images, depicting the
LAD, LCx,and RCA (d-f), ina
48-year-old female. LAD, left
anterior descending: Cx, circum-
flex artery: RCA, nght coronary
artery: keV, kilo<ledronvolt

radiologist or with automated fractional flow reserve CT
(FFR-CT) [23]. Both methods rely on an accurate representa-
tion of the vessel’s cross-sectional area, which led us to con-
duct a phantom study to evaluate cross-sectional segmentation
accuracy. Not only did VMI help preserve the segmentation
accuracy and precision with reduced CM. but VMI even im-
proved segmentation in the phantom setup simulating larger

p=088

Diagnostic CCTA rate

#Group A, 5ml/s = Group B, 2.5 mL/s

Fig. 4 Proportion of interpretable CCTA (+ standard emror) and contrast

agent volume (+ standard deviation) in groups A and B. CM, contrast
medium: CCTA. coronary computed tomography angiography.

a Springer

patients. CCTA in obese patients remams challenging and
usually results n a higher radiation dose [24]. Contrary to
low-tube-voltage scanning (70-80 kVp). dual-energy CCTQ
with VMI allowed CM reduction even in patients > 25 kg/m”
[25]. since our study included patients with BMI up to 40 kg/
m”. The optimal VMI energy level for image analysis is still
debated and may depend upon the system used; in the early

p < 0.001
80
80
70
80
50
40
30
20
10
0
CM volume [mL)
#Group A, 5mlis = Group B, 2.5 mUs

Conventional polychromatic images in group A and virtual
monoenergetic images at 55 keV in group B
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Fig. 5 Per sepment qualitative image analysis in group A and B md
univariate comparison. Error bars represent standard deviation.
Pmxdmal right coronary artery (RCA 1), p = 0.96: mid right coronary
artery (RCA 2), p = 0552; distal right coronary artery (RCA 3), p =
0.216; posterior descending artery (PDA), p = 0.001; posterolateml|
branch (PLE), p = 0.010; left main (LM), p = 0.05; proximal left
antenior descending (LAD 1), p = 0.004; mud left anterior descendng

days of DECT, low-keV VMI had higher noise, and mitial
reports advocated VMI m the range of 65-80 keV [12, 26].
Mevertheless, much has already been achieved for makmg
low-energy VMI switable for climical use, and more recent
studies emphasize the value of reconstructions at lower ener-
mes [14, 27].

In the patient study, we found a mmimal compromise re-
garding qualitative image quality, which agrees with Raju et al
[7]. Specifically, the distal coronary segments received slight-
by lower image quahlity scores m group B. Nevertheless, the
mean image quality scores were between good and excellent
m both study groups, and CM reduction did not mpair the
diagnosis. We calculated CWR between the lumen and vanous
densities approximating calcified, non-calcified, and lipid-nch
plagues to evaluate whether the detectability of different
plague types was maintained on low-iodine CCTA images.
While such CNR measurements do not directly relate to cal-
cified or non-calcified coronary atherosclerotic plaques. the
analyses account for the specific spectral behavior of fat,
soft-tissue, and calcmm-contammg matenals to show trends
that can be expected when using VMI. The CNR between the
lumen and calcium was comparable in groups A and B, de-
spite a lower lumen-to-bone contrast on VMI, which is attrib-
uted to the lower noise present on spectral-based images. VMI
and other dual-layer CT-derved spectral reconstructions use
noise anfi-comrelation to reduce the overall noise magnitude
[28]. Om the other hand, the CNR between the himen and fat

LAD R LAD 3 o =3 cai el
B Group B, (2 5 mlis

(LAD 2), p= 0.023; disml left amerior descending (LAD 3), p = 0.001;
first dimgonal (D1, p=0.031; second diagonal [D2), p = 0,059, proximal
ciroumflex (Cx 1), p = 0009; distal dreumnflex (Cx 2), p< 0001 ; ochhse
margmal (OM), p = 0,003, LAD, left anterior descending: LCx, left
cirumflex: LM, left main: OM, obtuse marginal: PDA, posterior
descendimg artery: PLE, posterolaterl branch; RCA, nght coronary

artery

was significantly higher in group B, mostly because fat ex-
hibits lower attenuation at 55 keV (— 122 HU 1n our study)
than on conventional images (— 88 HLU), which confinms early
findings by Oda et al [8]. This indicates that plaque composi-
tion analyds may be improved with reduced CM and lower
energy VMI, but also highlights the potenfial usefulness of
lower energy VMI reconstructions for plaque composition
analysis, especially the detection of lipid-nich core, a clmically
relevant determinant of plague vulnerability [29].

To achieve proper artenial enhancement, current gwdelmes
recommend the use of high contrast medium (CM) injection
rates and doses, typically on the order of 5-7 mL/s, at a con-
centration of 270-400 mg I'mL. and a total volume of 50-120
mL [30]. Such injection parameters ideally mvolve | 8- ve-
nous catheters located in the right antecubital fossa.
Wevertheless, we found that almost a quarter of patients had
their catheter placed i the forearm or the wnst, which is
reflective of the challenges faced in daily patient management.
Patients with a catheter inserted m the foreanm or the wrist
were almost three fimes more likely to be subjected to the
group with lower CM delivery rate, mdicating that protocol
B may have helped manage patients with poor vein mtegrity.

Despite careful design, our study has several limitations.
First, we could not reliably assess the accuracy of stenosis
quantification m vivo because of the low meidence of coro-
nary artery disease in our study population; less than 10% of
patients had a coronary artery stenosis = 70%. Evaluation of

&) Springer
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diagnostic accuracy should be considered m another patient
population for whom an mdication for mvasive coronary an-
mography exists. However, the phantom study provides en-
couraging results in that field Second, we used retrospective
ECG-gatmg resuling in relatively high radiation dose deliv-
ery. This choice was Inked to z-axis coverage of the dual-
layer spectral detector, which 1s 4 om; still, a new platform
with & cm detector coverage 1s m the process of bemng re-
leased, and wide-area (16 cm) detectors are expected to be-
come available for spectral ECG-gated cardiac CT. Third, we
did not test pre- and post-injection serum creatinine levels, nor
did we mchude at-nsk patients (with an estimated glomerular
filtration rate < 30 mL/min); therefore. we cannot comment on
the impact of CM on kidney function. Fourth, the mjection
protocol was chosen ndividually by the radiologist m charge:
however, since patients with poor vein mtegnty more often
received reduced-CM-dose dual-energy CCTA, we do not
expect a relevant bias towards too good mage quahty in this
group. Fmally, our results might not apply to other DECT
systems since ECG-gated DECT scanning is not available
on all DECT platforms and because certain vendors need to
cut back temporal resolution when using spectral mode, some
of which may result n increased radiaion dose, motion, or
misalignment artifacts. Despite this, when dual-source CT is
wsed 1n spectral mode, 1ts temporal resolution 1 still similar to
that of dual-layer CT, and that fast kVp switching platforms
will soon support faster gantry rotation speed, which may
compensate for the loss of temporal resolution.

In conclusion, dual-energy CCTA allows for a 40%
wding dose and 50% mjection rate reduction while pre-
serving diagnostic image quality and may facilitate the
management of patients with poor venous access.
Furthermore, low-keV VMI improve the CNR between
lumen wversus fat and muscle, offermg an opportumty to
enhance the contrast between various plague compo-
nents, which 1s key for the quantification of the hpid-
rnich core. In vitro results indicate that low-keV VMI
mprove vessel area quantification, especially in simulat-
ed overweight subjects.
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6.2 Tissue contrast and characterization

6.2.1 Effect of contrast material injection protocol on first-pass myocardial perfusion

assessed by dual-energy CT

Paper submitted to journal “Quantitative Imaging in Medicine and Surgery” at time of

writing.

Implications for patient care

Myocardial perfusion CT is a means of evaluating ischemic cardiac disease. This study
draws attention to the critical importance of carefully selecting the injection protocol when
conducting quantitative DECT perfusion analysis. Injection protocols are not
interchangeable and can affect the diagnosis. Furthermore, this work demonstrates the

potential of VMI to improve image quality.

Author contribution

Co-author: initiated the study, constituted the patient cohort, collected data, performed
first analyses, and presented abstract at the European Society of Cardiovascular

Radiology conference. Supported literature review and participated in draft editing.
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Abstract

Background: Dual-energy dual-layer CT scanners (DE-DLCT) can provide useful tools, such as iodine
maps and virtual monochromatic images (VMI), for the evaluation of myocardial perfusion defects. Data
about the influence of acquisition protocols and normal values are still lacking.

Methods: Clinically indicated coronary CT-angiographies performed between January-July 2018 with
DE-DLCT and different injection protocols were retrospectively evaluated. The two protocols were:
35mL in patients <80kg and 0.5mL/kg in patients >80kg at 2.5ml/sec (&) or double contrast dose at
Sml/sec (B). Patients with coronary stenosis >50% were excluded. ROls were manually drawn on 16
myocardial segments and iodine concentration was measured in mg/mL. Signal-to-noise, contrast-to-
noise ratios (SNR, CNR) and image noise were measured on conventional images and VMI.

Results: 30 patients were included for each protocol. With iodine concentrations of 1.3830.41mg/mL
for protocol A and 2.0720.73mg/mL for protocol B, the two groups were significantly different
(p=0.001). No significant iodine concentration differences were found between the 16 segments,
between basal, mid and apical segments for group A and B (p=0.47 and p=0.09; p=0.28 and p=0.12,
respectively) and between wall regions for group A (p=0.06 on normalised data). In group B, iodine
concentration was significantly different between three wall regions (highest values for the lateral
wall, median=2.03{1.06)mg/mL). Post-hoc analysis showed highest CNR and 5NR in VMI at 40eV
(p<0.05).

Conclusion: lodine concentration in healthy myocardium varied depending on the injection protocol
and appeared more heterogeneous at faster injection rate and greater iodine load. VMI demonstrated

the potential of DE-DLCT to enhance image quality.

87



Abbreviations and acronyms:

-BMI: body mass index

-CNR: contrast-to-noise ratio

-CT: computed tomography

-CTDI: CT dose index

-DE-DLCT: dual-energy dual-layer computed tomography

-IQR: interquartile range

-ROI: region of interest

-SNR: signal-to-noise ratio

-VMI: virtual monochromatic image
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1. Introduction

Coronary computed tomography (CT) angiography is the standard non-invasive diagnostic
technigue for the anatomic detection of coronary stenosis. However, in the case of intermediate
stenosis, it is difficult to determine whether it results in a perfusion defect. In fact, the presence of a
coronary stenosis is not necessarily related to an impairment of myocardial blood flow that, on the
contrary, is the factor guiding clinical management of patients with coronary artery disease. 2 In recent
years, multiple CT protocols have been proposed to assess, in a single diagnostic test, not only coronary
artery anatomy but also myocardial perfusion under stress and at rest.®*

Dual-energy computed tomography (DECT) has been proposed to assess myocardial ischemia.
Currently, several DECT methods are available based on the source (dual source, fast kilovoltage
switching, double rotation and split beam) or detector (dual-layer).>® With DECT, in addition to
conventional images, virtual monochromatic images (VMI) and iodine maps can be derived. Due to its
specific technology, dual-energy dual-layer CT (DE-DLCT) presents several features of interest for its
feasibility and broad applicability in clinical practice. These include the possibility to perform an
examination with standard parameters that does not need to be chosen beforehand, without any loss
of temporal resolution and without temporal or spatial disalignment.’

Separating low and high energy X photons, DECT increases tissue contrast and enhances iodine
attenuation.® Low energy VMI have been shown to improve vascular contrast enhancement and
therefore could facilitate the detection of perfusion defect. Moreover, monochromatic images could
help reduce beam hardening artifacts.

To date, the evaluation of static first-pass perfusion images with conventional CT and DECT is performed

qualitatively by visual assessment of alterations in myocardial density or iodine maps.*** However,
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quantification of iodine density could provide a more objective assessment and has been regarded to
as a surrogate biomarker for myocardial perfusion. Only a few studies investigated myocardial iodine
concentration in the attempt to establish cut-off values to distinguish healthy, ischemic and necrotic
segments.’>* Moreover, for DE-DLCT, although a few phantom studies have demonstrated the
accuracy of iodine concentration measurements *71%, there are no clinical data about such analysis in
human myocardium. In addition, to the best of our knowledge, there are no data available regarding
the effect of CT acquisition parameters on iodine concentration such as contrast material injection
protocols.

Therefore, the purpose of this study was twofold: (a) to demonstrate the effect of contrast material
injection rate on the iodine distribution in healthy myocardium during first-pass perfusion; (b) to
evaluate the impact of virtual monochromatic images (VMI) on image noise, signal-to-noise ratio and

contrast-to-noise ratio.

90



2. Methods

2.1 Study Design
This single-centre, retrospective analysis was approved by the local ethics committee (19-382).

Informed consent was waived due to the retrospective nature of the study.

2.2 Population

Consecutive coronary-CTA scans performed from January to October 2018 in the clinical practice of a
single university academic centre with a DE-DLCT were retrospectively included. All subjects underwent
a preliminary non-contrast acquisition to calculate the calcium score and only those with an Agatston
score < 400 were further evaluated.

Each patient underwent either a reduced flow protocol (2.5 mL/s rate, group A) or a standard injection
protocol (5 mL/s rate, group B) depending on the quality of the venous access.

Subjects with coronary artery stenosis =50%, anomalous malignant origin of coronary arteries,
myocardial hypertrophy {myocardial thickness =15 mm) and artefacts impeding the analysis of most
segments were excluded from the analysis.

The flow chart of the study is depicted in Figure 1.

2.3 Contrast material injection

lomeprol 400 mg I/mL (lomeron®; Bracco) was the only contrast material employed; it was heated
before use and injected using a double head power injector. Starting from a standard injection protocol
(that was employed in group B) and keeping the injection time constant, the parameters for the group

with low injection rate and iodine content (group A) were calculated. For group A patients, the contrast
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material was administered into an 18G catheter, with a flow rate reduced to 2.5 mL/s (iodine rate = 1
g/s) and followed by a 20 mL saline rinse at the same rate. The injection time being kept constant and
the flow reduced by half, the volume of the contrast material bolus was reduced by half in group A: 35
mL in patients <80 kg and 0.5 mL / kg in patients = 80 kg, maximum 45 mL. Group B patients underwent
a standard coronary CTA injection protocol, consisting of a contrast material bolus injected at 5 ml/s
(iodine rate = 2 g/s) into an 18G catheter, followed by a 20 ml saline rinse at the same rate. The volume
of the bolus was determined according to the weight of the patient: 70 mlL for patients <80 kg and 1 mL

[ kg for patients > 80 kg, to a maximum of 90 mL.

2.4 Image acquisition

All examinations were performed on a commercially available dual-layer spectral CT (IQon spectral CT;
Philips Healthcare). This novel scanner acquires spectral data per default at each CT scan. Patients were
placed in supine position, arms above the head. If necessary, patients received intravenous beta-
blocker ta reach a pre-scan heart rate of <65bpm. Retrospective ECG-gating was used for the acquisition
of the arterial phase. The detailed scanning parameters were: tube potential: 120 kVp; tube current:
220 mAs; gantry revolution time: 0.27s; automatic exposure control (angular and longitudinal),
combined xyz axis; detector collimation: 64x0.625 mm, scanning field of view: 22 cm. Bolus tracking

was used, with a region of interest (ROI) placed in the descending aorta and a cutoff value of 130 HU.

2.5 Image reconstruction

Data acquired with both protocols were reconstructed with the same parameters. The same iterative

reconstruction strength was employed (iDose 3). Data were reconstructed at a specific targeted mid-
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diastolic phase (78%) of the R-R interval with a slice thickness of 3 mm (increment 1.5 mm) for
visualisation, using a soft kernel. To assess the myocardium, a field-of-view (FOV) of 500 mm was

employed.

2.6 Image segmentation and analysis

Regions of interest were drawn manually in the 16 myocardial segments according to the American
Heart Association recommendations (apex excluded) by a radiclogist specialized in cardiac imaging (x,
6 years of experience) on multiplanar reconstructions of the heart in short axis planes (Figure 2).
Abnormal segments, for instance due to motion artefacts, were excluded. The subendocardial and
epicardial regions and coronary arteries were avoided. Circular ROls were drawn in the lumen of the
left ventricular cavity at basal, mid and apical level as well as in homogeneous areas of the paravertebral
and intercostal muscles. Mean values and standard deviation were recorded for each of the
reconstructed series (conventional images, iodine maps and virtual monochromatic images).

Virtual monochromatic images (VM) between 40 and 70 keV in 10 keV increments were reconstructed
and analysed (Figure 2).

A quantitative assessment of iodine concentration (in mg/mL) in each myocardial segment was
performed using the dedicated software package (Spectral IntelliSpace Partal, ISP) on the iodine maps

generated with a two material-based (iodine-water) decompaosition (Figure 2).

2.7 lodine concentration

Average iodine concentration of the 16 segments in the two groups was compared. For each group,

iodine concentrations in each of the 16 segments, in basal, mid and apical segments (basal segments:
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1,2,3,4,5, 6; mid segments: 7, 8,9, 10, 11, 12; apical segments: 13, 14, 15, 16) as well as in three
regions defined as anteroseptal-anterior (corresponding to segments: 1, 2, 7, 8, 13, 14), inferoseptal-
inferior (corresponding to segments: 3, 4, 9, 10, 15) and lateral (corresponding to segments: 5, 6, 11,
12, 16) were compared.

The same comparisons were repeated for iodine values of myocardial segments normalized for the

iodine concentration of the left ventricle at the corresponding level.

2.8 Objective quality analysis
Image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between the myocardial
segments and paravertebral muscle were measured using the ROls measurement on the conventional

and VMI images as follows:

5D myocardial+ SD parcvertebral muscle Mean value

for each ROI,

Image noise= \ = —
2 Standard deviation

(Mean value myocordici—Mean value peravertebral muscle)

{SD myocordicl+5 D porerertebrol muscle "
]

CNR=

El

Average image noise, SNR and CNR values of each myocardium were compared between conventional

images and the four monochromatic reconstructions for the two groups.

2.9 Statistical Analysis
All statistical analyses were performed with R (R v. 3.4.3, R Foundation for Statistical Computing,
Vienna, Austria). Continuous values were presented as mean t standard deviation (5D) or as median

with interquartile ranges {IQR). Student’s t—test and Wilcoxon were employed to compare patients’
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characteristics. Wilcoxon Mann Whitney and Kruskal-Wallis were employed for comparison between
different myocardial segments, territories and protocols. The pairwise Wilcoxon test with Bonferroni
correction was used for comparison between groups and post hoc analysis. Values of p <0.05 were

considered statistically significant.
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3. Results

3.1 Population
A total of 60 patients were analysed, of whom 30 underwent protocol A (group A) and 30 protocol B
(group B). The characteristics of the 60 patients are shown in Table 1. The comparison of the two patient
groups did not reveal any significant differences in age, gender, heart rate, weight and height, BMI and
radiation dose.
Due to motion artefacts, 1 segment out of 480 (0.2%) and 7 segments out of 480 (1.5%) were excluded

from analysis in group A and B respectively.

3.2 lodine density maps

The mean iodine concentration values in healthy myocardial segments were 1.3810.41 (range: 0.6-2.24;
median: 1.33; IQR: 0.66) mg/mL for protocol A and 2.0710.73 (range: 1.17-3.94; median: 1.87; IQR:
1.02) mg/mL for protocol B (Figure 3), corresponding to a significant difference (p<0.001). For
normalised values the difference was also significant (p<0.001) but with higher values in group A
(median: 1.54, IQR: 0.13 for group A; median 0.12, IQR: 0.06 for group B).

lodine concentration values of the 16 segments, of basal, mid and apical segments and in the three wall
regions are shown in Table 2.

A sub-analysis comparing iodine concentration in the 16 segments showed no significant difference for
both protocols (p=0.47 and p=0.09 for iodine concentrations; p=0.81 and p=0.26 for normalized values
in protocol A and B respectively). The segments showing the lowest values were segment 4 in group A
{median=1.16; IQR=0.47) and segments 13 (median=1.57; I0R=0.91) and 4 in group B (median=1.62;

|QR=1.07) (Figure 4).
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In both groups no statistical significant difference was found between basal, mid-ventricular and apical
segments (p=0.28 and p=0.12 for iodine concentrations; p=0.67 and p=0.38 for normalized values
respectively for protocol A and B). Significant differences were found for both groups between different
wall regions (p=0.04 and p=<0.001 for group A and B) (Figure 4). However, in group A analysis of
normalized data (p=0.06) did not show significant differences between wall regions. In group B the
lateral territory showed the highest values [median=2.07 mg/mL; IQR=0.4) and was significantly
different from the anteroseptal-anterior (median=1.72; I[QR=1.04) and inferoseptal-inferior

(median=1.74; 1QR=0.8) territories (p<0.01 for both absolute and normalised values) (Figures 4 and 5).

3.4 Objective quality
The values of noise, SNR and CNR for conventional images and VM| are displayed in Table 3 and

Figure 6.

3.4.1 Image noise
Noise values showed significant differences in multiple group testing (p<0.01). In group A post-hoc
analysis showed significant differences for 70keV ws 50keV and between 40keV and all other

reconstructions (p=0.05). In group B differences were significant for conventional vs 70 keV, 50keV vs

70keV and 60keV as well as 40keV and all other reconstructions (p=0.05).

3.4.2 Signal to noise ratio
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SMR presented significant differences in multiple groups testing for both injection protocols (p<0.01).
Post-hoc testing revealed significant results in the following groups: conventional vs 60 keV,
conventional vs 50 keV, conventional vs 40 keV for protocol A and between conventional and all VMI

for protocol B.

3.4.3 Contrast to noise ratio

The CNR values were significantly different in multiple groups testing in both groups (p<0.01). In group
A, post-hoc testing found significant differences for all associations except for conventional vs 70keV.
In group B, differences were not significant for groups conventional vs 70keV, 70keV vs 60keV, 60keV

vs 50keV, 50keV vs 40keV.

3.4.4 Differences of noise, CNR and SNR between the two groups

CMR and noise values presented significant differences between corresponding reconstructions of the
two groups, except for CNR at 40keV and noise at 70keV, with higher values for group B. SNR did not
show significant differences between corresponding reconstructions in the two groups (Table 3 and

Figure 6).
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4, Discussion

The present study demonstrated a significant difference in iodine concentration of healthy myocardium
between two groups undergoing different injection protocols with higher values in the higher flow rate
and iodine load cohort. In both groups, iodine concentration was homogeneous between the 16
segments, as well as in basal, mid and apical territories. In both groups significant differences between
wall regions were found although more pronounced in the higher flow rate group. This difference
among territories was confirmed on normalized iodine values only for the group with higher flow rate
and iodine load. CNR and SNR but also image noise showed gradually increasing values as keV values
decreased.

We found an iodine concentration of 1.38 * 0.41 mg/mL for group A and 2.07 £ 0.73 mg/mL for group
B with lowest values of 0.6 mg/mlL and 1.17 mg/mL respectively. Previous studies demonstrated that
iodine concentration can reliably be quantified even for values as low as 0.5 mg/ml or 1 mg/ml in 20
cm or 30x40 cm phantoms, respectively, and with minimum detectable differences of 0.4 mg/ml.t72¢
Thus, both proposed protocols could be employed in clinical practice, although the one with higher rate
might provide more accurate calculations as different studies have shown an increase in accuracy for
higher iodine concentrations.'*1®

The results of our study showed that iodine concentration in healthy myocardium as assessed with DE-
DLCT differs according to contrast injection protocol. lodine concentration has been regarded as a
surrogate of myocardial perfusion and its objective quantification as a potentially helpful tool not only
for the detection of focal perfusion defects but also for the determination of global perfusion reduction
in three vessel disease.®'%1%13 Different studies aimed at establishing a precise threshold value of iodine

concentration to distinguish normal, ischemic and necrotic myocardium based on DECT acquisitions.
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1212 Delgado et al. found that a cut-off value of 2.1 mg/mL had a sensitivity of 75 % and a specificity of
73.6 % to differentiate normal from hypoperfused territories on stress exams.'? Distinction between
ischemic and necrotic segments was not possible due to overlap between iodine values. Van Assen et
al. found optimal values of 2.5 mg/ml at rest and 2.1 mg/mL during stress for distinction of healthy and
diseased segments.’* Only at rest a threshold value could be defined to distinguish ischemic from
necrotic territories corresponding to 1.00 mg/mL, with a sensitivity of 80% and a specificity of 100%.
However, in these studies all scans were performed under the same injection conditions. On the
contrary, our study demonstrates that fist-pass healthy myocardial perfusion is a function of injection
protocols. Therefore, an absolute threshold might be more challenging to define and should definitely
take into account scan parameters as well as left ventricle iodine content.

Furthermore, we showed that injection parameters influence iodine concentration homogeneity in the
myocardium. Indeed, we found significant differences in iodine concentrations between wall regions.
Although clearly demonstrated in the high flow and high iodine load group, this difference was doubtful
in the low flow and low dose group. To the best of our knowledge this is the first study assessing healthy
myocardium homogeneity with DE-DLCT. Howewver, other studies demonstrated myocardial
heterogeneity in healthy volunteers with different imaging techniques.® Kim et al. found perfusion
differences between segments as high as 32% at rest and 28% during stress with the septum showing
lower values (although not significantly so).** Similarly to our results, Ho et al demonstrated higher
perfusion values in the lateral wall of low risk patients both at rest and under stress.”* Whether the
differences we observed could have an impact on detectability of hypoperfusion areas in patients with
coronaropathy still has to be investigated. Nevertheless, it should be kept in mind that higher injection

rates and contrast dose influence iodine distribution homogeneity in healthy subjects.
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Although not statistically significant in either of the two groups, some of the 16 segments showed lower
iodine concentrations. The lowest values were found in segments 4 and 13 for protocel B. Segmental
HU wvalues lower than remote myocardium have been previously described and have been referred
mainly to beam hardening artefacts.”** Qur findings suggest that also iodine maps are affected by
these artefacts.

Virtual monoenergetic reconstructions have been considered of particular interest in cardiovascular
imaging. As the peak of mass attenuation coefficient for iodine can be found at low energy levels, the
density of iodinated contrast material is higher on monoenergetic images at lower keV.>® Accordingly
we found that both SNR and CNR increased as the energetic value of the reconstruction decreased with
the highest values at 40keV. Nevertheless, image noise showed the opposite pattern increasing as the
energetic value of the reconstruction decreased. Therefore, the optimal images for clinical evaluation
are most likely not found at lowest values but around 50keV. Furthermore, both CNR and image noise
were significantly higher in group B without corresponding increase of SNR. Further studies are needed
to confirm if the combination of first-pass DE-DLCT myocardial perfusion with low flow rate and iodine
load and assessment on iodine maps and low energy monoenergetic reconstructions will improve the
detection of hemodynamic significant stenosis.

The first limitation of our study is the lack of a standard of reference for both iodine quantification and
its homogeneity. Therefore, not only the accuracy of absolute values but also the presence relative
regional differences could not be confirmed. As a consequence, the influence and impact of artefacts
{beam hardening but not only) could not be distinguished from intrinsic perfusion variability. Secondly,
we investigated only two injection protocols that differed in both injection rate and contrast media

volume. Although the differences we found are more probably related to the different injection rate,
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we cannot exclude an influence of other parameters. The two injection rates were quite apart from
each other and it is likely the best protocol being in-between.

To conclude, we demonstrated that injection protocols influence first pass myocardial iodine
concentration. At higher flow rates healthy myocardium presents higher iodine concentration and
presents different iodine concentrations in the anterior, inferior and lateral myocardial regions. Both
factors should be considered when assessing the presence of perfusion defects both subjectively and

guantitatively.

Disclosures: All authors have reported they have no relationships relevant to the contents of this
paper to disclose.
Funding: This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.
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Figure Legends

Figure 1. Flow-chart of the study.

Figure 2. A - Myocardial segmentation into 16 segments according to the American Heart Association
recommendation. B - Display of all assessed spectral images (iodine maps, conventional, VMI 70-60-

50-40 keV) in a case example of first pass myocardial perfusion for protocal A (rate at 2.5 mL/s).

Figure 3. Box plots of overall myocardial iodine concentrations measured in the two protocols (A: 2.5

ml/s, B: 5 mL/s).

Figure 4. A - Display of color-coded iodine density in the 16 segments, basal, mid and apical segments
and anterior, inferior and lateral wall regions in the two groups. B - Box plots of the iodine
concentrations measured in the 3 different wall regions for the two protocols. To be noticed that the

range of values of the y-axis is different for the two groups.

Figure 5. On the left, iodine maps of two cases from the group with low dose and slow injection rate
show a homogeneous myocardium. On the contrary, a case example from the group with high dose at
high injection rate demonstrates a heterogeneous myocardium with a higher iodine density in the

lateral wall.

Figure 6. Box plots of image noise, SNR and CNR ratios measured with the conventional and mono-

energetic images (70, 60, 50, 40 keV) for the two protocols (A=2.5 mL/s, B=5mL/s).
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Patients undergoing a clinically indicated coronary CT scan
with Agatson score <400
N =207

Group A Group B
Injection at 2.5 mL/s Injection at 5 mL/s
- Patient <80 kg => (scan time + - Patient <80 kg => (scan time +
6)*2.5 mL=35mL 6)*S5 mL= 70mL
- Patient >80 kg => 0.5 mL/kg - Patient >80 kg => 1 mL/kg
. 2
Excluded:

- Large FOV not available on PACS =73
‘ - Diffuse artefacts =14
- Hypertrophy =5
- Anomalous coronary origin =2
- Myocardial infarction =7
- Coronary stenosis >50% =46

e

e e
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Cases 1 and 2 Case 3
Group A - 2.5 mL/sec Group B - 5 mL/sec
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Image noise in the two groups
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Table 1. Characteristics of the 60 patients.

Criteria Group A (n=30) Group B (n=30) p value
Age (years) 50.1+17.3(18-77) 50.8+18(22-80)  0.87
Gender (N, % men) 19 (63%) 20 (67%) 0.8
Weight (kg) 68 (22.3) 73.5 (24) 0.08
Height (em) 170 + 10.1 (153-198) 170+9.7 (152-186) 0.96
BMI (kg/m2) 23.9(5.2) 25.8 (6.8) 0.05
HR (bpm) 69 + 10 (52-85) 67.8 +11.2 (53-88) 0.69
Dose (CTDI mGy)  17.5(10.9) 22.7 (15.8) 0.06

Diata are presented as mean + standard deviation (range) or median (1Q range). BMI, body mass index;

HR, heart rate.
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Table 2. lodine concentration values

Group A Group B

Total

1.33 (0.62) 1.87 (1.02)  <0.001
Segments
Segment 1 1.32 (0.53) 1.92 (0.76) <0.001
Segment 2 1.34 (0.79) 1.86 (0.95)  0.003
Segment 3 1.34 (0.68) 2.02 (0.73)  <0.001
Segment 4 1.16 (0.47) 1.62 (1.07)  <0.001
Segment 5 141 (0.58) 2.15 (1) <0.001
Segment 6 1.46 (0.55) 2.2 (1.05) =0.001
Segment 7 1.26 (0.62) 1.71 (0.98) <0.001
Segment 8 1.39 (0.73) 1.69 (1.15) 0.002
Segment 9 1.25 (0.74) 1.77 (1) <0.001
Segment 10 1.28 (0.72) 1.79 (1.26)  <0.001
Segment 11 1.44 (0.5) 1.95 (0.8) <0.001
Segment 12 141 (0.52) 2.06 (0.9) <0.001
Segment 13 1.25 (0.59) 1.57 (0.91) 0.001
Segment 14 1.37 (086) 1.68 (1.08) 0.003
Segment 15 1.27 (0.58) 1.66 (1.03)  <0.001
Segment 16 1.34 (0.57) 1.78 (0.91)  <0.001
Basal, mid, apical
Basal 1.33 (0.65) 1.99 (0.99)  <0.001
Mid 1.36 (0.63) 1.88 (1.06)  <0.001
Apical 131 (0.61) 1.66 (1.04) <0.001
Wall regions
Anteroseptal-anterior 1.32 (0.68) 1.72 (1.05) =0.001
Inferoseptal-inferior 1.25 (0.22) 1.74 (0.28) =0.001
Lateral 141 (0.24) 2.07 (0.4) <0.001

Data regarding iodine concentration [mg/mL] are presented as: median (IQR)
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Table 3. Noise, SNR and CNR values

Noise median
I0R
SNR median
IOR
CNR median
I0R

VMI —Virtual monochromatic image

115

Conventional VMI
70kev 60keV S0keV 40keV

A B A B A B A B A B

0.83 2.11 p<0.01 043 132 P=0.04 0.85 246 p<0.01 1.28 3.72 p<0.01 2.28 6.15 p<0.01
1.66 2.16 1.19 217 124  2.53 258 298 3.65 4.28

7.48 6.95 p=0.64 922 900 p=0.83 991 892 p=0.8 10.31 9.48 p=0.55 10.84 9.34 p=0.26
3.10 2.78 396 393 3.65 3.89 431 3.90 471 3.859

2.35 3.32 p=0.047 296 415 p<0.01 414 564 p<001 573 7.27 p=0.02 7.3> B.67 p=0.08
0.89 -1.16 -1.77 -1.98 -2.80 -3.12 -3.15 -4.29 -3.70 -4.39



6.2.2 “Dark-blood” dual-energy computed tomography angiography for thoracic aortic wall

imaging [111]

Implications for patient care

This study is based on the previous work “True versus virtual non-contrast dual-energy
CT imaging for the diagnosis of aortic intramural hematoma” where VNC images proved
equivalent to TNC. Because a sharp and accurate delineation of the aortic wall to
determine the presence of IMH is challenging on both TNC and VNC, we developed a
novel material decomposition to enhance the visibility of the vascular wall referred to as
“Dark blood” because the vascular lumen appears hypodense. In other terms, we used
the spectral information provided by DECT to optimize the visual contrast between the
aortic wall and the lumen. The study demonstrates that dark blood images improve the
qualitative and quantitative image quality in aortic CTA, helping characterize aortic wall’s

pathology.

Author contribution

Lead author; image post-processing, image assessment, statistical analysis, literature

review, manuscript drafting and editing.
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Abstract

Objectives To assess the capability of a newly developed matenal decomposition method from contrast-enhanced dual-energy

CT images, aiming to better visualize the aortic wall and aortic mtramural hematoma (IMH), compared with true non-contrast

(TNC) CT.

Materials and methods Twenty-two patients (1] women; mean age, 61 =20 years) with acute chest pain underwent 25

dual-layer non-confrast and contrast-enhanced CT. CT-angiography images were refrospectively processed using two-

matenal decomposition analysis, where we defmed the first matenal as the content of a region of interest placed in the

ascending aorta for each patient, and the second material as water. Two independent radiologists assessed the images

from the second material termed *dark-blood™ images and the TNC mmages regarding contrast-to-noise ratin (CWNR)

between the wall and the lumen, diagnostic quality regarding the presence of aortic wall thickening, and the inner/outer

vessel wall conspicuity.

Results Diagnostic quahity scores in normal aoriic segments were 0.9 £0.3 and 2.7 £ 0.6 (p< 0,001 ) and wall conspicuity scores

were 0.7+ 0.5 and 1.8+ 0.3 (p<0.001)on TNC and dark-blood images, respectively. In aortic segments with IMH, diagnostic

quality scores were 1.7+£0.5 and 2.4 0.6 (p<0.001) and wall conspicuity scores were 0.7+0.7 and 1.8 £0.3 (p<0.001) on

THNC and dark-blood mages. respectively. In normal aortic segments, CNRswere 0.3 £0.2 and 2.8 £ 0.9 on THNC and dark-blood

mmages, respectively (p<0.001). In aortic segments with IMH, CNRs were 0.3 £0.2 and 4.0£1.0 on TNC and dark-blood

mmages, respectively (p < 0L001).

Conclusions Compared with true non-contrast CT, dark-blood material decomposition maps enhance quantitative and qualitative

mmage quaklity for the assessment of normal aoric wall and IMH.

Key Points

* Current dual-energy CTangiography provides virtual non-contrast and bright-blood images.

* Dark-blood images represent a new way o assess the vascular wall seucture with dual-energy CT and can improve the lumen-
to-wall contrast compared with true non-contrast CT.

* Thiz dual-enevgy CT material decomposition method is likely to improve contrast resolution in other applications as well
taking advaniage of the high spatial resolution of CT.

Keywords Computed tomography angiography - Aorta - Hematoma - Thorax - Technology assessment
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Abbreviations

AAS  Acute aothic syndrome

CNR  Contrast-to-noise rafio

CTA  Computed tomography angiography
DECT Dual-energy computed tomography

HU Hounsfield umt

IMH Intramural hematoma

NIST  National Institute of Standards and Technology
ROI Regon of mterest

THC True non-contrast

VMNC Virmal non-contrast

Introduction

In acute aortic syndrome (AAS), the detecton of intramural
hematoma (IMH) 15 challenging and requires a non-confrast
CT acquisition in addiion to CT-angiography (CTA) [1, Z].
Thanks to its ability to create virtual non-contrast (VNC) m-
ages. dualenergy CT (DECT) technology has been recently
proposed to improve the detection of IMH. Nevertheless, the
contrast between the aortic lumen and the vessel wall remains
relatively low on VINC mmages and makes the detection of
subtle thickening of the wall difficult [3]. Conversely, aortic
magnetic resonance angiography offers the possibility to ob-
tain “dark-blood™ images by suppressing the signal of the
aortic lumen and thus facilitating the depiction of the aortic
wall [4] but isnot generally available in emergency settmgs.
Om this same principle, we sought to develop a DECT CTA-
based algonthm allowmg to suppress the signal of the aortic
lumen based on a modified par matenal decomposition i the
mmage domam. In this decomposition, the first matenal was
defined as the content of a region of interest (ROT) placed in
the ascending aorta, and the second material was water.

This study amed to assess the capability of this newly
developed artenal wall enhancement algonithm, termed as
dark-blood 1maging, to visualize the aortic wall and acrtic
IMH better, compared with true non-contrast (TNC) CT.

Materials and methods
Study design and patients

The instiftutional ethics committee approved this smgle-center
retrospective study and walved informed consent.

We selected 25 CT examinations from 22 patients (11 men;
age range, 2589 vears and 11 women; 3386 years), referred
to aortic CTA for chimically suspected A AS. From July 2017 to
January 2018, all patients with IMH proven upon aortic CTA
or surgery were inclhided (= 11). For those who underwent
medical therapy, the diagnosis of normal aortic CTA or acute
IMH was based on a consensus. Subsequently, 11 randomly

ﬂ Springer

selected control subjects with acute chest pain, but with nor-
mal aortic CTA, were mcluded as well, within the same time
frame. Demographics are detailed m Table 1.

Dual-layer DECT protocols and image reconstruction

All patients underwent aortic dual-layer detector DECT
consisting of a TNC acquisition followed by a confrast-
enhanced arterial-phase acquisition on a 64-row spectral de-
tector CT system (IQon. Philips Healthcare). Acquistion pa-
rameters for both acquisitions were as follows: tube potential,
120 kVp; beam collimation geometry, 64 = (.625 mm; ganiry
rotattion time, 0.27 s; beam pitch, 1.234; and tube load.
55 mAs. An 1odinated contrast agent (lomeron® 400 mg
I/mL, Bracco) was mjected into an antecubital vein and
followed by a salme flush. The acquisition was mggered by
the bolus tracking technique. Reconstruction parameters were
as follows: section thickness, 1.5 mm; reconstruction filter, B;
iterative reconstruction algonthm, iDose 3; and display field-
ofaview, 300 mm.

Conventional HUY images were reconstructed for the TNC
acquisiion. Regarding the contrast-enhanced DECT CTA ac-
quisition, we reconstructed virtual monochromatic Image se-
ries at 54 and 100 keV using the post-processing software
provided with the DECT system (ISP v9.0, Philips
Healthcare). The 54-keV value was chosen as the first energy
level as it 15 sufficiently far away from the K-edge of 1odme
(33 keV) while bemng low enough to exhibit a photoelectric
effect. The 100-keV value was chosen as the second energy
level as it 1s high enough to exhibit more Compton scatterng
effect. We fed these two virtnal monochromatic image series
into a dedicated m-house software (developed using Microsoft
Visual C++ 2017) to perform a two-matenial decomposition
termed as ROL'Water (see below) and generate maps thereof.
In this step, wedrew an ROl intheascending aortaon the 54-keV
images and then copied and pasted it onto the 100-keV
images for each patient. The mean value of these ROIs in HU
was recorded and termed ROTsy and ROT g, respectively.
Then, a two-matenial decomposition algonithm was apphed
with the following method. In the (x) coordinate system
where *x™ and *y" represent the values of attenuation at 100
and 54 keV, respectively, two unit vectors were set: the first

Table 1  Patents’ demographics

IMH patients Controls
n 11 11
Sons 14 1
Female sex (%) 455 M5

Age mean + S0 (mnge) 745+ 153 (43-89)
Stnford Atype IMH (%) 455

45 8+ 14.8 (25-67)

None

TMH, miramural hematoma; S0, stndard deviation
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one pointing from the air point (x) = (0.0) to the NIST-based
water atteruation coeficents (v/p) at 54 keV and 100 keV; the
second one pointing from the alr point to the (x,v) attenuation
values corresponding to the ascending aorta ROI (ROLs4 and
ROIyop). These unit vectors were used to detenmine a new
coordinate system termed ROI/Water axes. The value of each
pixel of the monochromatic mages was then represented 1n
this new coordinate system. The magnitude of the projection
on the Water axis was used to generate the dark-blood mage.
The projection on the ROT axis was not analyzed m this study.

Image analysis

For the qualitative analyas, we divided the aortic lumen cross-
secional area into 4 equiangular quadrants, taken on 4 pre-
specified shces per patient: ascending post sinotubular seg-
ment, ascending aorta at the level of the left pulmonary artery,
descending aorta at the level of the left main bronchus, and
descending aorta at the level of the left atnum. Based on the
presence or absence of IMH on conventional CTA, we catego-
rized each slice as normal versus abnormal, which allowed us
to evaluate the false-positive and negative rate of dark-blood
mages compared with TNC. Subsequently, two mdependent
radiologmsts, DCR and SAS, with 6 years of expenence in
cardiovascular radiology reviewed dark-blood and THNC mm-
ages for signs of aortic IMH on a 4-point diagnostic quality
scale (3 =exemplary, 2 = diagnostic, 1 = limited, 0 =non-
diagmostic), per quadrant. They also evaluated the mner and
outer vessel wall conspicuity on a 3-point scale (2=
circumscribed margm, 1 = indistinct margm, () = obscured mar-
gin) as per the Radiologmc Society of North Amenca radiology

Fig. 1 Healhy patient {a—¢) and
patient with a Stanford A-type
intramural hematoma (d-0), Nok
the enhanced visibility of the aor-
tic wessel wall on dade-blood ma-
terial decomposition (b and ¢), as
compared to the true non-contrast
(a mnd d) and arterial-phase con-
trast-enhanced images (e and

lexicon [5], per quadrant. Overall conspicuity was derived
from the separate scores of the mner and outer wall conspicu-
ity. The same shces served for the quantitaive anabysis, per-
formed by one radiologist with 6 years of expenence m cardio-
vascular magmg (DCR), who placed an ROT m the penaorhc
fat. Using the abovementioned m-house software, the same
radiologst placed two concentmic ROIs encompassing the aortic
wall and the lumen to extract pixel values ofthe aortic wall. The
observer noted the mean and standard deviaion of the voxels’
value m each ROI (in HU') and calculated the contrast-to-noise
matio (CNR) between the wall and the humen and between the
wall and the peniaortic fat, on both dark-blood and TNC images
usmg the followmg formmula:

mean ROI value,—mean ROT valuey .

CHNR =

|I J r 2 .
{7 (5D + SDice)

where the subscript “tissue™ refers to mean ROI values m the
aortic lumen and penaoric fat, respectively, and *wall” refers to
the ROI values of the aortic wall. We also extracted the mean
vessel wall thickness for each patient using our m-house soft-
ware, on dark-blood images.

(Quantitative vanables are presented as mean and standard
deviation unless stated otherwise. Statistical analysis was con-
ducted using R (R v. 3.4.3, R Foundation for Statistical
Computing ), using the Wilcoxon-Mann-Whitney test to com-
pare ordinal and continuous vanables, as the data was not
normally distnbuted according to the Shapiro-Wilk test.
Interrater agreement was evaluated using the weighted kappa
test. One observer repeated the evaluation | week later to
assess intra-observer agreement, using the weighted kappa

@ Spt iJ:lgzr
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Diagnostic quality
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Fig. 2 Bar graph shows qualtative diagnostic quality mean scores of
observers, Dark-blood images were mostly mted diagmos tic or ecemplary,
while e non-oontrast images were mosthy rated limited

test. P values of less than 0.05 were considered statistically
signi ficant.

Results

Two typical examples of TNC, dark-blood, and conventional
CTA 1mages are provided in Fig. 1. m a control subject and a
patient suffering from Stanford A-type IMH. In both cases,
dark-blood images provide improved visualization of the aor-
tic vessel wall structure.

Cualitative diagnostic quality scores m normal aortic seg-
ments were 0.9+0.3 and 2.7+ 0.6 on THNC and dark-blood
mmages, respectively (p < 0.001). Aortic vessel wall conspicu-
ity scores were 0.7 = 0.5 and 1.8 £0.3 on TNC and dark-blood
mmages, respectively (p < 0.001 ). Similarly, in aorhic segments
with IMH. the diagnostic quality scores were 1.7£0.5 and
24£0.6 on TNC and dark-blood images, respectively

Fig.3 Qualitative analysis of
vessel conspicuity ona 3-paint
Likert scale (2 = ciraumsaibed
mmurgin, | = indistinet mangin, (=
obscurad margn). Bar graph rep-

resents mean scomes of ohservers Overall wall conspicuity

(p <0.001). Aortic vessel wall conspicuity scores were (.7 +
0.7and 1.8 0.3 on TNC and dark-blood images, respectively
(p<0.001). The intra-rater agreement was substantial
(weighted kappa =0.77 and 0.7]1 for diagnostic quality and
aortic wall conspicuity, respectively). The mterrater agreement
was substantial (weighted kappa=0.74 and 0.66 for diagnos-
tic quality and acrtic wall conspicuity, respectively). Average
quahitative diagnostic quality scores, mcluiding both TMH pa-
tients and control subjects, are shown m Fig. 2, and average
vessel wall consproutty scores, meluding both IMH patients
and control subjects, are shown in Fig. 3. Finally, dark-blood
images did not lead to false-positives or negatives for IMH
identification.

In the quantitaive analysis (Fig. 4). normal aortic segment
CNRs between the vessel wall and lumen were 0.3 £0.2 and
2.8+£0.9 on TNC and dark-blood images, respectively
(p <0.001); CNRs between the vessel wall and the penaortic
fat were 9.5+ 2.6 and 2.6+ 1.2 on TNC and dark-blood im-
ages, respectively (p<0.001). Smilarly, n aortic segments
with IMH, CNRs between the vessel wall and lumen were
0302 and 4.0+ 1.0 on TNC and dark-blood images. re-
spectively (p<0.001); CNRs between the vessel wall and
the periaortic fat were 11.2£4.5 and 4.7= 1.5 on TNC and
dark-blood images, respectively (p<0.001). Finally, mean
aoric vessel wall thickness was 1.6 £ 0.3 mm m nommal seg-
ments and 4.7 £2.3 mm in segments with IMH (p < 0.001).

Discussion
Qur results indicate that contrast-enhanced DECT-denved
dark-blood CT imaging is feasble and may facilitate the anal-

ysis of artenial vessel walls.

Vessel wall conspicuity

one and two, Overall conspicuity
is the average of outer and inner
wall conspicuity. Error bars rep-
resent stndard deviation

Outer wall conspicuity

Inner wall conspicuity

=]
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Contrast-to-noise ratio
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True non-contrast ™ Dark-blood

Fig. 4 Bar graph shows contrast-to-notse mibos (CNE) obtamed on true
non-conrast and dark-blood images. CNE was caloulated between the
aartic vessel wall and homen, as well as betasen vessel wall and peniaortic
fut, m control subjects and patients with mtmmural hematoma (IMH).

In our study, dark-blood CT mages significantly improved
arterial wall conspicuity, resulting in better qualitative diag-
nostic quality. Results from the quantitative image analysis
mostly support the qualitative analysis, demonstrating im-
proved CNE between the vessel wall—wath or without
IMH—and the vessel lumen. Nevertheless, CNR between
the vessel wall and penaortic fat was substantially lower m
dark-blood images, as compared to TNC, but these results
hold only as long as the aorta is indeed surrounded by fat.
The acrta may be m close proximity to many organs. The
reason why the observers gave better scores to the outer vessel
wall delineation on dark-blood images probably comes from
the impact of the material decomposition on adjacent vascular
structures, such as the supenior vena cava, the pulmonary ar-
tery, or any addiional contrast medium-—contammg blood ves-
sels, helping to demarcate the outer aoriic contour. Finally, the

Ermor bars represent standard deviation. Dark-blood images mmprove
CNR between the lumen md the aontic wall but offer no advantape in
wall versus permortic fat CNE

mean aortic wall thickness in healthy patients was approxi-
mately 1.6 mm, which is in agreement with MRI sdies [6].

Regardng the method to calculate the dark-blood mmages,
our mam idea was to use a radiional two-matenial water/
iodine decomposition, but to replace the iodme component
by a value directly measured in the aortic lumen. Indeed, the
exact concentration and compostion of the elements present
in the lumen is unknown and represents a patient and contrast
material injection-dependent mixture of 1odine, hemoglobin,
water, platelets, and other components. By directly using the
attenuation measured in the aoriic lnumen, we cahbrated the
slope of the non-water axis used for the two-matenal decom-
position and thus accurately canceled the attenuation of the
lumen on the water axis used to generate the dark-blood 1m-
ages. It 1s important to notice that with our method, we di-
rectly used the HU values measured in the aoric lumen on the

&) Springer
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two monochromatic images (1.e.. 34 and 100 keV) and did not
unscale them to their physical attenuation values. This results
m an additional scaling factor, which m fact 15 also dependent
on the measured HU values of the aoriic lumen. The geomet-
nic mterpretaion of this scaling factor can be seen as a de-
crease in the slope of the calibrated aortic lumen matenal,
resulting m negative calculated projections along the water
matenial for the aortic lnmen values. As a consequence, the
two-matenal decomposition we applied does not result in con-
centration maps but rather m a map of geometric projections
that allow for optimized contrast between the humen and the
surroinding tissues, while keeping a confrast between the sur-
rounding tissues themselves. Unfortunately, despite ther
added value for visualization, these projection maps do not
have any meaningful physical interpretation and are not
mtended to be a quantitative method. An analogy can be per-
formed with MRI. The absolute T1 of the issue can be mea-
sured with MRI to create T1 maps, commonly used in cardiac
MRL for example [ 7). However, most ofthe ime, T1-weighed
mmages are used, where the contrast relies on the differences in
T1 between tissues consisting of unknown elements, such as
performed with our method in DECT.

Our study highlights the potential benefit of dark-blood
aortic CT maging compared with the curent state-of-the-art
aortic CT imaging, uwsually consisting of TNC CT followed by
CTA [B]. As of today, TNC CT combined with CTA 15 sull
recommended for suspected AAS patients. CTA alone may
provide infenor diagnostic accuracy [1] due to the high hom-
nal attenuation that can mask the IMH, as CTA requires wide
window settings to display images [9-11]. This two-
acquisition approach increases the total examination radiation
dose. Furthermore, TNC CT results in a low visual contrast
between the vessel wall and the lumen it prowvides, causing
mterpretive difficulies in assessng structural changes m the
vessel wall. In this context, dark-blood CT images could po-
tentially overcome these current protocol limitations by pro-
viding high wall-to-lumen contrast form a single contrast-
enhanced acquisiion. This last statement would need a more
extensive study, mvolving more patients, which was beyond
the scope of the present feasibility study.

Our study has several imitations. First, a true blinded de-
sign was not achievable given the unique nature of dark-blood
mages compared to TNC. Then, the comparison between
dark-blood images and other results available from spectral
CTA, such as HU or different levels of monochromatic im-
ages, in IMH but also in other conditions leading to acute
aortic syndrome, has not been performed in this study. This
would certamly be of mterest but was beyond the scope of the
present study.

In conclision, we descnbe a dark-blood image decompo-
sition method that provides a new way to show confrast be-
tween tissues. We took the example of producing dark-blood
CT mmages of the aorta to visualize the vessel wall, to help

@ Springer

diagmose conditions associated with changes in the vessel wall
structure, compared with TNC. The same method may im-
prove confrast resolution in other applications.
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6.1.3 Identification and quantification of monosodium urate crystals in coronary atheroma
“COROGOUT”

Gout is the most common inflammatory arthropathy in developed countries [114, 115],
characterized by the precipitation and deposition of monosodium urate crystals (MSU) in
various tissues. Several studies have shown that hyperuricemia is a risk factor for
developing atherosclerotic coronary artery disease and major cardiovascular events [98-
103]. In addition, it has been demonstrated that MSU crystals can be demonstrated ex
vivo in coronary atherosclerotic plaques in hyperuricemic patients [104]. Spectral
computed tomography (CT), makes it possible to distinguish and quantify materials,
including MSU crystals [116]. Spectral CT currently comes in two primary designs: the
most widely available are DECT systems, available in the form of 4 clinical platforms:
dual-layer detector CT [DLCT], fast kVp-switching CT [FSCT], twin-beam CT [TBCT], and
dual-source CT [DSCT] (see Table 1 in section 4.3 for more details). The more recent and
most advanced technological development is PCCT, extensively discussed before and
only available as a pre-clinical experimental prototypes from two leading manufacturers,
in selected university hospitals. Despite the diversity of spectral CT systems gradually
appearing in radiology facilities, detecting and quantifying MSU crystals in vessels and

plaques as small as coronary arteries are far from straightforward.

Detection of MSU deposits in coronary arteries using spectral CT imaging would be a
major scientific breakthrough as there is no other "non-invasive" technique to identify and
guantify such crystal deposits, which are found in atherosclerotic plague composition (ex
vivo, optical microscopy in polarized light). Once established, this technique could be

secondarily transposed to other clinical vascular applications (aortic arch and supra-aortic
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vessels) or other systems (including urogenital and musculoskeletal). Phantom studies
simulating musculoskeletal diagnostic tasks succeeded in differentiating MSU from other

crystals such as calcium pyrophosphate (CPP) and calcium hydroxyapatite (HA) [78].

To date, one study by Klauser et al. attempted at detecting coronary deposits of MSU in
vivo [117]; however, due to several serious challenges associated with coronary DECT,
spatial and spectral resolution undermining the validity of the presented results, the
veracity of that particular study is still a matter of debate [118], all the more so an
international cohort study with larger sample size and less challenging objective of
assessing peripheral arteries (which are larger and not affected by cardiac motion and
attenuation due to the chest wall) found DECT to be insufficiently accurate for clinical use
[97]. Given the existing controversy and specific challenges of spectral coronary artery

CT, a phantom proof of concept evaluation is a relevant approach.

Consequently, we designed a custom phantom containing various crystal suspensions
(MSU, HA, CPP) in two different backgrounds (resin and agar-based) at multiple
concentrations. Much effort was put into the preparations to achieve state-of-the-art purity

and concentration accuracy. See Fig. 18 for furthers details about the phantom.
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Fig. 18 Phantom schematic indicating crystal preparation location in the polyethylene phantom

module and concentration (in [mg/mL]). Larger preparations at the module’s periphery and central
area (coded in grey) are agar-based, whereas the smaller rods located in-between (coded in
various colors other than grey) are resin-based. UA = uric acid, HA = hydroxyapatite, CPP =

calcium pyrophosphate. Courtesy Dr. Fabio Becce, MD, Lausanne University Hospital (CHUV),
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Switzerland, and Dr. Lucia Gallego Manzano, PhD, scientific collaborator, Lausanne University

Hospital (CHUV), Switzerland.

The phantom was scanned (on DECT and SPCCT systems) as is with a musculoskeletal
protocol for comparison with existing studies, and inside a chest phantom to replicate the
additional attenuation and noise resulting from the surrounding spine and chest wall. From
this data, we can analyze the detection performance of the SPCCT vs. DECT, the
influence of the preparation background (agar versus resin), and estimate the accuracy

decline in an extremity versus cardiac scan.

As part of an ancillary study conducted in collaboration with Zurich University, the
COROGOUT phantom was also scanned on a pre-clinical prototype PCCT system from
another vendor. The latter is located at Zurich University Hospital (Prof. J Hodler, Prof A
Alkadhi, PD Dr. R Guggenberger). An abstract co-authored with a multidisciplinary team

was accepted at the RNSA 2021 annual meeting congress (please see below).
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Crystal characterization and differentiation by spectral photon-counting
CT: Initial results with the first clinical scanner of its generation.

Proposed author list:

Florian A Huber. Fabio Becce, Matthias Zadory, David Rotzinger, Johannes M Froehlich. Bernhard
Schmdt. Markus Jirgens, André Euler, Hatem Alkadhi. Roman Guggenberger

Abstract:

*Purpose: To investigate the first chimically approved spectral photon-counting CT (SPCCT) 1n the
differentiation of crystals related with gout (monosodium urate, MSU) vs. pseudogout (calcium
pyrophosphate, CPP). and to compare its performance with energy-mntegrating dual-energy CT (DECT)
scanners of the previous generation.

*Methods and Materials: Agar-based (AG) gels minicking attenmation of the articular cartilage and
synthetic crystal suspensions of MSU and CPP at different concentrations (90-500 and 26-109 mg/mL..
respectively) were inserted in a phantom. All samples were scanned with SPCCT (NAEOTOM Alpha,
Stemens). dual-source (DS), single-source split-filter (SF) and sequential scan (SS) DECT at comparable
dose levels (CTDILwi: 4.4-12.5 for each) and tube potentials (80/140, 120 and 140 kV). Images were post-
processed using DE overlay (DEQO) values optimmzed for gout/MSU detection with dual-energy ratios as
recommended by the literature (DECT) and vendor (SPCCT). Generated low/ligh KV HU-values and
DEO values were measured for all samples by drawing same-sized ROIs (0.3cm®) on every second axial
image for ten consecutive steps. Sample consistency and differences between radiation doses and
scanners were investigated for all parameters, separately for concentrations and materials. respectively,
using post-hoc corrected ANOVA, t-testing and analysis of mean differences. A p-value <0.05 was
considered statistically sigmificant.

*Results: Regardless of scanner type. all crystal suspensions showed excellent homogenerty (p=0.23-1).
HU-values in SPCCT did not depend on radiation dose overall. Apart from that, all quantitative
parameters differed between CT scanner types and dose levels (p=20.01). However, mean differences were
comparable between scanners [14.3-28.2]. Both CPP and MSU showed sigmficant concentration-
dependent differences in HU and DEOQ (all p=0.01). Correspondingly, concentrations of at least 195
mg/mL MSU and 47 mg/mL CPP crystals could be reliably differentiated with all techmiques (mean DEO
in SPCCT: -10.9+/-7 4 vs. -36.7+/-15 4, respectively).

*Conclusions: Differentiation of gout/MSU from pseudogout/CPP crystals at typical climical
concentrations 1s feasible with a climeal SPCCT system. Related quantitative measurements are
comparable with values from DECT-scanners of the latest generation. First results may indicate better
dose-related robustness i SPCCT for material decomposition tasks in the future.

*Clinical Relevance/Application: This is the first in vitro proof-of-concept for material decomposition
in a climcal SPCCT workflow. Further investigations i vivo with ex vivo confirmation are needed to
transition current knowledge and DECT-based reference values of matenial decomposition i
musculoskeletal and other settings to a new era of quantitative color CT imaging.
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COROGOUT preliminary results are available from acquisitions performed with a simpler
phantom, built around a phantom containing only resin-based rods with suspensions of
HA, CPP, and MSU. Only HA and MSU were analyzed; CPP preparations are meant to
be interpreted as part of a study with a musculoskeletal focus. To approximate a
physiological background for coronary arteries, we built a custom polyethylene module
exhibiting CT numbers close to -100 HU (at 120 kVp) to simulate fat as if the rods were

coronary arteries surrounded by epicardial fat. 5-mm-diameter holes were drilled into the

module to hold the rods. Fig. 19 shows how the rods are inserted into the module.
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Fig. 19 Polyethylene module with halfway inserted resin-based rods and two spare holes not

containing any sample.

This 10-cm-diameter polyethylene module is designed to fit in an anthropomorphic chest
phantom (QRM Chest, QRM, Germany). The chest phantom was placed on a trolley
allowing to move the setup. Moreover, a stepper motor driving a wooden rod connected
to the trolley could be operated to simulate heart movements at a rate of 60 beats per

minute. Fig. 20 shows the polyethylene module, the anthropomorphic chest phantom, the

trolley, and the wooden rod.
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Fig. 20 Polyethylene module inside the QRM anthropomorphic phantom centered in a DECT
system’s bore, placed on a trolley allowing to move the setup to simulate heartbeats. The wooden

stick is connected to the trolley and a computer programmable stepper motor (not shown).

The whole setup was scanned at standard coronary CTA dose levels (CTDI = 10 mGy) in
static and dynamic (moving) conditions, in DECT mode. Images were reconstructed at a
lower (50 keV) and a higher (100 keV) VMI energy level, with a standard kernel, section
thickness of 0.625 mm, no overlap, and no iterative reconstruction. In moving conditions,
the acquisition was performed in “CINE” mode (without ECG simulation) over 20 seconds,
and 12 series were reconstructed. The image stack visually exhibiting the lowest motion
artifacts was selected manually for analysis (series volume #1). Ten regions-of-interest
(ROI) were placed in each UA and MSU rod to measure the CT numbers and standard
deviation. Each ROI had a surface of 5 mm? and was placed in the rods’ center. Dual-

energy ratios (DER) were calculated using the following formula:

CT number (50keV)

DER =
CT number (100 keV)

Different materials' DERs were compared using the Kruskal-Wallis test with Dunn’s post
hoc test, and p-values were corrected with the Holm method. A basic approach to
approximate CT number reproducibility on static and moving acquisitions was to compare

all ROI's standard deviation with the Wilcoxon test.

Fig. 21 shows a CT image (in HU) reconstructed at 70 keV, which is considered equivalent

to a polychromatic image acquired at 120 kVp tube potential. MSU (on the phantom’s right
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side) and HA (on the left side) have overlapping CT numbers and cannot be readily

distinguished.

Fig. 21 CT image of the phantom’s module, reconstructed at 70 keV (assumed to be equivalent
to a polychromatic spectrum at 120 kVp), for illustration purposes. CT numbers are similar for
MSU 600 mg/mL (ROI S1, 272 HU), and HA 200 mg/mL (ROI S2, 271 HU) and are thus
indistinguishable without more advanced spectral analysis. The 12 o’clock position harbors a pure
resin rod for reference; 1 o’clock, MSU 200 mg/mL; 2 o’clock, MSU 400 mg/mL; 3 o’clock, MSU

600 mg/mL; 9 o’clock, HA 50 mg/mL; 10 o’clock, HA 100 mg/mL; 11 o’clock, HA 200 mg/mL.
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We then performed the quantitative image analysis and computed DERSs in static and
dynamic conditions. Fig. 22 shows DER boxplots in static scan mode. Visually, a
difference between HA and MSU can be seen. The statistical analysis showed that the
DER distribution was significantly different across the rods (p<0.001). Post hoc testing
revealed that the differences were significant only for DER.HA100 vs. DER.MSU200
(p=0.001), DER.HA200 vs. DER.MSU200 (p<0.001), DER.HA50 vs. DER.MSU200
(p<0.001), DER.HA200 vs. DER.MSU400 (p<0.001), DER.HA50 vs. DER.MSU400

(p=0.001), and DER.HA200 vs. DER.MSU600 (p=0.002).
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Fig. 22 Boxplots of dual-energy ratios (DER) for HA and MSU at various concentrations in static

acquisition conditions.
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We performed the same analysis in dynamic conditions in a second step. Fig. 23 shows
DER boxplots in static scan mode. Visually, the difference between HA and MSU was not
clearly visible. Moreover, a high DER variability was observed in the HA 200 mg/mL insert
due to motion artifacts. The statistical analysis showed that the DER distribution was
significantly different across the rods (p<0.001). Post hoc testing revealed that the
differences were significant only for DER.HA100 vs. DER.HA200 (p<0.001), DER.HA200
vs. DER.MSU200 (p=0.002), DER.HA200 vs. DER.MSU400 (p<0.001), DER.HA50 vs.

DER.MSU400 (p=0.001), DER.HA200 - DER.MSUB00 (p<0.001).
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Fig. 23 Boxplots of dual-energy ratios (DER) for HA and MSU at various concentrations in dynamic
acquisition conditions. CT numbers were overlapping much more than in static conditions, and

motion artifacts led to exceptionally high CT number variation in the HA 200 mg/mL insert.
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Finally, we combined all ROIs’ standard deviations in the static and the dynamic scans to
assess the effect of movement on CT number reproducibility. Fig. 24 shows box plots of
standard deviation; the median value is significantly higher in dynamic conditions
(p<0.001), as well as the data variability indicted by the larger box size in dynamic

conditions.
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Fig. 24 CT number variability, assessed by the standard deviation

The bottom line is that DECT has some potential to distinguish MSU from HA, in ideal
experimental conditions (pure samples with a 5 mm diameter). The challenge in vivo is
that MSU deposits in blood vessels are expectedly much smaller. Moreover, when
simulating heartbeats causing coronary artery motion, the DERSs’ accuracy seems to

decrease steeply. This undermines the finding of significantly more prevalent MSU
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deposits demonstrated in vivo by DECT in gout patients than controls reported by a
research group [117], given the probability of misregistration due to motion artifacts and
DER variability. The COROGROUT project is ongoing, and the primary analyses to be
conducted will be to assess the added value of PCCT over DECT to detect and

characterize MSU, especially in smaller ROISs.
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6.3 Spatial resolution, noise and detection performance

6.3.1 Feasibility of spectral photon-counting coronary CT angiography and comparison

with energy-integrating-detector CT: objective assessment with model observer

Submitted to the journal “European Radiology”, under review at time of writing.

Implications for patient care

Coronary CT angiography is one of the most demanding CT applications in contemporary
radiology practice. This is due to two main factors: (a) because the heart is moving, the
gantry has to be operated at maximum speed to reach the best possible spatial resolution;
the consequence is increased image noise, especially when using the smallest tube focal
spot — which is advisable for the sake of spatial resolution; (b) because coronary arteries
are relatively small (less than 2mm in diameter distally), running along the epicardium with
complex geometry, high spatial resolution is required to resolve lumen and wall-related
anatomical details. Furthermore, plaque characterization tasks deal with low-contrast,
e.g., for lipid core detection. The sum of all these constraints results in the CT system
being used at the edge of its performance, and any improvement in noise, spatial
resolution, contrast resolution, or even better spectral resolution will benefit the patient.
PCCT is expected to provide incremental value in all the latter topics, a future application
of PCCT we validated in the phantom study. The awaited implications for patient care
involve radiation dose reduction or improved diagnostic performance in overweight

subjects. Additionally, in line with the need to identify vulnerable plaques, we assessed
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lipid core detection performance and demonstrated PCCT’s superiority over dual-layer

detector CT for this specific task.

Author contribution

Lead author; performed acquisitions, coordinated image reconstruction with the help of
academic and industry partners across Europe and Middle East, interpreted data,

completed the literature review, manuscript drafting, and editing.
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Objectives

To evaluate the feasibility of spectral photon-counting CT (SPCCT) coronary
angiography in vitro by investigating its objective image quality characteristics
compared with a standard-of-care energy-integrating-detector (EID) CT system.

Methods

We scanned an anthropomorphic thorax phantom with a coronary artery module at 10
miGy on a preclinical SPCCT and a clinical dual-layer EID-CT under various conditions
of simulated patient size (small, medium, large). Images were reconstructed using
filtered back-projection with a soft-tissue kernel. We assessed noise and contrast-
dependent spatial resolution with noise power spectra (NPS) and target transfer
functions (TTF), respectively. Detectability indexes (d') of simulated non-calcified and
lipid-rich atherosderotic plaques were computed using the non-prewhitening with eye
filter model observer.

Results

For all patient sizes, SPCCT provided markedly lower noise magnitude (3-38% lower
NPS amplitude) and overall higher noise frequency peaks (sharper noise texture).
Furthermore, SPCCT provided consistently higher spafial resolution than EID-CT (30
33% better TTF10). In the resulting detectability analysis, SPCCT outperformed EID-
CT in all investigated conditions, providing superior d'. Of note, SPCCT reached almost
perfect detectability (estimated AUC=95%) for simulated non-calcified plagues
measuring as low as 0.5-mm-thickness (for large-sized patients), whereas EID-CT had
lower d' (AUC=75%). For lipid-rich atherosclerotic plaques, SPCCT achieved 85%
AUC, whereas EID-CT reached only 77.5% AUC.

Conclusions

Photon-counting coronary CTA is feasible not only for small or medium-sized patients
but also for large subjects. Furthermore, SPCCT outperformed EID-CT in the
quantitative analysis and might enhance the overall diagnostic accuracy by providing
lower noise magnitude, markedly improved spatial resolution, and superior lipid core
detectability.
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Abstract

Objectives

To evaluate the feasibility of spectral photon-counting CT (SPCCT) coronary angiography in
vitro by investigating its objective image quality characteristics compared with a standard-of-
care energy-mtegrating-detector (EID) CT system.

Methods

We scanned an anthropomorphic thorax phantom with a coronary artery module at 10 mGy on
a preclimcal SPCCT and a clinical dual-layer EID-CT under various conditions of stmulated
patient size (small. medium. large). Images were reconstructed using filtered back-projection
with a soft-tissue kernel We assessed noise and contrast-dependent spatial resolution with
noise power spectra (NPS) and target transfer functions (TTF). respectively. Detectability
indexes (d") of simulated non-calecified and lipad-rich atherosclerotic plaques were computed
using the non-prewhitening with eye filter model observer.

Resulrs

For all patient sizes, SPCCT provided markedly lower noise magnitude (9-38% lower NPS
amplitude) and overall higher noise frequency peaks (sharper noise texture). Furthermore,
SPCCT provided consistently higher spatial resolution than EID-CT (30-33% better TTF10). In
the resulting detectability analysis. SPCCT outperformed EID-CT in all mnvestigated
conditions, providing supenior d'. Of note, SPCCT reached almost perfect detectability
(estimated AUC=95%) for simulated non-calcified plaques measunng as low as 0.5-mm-
thickness (for large-sized patients). whereas EID-CT had lower d' (AUC=75%). For lipid-nnich
atherosclerotic plaques. SPCCT achieved 85% AUC, whereas EID-CT reached only 77.5%
AUC.

Conclnsions
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Photon-counting coronary CTA is feasible not only for small or medium-sized patients but also
for large subjects. Furthermore, SPCCT outperformed EID-CT in the quantitative analysis and
might enhance the overall diagnostic accuracy by providing lower noise magnitude. markedly

improved spatial resolution, and superior lipid core detectability.

Kevwords
Computed tomography angiography; Coronary vessels; Cardiac Imaging Techniques:

Phantoms imaging; Image quality enhancement

Kevpoints
- Spectral photon-counting CT outperformed dual-layer CT in terms of spatial resolution
and noise magnitude in atherosclerotic plaque detection
- Photon-counting coronary CTA is feasible not only for small or medium-sized patients
but also for large subjects
- Large simulated patient size had detnimental effects on both CT systems' performance;
however, non-calcified plaque detectability remained excellent down to a 0.5-mm-

diameter on the photon-counting system (vs. 1.0 mm on the dual-layer CT)

Abbreviations and acronyms
- AUC = area under the curve
- CCTA = coronary computed tomography angiography
- €M = contrast material
- CT = computed tomography

- CTDLa = volumr computed tomography dose mdex
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DECT = dual-energy computed tomography

EID = energy-integrating detector

NPS = noise power spectrim

PCD = photon-counting detector

PE = polyethylene

ROI = region of interest

SPCCT = spectral photon-couting computed tomography

TTF = target transfer function
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Introduction

Since 1ts mception m 1973, computed tomography (CT) has undergone steady
improvements on both the data acquisition and image reconstruction aspects. quickly becoming
a kev player i cardiovascular imaging and establishing itself as the primary non-invasive
coronary artery disease assessment tool [1]. Although the initial CT report by Hounsfield
already mentioned the potential advantages of acquiring data at various energy levels [2], CT
systems capable of collecting two distinct energy bands routinely were made available
commercially only three decades later, with the introduction of dual-energy CT (DECT)
platforms. DECT 1s becoming widely available clinically and can now be used in everyday
practice to improve patient safety and diagnostic performance. In cardiovascular medicine_
particular, DECT helps reduce iodine dose [3; 4], improve vessel opacification [5]. save
rachation dose with virtual non-contrast reconstruction [6]. among others. On the other hand,
DECT suffers from some fundamental limutations, including the absence of notable
improvement in spatial resolution or electronic noise compared with single-energy systems,
which could be addressed by photon-counting-detector (PCD) technology [7].

PCDs' principle is to operate without generating visible light inside detector elements,
thereby eliminating the challenges related to scintillators and associated electronic noise while
providing a refined spectral analysis. Contrary to conventional energy-integrating detectors
(EID') — which are used in single-energy and DECT systems — that measure the total energy
deposited m the detector, PCDs quantify the energy of each incident photon according to two
or more thresholds called "energy bins", and can be produced with a much smaller detector
element size to increase spatial resolution. For these reasons, PCD-CT 15 expected to address
some major limutations of EID-based DECT [8-10].

Coronary CTA (CCTA) 15 one of the most demanding CT imaging examinations due to
heart motion and high spatial resolution requirements: it 1s especially challenging to perform
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because the gantry needs to be operated at maximum speed for the sake of temporal resolution.
Because CCTA requires both low noise and great anatomical detail, 1t remains a challenging
examination. especially in overweight subjects. Technological advances constantly push the
limats of the possible and promote CCTA as a reproducible, accurate, and reliable diagnostic
test. The advent of PCD-CT is one of these technological advances that can shift the patient
management paradigm in the next ten years. EIDs have been in use for almost five decades and
have been CT's backbone until now, more recently bringing CCTA to clinical routine.

Our purpose was to thoroughly characterize the image quality properties of a preclinical
spectral photon-counting CT (SPCCT) prototype compared with a clinical standard-of-care
EID-CT system n the setting of CCTA. To this end, we measured image noise and contrast-
dependent spatial resolution properties under various simulated patient size conditions. Jomt
effects of noise properties and spatial resolution were modeled using state-of-the-art
mathematical model observers, evaluating the systems' performance to detect simulated non-

calcified atherosclerotic plaques and lipid core in CCTA.

Materials and methods

Experimenial design

We used a custom-made 10-cm-diameter cylindrical module made of low-density
polyethylene (PE. average CT number at 100 kVp = —100 HU). This module had a 5-cm-
diameter central hole that was filled with an 1odinated contrast material (CM) solution (Tomeron
400® muxed with normal saline) at a concentration of 18 mg I'mL. yielding CT numbers in the
range of clinical CCTA at 100 kVp (approximately 350 HU) [4]. This CM solution and the
surrounding PE created a pair of materials approaching the object-to-background contrast
difference (JAHU]|) encountered in CCTA, assuming that coronary arteries are opacified by

1odmated CM and are surrounded by epicardial fat whose CT number 1s around —100 HU. The
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transition between PE and the CM solution served to measure the contrast-dependent spatial
resolution using the target transfer function (TTF), an advanced physical metric particularly
sutted for CT taking into account the contrast-dependency of spatial resolution [11; 12]. We
inserted the CCTA module into an anthropomorphic thorax phantom (QRM. Moehrendorf,
Germany) that was scanned as 1s ("small" patient size) and with additional fat-mumicking
extension rings to simulate heavier bodyweights ("medium" and "large" patient size). The
corresponding approximate patient weights are 50 kg (small). 80 kg (medium), and 100 kg
(large size). Pictures of the phantom setup are provided in Figure 1. The phantom's background
was used to compute the noise power spectrum (NPS), a further advanced image quality metric
providing a comprehensive assessment of noise by plotting noise magnitude as a function of
spatial frequency [11; 12]. Approval of the mstitutional ethics committee was not required

sice no living beings were involved.

Acguisition profocol and image reconsiruction

We scanned the phantom on a clinically available 64-detector row dual-layer detector
EID-CT system (IQon Spectral CT, Philips Healthcare) following the standard clinical
acquisition protocol for CCTA 1 our University hospital. at a dose of 10 mGy. Volume CT
dose indexes (CTDI,y) were computed for a 32-cm-diameter (polymethyl methacrylate)
reference phantom, and retrieved from radiation-dose structured reports. Dose modulation was
disabled to achieve comparable dose on both CT systems. Next, we scanned the same phantom
setup using a similar acquisition protocol on a prechimical SPCCT system (SPCCT. Philips
Healthcare), aiming to generate comparable datasets by matching tube potential and loading
and 1mage reconstruction parameters with the EID-CT platform. The SPCCT 1s a large field-
of-view (500 mm) system equpped with 2-mm thick Cadmium-Zinc-Tellunde detectors

yielding a pixel pitch of 270 x 270 pm at 1socenter and a z-coverage of 17.5 mm arranged 1n
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64 detector rows. Each detector channel has its own application-specific mtegrated circuit
providing discrimination of 5 separate energy bands. Further technical details can be found
here [13; 14]. To ensure optimal precision of image quality metrics. the phantom was scanned
eight times consecutively on each CT system. without any repositioning or parameter variation,
to obtain datasets with a sufficiently large number of images. These eight acquisitions served
to improve the statistics and are not mntended to evaluate measurement uncertainties. Table 1
presents the detailed settings for data acquisition and 1mage reconstruction.

Images were reconstructed using the "high-resolution B" kernel (a similar one for both
CT systems), which 1s suited for coronary artery imaging. Also, to keep the comparison as
accurate and fair as possible, we reframned from using advanced image recomstruction
algonithms such as terative reconstruction. This resulted 1n a total of 6 different CT datasets
available for analysis: 2 CT systems (EID vs. SPCCT) x three phantom sizes (small, medium,

and large).

Image analysis
Noise power spectrum (NPS)

We assessed mmage noise in the homogeneous background area of the phantom made
of PE. To quantify and characterize noise, we calculated noise power spectra (NPS) following
the International Commussion on Radiation Units and Measurements' reports 54 and 87 [12].
NPS has established itself as state of the art for CT noise characterization, based on its unique
ability to provide noise magnitude evaluation and noise texture analysis [15; 16]. Four square
regions of interest (ROT) of 100 = 100 pixels positioned at different locations in the background
of the phantom in 214 axial CT slices were used to compute 2D NPS (total of 856 ROIs). which
were then radially averaged to vield 1D NPS. NPS was analyvzed in terms of NPS peak

frequency shift and noise magnitude reduction. NPS peak frequency was defined as the NPS's
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maxumum amplitude. The noise magnitude was defined as the integral of the area under the

NPS curve.

The NPS peak frequency shift was calculated according to the following formula:

fmﬂx(patiant zizej, PCD) — fmax(paﬁan’c sizej, EID)

NPS peak frequency shift; = x 100
fpaak(]:laﬁ ent gize;, EID)
The noise magnitude reduction was calculated according to the following formula:
Moise magnitude reduction;
| NPS (patient size;, PCD) — [ NPS (patient size;, EID) 100
= X

[ NPS (patient size;, EID)

where 1 corresponds to small. medium. or large patient size

Target transfer function (TTF)

We investigated contrast-dependent spatial resolution in the phantom region contaming
the 1odine solution. The transition between PE and the CM solution served to measure the TTF
at a contrast close to 450 HU. A total of 214 axial CT sections were used to calculate the TTF.
Square ROIs of 68 = 68 mm were extracted from the CT image to obtain 2D TTFs from edge
spread functions, using an angular aperture and a pitch of 15° and 10°, respectively. 1D TTFs
were subsequently generated by radially averaging 2D TTFs. Spatial resolution performances
of the SPCCT and EID-CT systems were compared i terms of TTF frequency shaft at 50%
(TTFs0) and 10% (TTF1w0) of its value at zero frequency for the three patient sizes. TTF
frequency shifts were calculated using the following formula:

ﬁ[paﬁant size;, PCD) — fjr{_paﬁ ent size;, EID) + 100

TTF frequency shift ; =
! f; [patient zizej, EID)

where j 15 equal to 10 or 50%, and 1 corresponds to small. medium. or large patient size.
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Non pre-whitening with eye filter (NPWE) model
To account for noise magnitude, noise texture, and contrast-dependent spatial resolution

at the same time, we computed detectability indices (d") using the following model:

o V2T|AHU| j:“?sz(f}Ter(fjvTF?-(f}fdf

J f:” ¥ S2(f)TTF2(f) NPS(f)VTE4(f)fdf

where |AHU| 1s the contrast in absolute CT numbers between an object (1.e. non-calcified
atherosclerotic plaque and lipid-rich plaque, respectively) and the surrounding homogenous
background (1e. coronary lumen and lipid-poor plaque. respectively). f the radial spatial
frequency. fiy the radial Nyquist frequency. S the magnitude of the Fourier transform of the

input signal (here. § = % J1(2mrt). with r the disk radms and J; the Bessel function of the first

kind), and VTF the visual transfer function of the human eye.

The model was adjusted to simulate two distinct but clinically relevant tasks. First, we
assessed a high (400 HU) object-to-background contrast to simulate a non-calcified
atherosclerotic plaque i the coronary artery wall [17]. The plaque was sumulated as a half-disc
of varying size whose upper (semicircular) portion causes lumen narrowimng, and 1ts flat portion
abuts the vessel wall. The second task was designed to assess low-attenuation (also called
"lipid-rich") plaques’ detectability. Low attenuation composition 15 a known determinant of
atherosclerotic plaque vulnerability histologically defined as a necrotic or lipidic core
measuring =200 pm [18]. According to existing data. fibrous plaques have average CT
numbers around 60 HU. In contrast, the lipid core’s CT number is close to 30 HU, meaning
that the contrast between the fibrous and lipid plaque components 1s about 30 HU [19; 20].
Consequently. we modeled the lipid core as a circular area whose object-to-background
contrast [AHU| 15 30 HU, with a diameter ranging from 0.5 to 3 mm in 0.5-mm steps. The
NPWE model provides d' varying from 0 to infinity, and 1s directly related to the accuracy. The

link between d’ and the area under the receiver operating characteristic curve (AUC) can be
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used to assess the accuracy obtained for a specific task: a d= 2 corresponds to an AUC of 90%

[12]

Results

Noise power spectrum

The preclinical SPCCT mmpacted both the overall noise magnitude and noise texture
(NPS peak frequency) compared with the clinical EID-CT, as demonstrated i Figure 2. Not
only did the PCD system exhibit consistently lower noise magnitude, but 1t also had higher
frequency noise since NPS peak frequency shifted towards high frequencies (from 0.38 to 0.47
mm™") compared with the EID system (from 0.27 to 0.3 mm™). Increasing the phantom size
resulted 1n a stronger noise magnitude on both CT systems. with no substantial noise texture
change (no NPS peak frequency shaft). At small phantom size, the SPCCT system's NPS
peaked at a 51% higher frequency while providing a 9% lower noise magnitude than the EID-
CT (Table 2). At medium and large phantom sizes. the NPS peak frequency was 37% and 26%
higher on the SPCCT, respectively, while the noise magnitude was 33% and 38% lower.

respectively.

Targef iransfer funciion

The SPCCT's spatial resolution performance was measured using the TTF and 1s plotted
in Figure 3. The SPCCT provided a noticeably higher spatial resolution than the EID-CT, with
a 35%, 37%. and 38% better TTFs0 and 30%. 31%. and 33% better TTF10. for the small.
medmm. and large size phantoms, respectively (Table 3). Furthermore, we found that
increasing the phantom size had a limited detrimental effect on the spatial resolution of both

CT systems. Still. the EID-CT was slightly more prone to resolution loss at large phantom size.
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Nonprewhitening with eve filter model observer

For both non-calcified atherosclerotic plaque and lipid core detection tasks, the SPCCT
outperformed the EID-CT regardless of the plaque size. Specifically, the SPCCT provided 22%
to 43% better d' for non-calcified plaque detection and 21 to 48% better d' for lipid core
characterization. depending on plaque and phantom size (Figures 4 and 5). For detecting the
smallest stmulated non-calcified plaque (0.5 mm). both systems reached the threshold of 90%
AUC (d= 2) with the small and medium-sized phantom. For the large phantom. only the
SPCCT achieved 90% AUC (EID-CT AUC = 75%). For characterizing the lipid core, the limit
of 90% AUC in the small phantom was 1.5 and 1 mm with the EID-CT and SPCCT,
respectively. In the medium phantom, the EID-CT system did not reach the limit of 90% AUC
— even for the largest sitmulated lipid core (3.0 mm) — while the SPCCT achieved 90% AUC
down to a lipid core size of around 2.0 mm. Neither system achieved 90% AUC 1in the large
phantom and 3.0 mm lipid core, but the SPCCT system achieved 85% AUC, whereas EID-CT

reached only 77.5% AUC.

Figure 6 illustrates the visual appearance of the CCTA phantom scanned on the EID-CT and
SPCCT systems at varying phantom sizes. Image noise increased at medium and large sizes.
Still, regardless of the simulated patient size, the iodinated solution vs. PE interface appeared

sharper on the SPCCT system. confirming the trends demonstrated in the quantitative analysis.

Discussion

Our phantom study assessed the feasibility of CCTA using a preclinical prototype
SPCCT system and compared the system's performance with the current climical standard of
care that 1s a dual-layer EID-CT system. We characterized the image quality using NPS (image

noise) and TTF (spatial resolution) metrics and performed a specific task-based investigation
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of CCTA. We showed that at equivalent regular radiation dose (10 mGy), the SPCCT operating
with PCDs provides solid performance for detecting non-calcified atherosclerotic plaque and
lipid-rich components down to a size of 0.5 mm and 1.5 mm, actually outperforming the EID-
CT system. Cardiac PCD-CT has recently been used m an amimal study advocating the
transition from EID to PCD [21]. and our work 1s a step further in that direction.

NPS analysis confirmed the sigmificantly lower noise magnitude of SPCCT. which 1s
an anticipated improvement [22] owing to the ability of PCDs to void electronic noise almost
completely and showed differences in noise texture. with NPS peaks occurring at a
significantly higher spatial frequency with the SPCCT. Higher frequency peak wisually
translates to "finer" noise texture, facilitating lesion detection [16]. especially when small and
with low object-to-background contrast, such as for lipid-rich plaques. A further noteworthy
fact was that the noise increase associated with larger phantom sizes was steeper on the EID-
CT. which bodes well for dose savings while mamntaiming appropriate mmage quality in
overweight patients with PCD-CT 1in the future.

The systems' spatial resolution performance assessment also showed considerable
differences. Of note. the SPCCT provided markedly improved spatial resolution over the
conventional CT system. on par with recent previous investigations [22-24]. Because they do
not require septa physically separating detector elements. PCDs can be manufactured i much
smaller dimensions, in the order of 100-500 pum, overcoming one of EIDs' major limitation:
dose-inefficiency at small detector element size. In PCDs, pixels are recovered by anode
parceling and can be subdivided if needed. Interestingly. our study showed that the SPCCT 1s
also less prone to spatial resolution detenioration when scanning the large phantom. Spatial
resolution 1s critically important i CCTA for three main reasons: first to resolve small
atherosclerotic plaques in any plane, since coronary arteries measure <=2 mm distally, meaning

that as little as 4-6 voxels may be available to quantify stenoses depending on the intrinsic
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spatial resolution [25]. PCD can utilize sharper filters to enable more voxels. with higher noise
that can be managed with noise reduction algorithms. Second, the detection of lipid-rich plaque
components has a predictive value [18] but 1s challenging due to the lipid-rich core's small size
[20; 26]. hence the need for higher spatial resolution. Our model observer assessment
demonstrated SPCCT's potential to address both of these 1ssues. providing consistently higher
d' than conventional EID-CT. Model observers are particularly relevant image quality
indicators because they exhibit a stronger correlation with human observer performance than
the classic contrast-to-noise ratio [27]. On the other hand. model observers do not allow for an
anatomic representation of the image's features because lesions are simulated 1n the frequency
domain. The third reason CCTA requires high spatial resolution 1s that. in calcified plaques.
blooming artifacts can lead to stenosis overestimation [28]. This 1s caused by the convolution
of the system’s pomt-spread function [29]. and PCD-CT has shown promising results in
mitigating this effect [23; 30]. Also. SPCCT can unprove vascular imaging in the presence of
metal stents that cause blooming artifacts for the same reasons as calcium [31; 32].

Our study has several limitations. First. we demonstrated that SPCCT vields higher
spatial resolution, even though we reconstructed only 512° matrices. The underlying reasons
were first to keep the investigation clinical since 512° matrices are standard-of-care, and
second, we wanted to keep noise low enough. especially with the large phantom. SPCCT offers
larger matrices, including 1024° or 2048, with sharper reconstruction filters that could
potentially be clinically relevant for stenosis quantification, particularly in calcified plaques
with associated blooming artifacts. Larger matrnices come at the cost of increased noise but
could be combined with advanced reconstruction algorithms in the future, such as iterative or
deep-learning-based reconstructions [33; 34]. Furthermore, calcified plaque, which challenges
CCTA mterpretation when present in high quantities, was not assessed i this study. As

mentioned earlier, PCD-CT has already shown promise to improve calcified coronary artery
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analysis ex vivo [23]. Additionally, by design. we mvestigated only one radiation dose level
because we aimed to understand the effect of patient size. While we could have used higher
doses for the large phantom, the future trend will be to reduce radiation dose for normal-sized
patients rather to increase dose for large patients. Finally. the cardiac phantom was static. which
may lead to an overestimation of the detectability performance. However, at equal gantry
revolution time, the overestimation magnitude 1s the same for both systems: noise and spatial

resolution properties are given by the systems' design.

Conclusions

SPCCT outperformed conventional EID-CT in the task of detecting non-calcified and
lipad-rich plaque 1 coronary arteries, more so with the large phantom. The SPCCT's lower
notse and higher spatial resolution could be translated into improved accuracy for stenosis
quantification and plaque characterization or reduced radiation dose, particularly in large

patients often subjected to increased radiation dose and decreased diagnostic performance tests.

156



References

1

%]

Schoepf UJ, Zwemer PL. Savino G, Herzog C, Kerl JM, Costello P (2007) Coronary
CT angiography. Radiology 244:48-63

Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1.
Description of system. Br J Radiol 46:1016-1022

Cavallo AU, Patterson AJ, Thomas R et al (2020) Low dose contrast CT for
transcatheter aortic valve replacement assessment: Results from the prospective
SPECTACULAR study (spectral CT assessment prior to TAVER). Joumal of
cardiovascular computed tomography 14:68-74

Rotzinger DC. S1-Mohamed SA_ Yerly J et al (2021) Reduced-1iodine-dose dual-energy
coronary CT angiography: qualitative and quantitative comparison between virtual
monochromatic and polychromatic CT mmages. Eur Radiel. 10.1007/s00330-021-
07809-w

Bae K. Jeon KN, Cho SB et al (2018) Improved Opacification of a Suboptimally
Enhanced Pulmonary Artery in Chest CT: Expenience Using a Dual-Layer Detector
Spectral CT. AJR Am J Roentgenol 210:734-741

Si-Mohamed S, Dupms N, Tatard-Lettman WV et al (2019) Virtual versus true non-
contrast dual-energy CT imaging for the diagnosis of aortic mntramural hematoma. Eur
Radiol 29:6762-6771

Sandfort V., Persson M, Pourmorteza A Noél PB. Fleischmann D, Willemink MJ
(2020) Spectral photon-counting CT in cardiovascular imaging. Journal of
cardiovascular computed tomography. 10.1016/;.ject.2020.12.005

Taguchi K BI Inmewsk: K (2020) Spectral, Photon Counting Computed Tomography:

Technology and Applications. CRC Press

157



10

11

12

13

14

15

16

17

15

19

Taguchi K, Iwanczyk JS (2013) Vision 20/20: Single photon counting x-ray detectors
in medical imaging. Medical Physics 40:100901

S1-Mohamed S. Bar-Ness D. Sigovan M et al (2017) Review of an mitial expenience
with an experimental spectral photon-counting computed tomography system. Nuclear
Instruments and Methods 1n Physics Research Section A: Accelerators, Spectrometers.
Detectors and Associated Equipment 873:27-35

Samei E, Bakalyar D, Boedeker KL et al (2019) Performance evaluation of computed
tomography systems: Summary of AAPM Task Group 233. Med Phys 46:e735-756
Verdun FR. Racine D, Ot JG et al (2015) Image quality in CT: From physical
measurements to model observers. Phys Med 31:823-843

*blinded*

*blinded*

Sharp P. Barber DC, Brown DG et al (2016) Report 54. Joumnal of the Intemational
Comimission on Radiation Units and Measurements 0s28:NP-NP

Rotzinger DC, Racine D, Beigelman-Aubry C et al (2018) Task-Based Model Observer
Assessment of A Partial Model-Based Iterative Reconstruction Algorithm mn Thoracic
Oncologic Multidetector CT. Sci Rep 8:17734

Johnson TE. Nikolaou K., Wintersperger BT et al (2007) Optimization of contrast
material admimistration for electrocardiogram-gated computed tomographic
angiography of the chest. J Comput Assist Tomogr 31:265-271

Dwivedi G, Liu Y, Tewann S, Inacio J, Pelletier-Galarneau M. Chow BIJI (2016)
Incremental Prognostic Value of Quantified Vulnerable Plaque by Cardiac Computed
Tomography: A Pilot Study. J Thorac Imaging 31:373-379

Saremu F, Achenbach S (2015) Coronary plaque characterization using CT. ATR AmJ

Roentgenol 204:W249-260

158



Schlett CL. Maurovich-Horvat P, Ferencik M et al (2013) Histogram analysis of lipid-
core plaques in coronary computed tomographic angiography: ex vivo validation
against histology. Investigative radiology 48:646-653

Clark DP, Holbrook M. Lee CL, Badea CT (2019) Photon-counting cine-cardiac CT
the mouse. PLoS One 14:e0218417

Si-Mohamed SA, Greffier J. Miailhes J et al (2021) Comparison of image quality
between spectral photon-counting CT and dual-layer CT for the evaluation of lung
nodules: a phantom study. Eur Radiol. 10.1007/s00330-021-08103-5

Sandstedt M. Marsh J. Jr.. Rajendran K et al (2021) Improved coronary calcification
quantification usmng photon-counting-detector CT: an ex wivo study in cadaveric
specimens. Eur Radiol. 10.1007/s00330-021-07780-6

Leng S. Gutjahr E. Ferrero A etal (2017) Ultra-High Spatial Resolution. Multi-Energy
CT using Photon Counting Detector Technology. Proc SPIE Int Soc Opt Eng 10132
Lin E, Alessio A (2009) What are the basic concepts of temporal. contrast, and spatial
resolution in cardiac CT? Journal of cardiovascular computed tomography 3:403-408
Puchner SB, Ferenctk M., Maurovich-Horvat P et al (2015) Iterative image
reconstruction algonthms i coronary CT angiography improve the detection of lipid-
core plaque--a comparison with histology. Eur Radiol 25:15-23

Solomon J, Mileto A, Ramirez-Grraldo JC, Samei E (2015) Diagnostic Performance of
an Advanced Modeled Iterative Reconstruction Algorithm for Low-Contrast
Detectability with a Third-Generation Dual-Source Multidetector CT Scanner:
Potential for Radiation Dose Reduction 1n a Multireader Study. Radiology 275:735-745
Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector
row coronary computed tomographic angiography for evaluation of coronary artery

stenosis 1n individuals without known coronary artery disease: results from the
159



30

31

32

33

34

prospective mmulticenter ACCURACY (Assessment by Coronary Computed
Tomographic Angiography of Individuals Undergoing Invasive Coronary
Angiography) trial. J Am Coll Cardiol 52:1724-1732

Do S, Karl WC, Liang Z, Kalra M. Brady TJ, Pien HH (2011) A decomposition-based
CT reconstruction formulation for reducing blooming artifacts. Physics in Medicine
and Biology 56:7109-7125

Gutjahr R, Halaweish AF, Yu Z et al (2016) Human Imaging With Photon Counting-
Based Computed Tomography at Clinical Dose Levels: Contrast-to-Noise Ratio and
Cadaver Studies. Investigative radiology 51:421-429

Bratke G, Hickethier T, Bar-Ness D et al (2020) Spectral Photon-Counting Computed
Tomography for Coronary Stent Imaging: Evaluation of the Potential Clinical Impact
for the Delineation of In-Stent Restenosis. Investigative radiology 55:61-67

Sigovan M. Si-Mohamed S. Bar-Ness D et al (2019) Feasibility of improving vascular
imaging i the presence of metallic stents using spectral photon counting CT and K-
edge imaging. Sc1 Rep 9:19850

Racine D, Becce F, Viry A et al (2020) Task-based charactenzation of a deep learming
image reconstruction and comparison with filtered back-projection and a partial model-
based iterative reconstruction in abdominal CT: A phantom study. Phys Med 76:28-37
Nu S, Zhang Y, Zhong Y et al (2018) Iterative reconstruction for photon-counting CT
using prior image constramed total generalized vanation. Comput Biol Med 103:167-

182

160



Table and figure legends

Table 1

Detailed settings for data acquisition and mmage reconstruction for the mvestigated coronary

CT angiography protocols on both CT systems.

Table 2

Noise magnitude reduction and NPS peak frequency shift in percentage differences for PCD-

CT in comparison with EID-CT at the three investigated patient sizes.

Table 3
TTF frequency shifts (percentage differences) for PCD-CT compared with EID-CT at the

three investigated patient sizes.

Figure 1. SPCCT system with phantom at isocenter. CCTA module made of PE 1s shown with
empty cavity (blue star), to be filled with iodinated contrast matenial solution for the
experiments. The anthropomorphic thorax phantom 15 shown with a fat-mumicking extension
rnng ("medium" patient size configuration). CCTA. coronary computed tomography

angiography; PE. polyethylene; SPCCT, spectral photon-counting computed tomography.

Figure 2. NPS curves obtained on a climical EID-CT (solid lines) and a preclinical PCD-CT
(dashed lines) system at various phantom sizes. The area under the curve 1s representative of
the noise magnitude, whereas the NPS center frequency indicates differences in noise texture.
NPS, noise power spectrum; PCD-CT, photon-counting computed detector computed

tomography; EID-CT, energy-mntegrating computed tomography.
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Figure 3. TTF curves obtamed on a clinical EID-CT (solid lines) and a preclinical PCD-CT
(dashed lines) system at various phantom sizes. The area under the curve indicates spatial
resolution performance. TTF, target transfer function; PCD-CT, photon-counting detector

computed tomography; EID-CT. energy-integrating computed tomography.

Figure 4. Bar chart show detectability indexes (d') of non-calcified atherosclerotic plaque with
an object-to-background contrast |[AHU| of 450 HU and CTDI= 10 mGy. A d' of 2 corresponds
to 90% accuracy (AUC). The SPCCT consistently provided higher detectability indexes than
the conventional system. Note that at large phantom size. only the PCD-CT system could
accurately detect (1.e.. with a d' = 2 indicating an AUC of 90%) the smallest simulated plaque
(0.5mm). CTDI, computed tomography dose index; PCD-CT. photon-counting computed
detector computed tomography. CTDI. computed tomography dose index; PCD-CT. photon-
counting detector computed tomography; EID-CT, energy-integrating computed tomography:

AUC, area under the curve.

Figure 5. Bar chart shows detectability indexes (d') of lipid-rich atherosclerotic plaque with an
object-to-background contrast |JAHU| of 30 HU. A d' of 2 corresponds to 90% accuracy (AUC).
plotted on the graphs as a black dashed lmne. The PCD-CT consistently provided higher
detectability indexes than the conventional system. At the tested CTDI of 10 mGy, neither the
EID nor the SPCCT reached 90% AUC to detect a 0.5mm lipid core. With the small phantom.
the EID and SPCCT systems reached 90% AUC down to a lipid core size of 1.5 and 1 mm,
respectively. AUC. area under the curve; CTDI, computed tomography dose index; EID.

energy-integrating detector; PCD-CT, photon-counting computed detector computed

tomography.
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Figure 6. Visual appearance of the TTF phantom inserted i a small (a and b), medium (c and
d), and large (e and f) anthropomorphic chest phantom. Conventional reconstructions obtained
from acquisitions on the EID-CT (a, c. and e) and the PCD-CT (b. d. and f) systems. Zoomed
views of the polyethylene/iodinated solution transition better depict the finer noise texture and
sharper transition yielded by the PCD-CT. TTF. target transfer function; PCD-CT. photon-
counting computed detector computed tomography: EID-CT. energy-integrating computed

tomography.
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Table 1

Detailed settings for data acquisition and image reconstruction for the mvestigated coronary CT

angiography protocols on both CT systems.

CT svstem EID-CT PCD-CT
Radiation dose level

CTDLia (mGy) 10 10

Data acquisition

Tube potential (KVp) 120 120

Tube current (mA) 330 330
Gantry revolution time (s) 0.5 0.5

Beam collimation (mm) 32 = 0672 64 = 0.2724
Scan mode Axial Axial
Image reconstruction

Display field of view

(camm) 200 = 200 200 = 200
Matnix size 512 x 512 512 = 512
Section thickness (mm) 0.6 0.6
Section merement (mm) 0.6 0.6
Kemel High-res B PCD-High-res B
Algorithm Filtered back-projection Filtered back-projection

CTDILy = volume CT dose index. EID = energy-integrating detector, PCD = photon-counting

detector
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Table 2

Noise magnitude reduction and NPS peak frequency shaft in percentage differences for PCD-

CT mn comparison with EID-CT at the three mvestigated patient sizes.

Phantom size Noise magnitude reduction Peak frequency shift
(%o) (%o)

Small -9 47

Medmm —33 37

Large —38 27

NPS. noise power spectrum; PCD-CT. photon-counting computed detector computed

tomography; EID-CT, energy-integrating computed tomography.
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Table 3
TTF frequency shifts (percentage differences) for PCD-CT compared with EID-CT at the

three investigated patient sizes.

TTF frequency shifts (%)
Phantom size TTF= ITEn
Small 35 30
Medium 37 31
Large 38 33

TTF. target transfer function; PCD-CT, photon-counting computed detector computed
tomography; EID-CT, energy-integrating computed tomography.
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7. Excerpts from related publications leveraging spectral CT

7.1 Quantitative imaging with spectral CT helps understand COVID-19 [119]

We routinely use DECT to manage patients with COVID-19 pneumonia and are often
puzzled by the severity of hypoxemia observed clinically and the limited extent of
parenchymal lesions radiologically. In the article entitled “Intrapulmonary Arteriovenous
Anastomoses in COVID-19-Related Pulmonary Vascular Changes: A New Player in the
Arena?” [119], we show how contrast-enhanced DECT can be integrated into quantitative
analysis and provide additional information regarding microvascular changes in COVID-
19 pneumonia. In this case, inflammation-related microvascular hyper-perfusion was
demonstrated with iodine-water material decomposition (iodine density map) and helped
formulate hypotheses to explain the deep hypoxemic state sometimes observed in severe
COVID-19. Specifically, DECT supported the theory of arteriovenous anastomosis
activation as a contributory factor to hypoxemia; however, observations from a single case
as published here have to be validated in an unselected patient cohort. This is what comes

next with the Swiss COVID-CAVA registry described in section 7.2.
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Case Report: Intrapulmonary
Arteriovenous Anastomoses in
COVID-19-Related Pulmonary
Vascular Changes: A New Player in
the Arena?

Salah D. Qanadli*, Ana Carolina Rocha and David C. Rotzinger*

Cardhothoracic and Vascular Dnasion, Department of Diagnostic and Infenventional Radiology, Lswusanne Univereidy Hospial
and University of Laysanne, Lsisanna, Switrenand

Up to now, COVID-19-related vascular changes were mainly described as thrombo-
embolic events. A handful of researchers reported another type of vascular abnormality
referred to as “vascular thickening” or “vascular enlargement,” without specifying whether
the dilated vessels are arteries or veins nor providing a physiopathological hypothesis.
Our observations indicate that the vascular dilatation occurs in the venous compartrment,
and underfying mechanisms might include increased blood flow due to inflammation and
the activation of arteriovencus anastomoses.

Keywords: COVID-19, computed tomography, perfusion, pulmonary embolism, arteriovenous anastomoses,
respiratory failure

INTRODUCTION

Early in the coronavirus disease 2019 (COVID-19) pandemic, a high prevalence of vascular
disorders has been reported (1). Such abnormalities were mainly described in the lung and covered
a broad spectrum of patterns revealed at histology-including microangiopathy, intussusceptive
angiogenesis, and microthrombosis-and at imaging with vessel dilatation, tortuosity, thrombosis,
and perfusion abnormalities. Up to now, no convincing theory has helped understand the
relationship between virus-induced inflammatory disorders and biological and morphological
changes, especially those observed on computed tomography (CT). Furthermore, the refractory
hypoxemia observed in COVID-19 patients appears to be driven by more complex processes than
alveolar damage with low gas exchange alone because COVID-19 leads to severe respiratory failure
despite relatively well-preserved lung gas volume (2). This suggests the contribution of vascular
phenomena beyond a simple ventilation-perfusion mismatch.

VASCULAR CHANGES IN COVID-19 PNEUMONIA

Imaging-based morphological vascular abnormalities in the lung described at CT may be
categorized into three groups: thromboembolic events (3), vascular dilatation, also known as
vascular “thickening” or “engorgement” (4, 5), and perfusional changes (6). Mechanisms leading
to vascular remodeling remain unclear, and their prevalence and distribution are a matter of
debate. We analyzed CT data from a patient who presented all the three groups of abnormalities
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FAGURE 1 | Contrast-snhanced chest CT in a patient admitted for COVID-19.
Coronal reformatted image (a) shows peripheral ground-glass opacity (5G0)
pradominantly involving the right lower lobe. Tissue classfication ([b)
distinguishing eheclar opacity (peach color cods) from nomnal parenchyma
{blue) and vascular components (red) visualy indicates vascular enlangament in
COMID-18 pneumonia. Spedific thresholds to isclate vowsis, mostly containing
vascular slemants (eyd), enable vasculsr volume extraction in
ragions-of-interest. Center-line reconstructions of the right postenor basal
artary and vein (e,f) alow dameter measuremeant in GE0. Axal conventionsl
image in lung window (g) with peripheral COVID-18-related GGO and
commasponding dual-energy CT kodine density mag (h) show increased iodine
distribufion in GG0 consistant with hyperparfusion.

simultaneously and thoroughly assessed vascular findings, trying
to understand the different groups” relationships and elucidate
the underlying mechanisms.

A man in his 70% with fever, tachypnea, hilateral basal
crackling sounds, and reverse transcription-PCR (RT-PCR)-
proven severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection underwent dual-energy CT pulmonary
angiography to rule out pulmonary embolism. Arterial PaO; was
64 mmHg, and Sp02 was 92% on room air. The examination
was carried out on a fast kV-switching dual-energy CT platform
(Revolution CT, GE Healthcare), with the following parameters:
rotation speed, 0.5s; tube load, 180 mAs; reconstructed slice
thickness, 1.25 mm; and section interval, 1 mm. Using a power
injector, 50 ml of indinated contrast material (Accupaque 300°%)
was injected through an 18G wenous catheter in the right
antecubital fossa at a rate of 4 ml/s and followed by a saline
chaser. Findings included zones of COVID-19 ground-glass
opacity (GGO) surrounded by healthy parenchyma, enlarged
blood vessels within GGO, and acute pulmonary embolism in
a lung segment without GGO. We applied automatic tissue
classification to distinguish alveolar opacity, normal parenchyma,
and vascular components (Figures 1a,b). In a second step, we
used a threshold-based automatic segmentation to extract the
(macroscopic) intravascular blood volume in a region-of-interest
(ROI) in both normal parenchyma and GGO (Figures 1c,d).
Calculated intravascular blood volumes showed that in the
areas presenting with typical parenchymal changes, the vascular
volume was increased by 40% (5.27/300 and 9.0/300 cm?
vessel-to-tissue ratio in healthy and GGO zones, respectively).
Of note, no venous thrombosis was seen. Furthermore, we
demonstrate that the increased volume primarily depended on
venous dilatation in the involved lung areas (Figures le,f).
Arterial and venous diameters at a sub-segmental level in
GGO were 3.6 and 4.9 mm, respectively, whereas in the healthy
contralateral posterior basal segment, diameters were 3.0 and
3.1 mm, respectively. The corresponding artery-to-vein ratios are
0.97 (3.0/3.1) in healthy parenchyma and 0.73 (3.6/4.9) in GGO,
and the vein-to-vein ratio (GGO vs. healthy segment) was 1.58
(4.9/3.1), indicating marked venous enlargement in COVID-
19-related GGO. Note that the artery-to-artery ratio (GGO vs.
healthy segment) was 1.2 (3.6/3), indicating a moderate arterial
dilatation in GGO consistent with hyperemia.

DISCUSSION

Inflammation-mediated hyperemia is unlikely to be the only
factor causing such a marked venous dilatation. We hypothesized
that the upregulation of nitric oxide synthase, causing the
activation of physiological arteriovenous anastomoses (7, &) in
the involved parenchyma, might explain venous engorgement;
these anastomoses create a right-to-left shunt. The existence
of pulmonary arteriovenous anastomoses has been suggested
and studied by Tobin et al. since the 1950%, and their
anatomical location was described as “at the apex of and
within the lobular divisions of the lung” (9, 10). Available
data suggest that such anastomoses can be activated passively
by exercise or supine position, but also actively in the setting
of vascular redistribution under both hyperoxia and hypoxia
(11). In COVID-19 pneumonia, the consequence of combined
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mechanisms is exacerbated hypoxia, giving a better explanation
for the discrepancies between the relatively preserved ventilation
mechanics, the severity of respiratory failure, and the limited
response to invasive ventilation (2). Other injuries, such as
endotheliitis (12} and/or distal microthrombosis (13), might
potentialize the dysregulation of intrapulmonary arteriovenous
anastomoses and the resulting shunting effect. In the case we
discuss here, transthoracic saline echocardiography would have
been a simple and effective means of evaluating the presence of
intrapulmonary anastomoses and should have been performed
if possible (14). Furthermore, recent evidence suggests that the
recruitment of intrapulmonary arteriovenous anastomoses may
be driven by the combination of increased cardiac output and
increased pulmonary vascular pressure (8). Unfortunately, we
could not provide a meaningful estimation of cardiac output
based on the available data.

The observed phenomenon is consistent with previously
described  increased parenchymal perfusion in COVID-
19 GGO with dual-energy CT (6). Likewise, our patient
exhibited hyperperfusion in GGO zones on iodine density
maps (Figures 1g,h). This distal hyperperfusion is attributed
to hyperemia induced by the inflammation cascade in
COVID-19 pneumonia.

It is also interesting to note that macro-thromboembolic
changes (pulmonary embolism) were observed in a different
territory than those with parenchymal involvement. This might
be another consequence of the vascular shunting effect. This
finding is also in agreement with a previous report (15).

In conclusion, our observations indicate that COVID-19-
related macroscopic vascular changes depicted in wivo are not
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7.2 Application of spectral CT in COVID-19-related vascular involvement [120]

Several small case studies indicated that DECT could provide value for understanding
the pathophysiological mechanisms underlying COVID-19 pneumonia that cause
morphological changes and hypoxemic states which do not match parenchymal changes
properly. Soon after the COVID-19 outbreak, it became clear that vascular involvement
plays a central role in severe disease and outcome [121, 122]. A thorough analysis of
potential links between severe COVID-19 disease, vascular remodeling, and perfusion
changes as assessed with contrast-enhanced DECT is needed to deliver the right
treatments. This led us to design the Swiss national COVID-CAVA registry involving all 5
University Hospitals, which expects to extract several morphological variables to
understand cardiovascular involvement. Most importantly, patients who underwent
contrast-enhanced DECT can be subjected to a thorough analysis of the lung
parenchyma, including semi-quantitative perfusion. DECT provides iodine distribution
data that can be gathered from iodine basis images (iodine versus water material
decomposition) or Zett maps. Both hyper and hypoperfusion states have been described
in COVID-19 pneumonia [123, 124] but no study provides an integrative approach taking
into account vascular remodeling, perfusion abnormalities, and clinical severity. This is a

gap to be filled with the help of spectral CT.
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Abstrack Although vascular abnormalibes are thought to affect coronavirus disease 20019 (COVID-
19} patients” outcomes, they have not been thoroughly characterized in large series of ungelected
patients. The Swiss national registry coronavirus-associated vascular abnormalities (CAVA) is a
multicentric cohort of patents with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection who underwent a clinically indicated chest computed tomography (CT) aiming to assess
the prevalence, severity, distribution, and prognostic value of vascular and non-vascular-melated
CT findings. Clinical outcomes, stratified as outpatient treatment, inpatient without mechanical
ventilation, inpatient with mechanical ventilation, or death, will be correlated with CT and biological
markers. The main obpective 15 to assess the prevalence of cardiov ascular abnormalities—including
pulmonary embolism (PE), cardiac morphology, and vascular congestion. Secondary objectives
include the predictive value of cardiow ascular abnormalities in erms of disease seventy and fatal
outcome and the asseciation of lung inflammation with vasoular abnormalities at the segmental kevel
New quantitative approaches derived from CT imaging are developed and evaluated in this study.
Patents with and without vascular abnormalities will be companed, which s supposed to provide
msights into the prognostic roke and potential impact of such signs on treatment strategy. Resulks are
expected to enable the development of an integrative score combining both clinical data and imaging
findings to predict outcomes.

Keywords: COVID-1%; computed tomography ; perfusion; pulmonary embolism; vascular congestion;

respiratory failure

1. Introduction

A subset of patients infected with severe acute respiratory syndrome coronavirus 2
{SARS-CoV-2) will develop pneumonia and severe disease [1,2], challenging healthcare
providers because the physiopathological mechanisms are unsatisfactorily understood.
Hypoxemia leading to mechanical ventilation may be the consequence of several factors, of
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which thromboembolism is emerging as a key component since blood hypercoagulability
is common among hospitalized patients with coronavirus disease 2019 (COVID-19) [3-7].

Since the SARS-CoV-2 outbreak, computed tomography (CT) imaging has almost
immediately established itself as the primary non-invasive test for diagnosis, monitor-
ing of COVID-19 pneumonia, and complications thereof, including deep-learning-based
analysis [8-14].

While most of the currently available literature relies on non-contrast CT [10,15], the
need to assess vascular abnormalities is being recognized as an increasingly important fac-
tor [16-19], both to help distinguish COVID-19 pneumonia from other viral infections and
to exclude pulmonary embolism (PE). Acute PE is believed to be a significant contributory
factor in patients with adverse cutcomes [3,6,7,20], and anticoagulation therapy was found
to reduce mortality in severe COVID-19 disease [21].

Although vascular involvement is thought to aggravate COVID-19 morbidity and
mortality, there are still unresolved issues regarding the nature and impact of cardiovas-
cular abnormalities. Furthermore, no convincing theory helps understand the interaction
between virus-induced inflammatory disorders and morphologic changes, especially those
observed on CT. In addition, the severity of hypoxemia in COVID-19 patients seems to be
related to more complex mechanisms than morphologic damages observed in CT [22].

The prevalence of PE in unselected patients is still debated regarding thromboem-
bolic complications. Clot burden/distribution (anatomic distribution, relationship to
ground-glass opacity, and clinical severity) is yet to define. Moreover, the association
between PE and important clinical variables lack, including time from onset, severity, age
of patients, risk factors for venous thromboembolic disease (VTD), and anticoagulation
prophylaxis regimen.

Recently vascular changes other than PE have drawn attention [23]. Additional
knowledge is, however, required and not yet available to confirm and better understand
early observations. In particular, a radiclogical sign referred to as “vascular thickening”,
“wvascular enlargement”, or “vascular congestion” (VC) that is thought to be a specific
marker of COVID-19 pneumonia calls for a thorough assessment. Cuantitative analysis
of this sign and correlation to clinical presentation is highly desirable and may help
understand its pathophysiology [24].

Most valuable information to address these open issues will likely come from severely
ill patients and those who die since a recent autopsy study reports thromboembolism in
50% of people who died from COVID-19, emphasizing the critical role of PE in adverse
outcomes [25].

Consequently, we probably underestimate the role of vascular changes and complica-
tions induced directly or indirectly by the coronavirus. Seeking a better understanding of
the disease is undoubtedly a step toward better managing COVID-19 and its cardiovascu-
lar complications.

1. Methods and Analysis
21. Study Design

This study aims to explore COVID-19 features on CT with specific regard to vascu-
lar changes.

The data and the conclusions of this study could enhance the clinical care, risk stratifi-
cation, and, ultimately, clinical outcomes of patients affected with severe COVID-19.

Specifically, this multicenter observational study is designed to comprehensively
picture the spectrum of vascular findings related to COVID-19 pneumonia and find corre-
lations with outcomes.

To this end, we will analyze lung parenchymal findings in patients with COVID-19
infection, including their relationship to vascular changes. Vascular abnormalities will
be subdivided into PE and non-PE-related lesions. Chalitative interpretation by expert
cardiothoracic radiologists and state-of-the-art quantitative analyses will be conducted,
including computer-based assessment.
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21.1. Primary Objective
The study aims to describe the prevalence of vascular abnormalities in COVID-19
preumonia, especially PE.

21.2. Secondary Objectives

Secondary objectives include the frequency of various other factors (as described
hereafter) and their potential impact on outcome or treatment.

We will measure the frequency of specific vascular abnormalities related or not to PE
and compare their prevalence.

2.2, Patient Selection

Patients will be recruited in six Swiss university-affiliated institutions from five cantons
(Basel, Bern, Geneva, Vaud, Zurich). For this purpose, each center needs to screen hundreds
of COVID-19 patients to select those who meet the inclusion criteria and do not have any
exclusion criteria.

221, Inclusion Criteria

Patients admitted for COVID-19 (with positive reverse franscription polymerase chain
reaction for SARS-CoV-2) who had a chest CT within the specified timeframe.

2.2 2 Exclusion Criteria

Age less than 18 years, patients with another pre-existing infectious process, non-
optimal CT scan or incomplete CT data, documented refusal of the reuse of medical data.

2.23. Sample Size Calculation

The sample size estimate is based on the primary objective of the study. We assume
that PE-positive patients have clots in two lung segments on average; the sample size
is designed for 80% power and a type-one error rate of 5% [26]. Under the hypothesis
that macroscopic PE is related to a systemic hypercoagulability status and does not result
from in situ thrombosis due to alveolar inflammation, the probability of an embolus to be
located in a segment with vs. without alveolar opacity should be roughly 50-50. To reject
this hypothesis and determine a statistically significantly higher incidence of PE in lung
segments with alveolar inflammation (20% increase, from 50% to 70%), we need to analyze
182 lung segments with PE. In other words, we need to enroll 91 patients with PE; since the
literature reports a PE incidence of 20% in COVID-19 preumonia [27], we need to enroll at
least 500 patients with COVID-19 taking into account a safety margin for excluded patients
and those who have declined to participate. By recruiting patients in the most prominent
centers in Switzerland, we may reach 1000 pahenfs with COVID-19 pneumonia, of which
around 20% will also have PE.

3. Methodology and Data Analysis

We will retrieve clinical, laboratory, and imaging data of eligible patients. Demo-
graphic data, including age and sex composition, will be analyzed. Intra-hospital medical
records, laboratory test results, and data from chest CT performed in the participating
centers will be collected in a Research Electronic Data Capture (REDCap)-based multicenter
registry. The study flowchart is reported in Figure 1.
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Assessment for inclusion:
- Microbiclogically-proven
SARS-CoV-2 infection
-ChestCT

Exclusions:

- Age <18 years
- Pre-existing infectious process
- Mon-optimal CT scan

- Refusal to reuse medical data

| Study cohort ]

.

.
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Thromboembaolism Vascular congestion aﬁsuﬁ:m;;
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' ™,
| Outcomes:

- Outpatient

- Inpatient without mechanical ventilation

- Inpatient with mechanical ventilation
W Daath y,

Figure 1. Study flowchart.

3.1. CT Analysis

CT Scans Are Analyzed to Identify:

PE related abnormalities: the presence of embolic material, anatomic distribution
based on segmental arteries, parenchymal changes and their distribution (PE present
in the region of interest subject of parenchymal changes induced by the coronavirus),
presence of perfusion defectusing iodine vs. water material decomposition if dual-
energy CT was performed-assessment of right ventricle, left atrium, and pulmonary
artery dimensions (diameters), and quantification of vascular obstruction using the

Qanadli obstruction index (QOT) [24,29] and a modified Qanadli obstruction index
(mQOT) based on the segmental analysis as follows:

mQOI = (£SQOI + TLQOI + £TQON)/ 120

where
5 segmental QO calculated for each segmental artery

L: lobar QO1 calculated for each lobar artery

T: troncular CQOI calculated for each pulmonary artery

MNon-PE-related vascular abnormalities consist of visual assessment of VC (arterial and
venous), manually drawn regions-of-interest in normal and abnormal parenchyma,
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quantification of vascular volumes and tissue volumes, quantification of venous
dilatation, and arterial enlargement.

- Non-vascular abnormalities include ground-glass opacities, consolidation, cysts, nod-
ules, and pleural changes. Semi-quantitative assessment of SARS-CoV-2-related
opacities is provided per segment: alveolar opacities (none, <50%, =50%) and per
patient. A new relative volume-based index is calculated as follows:

TVROI/TVL

where
Vi volume
RO region of interest with parenchymal changes
L: pulmonary lobe

Finally, predictive modeling will be performed to derive an integrative score account-
ing for both clinical variables and imaging findings to classify the disease severity better
and predict patient outcomes.

3.2 Data Management

All data will be coded and gathered using REDCap, a Human Research Act (HRA)-
compliant electronic data collection platform [30]. REDCap is a secure, web-based platform
providing data collection and management in research.

3.3. Statistical Analysis

For statistical analysis, we will conduct correlation analysis with Spearman’s rank test,
group comparison of qualitative data with Wilcoxon signed-rank test, group comparison
of quantitative data with Pearson’s Chi-square test. The inter-observer agreement will
be measured by Cohen’s Kappa test for ordinal data and with the intra-class correlation
coefficient for continuous data. Cutcome modeling will be performed using logistic
regression analysis.

Collected data and variables under evaluation are summarized in Tables 1 and 2.
Depending on the evolution of this worldwide pandemic and increasing knowledge con-
cerning new drugs to manage COVID-19 pneumonia, e.g., tamoxifen [31], an amendment
might be submitted to the Ethics Committee to analyze additional variables.

Table 1. Clinical and laboratory data to be collected.

Variable

Data Variable Type

[hsease severity

Outpatient, inpatient, death Cualitative

Composife outcomse ICU admission or death Dichotomic
Cardiov ascular comorbidities

Hypertension
Atrial fibrillation
Coronary artery disease
Heart failume
Peripheral vascular disease
Stroke
Chronic kidney disease
Hemodialysis
[hHabetes
COPD
Asthma
Cystic fibrosis
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Table 1. Conf.
Onset to CT delay MNumber of days Ordinal
Omset to recovery delay MNumber of days Ordinal
Thromboprophylaas or anticoagulants Qaalitative Dichotomic
-dimers Plasma concentration Continuous
Pa(d2 Arterial blood partial pressure Continuous
Sa(2 Venous bleced O2 saturation Continuous
C-meactive protein Plasma concentration Continuous
Thrombocytes Count per microliter Integer
Table L Imaging vanables under test.
Variable Data Wariable Type Segment Lung Patient
Left atrium swee 2 axes, conbinuous Continuous x
Right ventricle (EV) Small axis Continuous x
Left ventncle (IV) Small axis Continuous x
Pulmonary artery (PA) Diameter Continuous x
Vascular congestion (VC) Crualitative Dichotomic x x x
Vascular volume (VV) Volumetric Continuous x x
Perfusion (PF} Qualitative, iodine density map Ordinal (decreased, x x
! normal, increased
Venous-to-artery ratio (VER) Dhameter ratio Continuous x x x
Pulmonary embolism (PE) Crualitative Dichotomic x x x
Q“’m’ﬁ?m Percentage Ordinal (0-100% in 2.5% steps) x x x
Modifwed QOT (m(O0T) Percentage Ordinal {0=100%: in 25% skeps) x x x
‘i?cﬁsﬁlé% Cruahtative Dichotomic x x x
Alveolar comsolidation Crualitative Dichotomic x x x
Cyst Clualitative Dhichotomic x x x
Nodule Crualitative Dichotomic x x x
Lung tissue volume (TV) Volumetric Continuous x x

4. Diiscussion and Clinical Relevance

While most of the currently available literature relies on non-contrast CT, the need
to assess vascular abnormalities is being recognized as an increasingly important factor,
both to help distinguish COVID-19 pneumonia from other viral infections and to exclude
pulmonary embolism (PE). Acute PE is believed to be a significant contributory factor in
patients with adverse cutcomes.

The nature of blood clots (arterial thrombosis versus arterial embolism) in the context
of COVID-19 is currently debated [32]. Because of this, one of the most critical analyses
we will conduct is to assess whether pulmonary blood clots are systematically associated
with signs of pneumonia (in the same lung segment) and shed light on the mechanisms
underlying vascular changes. Moreover, the association between unfavorable outcomes
and alveolar opacities and/or PE will be an essential result for a better insight into the
disease course.

Arterial thrombosis in COVID-19 may be due to inflammatory cytokines (suggestive
of PE), endothelial dysfunction, or hypoxia (suggestive of local thrombosis). Likewise, VC
can be linked to hyperemia in the context of lung inflammation or other factors such as in
situ venous thrombosis or vasodilatation triggered by cytokines. A better understanding of
these processes would support decision-making, specifically regarding the use and dosing
of anticoagulation therapy in severe COVID-19.

Several factors might potentially limit this study. First, some relevant biclogical
markers of cytokine storm, such as interleukin & (IL-6), are not routinely collected in all
centers and are not expected to be available for analysis. Second, a common pitfall is linked
to the enrollment process; since this study only considers patients with microbiologically
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proven SARS-CoV-2 infection for inclusion, a potentially significant proportion of patients
will remain undetected and excluded from the analysis. However, since the endpoints are
mainly related to patients with serious or severe disease, the impact should be limited.
Finally, should the data fail to offer a predictive value concerning patient outcomes, we may
need to review the data and elucidate if potential confounders influence the main effect.

5. Ethics and Dissemination

The study protocol was submitted through the Swiss Business Administration System
for Ethics Committee (BASEC) and approved by the independent Cantonal ethics com-
mittees in charge. All procedures will be conducted by the leading institution (Lausanne
University Hospital) and participating institutions (Bern, Zurich, Basel, and Geneva Uni-
versity Hospitals) under the Federal Act on Research involving Human Beings (Human
Research Act, HRA). The study will be conducted in compliance with the protocol, the
current version of the Declaration of Helsinki, the International Conference on Harmoniza-
tion Good Clinical Practices (ICH-GCP), and other locally relevant legal and regulatory
requirements. Baseline patients characteristics, primary and secondary outcomes will be
published in scientific peer-reviewed journals.
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7.4 Emerging role of spectral CT chronic thromboembolic pulmonary hypertension
diagnosis [125]

Chronic thromboembolic pulmonary hypertension (CTEPH) is a frequent and debilitating
complication of acute PE with an estimated incidence of 3 to 5 per 100’000 inhabitants. It
is to be distinguished from other pulmonary hypertension subtypes because it is the only
form to be amenable to curative treatment. For this reason, accurately diagnosing CTEPH
is critical to offer patients the right treatment. In this review, we cover both the diagnosis
and modern treatment approach to CETPH, emphasizing the role of DECT along the
diagnostic pathway. DECT’s ability to provide semi-quantitative pulmonary perfusion by
means of iodine density maps helps identify arterial abnormalities leading to perfusional
changes. Correct evaluation of perfusion deficits is equally essential to diagnose CTEPH
and to guide therapy. Section 3 in the article emphasizes the emerging role of DECT in
that setting; note that only section 3 of the article, as well the corresponding references,

are reproduced here.
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ARTICLE INFO ABETRACT

Keywords: Chronic thromboembaolic pulmonary hypertenzion (CTEPH) iz a potendally fatal and frequendy wndiagnosad
Chronic thromboembolic pulmonary form of pulmonary hypertencion (PH), elassified within group 4 by the World Health Organization (WHO). Itis a
bypertengion _ type of precapillary PH, which uneommonly develops as a peculiar sequel of acute pulmonary embolism due to
Ex:m:ﬁ:;:w the partial rezolution of the mechanically obstructing thrombus with a coexisting inflammatory response from
Fdoviseul F““du'“ pulmonary wessels. CTEPH iz one of the potentially treatable forme of PH whose current standard of care iz

zurgical pulmonary endarterectomy. Medical therapy with few drugs in non-operable dizease iz approved and has
chown improvement in patients’ hemodynamic condition and fimetional ability. Recently, balloon pulmonary
angioplasty (BPA) has shown promising rezults as a weatment option for technically inoperable patients, those
with unaceeptable risk-to-benefit ratio and in a case of rezidual PH after endarterectomy. Lack of meticulous
CTEPH screening programe in poct-pulmonary embolism patients leading to underdiagnosiz of this condition,
complex opearability assezmment, and diversity in BPA techniques among different institntions are still the issues
that need o be addresed. In thiz paper, we review the recent achievements in the management of non-operable
CTEPH, their outcome and zafety, based on available data
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3. CTEPH imaging and classification

Several imaging modalities find their place in the workup of sus-
pected CTEPH (Fig. 1). Transthoracic echoeardiography is a simple and
effective means of assessing the right heart chambers and the probability
of PH. BV hypertrophy (wall thickness »5 mm) and RV dilation are
indicatve of chronic RV loading and adaptive remodeling, and echo-
cardiography can suggest elevated PVE. before RHC [33]. According to
the latest diagnostic algorithm from the European Society of Cardiclogy
(ESC) [24], patients with intermediate or high probability of PH at
echocardiography benefit from radionuclide wentilation-perfusion
(V/Q) lung seintigraphy, which accurately detects suggestive abner-
malites, ypically large mismatched perfusion defects. Sensitivity and
specificity are excellent (=90 %) with both planar V/Q, and V/Q
single-photon computed tomography (SPECT) [34]. Additionally, due to
its nearly perfect negative predictive value, V/Q can safely exclude
CTEPH and avoid unnecessary additional diagnostic tests. On the other
hand, in the presence of mismatched perfusion abnormalities, further
diagnostic tests are required because of the limited specificity of V/Q
scintigraphy.

CT pulmeonary angiography has established itself as the principal
non-invasive insoument to assess the pulmonary vasculature, with the
ability to evaluate the pulmonary anatomy and cardiac morphology at
the same time [35,36]. While the sensitivity of V. Q) was long considered
higher than that of CTPA for the detection of CTEPH, recent data show
equivalent sensitivities for these two imaging tests, which has been
atributed te technological improvements [3,37]. The sensitivity and
specificity of CTPA to detect CTEPH findings are excellent at the main
and lobar arterial segments (97.0 % and 97.1 %, respectively) and
slightly lower at the segmental and subsegmental levels (85.8 % and
94.6 %) [35]. Besides the detecticn of typical CTEPH signs including
increased right-to-left ventricular ratio, dilated main pulmenary artery,
organized chronic emboli, peripheral tapering of pulmonary arteries,
systemic collaterals, and mesaie attenuation pattern, CTPA has the po-
tential to unwveil alternative diagnoses (mimickers of CTEPH) such as
systemic vasculitis, arterial sarcoma, fibrosing mediastinitis, or pulme-
nary veno-ccclusive disease [39,40]. More recently, dual-energy CT
systems have become available for clinical use, opening the door to a
new era of combined morphological and functional vascular assessment.
Dual-energy CT (Figs. 2,3 and 5) platforms acquire spectral X-ray
artenuation data withour additonal radiation or iodine dose [41] and
allow semi-quantitative evaluation of pulmeonary perfusion [42,43], as
well as blood volume (Fig. 3, panel b). Whereas iodine density maps
show promising initial results as a surrogate marker of pulmonary
perfusion [44], further evaluation with prospective studies is warranted
to establish this technology as a clinical standard [45].
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Recently, pulmonary magnetic resonance imaging has gained inter-
est as a radiation-free alternative to other imaging techniques in CTEPH.
It has limited spatial resolution compared to CTPA but offers the
advantage of measuring cardiac and pulmonary hemodynamics. Draw-
backs include the required level of training and expertise to perform it
properly and its time-consuming nature [46,47].

Right heart catheterization is the final diagnostic procedure that will
confirm PH with invasive hemodynamic assessment and remains the
gold standard to diagnose PH. Care must be taken in patients with
normal resting mPAP (< 20 mmHg) but high clinical or radiological
suspicion of CTEPH because abnormal mPAP may become apparent only
during exercise. This condition is named Chronic Thrombo-Embolic
Disease (CTED), and its management remains poorly defined. RHC is
usually combined with catheter-based pulmonary angiography, which
helps determine the distribution and extent of thromboembolic burden,
especially at the subsegmental level. Diagnostic angiography remains a
mainstay in evaluating surgical accessibility, and the development of
BPA restores the importance of accurate mapping of occlusive target
lesions with transcatheter angiography. Findings include vessel nar-
rowing (Fig. 4), webs and bands (Fig. 2), pouch defects, or occlusions

(Fig. 5). The latest proposed angiographic classification of pulmonary
vascular lesions specifically tailored for BPA identifies five lesion types.
Type A: ring-like stenosis lesion; type B: web lesion; type C: subtotal
lesion; type D: total occlusion lesion; and type E: tortuous lesion [48].
The highest success rate and lowest complication rate of BPA were
attributed to type A lesions followed by type B, while type D and E le-
sions had the least success rate, and the highest complication rate was

noticed in type E lesions [49].
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limitations, BPA should not be considered in total unilateral occlusion or
large central clots [42].

6. Target groups, indications, contraindications

Eligibility assessment is a challenging and multifactorial task
requiring a multidizciplinary team of CTEPH experts whoee members
may vary depending on local practice. Core members may include PH
pulmonologists, diagnostic cardiologists and radiologists, interventional
radiologists/cardiologists. Including cardiothoracic surgeons iz an
attractive means of providing a balanced and thorough multidisci-
plinary discussion of tailored treatment. Depending on patients’ ability
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Flg. 2. Dual-energy CT pulmonary angiography
chows several webs in the left lower lobe's
anterior and lateral segmental arteries on axial
(a) and coronal reformatted (b) images. Coronal
reformatted iodine density map reveals
impaired perfusion in the left lower lobe (c).
Selective ranscatheter pulmonary angiography
chows incomplete opacification of the anterior
segmental artery due to webs (d). Following
treamment with balloon pulmonary angioplasty
(e), a final angiogram shows the absence of
stenosis (f).

to receive general anesthesia, input from anesthesiologicts can influence
treatment decisions. Whenever a BPA program is started, a concomitant
PEA track chould be available and discussed in the multidisciplinary
team since PEA remains the method of choice for eligible patients with
CTEPH. Furthermore, due to the abcence of systematic post-PE screening
programs, PH management teams should clocely collaborate with pul-
monary embolism response teams since most CTEPH patients are iden-
tified through acute PE referrals. Although consensus regarding PEA and
BPA’s ments gradually develope, there may still be considerable vari-
ability in practice across institutions and nations. Patients who have the
highest benefit from BPA are those with an unfavorable risk/benefit
ratio for PEA, more distal location of obstructive thrombotic lesions, and
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8. Discussion and future directions

Despite its ubiquitous availability and established clinical value, conventional CT suffers
from several drawbacks: (a) spatial resolution, although better than in magnetic
resonance imaging or nuclear medicine, is limited to about 500 um and has hardly evolved
in the last years. (b) contrast resolution, which is especially challenging for assessing soft
tissue composed of elements having similar mass density, makes low-contrast tasks such
as perfusion imaging or lipid core detection demanding and particularly noise-sensitive.
(c) The absence of material specificity and quantification; even though CT is a quantitative
imaging modality measuring linear attenuation coefficients, the exact chemical
composition of a sample cannot be determined. (d) Radiation dose and (e) intravenous
iodine are drawbacks, have to be considered when ordering a CT (especially in children
and patients with underlying kidney or cardiac disease) and may cause adverse effects.
Actually, both foster DNA damage, and iodine as a CM has no biological specificity for

targeting pathological processes.

DECT, released about 15 years ago, has gone a long way in finding its place in medical
care. DECT was the first technological leap that could address some of the limitations
mentioned above. While early systems were often accused of delivering higher ionizing
doses, recent data shows the opposite, as do our experiments. We showed that non-
contrast acquisitions could be skipped for assessing acute aortic syndrome, and spectral
CT’s improved CNR, demonstrated in three of our studies (see section 6), can be
translated into dose reduction. For low-contrast tasks such as myocardial perfusion
imaging or atherosclerotic plaque characterization, spectral CT can be operated at dose
levels equal to conventional CT and yield improved CNR (as we showed for myocardial
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perfusion and CCTA) or detection (as we showed in vitro for lipid core). Improved CNR
achieved with lower energy VMI can also be translated into markedly reduced iodine dose,
as we showed in a CCTA study. The same reduced-iodine-dose CCTA study ended up
with some unexpected positive news as the reduced-iodine lower energy VMI's
assessment demonstrated improved spatial resolution compared with full-iodine dose

single energy imaging.

Furthermore, DECT can quantify certain chemical elements, provided they exhibit a solid
photoelectric effect — calcium and iodine are typical examples encountered in clinical
practice. Quantification is especially attractive when performing myocardial perfusion
imaging; however, normalization methods should be developed to compensate for
injection protocol and cardiac output variability. Quantification was also possible for uric
acid in phantom experiments, which is clinically relevant because gout patients have an
increased risk of major cardiovascular events due to a higher atherosclerotic burden.
Detecting vascular uric acid deposits non-invasively may impact therapy and ultimately
outcomes in patients with known or unknown hyperuricemia. When diligently applied for
specific tasks, DECT can create new tissue-to-background contrast. In this context, we
demonstrated the usefulness of patient-specific material decomposition (aortic lumen
versus water) to highlight the aortic wall; the concept, however, could be applied to any
tissue exhibiting strong enough spectral response at clinical energy levels (i.e., mainly
chemical elements with strong photoelectric absorption). To sum up, DECT helps address
four of the five limitations stated above; its scintillator-based detectors still need physical
separation of detector elements by an opaque grid structure, physically limiting the

opportunity to increase spatial resolution.
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As far as PCCT is concerned, the main hurdle that has delayed its availability body
imaging use was the challenge of pulse-pile up at high the count rates used in CT. The
latter has now been mostly overcome, and pre-clinical systems are running at different
places across the globe. Currently, PCCT is the answer to the need for improved spatial
resolution since its small detector elements provide reported spatial resolutions down to
150 um [126], even on full field-of-view PCD systems [127]. We also observed improved
spatial resolution of PCCT over DECT in our TTF experiments, which, combined with the
low noise performance and refined spectral resolution of PCDs, will bring patient benefits.
More specifically, we showed that the combination of high spatial resolution and low noise
of PCDs allows for markedly improved detection of non-calcified atherosclerotic plaques
down to a size of 0.5 mm and lipid core down to a size of 1 mm in a normal-sized simulated
patient. The challenge of cardiac imaging in obese patients remains, but PCCT improves

the prospects of achieving diagnostic image quality at manageable dose levels.

Project continuity

Various further analyses can be conducted using existing data or data to be produced
shortly. As mentioned earlier, the COROGOUT project, requiring a highly precise
concentration of materials in suspension, will evaluate the performance of spectral CT to
detect and quantify uric acid crystals. Because of uric acid’s moderate spectral response
at clinical X-ray energy ranges, the challenge of detection and quantification remains

substantial with DECT, and benefits are particularly expected from PCCT. If possible, an
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ex-vivo analysis based on excised human tissue samples will supplement the phantom

study.

In addition, the project "Model observer assessment of photon-counting-detector coronary
CT angiography and comparison with energy-integrating-detector CT" can be expanded
since more data is available for analysis, included reduced X-ray dose acquisitions and
reduced-iodine dose acquisitions. PCCT’s potential to perform CTA with reduced
radiation and iodine doses could be approximated from such analyses, and due to PCCT’s

low noise and refined spectral resolution, its impact will surpass DECT.

Future approaches

Clinical implementation of spectral CT in cardiovascular imaging is now becoming more
of a reality as some systems allow for ECG-gating while sampling in DECT mode [105,
109, 128]. Despite the fact that early PCCT prototypes did not support ECG-gating [69],
new generations do. This also means that experimental studies conducted as part of this
thesis should be expanded with heart motion simulation platforms to perform more
experiments with moving phantoms. ECG-gated spectral CT will be offered for more CT

systems and will become standard in the short term, promising new clinical applications.

One aspect that was not addressed as part of the scientific part of the thesis is spectral
CT’s capability to reduce artifacts. Several advantages of DECT in that field are known
already, including artifact reduction from dense CM in the subclavian and brachiocephalic
veins [129], port systems [130], sternal wires, coronary artery bypass clips and stents
[131], PCCT has further beam hardening and metal artifact reduction potential [132, 133],
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but currently lacks in vivo validation, particularly in cardiac imaging where metal devices
such as stents, coils, pacemaker wires and more massive equipment including left

ventricular assist devices challenge image interpretation.

With regard to technology, the emergence of PCCT does not necessarily mean immediate
obsolescence of DECT systems. While going for spectral CT systems means looking into
the future, healthcare facilities will continue to rely on cost-effectiveness analyses to
decide whether they should invest in DECT or PCCT equipment. DECT will likely continue
to improve, and new models, e.g., with narrower energy spectra, would undoubtedly prove
valuable in clinical practice. Also, PCDs are expected to improve and might someday
provide the option of performing grating-based phase-contrast imaging (GBPCI) [134].
GBPCI enables the measurement of extremely small X-ray refraction angles occurring
due to electron density variations of a given chemical component, thereby providing
markedly improved soft-tissue contrast compared to the established attenuation-based
CT imaging. Tissue contrast reminiscent of that yielded by magnetic resonance imaging

can be achieved with GBPC-CT, but with CT’s higher spatial resolution [135, 136].

Likewise, full potential has not been reached yet on the reconstruction side since deep
learning image reconstruction (DLIR) has recently been introduced in single-energy CT
[91, 137] and could theoretically be implemented in PCCT prototypes. DLIR algorithms
provide markedly improved noise performance while maintaining spatial resolution. On a
PCCT system, DLIR could push the boundaries of low contrast detectability and radiation

dose reduction even further.
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Additionally, spectral CT in general and PCCT, in particular, allow the use of new CMs
and combinations of CMs providing different information in a single acquisition (single-

acquisition multi-phase imaging) [138].

Finally, a promising scientific approach to plaque rupture prediction using CT is to assess
plaques that have actually ruptured and caused lethal myocardial infarction. This can be
achieved with post mortem CCTA, which is routinely performed as part of autopsy
evaluation at the Centre Universitaire Romand de Médecine Légale (CURML) in
Lausanne and Geneva. Using single-energy CT, a group composed of forensic
pathologists, forensic radiologists, and cardiovascular radiologists investigated the
potential role of plague inflammation as a marker of plague severity. In a congress
abstract co-authored with Magnin V, Van Der Wal AC, Grabherr S, Qanadli SD, and
Michaud K, [139], we demonstrate that enhancement detected in lethal coronary artery
plaques by post mortem CCTA correlates with the histopathological presence of
perivascular plaque inflammation and increase of vasa vasorum. Arterial wall
enhancement has been investigated in animal (pig) carotid arteries using PCCT before
and appeared feasible [140]. The next step in post mortem plaque analysis will obviously
be to take advantage of the high spatial resolution and spectral performance of PCCT,
understand what characterizes a vulnerable plaque, and hopefully predict plaque rupture

in vivo.
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9. Conclusion

Spectral CT is still a young imaging modality but is gaining worldwide acceptance. Its role
in cardiovascular imaging is becoming increasingly important, and evidence is needed
both to clarify its usefulness and acknowledge limitations. The various studies conducted
as part of this thesis are a building block to improve patient safety and leverage diagnostic
value in cardiovascular medicine, especially with the increasingly available DECT
platforms. We also highlight the advantage of considering PCCT for cardiovascular
imaging in clinical routine. In the continuum of X-ray imaging’s 125-year success story,
our results confirm that spectral CT does not take us anything away. Quite the contrary:
less radiation and iodine doses become commonplace, CT’s quantitative nature is being

reinforced, and diagnostic accuracy raises. CT is just becoming better.
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