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A B S T R A C T   

An increasing number of artificial intelligence (AI) systems are being proposed in ophthalmology, motivated by 
the variety and amount of clinical and imaging data, as well as their potential benefits at the different stages of 
patient care. Despite achieving close or even superior performance to that of experts, there is a critical gap 
between development and integration of AI systems in ophthalmic practice. This work focuses on the importance 
of trustworthy AI to close that gap. We identify the main aspects or challenges that need to be considered along 
the AI design pipeline so as to generate systems that meet the requirements to be deemed trustworthy, including 
those concerning accuracy, resiliency, reliability, safety, and accountability. We elaborate on mechanisms and 
considerations to address those aspects or challenges, and define the roles and responsibilities of the different 
stakeholders involved in AI for ophthalmic care, i.e., AI developers, reading centers, healthcare providers, 
healthcare institutions, ophthalmological societies and working groups or committees, patients, regulatory 
bodies, and payers. Generating trustworthy AI is not a responsibility of a sole stakeholder. There is an impending 
necessity for a collaborative approach where the different stakeholders are represented along the AI design 
pipeline, from the definition of the intended use to post-market surveillance after regulatory approval. This work 
contributes to establish such multi-stakeholder interaction and the main action points to be taken so that the 
potential benefits of AI reach real-world ophthalmic settings.   

1. Introduction 

The potential of artificial intelligence (AI) in healthcare has become 
apparent in recent years with an increasing number of publications 
using deep learning (DL) and machine learning (ML) techniques for the 
automated analysis of clinical data (Litjens et al., 2017). AI systems have 
been shown to achieve close or even superior performance to that of 
clinical experts in different medical specialties (Liu et al., 2019b) and to 

provide valuable support tools for clinical decisions (Bulten et al., 2021). 
An increasing number of AI applications are being proposed in the field 
of ophthalmology (Ting et al., 2019b; Schmidt-Erfurth et al., 2018; Lee 
et al., 2017a), motivated by the variety and amount of clinical and im
aging data, and the potential benefits of AI solutions in the different 
stages of patient care (González-Gonzalo et al., 2020b; De Fauw et al., 
2018; Schmidt-Erfurth et al., 2021). Nevertheless, few prospective 
studies have been performed to validate proposed AI solutions in 
real-world settings (Heydon et al., 2020; Gulshan et al., 2019; Abràmoff 
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et al., 2018), with very few AI systems obtaining regulatory approval for 
clinical use (Abràmoff et al., 2018; Heydon et al., 2020; 
González-Gonzalo et al., 2020b). 

We and others observe a critical gap between development and 
deployment of AI systems in ophthalmic practice. In contrast to the 510 
ophthalmic AI systems developed between 2010 and 2020 (Meskó and 
Görög, 2020), only 12 AI-based medical devices are approved for clin
ical use in Europe and 2 are approved in the US (Muehlematter et al., 
2021). To address this gap, guidelines are being proposed that prepare 
the ground for standardization and facilitation of AI integration in 
healthcare (Rivera et al., 2020; Liu et al., 2020; Sounderajah et al., 2020; 
Collins and Moons, 2019). Other studies identify important consider
ations and current challenges (Abràmoff et al., 2021; Singh et al., 2020; 
Ting et al., 2019a; Kelly et al., 2019). These studies all agree on the need 

of trustworthy AI systems to facilitate the uptake of AI in healthcare. 
The European Ethics Guidelines for Trustworthy Artificial Intelligence 

identify a set of requirements that AI systems should meet in order to be 
deemed trustworthy, including properties such as accuracy, resiliency, 
reliability, safety or accountability (European Commission, 2019). 
These guidelines, as well as others, articulated and debated concerns and 
principles to guide trustworthy AI development for the global AI com
munity (European Commission, 2019) or considering specific fields in 
society such as healthcare (World Health Organization, 2021). Although 
the undertaken effort is necessary, it is deemed crucial to move beyond 
high-level principles to a focus on mechanisms for ensuring and 
measuring trustworthy behavior of AI systems. As a well-calibrated ev
idence of a trustworthy AI system, the definition of verifiable claims 
based on trustworthy properties, as well as mechanisms to support these 
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AAO American Academy of Ophthalmology 
AI Artificial intelligence 
AMD Age-related macular degeneration 
CFP Color fundus photography 
CNN Convolutional neural network 
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Fig. 1. The diagram illustrates the stages in the AI design pipeline and the stakeholders involved in AI for ophthalmic care. For each stage, it shows the identified 
aspects or challenges to address in order to generate trustworthy AI systems in ophthalmology. For each aspect or challenge, it indicates which stakeholders have a 
main role in applying the necessary mechanisms to address them. The AI design pipeline is not meant to be fixed, but cyclic, making it possible to address challenges 
at previous stages when necessary. 
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claims, are urged to ensure beneficial societal outcomes from AI (Jacovi 
et al., 2021). Unfortunately, unverifiable claims provided by the com
munity have been common in the last years. For instance, Liu et al. 
(2019b) observed that only a small number of studies make direct 
comparisons between AI systems and healthcare professionals, and an 
even smaller number validate these findings in an out-of-sample 
external validation. Unverifiable claims have the potential to 
encourage undesired reactions to AI (i.e., blind trust or blind rejection), 
resulting in both overuse and underuse of AI. This hampers AI adoption 
in clinical practice (Brundage et al., 2020). 

In this work, we discuss the importance of trustworthy AI for the 
development and integration of responsible systems in ophthalmology 
and propose a set of mechanisms that could support verifiable claims 
about system’s properties, such as accuracy, reliability or resilience, in 
the various stages of the design pipeline of an ophthalmic AI system. The 
pipeline established in this manuscript was defined based on the au
thors’ diverse expertise and previous works (Hopkins et al., 2020; Char 
et al., 2020). As summarized in Fig. 1, for each stage we identify po
tential challenges to different claims. We provide a better understanding 
of which properties of AI systems can be verified and through what 
means. When necessary, we indicate how to adapt them for a specific 
point of patient care in ophthalmic practice: screening, diagnosis, 
monitoring, treatment, prognosis. We identify barriers within the design 
pipeline and discuss the necessary mechanisms to address them, indi
cating the corresponding role of the different stakeholders involved in AI 
for ophthalmic care. This allows to anticipate risks and avoid negative 
consequences during integration or deployment, as well as approach 
verifiability, safeguards, and best practices in a collaborative fashion. 

We believe our work helps to (a) get a better understanding of the 
properties underlying trustworthy AI, (b) identify the roles and in
teractions between the different stakeholders to develop responsible AI 
systems, and (c) contribute mechanisms to develop and promote the 
uptake of AI-based systems in ophthalmic practice. 

2. Definition of intended use 

The first stage in the AI design pipeline is the definition of the 
intended use. Extensive research and business analysis are key to iden
tify an unmet clinical need; for instance, the automation or optimization 
of a certain clinical task, or the support to clinical decisions to improve 
personalized ophthalmic care. This is in high contrast with numerous AI 
systems proposed lately, which are a result of the trend around AI and 
focus solely on applications where public data are available, dis
regarding how to bring major positive changes and sustainable solutions 
into healthcare. As with other types of clinical tools or procedures, early 
thorough planning of the intended use and the design of a medical AI 
system is critical. It allows to maximize its alignment with the target 
clinical application and point in patient care, reducing potential diffi
culties that might arise in later stages of the pipeline. For instance, 
regulatory bodies often require a precise and accurate definition of the 
intended use, since it determines the risk profile and, consequently, the 
type of approval pathway and post-approval control. The identification 
and involvement of the different stakeholders is therefore critical, in 
order to combine different types of expertise (technical, clinical, regu
latory…) from the beginning. 

In this section, we study the importance and discuss potential solu
tions for two main aspects to consider at this stage of the pipeline:  

• Defining the intended use together with a realistic and sustainable 
business model for the AI system.  

• Analyzing how to integrate the system as seamlessly as possible in 
the current clinical infrastructure. 

2.1. Intended use and business model 

2.1.1. Importance and consequences 
It is estimated that AI has the potential to address 20% of unmet 

clinical needs in the coming five years (Accenture, 2020). AI has the 
potential to automate certain processes while letting healthcare pro
viders focus on more complex clinical tasks, to improve personalized 
care and predictive analyses, and to alleviate the increasing shortage of 
ophthalmologists, accentuated in rural areas (Association of American 
Medical Colleges, 2020; Royal College of Ophthalmologists, 2020). 
However, many AI developers remain focused on clinical questions for 
which public datasets and annotations are already available, without 
questioning the clinical relevance of the problems and the actual 
applicability of their solutions (Wiens et al., 2019). Moreover, a realistic 
business model is required to facilitate integration. A feasible business 
model considers not only an unmet clinical need, but also the impact of 
using an AI system on a given clinical workflow and the reimbursement 
for its adoption and use over time (Hopkins et al., 2020). The lack of 
engagement of different stakeholders before development contributes to 
the lack of alignment of AI systems with actual clinical needs and 
financial viability. 

2.1.2. Proposed solutions and considerations 
The first factor to consider is the creation of an interdisciplinary team 

from the beginning of the AI design pipeline. Successful AI integration in 
clinical settings requires the engagement of all relevant stakeholders 
from different areas, including knowledge experts (AI, clinical, and 
implementation experts), decision-makers (healthcare institutions, 
reading centers, ophthalmologic societies, regulatory bodies, govern
mental agencies, private insurers), and users (ophthalmologists, nurses, 
optometrists, technicians, patients, graders) (Wiens et al., 2019). 

A collaboration between AI developers and clinical stakeholders 
from the start would allow for a robust interrogation and identification 
of unmet clinical needs that would benefit from AI, improving the 
alignment of AI solutions with the clinical problems to solve. It would 
also allow to maximize the utility of AI in the clinic. For example, in the 
context of automated screening of eye diseases, most proposed AI so
lutions focus solely on the detection of diabetic retinopathy (DR) in color 
fundus photographs (CFP), while other diseases, such as age-related 
macular degeneration (AMD) or glaucoma, co-exist in the screened 
subjects. Such patients might not be referred if there is no DR present 
(Abràmoff et al., 2018). The development of AI systems that perform 
joint detection of co-existing eye diseases could increase clinical utility 
and facilitate software centralization (González-Gonzalo et al., 2020b). 
Nevertheless, this might depend on the intended use and clinical setting, 
since national diabetic screening programs are set up to detect DR while 
other diseases may be in part filtered out by visual acuity measure, and 
the health economics of screening of other diseases are still unclear. 

A key factor to promote the involvement of stakeholders is trans
parency. AI developers should provide transparency when declaring 
their intentions and the goals of their application, so that other stake
holders have the autonomy to evaluate these intentions and decide to 
support them (Char et al., 2020). It is also important to identify potential 
conflicts of interest, which can be individual financial interests, such as 
payment for services, as well as operational interests that might differ, 
for instance, between AI manufacturers and healthcare providers 
regarding data or system ownership. We believe win-win collaborations 
are crucial for this matter. When it comes to collaborations between AI 
manufacturers and healthcare institutions or reading centers, there is 
usually hesitation from both sides regarding data and algorithm sharing. 
It is thus important to establish the basis of balanced collaborations from 
the beginning. 

Transparency also requires that developers ensure auditability along 
the AI design pipeline, facilitating inspection of the followed processes 
by the involved stakeholders, from the development stage to the initial 
clinical deployment (Char et al., 2020). Raji et al. (2020) have recently 
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proposed a framework for end-to-end internal algorithmic auditing. Its 
goal is to ensure the compliance of internal and external policies and 
ethical values and promote accountability during the design of AI sys
tems. Internal audits would involve multidisciplinary teams, including 
internal stakeholders (a dedicated audit team, and the development, 
product, and management teams) and other stakeholders, which could 
include external healthcare representatives in the case of AI medical 
devices. Such internal auditing during AI design would be complemen
tary to post-surveillance auditing, discussed in Section 7.1. 

To achieve transparency, general aspects of the AI system to be 
developed need to be clarified. For example, whether the system will be 
assistive or autonomous. This aspect is important considering its impact 
on different elements of patient care (Abràmoff et al., 2021), including 
liability (Section 7.2). There is also a need to clarify whether the system 
will be locked or continuously learning, which has a direct impact on the 
system’s maintenance and the required financial and human resources 
(Section 5.5). Another relevant aspect is whether the system is meant to 
be used in isolation, in combination with other diagnostic elements, or 
used as an add-on or as a replacement of a current process or tool (Faes 
et al., 2020). It is also crucial to clarify the intended use of the system 
within the clinical pathway (screening, diagnosis, monitoring, treat
ment, prognosis), since this conditions the data to be used for develop
ment and the required validation. Both data and validation need to be 
representative of the point of care where the system is aimed to be 
deployed. Relevant pre-specifications regarding data include technical 
aspects (e.g., device used for the extraction of development data) and 
contextual and cohort information (e.g., demographics, time period, 
clinical setting, disease prevalence, inclusion/exclusion criteria). For 
example, an AI system intended for automated screening of DR should 
ideally be validated using data acquired at screening settings, i.e., with a 
very low prevalence of referable and advanced DR cases, instead of using 
data from hospital-based clinics. It is important to consider that highly 
curated datasets may be useful to develop AI systems in research, but do 
not suffice to validate systems for clinical use in real-world settings. 
Developers must also ensure transparency on data privacy (Section 3.1) 
and the reliability of the reference standard (Section 4.1). 
Pre-specifications regarding system validation, internal and external, 
include indication of primary and secondary outcomes to validate and 
the statistical analysis planned (Faes et al., 2020). It is important to 
ensure that the output of the system will be aligned with internationally 
accepted disease classifications or quantification standards used in 
current guidelines and therapeutic management of ophthalmic diseases. 
Similarly, it is important to align performance goals with those in clin
ical practice, that is, to define when and how the AI system will be 
considered good enough, by means of pre-specified performance metrics 
when possible (Abràmoff et al., 2018), and/or by setting up a robust 
observer study to compare the performance of the system with that of 
human experts (Section 4.2). 

Interdisciplinary collaborations are also necessary to establish a 
realistic business model around the AI system. Addressing an unmet 
clinical need and achieving good performance are not the only factors 
that matter for successful clinical integration. It is crucial to establish a 
sustainable business model that considers the specific interests of the 
different stakeholders, long-term implications in the clinical workflow, 
such as improvements in efficiency and cost-effectiveness (Section 6.3), 
and reimbursement (Section 7.3) (Hopkins et al., 2020). 

2.2. Integration with clinical infrastructure 

2.2.1. Importance and consequences 
Current clinical infrastructures present multiple difficulties for the 

integration of AI systems, mainly due to the limited interoperability 
between medical devices and healthcare settings. The increasing adop
tion of electronic health records (EHRs) has allowed great improvements 
in this regard and can facilitate AI integration. However, there is still 
large variability in the use of EHRs and the completeness of data entry 

across clinical settings, as well as in the interoperability between 
different providers (Panch et al., 2019). Ophthalmology is particularly 
backwards in this aspect, with a widespread lack of interoperability 
between EHRs and the various imaging devices. Most ophthalmic im
aging devices make use of vendor-specific file formats and data storage 
software, and often vary within and between primary, secondary, and 
tertiary care settings, creating an environment of devices and settings 
that cannot communicate with each other (Li et al., 2020). This can be 
easily ascertained when compared to other medical specialties, 
including radiology, where universally-accepted protocols and tech
nologies such as DICOM and PACS facilitate data accessibility and 
communication. This has allowed a wider and faster proliferation of AI 
development and integration in these respective fields (Litjens et al., 
2017; Muehlematter et al., 2021). 

The current lack of uniformly accepted standards for data format
ting, storage, and transfer in ophthalmology challenges the integration 
of AI systems, which would require a seamlessly flow of patient data to 
use as input, and the transfer and storage of the generated output to 
make it accessible with other available data in the patient record. It also 
hinders the adaptability of AI systems to different clinical settings. If AI 
systems cannot be embedded properly in existing clinical infrastructures 
and workflows, ophthalmologists, nurses, optometrists, and technicians 
will be reluctant to include AI in their daily practice. Interruptions in the 
clinical workflow take time, decrease efficiency, and cause frustration. 
Additionally, the lack of interoperability across devices and settings 
challenges the collection of data from multiple sources and populations 
for AI development, which is an important factor to prevent bias and 
lack of generalization in AI systems (Section 5.2). It can be observed that 
without efforts to optimize standardization and interoperability, the 
practical applicability of AI and its benefits will remain severely limited. 

2.2.2. Proposed solutions and considerations 
In order to circumvent the current lack of standardization and 

interoperability in ophthalmology, AI manufacturers can make signifi
cant efforts to maximize AI integration, starting with a thorough analysis 
of the target setting/s prior to development. The objective should be to 
generate an AI system that aligns as much as possible with the target 
setting’s conditions, which may greatly vary with those of the settings 
used for system’s development and validation. This is especially the case 
of target settings in rural areas and low-resource countries, where there 
is often great variation and/or lack of protocols for image acquisition, 
used equipment, and personnel’s experience (Beede et al., 2020). 

Therefore, it is important to define an appropriate model of care for 
the AI system, considering the available infrastructure and clinical 
workflow of the target setting/s (Ting et al., 2019a). In cloud-based 
solutions, the acquired data are transferred from a client application 
to the AI manufacturer’s cloud via Internet connection. Data are pro
cessed by the AI system in the cloud and the output is transferred back to 
the client application. Cloud-based solutions are common in the context 
of automated screening of eye diseases due to their ease of integration 
and use, such as the one proposed by González-Gonzalo et al. (2020b). 
This model of care becomes especially useful in teleophthalmology 
settings (Li et al., 2020). Cloud-based solutions are also key for 
home-based monitoring, which will allow for improved personalized eye 
care, for instance, in the context of retinal fluid changes in AMD patients 
(Notal Vision, 2018). Although cloud-based solutions provide high 
scalability, a stable, secured Internet connection cannot be assured in 
certain settings, especially in low-resource countries. In a recent pro
spective validation of a cloud-based AI system for automated screening 
of DR in rural areas in Thailand, Beede et al. (2020) showed that Internet 
speed and connectivity were a limiting factor, causing delay or 
appointment rescheduling. A more suitable alternative for settings in 
rural and low-resource areas can be the integration of office-based so
lutions, where the AI system is deployed as part of an application that 
can be installed in a desktop, laptop, tablet or smartphone, processing 
the acquired data offline (Natarajan et al., 2019). An important 
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consideration is that office-based solutions might be harder to syn
chronize with the latest available version and to perform updates to the 
AI system, which may limit the ability of future continuously learning 
algorithms once allowed by regulators (Section 5.5). They might also 
require the implementation of compressed or lightweight models that 
enable the deployment of deep learning in mobile devices and whose 
performance might not be at the same level of that of state-of-the-art 
models (Owen et al., 2021). 

Independently of the model of care, vendor-neutral solutions will be 
key to increase interoperability in ophthalmic infrastructures. AI sys
tems that are not integrated with a given camera model, or that do not 
require data to be acquired by a specific device, are easier to adapt and 
to use within the current clinical infrastructure. Their integration is also 
more economically viable, since acquiring a new device to use an AI 
system is not as feasible as just acquiring access to a client application or 
installing a software package. For these reasons, the use of vendor- 
neutral AI solutions will also be more generally accepted by 
ophthalmic societies and working groups or committees (Lee et al., 
2021a; Royal College of Ophthalmologists, 2021). Current efforts on the 
development and deployment of vendor-neutral archives of ophthalmic 
data will also lead to increase interoperability and, consequently, 
facilitate AI integration at large scale (Swiss Personalized Health 
Network, 2018). These archives would provide centralized storage and 
access to raw ophthalmic data from different modalities and vendors. 
With updated data transfer agreements and ethical approval by the 
corresponding institutional review board (IRB), vendor-neutral archives 
would also enhance the communication and data sharing between de
vices and healthcare institutions. Such archived data could be more 
easily used as input of AI systems for different clinical applications, as 
well as collected for AI development and validation. 

The development and implementation of standards in ophthal
mology becomes necessary to yield vendor neutrality, interoperability, 
and a successful integration of AI. Imaging standards will facilitate the 
harmonization of the mentioned vendor-neutral archives, and standards 
for interfaces and AI outputs will enable widespread adoption and 
integration of AI in ophthalmic infrastructure. The Fast Healthcare 
Interoperability Resources (FHIR) framework is a promising advance in 
this regard, and it is anticipated to become critical for the integration of 
AI systems. It consists of a set of standards for exchange of healthcare 
data that will facilitate interoperability within EHRs and mobile-based 
apps, as well as cloud-based communications (He et al., 2019). There 
are ongoing efforts at the American Academy of Ophthalmology (AAO) 
to support the implementation of existing DICOM standards in 
ophthalmology, while engaging with the broader healthcare standards 
community (Lee et al., 2021a). The AAO’s call for standardization has 
been endorsed by several ophthalmological societies, including the 
Royal College of Ophthalmologists (UK) (Royal College of Ophthal
mologists, 2021). It is crucial that healthcare institutions, vendors, and 
AI developers support these efforts in order to incentivize the adoption 
of standards (Baxter and Lee, 2021). Different stakeholders can have 
nonetheless different interests, and these interests might not always aim 
to maximize interoperability (Lehne et al., 2019). To overcome these 
situations in single-payer healthcare systems, where new bodies are 
being designated responsible for the implementation of AI and digital 
medicine (e.g., NHSX in the UK), these could set the standards for 
interoperability as an essential requirement prior to the commission of a 
given ophthalmic imaging device or AI system, the same way an MRI or 
CT scanner must be DICOM-compatible to be adopted. For both 
single-payer and multi-payer systems, this aspect could also be super
vised within a given healthcare institution. In addition, we believe that 
actions taken by the corresponding regulatory bodies might be necessary 
to efficiently incentivize and enforce interoperability. 

Substantial updates in the clinical infrastructure could also enhance 
healthcare and facilitate AI integration, as well as updates in protocols 
concerning data privacy (Section 3.1) and cybersecurity (Section 5.4). 
However, it is important to acknowledge that certain settings will be 

limited by the prevalent socio-economic context of their healthcare 
system rather than by technology, which means that special efforts 
might be necessary to ensure the benefits of AI reach low-resource set
tings as well (Burton et al., 2021; Panch et al., 2019). 

3. Data collection 

Data collection is a critical stage in the design of AI systems. It re
quires thoughtful preparation and alignment with the defined intended 
use. In ophthalmology, imaging datasets have been used to develop AI 
systems for the automated diagnosis, prediction, and prognosis of 
common eye diseases, such as DR, AMD, and glaucoma. While most 
healthcare institutions hold imaging data at a sufficient scale for AI 
development, these data are often inaccessible to AI developers due to 
barriers of governance, cost, time, format, and privacy. Consequently, AI 
developers often make use of publicly-available imaging datasets, which 
have been powerful enablers of AI development in ophthalmology (Khan 
et al., 2020). Nevertheless, public datasets are not available for all 
relevant clinical applications, and those that are available may not al
ways be aligned with the identified intended use or be representative 
enough of the target settings, for instance, in terms of population or 
imaging device. Importantly, health data poverty, i.e., the inability for 
individuals, groups or populations to benefit from innovation due to the 
scarcity of representative data, has been recognized as an important 
barrier to equitable healthcare (Ibrahim et al., 2021; Burton et al., 
2021). As such, joint efforts from AI developers, healthcare institutions, 
as well as regulatory bodies, are essential in building well-curated in
clusive datasets, so as to ensure an appropriate alignment with the 
intended use and patients’ safety. 

In this section, we focus on a key aspect at this stage of the pipeline, 
data privacy, analyzing its influence when it comes to successful AI 
integration and discussing different procedures and directions to ensure 
patients’ data are safely collected, stored, and used. 

3.1. Data privacy 

3.1.1. Importance and consequences 
Data privacy in healthcare is becoming more critical with clinical 

and imaging data being digitized, stored, sent, and downloaded for 
several analytical purposes. Diagnosis of ophthalmic diseases requires 
large and heterogeneous datasets of images that contain personally- 
identifiable information. Current laws and regulations for privacy con
cerns related to medical data use are complex and differ per jurisdiction, 
such the Health Insurance Portability and Accountability Act (HIPAA) in 
the US (Cohen and Mello, 2018) and the General Data Protection 
Regulation (GDPR) in the EU (European Commission, 2016). Moreover, 
they are not synchronous with the latest technological developments, 
which hampers implementation of innovative AI-based healthcare so
lutions globally. With the current regulations, data breaches, and vio
lations of privacy with distribution of medical data still remain an 
important concern among healthcare providers and patients. Further
more, ongoing technological developments have led to new privacy 
concerns, such as patient re-identification from anonymized data that 
might still contain visually unique identifiers. This is the case of the 
unique patterns of a patient’s retinal blood vessels, which can be used 
for biometric identification (Moore and Frye, 2019) and can be observed 
even if imaging data have been previously anonymized. The ongoing 
privacy concerns call for updated, detailed regulations, and data pro
tection methods that can evolve along with big data and AI. 

3.1.2. Proposed solutions and considerations 
Several data protection methods that address privacy concerns with 

AI development are underway and have taken advantage of current 
technology. Methods currently being investigated for ophthalmic ana
lyses include that of federated learning and distributed models (Tom 
et al., 2020). Both allow model training across separate servers and 
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datasets, while minimizing the risk of possible data breaches. In line 
with these methods, Mehta et al. (2020) used a model-to-data approach 
to develop a DL model that segments intraretinal fluid in OCT B-scans. 
The model was initially trained on a central system at one institution, 
then transferred to a distinct computer at another location/institution 
for re-training and testing with data from that institution. Apart from the 
DL model, no clinical data were shared, and the study was successfully 
completed without the developers being exposed to the other in
stitutions’ clinical data (Fig. 2). It is important to note that for a suc
cessful use of federated learning in practice, personnel with certain 
technical and implementation expertise at the healthcare institutions 
would be required. 

Other data protection methods currently being investigated are 
generative methods, specifically generative adversarial networks 
(GANs) (Bellemo et al., 2018). GANs can be used to generate synthetic 
images that are different from the original images, but that still capture 
disease-relevant features. Use of such synthetic data may not only 
address the current lack of large annotated datasets in ophthalmology, 
but may additionally address privacy concerns such as membership, 
attribute inference, and also re-identification of anonymized data (Paul 
et al., 2021). Nevertheless, an important challenge with GANs and 
synthetic data is its trade-off in model performance. If the generated 
images are too different from the original images, the diagnostic per
formance of the model may suffer in real-world settings (Goodfellow 
et al., 2014a). 

An important consideration is that while the various data protection 
methods have potential to address privacy concerns with regard to data 
sharing and re-identification of anonymized data, they are still relatively 
new and need to be investigated further. Two recent reports showed that 
federated learning methods could be overcome through adversarial at
tacks (Bagdasaryan et al., 2020) (discussed in Section 5.4). Therefore, 
similar methods should not be used as end-solutions, but as a part of a 
larger scale of solutions to address privacy concerns. 

Apart from technical solutions for privacy concerns, ethical and legal 
frameworks, as well as contractual safeguards, need to be considered 
(Tom et al., 2020). Adopters of AI systems in healthcare have reported 
skepticism about a system’s output when they are not given adequate 
information about its origins (Klarenbeek et al., 2021; Morgenstern 
et al., 2021). Transparency in the way that data are collected and used is 
key. To increase transparency, it was proposed that AI developers should 

have traceable written agreements on authorization relating to specific 
use of data. They should also implement auditable processes and secu
rity controls to ensure data privacy is maintained and data are being 
used according to made agreements (Abràmoff et al., 2020). Hutchinson 
et al. (2021) proposed a rigorous framework based on software engi
neering best practices, where in each stage of the data lifecycle (from the 
analysis of requirements to maintenance) documentation practices, 
oversight processes such as audits and reviews, and maintenance 
mechanisms are provided. The goal is to increase transparency and 
accountability in the decision-making concerning the data used for AI 
development and validation. These practices can also help prevent 
future bias and domain adaptation issues, discussed in Section 5.2. 

Another point of attention is informed consent. For the use of data 
containing personal health information (PHI), including retinal imaging 
data, and data on age and sex, patients need to sign an informed consent. 
Importantly, patients may need to sign multiple consent forms for 
different projects, and depending on the project, data may only be used 
within a certain region or time period. Patients may be given access to 
dynamic consent management, in line with personalized clinical care; 
the processes of adaptability and updates (discussed in Section 5.5) 
could be used to ensure the compliance of an AI system with patient 
consent over time. Derivation of patient consent can be therefore chal
lenging, particularly when using large prospective datasets for AI 
development and/or validation. To further ensure that the rights and 
welfare of patients are protected, AI-related projects need to be 
approved by a local IRB. 

In summary, data protection methods for privacy concerns with re
gard to ophthalmic analyses are currently underway, but some unad
dressed challenges still require innovative and dynamic solutions. 
Solutions will require transparent conversations between AI developers, 
healthcare institutions, regulatory bodies, and patients. 

4. Data labelling 

There are two main approaches within AI: supervised learning and 
unsupervised learning. The main difference is that supervised systems are 
trained using labelled data to generate outcomes based on provided 
human annotations, while unsupervised systems process data without 
labels and are trained to find patterns and generate unbiased associa
tions without requiring human annotations (Litjens et al., 2017). The 

Fig. 2. Schematic description of a model-to-data approach to address concerns about clinical data privacy in AI development and validation (Mehta et al., 2020). In 
this approach, a trained deep learning model is transferred to a new institution housing its own unique data, which remain within its firewall for model re-training 
and/or testing. Once the re-training and/or testing using the data available at one institution is complete, the updated model (without clinical data) can be 
transferred to another institution, allowing for rapid iterative model sharing without transfer of any clinical data. 
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application of AI in ophthalmology is dominated by supervised systems, 
since they are less computationally complex and more effective and 
reliable when there is a well-defined task to solve. 

Once the necessary data for development and/or validation have 
been collected, data labelling can be performed. In ophthalmology, data 
labels are often obtained from human graders who diagnose disease at 
image- or lesion-level on different modalities of ophthalmic imaging, 
most commonly on CFP and OCT scans. Human graders can be oph
thalmologists, retinal specialists, optometrists, ophthalmic technicians, 
or graders at a reading center. So far, AI systems have mainly focused on 
diagnosing eye diseases on CFP, where data labels are generally based 
on international classification systems, such as the International Clinical 
Diabetic Retinopathy (ICDR) Disease Severity Scale for DR, or the Age- 
Related Eye Disease Study (AREDS) classification for AMD (Thee et al., 
2020). There is also increasing attention for the quantification of indi
vidual lesions to monitor disease progression or treatment response 
(Liefers et al., 2021). For disease quantification, data labels are generally 
based on manual delineations by human graders. Several factors, 
including the protocols followed for labelling or the graders’ expertise, 
can condition the reliability of the labels used for development and 
validation of AI systems and, consequentially, have an important impact 
on the gap to clinical integration. 

In this section, we analyze two main aspects to be considered during 
data labelling: 

• The importance and directions for establishing solid reference stan
dards to generate effective and reliable AI systems. We define refer
ence standard as the set of labels that are used for training and 
optimizing an AI system to solve a given clinical task and/or vali
dating its performance. While the term ground truth has been used in 
other studies, we consider reference standard to be a more appro
priate term for clinical tasks: ground truth refers to information that 
is known to be real or truth and that is often not the case for human 
annotations, which may contain inherent subjectivity due to the lack 
of a (well-defined) gold standard (Tufail et al., 2016).  

• The importance and potential solutions for setting up robust observer 
studies, whose goal is to enable a fair and meaningful comparison of 
AI systems with healthcare providers and current clinical practice. 

4.1. Reference standard 

4.1.1. Importance and consequences 
Graders that perform annotations for a reference standard need to be 

as accurate and objective as possible. Yet, a known issue of human 
interpretation of medical images is grader variability. Grader variability 
refers to the variability in data labelling between graders (inter-grader 
variability) and the variability in labelling by the same grader (intra- 
grader variability). Several studies have demonstrated substantial inter- 
grader variability for image-level classification tasks, such as grading 
DR (Schaekermann et al., 2019) and retinopathy of prematurity (ROP) 
(Tsai et al., 2021) in CFP. Such levels of disagreement or “lack of 
consensus” in reference standards can make it challenging to reliably 
develop AI systems. 

The choice of labelling protocol or classification system also matters. 
Protocols may differ per healthcare institution or reading center, 
hampering the adequate validation of a system’s performance, as well as 
the comparison of performances of various systems (Thee et al., 2020). 
In addition, internationally established protocols may not be available 
for certain tasks, such as the segmentation of individual lesions. This can 
lead to higher grader variability and makes it more difficult to determine 
the reliability of the reference standard for these tasks. 

Currently, there are no clear guidelines to adequately evaluate the 
quality of reference standards; there is no established minimum quality 
for the labels, instructions for choosing the most adequate labelling 
protocol, or reporting guidelines. In the meantime, efforts are required 

to reduce grader variability, facilitate the labelling process and, conse
quently, increase the effectiveness and reliability of AI systems. 

4.1.2. Proposed solutions and considerations 
Regulatory bodies have highlighted the importance of aligning 

labelling protocols or classification systems for the training and vali
dation of AI systems (Abràmoff et al., 2016). This will allow for an 
adequate interpretation of the system’s performance and ability to 
generalize to external data. Additionally, developers should consider the 
performance and applicability of labelling protocols. Thee et al. (2020) 
demonstrated that frequently-used AMD classification systems differ 
markedly in their prognosis of progression towards end stages. Subse
quently, they pointed out the advantages and disadvantages of classifi
cation systems for different clinical applications. Some classification 
systems will be more suited for screening and diagnosis, as they only 
require grading of limited features that are quick and easy to interpret. 
Others will be more suited for intervention studies, as they show higher 
rates of progression towards the end stages of disease. The choice of 
classification system should also consider the outcome goal per use case, 
for instance, high sensitivity in the case of integrating AI within a DR 
screening program, and high specificity in the case of applying AI to find 
eligible subjects for a clinical trial. 

As classification systems are subject to change, reference standards 
for AI systems may need to be updated over time. Future studies may 
preferably focus on AI for the automated identification of individual 
lesions. Individual lesion criteria are less subject to change than disease 
severity classes, and would more likely serve a wider variety of appli
cations. They also allow for a better quantification for treatment appli
cations and prediction of progression (Liefers et al., 2020, 2021). In 
addition, increasing the granularity of systems’ predictions improves 
their adaptability across the protocols followed in different clinical 
units. For example, for anti-VEGF treatment, a system that detects all the 
features related to advanced AMD (Liefers et al., 2021) would be more 
adaptable to different protocols than an end-to-end system that outputs 
directly the need for retreatment. Nevertheless, the development of 
reference standards for the identification and quantification of 
disease-specific lesions requires considerable time and effort. As there 
are no internationally established protocols for these tasks, it is impor
tant that reading centers, aided by ophthalmological societies and 
working groups or committees, focus on developing standardized pro
tocols in order to reap the potential benefits of lesion-specific AI systems. 

As described, high levels of grader variability can make it difficult to 
reliably train and validate AI systems. Some studies have focused on 
resolving disagreements between graders and deriving consensus 
through supervision (Schlegl et al., 2018), majority decisions (Gulshan 
et al., 2016), or adjudication by experts (Krause et al., 2018). A study by 
Krause et al. (2018) compared three different protocols for the labelling 
of DR. They showed that, compared to individual ophthalmologists and 
to a majority decision by ophthalmologists, in-person adjudication by 
retinal specialists allowed to generate a more solid reference standard 
and, consequently, improve AI performance. Adjudication started with 
independent grading of a subset of images by retinal specialists and 
ended with a review of disputed matters in a combination of asyn
chronous and live adjudication sessions. It particular, it helped reduce 
errors due to imaging artifacts and omission of small lesions, such as 
microaneurysms. In-person adjudication to reach consensus is consid
ered highly effective, as it allows the resolution of gray areas in labelling 
protocols. A consideration for in-person adjudication is that it can be 
challenging to coordinate. As multiple experts need to be present, the 
process can take several months due to clinical scheduling conflicts. 
Some studies have investigated remote adjudication and demonstrated 
that the quality of the reference standard can be maintained (Schae
kermann et al., 2019). Adjudication can also provide benefits beyond 
developing trusted consensus grades. Through surveys and qualitative 
feedback from graders, Schaekermann et al. (2020) showed that adju
dication provided an effective training intervention, as it significantly 
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improved the graders’ accuracy and understanding of the rationale 
behind the correct diagnosis. 

On the other hand, other studies involve a large number of graders 
and a large amount of annotated data, with the aim of averaging out 
grader variability in the reference standard, thereby mitigating part of 
the subjectivity (Son et al., 2020). There are two main aspects to 
consider when following this approach. First, it becomes relevant to 
integrate the differences in expertise between human graders in the 
labelling process. This can be done by establishing tiers of graders with 
increasing experience, as done by Liu et al. (2019) to create a reference 
standard for automated detection of glaucomatous optic neuropathy in 
CFP. Although applied later in the AI design pipeline, technical methods 
to integrate variability in grader expertise during training also show 
promise. For instance, the method proposed by Guan et al. (2018) aims 
to predict the labels of each grader in the training data so that more 
weight is given to the labels from more reliable experts, while exploiting 
the unique strengths of individual experts. Second, it is important to 
provide a training protocol prior to labelling so as to ensure a base 
quality in the annotations and contribute to reduce subjectivity. In a 
recent study by Liefers et al. (2021), clear instructions and examples of 
all abnormalities of interest were provided and discussed with the 
graders prior to the labelling process. Lesion-level annotations from 
different graders were then collected to generate the reference standard 
to train an AI system for automated segmentation of AMD-related fea
tures. Graders could additionally be required to pass a certification test 
before starting the grading process (Phene et al., 2019). 

Dependable grading software is necessary so that graders can accu
rately perform data labelling. Several studies have developed software 

applications or workstations that allow graders to analyze simulta
neously multimodal images, label data at image- and lesion-level, and 
review the outputs of AI systems, such as the one proposed by van 
Zeeland et al. (2019) (Fig. 3). Since it is web-based, such workstation 
enables asynchronous grading and remote consensus grading, while 
providing anonymization for the graders, which makes it possible to 
perform an unbiased review of labels. 

Regulatory bodies have advocated for transparency in the reporting 
of labelling protocols used to develop reference standards (He et al., 
2019). Such transparency is essential for healthcare institutions and 
reading centers to determine whether AI systems will have a good per
formance for their intended use. Improving clarity of the clinical char
acter of the reference standard that underlies the advice of an AI system 
will also increase the trust and adoption of such advice. Clear reporting 
of the labelling protocols used in published studies can encourage and 
allow for re-usability in future studies, accelerating the creation of in
ternational protocols for those tasks where they are not available yet, 
such as the segmentation of retinal lesions. Reading centers should play 
an important role establishing protocols for the creation of reference 
standards and reporting, aided by ophthalmological societies and 
working groups or committees. To further improve the quality of 
reference standards, it may be beneficial to confirm the presence of 
disease features on other imaging modalities, or to use available clinical 
patient data (De Fauw et al., 2018). In addition, reference standards may 
benefit from measures for grading uncertainty. The monitoring of such 
measures will additionally allow graders to perform consensus gradings 
and revisions where necessary. As AI systems for the automated iden
tification and quantification of individual lesions are gaining more 

Fig. 3. Screenshot of a multimodal, vendor-independent, web-based software application, initially proposed in van Zeeland et al. (2019). The workstation allows to 
visualize multimodal retinal images, perform spatial alignment across modalities, perform classification and annotation tasks, and review the outputs of AI systems. It 
facilitates the grading of images in large studies by multiple users, the posterior comparison of annotations and creation of a consensus grading, as well as the 
collection of annotations for AI development and validation. 
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attention, future efforts should also be focused towards improving 
reference standards for these tasks. 

4.2. Observer studies 

4.2.1. Importance and consequences 
Data labelling can also be performed to carry out an observer study, 

where the performance of an AI system is compared to that of inde
pendent graders or observers, compensating for the absence or lack of a 
well-determined gold standard. While only few observer studies have 
been performed in ophthalmology, they have shown that the perfor
mance AI systems can exceed that of observers in different tasks (Liefers 
et al., 2020, 2021; Chen et al., 2021; González-Gonzalo et al., 2020b; 
Venhuizen et al., 2017; van Grinsven et al., 2013, 2015). Several factors 
must be considered when performing an observer study, including the 
selection of observers and labelling protocol, the labels used as reference 
standard, the setting (i.e., daily clinics or reading center), and the design 
(i.e., retrospective or prospective). Careful analysis of these factors will 
allow for a fair and meaningful comparison of AI systems with the 
current standard of care, particularly if the observer study is performed 
prospectively within a real clinical or screening workflow. 

4.2.2. Proposed solutions and considerations 
Studies have highlighted the importance of selecting observers who 

reflect the standard of care in the application of AI systems (Verbraak 
et al., 2019; Tufail et al., 2016). For instance, AI systems developed for 
DR screening should be compared with observers who routinely grade 
DR in a screening population, including regional differences in the 
standard of care. A large observer study by Ruamviboonsuk et al. (2019) 
applied a protocol where observers were only assigned images from 
their own region, which allowed to evaluate the robustness of an AI 
system in different regions in Thailand. 

Including observers at different levels of expertise is also important 
in observer studies, since it provides additional insight into system-to- 
observer comparisons. An observer study by Phene et al. (2019) 
included 3 glaucoma specialists, 4 ophthalmologists, and 3 optometrists 
to evaluate an AI system that detects glaucoma on CFP. The AI system 
reached a higher sensitivity for glaucoma detection than 7 out of 10 
observers, including 2 out of 3 glaucoma specialists, but only a higher 
specificity than 3 observers (including 1 glaucoma specialist), while 
remaining comparable to others. Chen et al. (2021) included 13 ob
servers at 3 different levels of seniority to evaluate a system that detects 
reticular pseudodrusen, a key feature in AMD strongly associated to 
disease progression, on CFP and FAF. They were able to show that the AI 
system was superior to the highest level of seniority. 

As emphasized previously, the use of similar labelling protocols for 
the training and validation of AI systems should be ensured. This also 
applies to the labelling protocols used in observer studies (Thee et al., 
2020; Verbraak et al., 2019). It should be kept in mind that healthcare 
providers or graders who act as independent observers or as reference 
standard for observer studies can deviate from the protocols that were 
used to develop AI systems. Therefore, it is important to align the 
methods for observation with those of the original standards to avoid 
conflicts that are based on differences in definitions. 

An important challenge in observer studies is the establishment of a 
solid reference standard for the AI system and the observers. As dis
cussed in Section 4.1, high-quality reference standards often require 
expert consensus gradings, which are time-consuming and challenging 
to organize (Wilson et al., 2021). To bypass this issue, developers have 
used different methods. In Liefers et al. (2021), an observer study 
included 4 graders to analyze the performance of an AI system to 
quantify 13 key retinal features in early and late AMD, including 
different types of fluid and constituent features of geographic atrophy. 3 
out of 4 graders were used to create a reference standard, based on the 
overlap of their annotations; the 4th grader acted as an independent 
observer to obtain an estimate of human performance. The set of 3 

reference graders was then rotated, allowing the developers to use the 
gradings of all 4 human observers for system-to-observer comparison. 
Hence, the reliability of the reference standard was enhanced by using 
the combined output of observers, and variability in observer grading 
was obtained by rotating the reference standard (Fig. 4). Using a similar 
methodology, Lee et al. (2017b) involved 4 observers for the manual 
annotation of intraretinal fluid in OCT scans, where each observer 
served as the reference standard for the other 3 observers, again 
allowing developers to rotate the reference standard and compare 4 
observers against the AI system. 

The annotations performed in observer studies also allow to analyze 
the reliability of human gradings for the included features and identify 
those that have an inter-grader variability low enough to be used as 
biomarkers for disease progression and therapeutic effects in future 
interventional clinical trials. For instance, Müller et al. (2021) studied 
the reliability of human gradings for different features associated with 
AMD progression, based on the observer study carried out by Liefers 
et al. (2021). Features with low inter-grader agreement might be 
inherently problematic for humans to detect and quantify, and their 
utility as surrogate biomarkers in clinical studies is therefore limited. In 
this regard, AI systems may allow for a higher consistency in perfor
mance than human graders (when developed with a solid reference 
standard), making it possible to include a wider variety of reliable sur
rogate biomarkers (Müller et al., 2021). 

As more observer studies for AI systems in ophthalmology will 
become available in the future, other challenges with regard to system- 
to-observer comparisons will come to light. For instance, it is likely that 
observers adjust their performance differently in experimental settings, 
where their assessment will not directly affect patients’ outcomes, than 
in real-world settings. This might be a challenge for extrapolating results 
from experimental to real-world settings. However, it can be overcome 
by performing prospective observer studies within existing clinical or 
screening workflows. In any case, it is imperative that AI developers, 
reading centers, and healthcare institutions are transparent in their se
lection of observers, labelling protocols, and reference standards to 
evaluate system robustness against the standard of care. This will help 
reveal for which ophthalmic applications AI systems have already 
reached clinically-acceptable performance and for which they are not 
ready yet. 

5. Training and retrospective validation 

Once the necessary data have been collected and labelled, they can 
be used for the training and/or validation of the AI system. AI systems 
are based on mathematical models whose aim is to mimic human ca
pabilities by following certain rules. Within AI, machine learning (ML) 
models automatically learn these rules by analyzing the examples in 
known, labelled data. In this process, known as training, models are 
taught to extract important features in the training data to perform a 
given task. In traditional ML approaches, feature extraction was usually 
done manually. On the other hand, in deep learning (DL), which is a 
special type of ML, models are able to automatically discover important 
features using a deep neural network (DNN), governed by thousands or 
millions of parameters. During training, a DNN sequentially optimizes 
its parameters to reduce the error in its predictions using an objective or 
loss function, until the performance converges. Convolutional neural 
networks (CNN) are a type of DNN most commonly applied to imaging 
data. 

Once the model (a DNN in the case of using DL) is optimized to solve 
a certain task, it can be applied for inference, i.e., to predict outcomes on 
similar, new data. If labels are available for these data, they can be used 
to validate or test the performance of the model as well as compare it to 
that of human experts as part of a retrospective validation. It is key to use 
validation data that are collected from different sources, external to the 
source of the training data, in order to analyze the capability of the 
model to generalize, i.e., to achieve the same performance or as close as 
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possible to that achieved on the training data. 
In this section, we focus on five aspects that need to be considered 

during the training and validation of trustworthy AI systems in 
ophthalmology:  

• The quality of the input data across sources and the completeness of 
such data, for instance, when making use of multimodal information.  

• The impact of algorithmic bias and domain adaptation on a system’s 
capability to generalize across populations, ophthalmic settings, and 
data acquisition protocols.  

• The importance of explainability to open AI’s “black box” and its 
impact on trust and clinical usability. 

• The robustness of systems against malicious attacks and the impor
tance of defining their actual threat.  

• The capability of systems to adapt to users’ feedback, new clinical 
practices, or data shift, and be updated to maintain their perfor
mance over time. 

For each aspect, we identify mechanisms and considerations to 
lessen their potential negative effects in later stages and facilitate AI 
integration in ophthalmic practice. 

5.1. Input quality 

5.1.1. Importance and consequences 
The quality of the imaging data used as input to an AI system can 

affect its ability to provide a valid and correct decision, the same way an 
image of suboptimal quality can affect an expert’s ability to interpret it 
and guarantee a valid diagnosis. Input quality can have an important 
impact on AI systems’ performance (Lee et al., 2021), but also on 
healthcare providers’ and patients’ experience, as recently shown in a 
prospective setting (Beede et al., 2020). 

It is therefore crucial to consider input quality during AI develop
ment. Two viewpoints can be currently distinguished. The first one 
considers that only high-quality data should be used as input to the AI 
system, thereby excluding low-quality or ungradable images for the 
training and/or validation of the system (Abràmoff et al., 2016; Gulshan 
et al., 2016). This way, a minimum quality standard is required by the 
system, in the same way that human experts require a certain level of 
image quality for extracting valid conclusions. The second viewpoint 

advocates for including real-world data from the very early stages of 
development. This viewpoint considers that across settings and patients 
there is an inevitable variability in image quality due to light conditions, 
technicians’ experience, mydriasis, presence of cataracts, etc. (Lee et al., 
2021). Following this notion, systems are developed to expect different 
standards of input quality. What is clear is that the way input quality is 
handled during AI development can condition performance and us
ability during deployment. For this reason, recent guidelines require to 
specify the procedure to assess and handle poor-quality input data, 
contributing to transparency and trustworthiness in AI (Rivera et al., 
2020). 

The quality of the input can also refer to its “completeness”, i.e., how 
well it reflects the clinical reality and exploits available patient infor
mation. Despite the rich variety of data sources used in ophthalmic 
practice, the integration of multimodal data for AI development is highly 
limited, especially when compared to other medical specialties (Saha 
et al., 2021; Chen et al., 2020). For example, a system trained to detect 
AMD in standard CFP will be able to provide correct predictions only on 
CFP; it will not work if provided with images from other fundus tech
nologies, such as FAF, ultra-widefield images or multicolor scanning 
laser images. However, clinical tasks at different points of patient care 
often require multiple contexts, such as imaging data from different 
modalities, the social background of the patient, and his/her medical 
record (van Dijk and Boon, 2021). The use of multimodal data in 
ophthalmology presents different potential benefits. On one hand, 
training AI models based on data from different sources would allow the 
automatic extraction of complementary information, as usually done in 
the clinic. For example, intraocular pressure measurements, visual fields 
information, and structural parameters derived from CFP and OCT scans 
are generally combined by ophthalmologists to diagnose and monitor 
progression of glaucoma. Information from multimodal images is also 
usually combined to better assess the severity of DR and AMD, including 
the confirmation on the presence of small or subtle disease features. 
Automated analyses of multimodal data creates the possibility of 
generating more powerful models, making them also more reliable as 
they approach the way human experts work in practice. On the other 
hand, combining ophthalmic data could help reveal more than just 
“signals” appearing in some patients and could potentially increase the 
chances of identifying real biomarkers for Alzheimer’s disease, for 
instance. As long as the use of multimodal ophthalmic data is not 

Fig. 4. Observer study to compare the per
formance of an AI system with that of 4 in
dependent graders for the quantification of 
key retinal features in early and late age- 
related macular degeneration (AMD) in op
tical coherence tomography (OCT) scans; in 
the figure: segmentation of intraretinal fluid 
(Liefers et al., 2021). The figures shows the 
original B-scan (top left), the output of the 
proposed AI system (top right), and the an
notations of the 4 graders (bottom row). 3 
out of 4 graders were used to create a 
reference standard for the observer study, 
based on the overlap of their annotations; 
the 4th grader acted as an independent 
observer to obtain an estimate of human 
performance. The set of 3 reference graders 
was then rotated, allowing the developers to 
use the gradings of all 4 human observers for 
system-to-observer comparison. By 
comparing the system’s output against the 
combined output of multiple observers, the 
reference standard was more reliable than 
that obtained from a single observer. By 
rotating the reference standard, the perfor
mance of the system was not just compared 

against a single observer who might, for example, grade more conservatively than others.   
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assimilated in AI development, certain disease factors and associations 
will remain disregarded and their potential value for AI decisions 
unknown. 

5.1.2. Proposed solutions and considerations 
Automated assessment of the input quality is often integrated in 

proposed AI systems. Some systems assess the quality of the input image 
prior to processing it, rejecting those images for which the system cannot 
guarantee a strong prediction. For instance, in Abràmoff et al. (2018), a 
module with independent detectors is integrated to evaluate different 
quality characteristics in CFP (focus, color balance, exposure). This al
lows to determine whether the input quality is sufficient to be used for 
automated DR screening, and in case it is not, whether this is due to the 
field of view or image quality, based on the criteria previously proposed 
by Niemeijer et al. (2006). Prior quality assessment can be performed 
similarly for OCT scans, such as in the workflow proposed by Wang et al. 
(2019), where it is used to discard cases that are off-centered, have total 
or partial signal loss, or have other types of artifacts before performing 
automated detection of retinopathy (Fig. 5). Prior quality assessment 
becomes especially useful in “online” settings where immediate feed
back about image quality is beneficial, such as in screening settings. It 
may motivate camera operators to re-image a patient for higher-quality 
images (Wang et al., 2019), and cases with insufficient quality can be 
referred to a specialist, ensuring patient safety (Beede et al., 2020). It is 
important to consider an adequate threshold to avoid unnecessary re
ferrals and an increase in experts’ workload (Beede et al., 2020). Im
mediate quality feedback also contributes to establish and safeguard 
image quality standards at clinical settings, not only for AI systems, but 
also for human assessment. This can be especially helpful for new im
aging modalities, such as OCT angiography (OCTA) (Hormel et al., 
2021). 

Other proposed systems perform AI-based image quality assessment 
in parallel to their main application. In González-Gonzalo et al. (2020b), 
an additional image quality score is provided for a system that performs 
joint automated detection of DR and AMD in CFP. In De Fauw et al. 
(2018), they include three additional classes related to OCT input 
quality in a segmentation model, in order to detect mirror, clipping, and 
blink artifacts, together with different types of healthy and pathological 
tissue. They also make use of an ensemble of five segmentation net
works, which allows to identify ambiguities in the system’s decision and 
could potentially be used for automated quality control. This aspect is 
related to approaches based on uncertainty quantification of systems’ 
decisions (discussed in Section 5.3), which could be used to flag 

low-quality images during inference (de Vente et al., 2020). Parallel 
quality assessment is especially helpful in “offline” settings where there 
is no chance to retake images and data are analyzed in a retrospective 
manner, such as in teleophthalmology settings or in clinical studies. The 
additional feedback on input quality improves the context of AI-based 
outputs, and can be used to better judge the reliability of such outputs 
when making posterior clinical decisions. 

Certain aspects need to be considered when it comes to automated 
quality assessment. Firstly, AI-based approaches require human anno
tations on image quality or gradability that can be subjective even when 
a labelling protocol is provided, resulting in high rates of disagreement 
across graders (Ruamviboonsuk et al., 2019). As seen in Section 4.1, the 
reliability of the reference standard can have an impact on the system’s 
performance and usability. Secondly, generalizability across settings 
becomes particularly difficult when it comes to quality assessment. 
Different types of image artifacts from the ones considered during 
development could be found in new data, due to different acquisition 
conditions (such as the available camera, the level of expertise of the 
camera operator, light conditions, mydriasis…), and different quality 
standards across settings (Lee et al., 2021). These factors need to be 
analyzed in order to integrate automated quality assessment in AI sys
tems, preferably in a prospective way (Beede et al., 2020). It is possible 
to analyze the impact of different image quality factors on the system’s 
performance (Yip et al., 2020). Factors can include the resolution of the 
input, the rate of image compression (especially relevant in tele
ophthalmology settings), the presence of cataracts, mydriasis, or the 
type of camera used, while comparing the performance of the system on 
high-quality data with that achieved on mixed data (high and 
low-quality images) (Wang et al., 2019). 

To generate systems that are more agnostic to changes in input 
quality, commonly used techniques can also be helpful. Pre-processing 
pipelines, such as contrast enhancement in CFP (González-Gonzalo 
et al., 2020b), help with the standardization of the input images. Data 
augmentation during training helps increase robustness against noise 
and image artifacts, such as adding artificial speckle noise in OCT scans 
(Venhuizen et al., 2018). Although less mature at the moment, denoising 
techniques based on GANs have also potential to increase usability of AI 
systems with lower-quality inputs (Yoo et al., 2020). Future techniques 
could also explore the way human experts deal with suboptimal input 
quality. For example, in settings where multiple images from one patient 
visit are available, a system could consider the whole batch of images, 
with possible varying quality, as input and automatically extract valu
able information from each image while discarding noisy information, 

Fig. 5. Prior quality assessment integrated in an AI system for automated detection of retinopathy in optical coherence tomography (OCT) scans (Wang et al., 2019). 
On the left, the proposed pipeline is shown: AI-based quality assessment is performed to discard input images with bad quality that can affect the reliability of the 
system’s output (images that are off-centered, have total or partial signal loss, or have other types of artifacts), prior to apply automated detection of retinopathy. 
Immediate quality feedback may motivate camera operators to re-image a patient for higher-quality images. On the right, examples of OCT scans with 
different qualities. 
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instead of expecting one high-quality image. 
Regarding the completeness in the data used by AI systems, recent 

solutions have shown the potential of extracting and exploiting infor
mation from different modalities of ophthalmic imaging. In van 
Grinsven et al. (2015), a ML model was proposed to detect the presence 
of reticular pseudodrusen using multimodal information from CFP, FAF, 
and NIF, and showed that it achieved higher performance than that 
obtained when using images from each modality separately. Addition
ally, the authors showed that the multimodal ML model performed 
within the same range as human graders, who also achieved higher 
performance and better agreement in a multimodal grading approach. In 
Yoo et al. (2019), two separate CNNs, one for CFP and one for OCT scans, 
were used to extract features from paired images; the extracted features 
were then concatenated and used as input to a traditional classifier to 
detect the presence of AMD. A recent study by Chen et al. (2021) pro
posed a system to detect reticular pseudodrusen consisting of three 
models: one for CFP, one for FAF, and one for CFP-FAF image pairs based 
on the features extracted by the other two models (Fig. 6). The three 
models were trained simultaneously while using attention mechanisms 
per model and cross-model to combine features from the different mo
dalities, instead of concatenating them as done in previous approaches. 
This resulted to be advantageous for the system’s performance and 
generalization. Another advantage of this approach is that each model in 
the system was then fine-tuned separately using only images of the 
corresponding modality, which allowed to optimize the system and 
make it useable when only one of the modalities is available. Other 
applications have explored the integration of patient metadata with 
different imaging modalities. For instance, Mehta et al. (2021) proposed 
a system for glaucoma detection based on an ensemble of one CNN for 
CFP, another CNN for OCT scans, and one ML model for demographic, 
systemic, and ocular metadata. With the help of interpretability tech
niques, discussed in Section 5.3, they observed that their system sug
gested distinct sources of information from each imaging modality and 
the clinical variables that were relevant for the automated detection of 
glaucoma. 

There are different elements of consideration when it comes to 
multimodal solutions in ophthalmology. A multimodal dataset needs to 
be accessible for development, but may be harder to curate; multimodal 
data may not be available for all the subjects of interest and most 
publicly-available datasets are based on a single imaging modality. As 
for the labelling process, the annotations required to establish the 
reference standard in classification tasks can be performed in one im
aging modality and transferred to the other modalities (Chen et al., 
2021; Mehta et al., 2021). However, in order to obtain aligned and 
consistent annotations for segmentation tasks, it might be necessary to 
perform image registration, which is a field that still requires further 
research. Most proposed multimodal solutions require all modalities to 
be available, also during deployment. This limits their accessibility 
especially when advanced imaging modalities, such as FAF or OCTA, are 
required. It is thus key to generate systems that benefit from combining 
information from multimodal data during development, while being 
optimized to perform well in settings where perhaps only a single source 
of data might be available (Chen et al., 2021), such as screening settings 
in rural areas, where only CFP is available. Additionally, multimodal 
solutions might be less practical due to longer acquisition times, 
increased mydriasis, and due to the requirement of having experienced 
technicians and patients who are fully compliant (Yip et al., 2020). 
Healthcare providers and institutions, as well as ophthalmological so
cieties and working groups or committees, can help define the clinical 
applications, settings, and conditions under which the use of multimodal 
data will be most beneficial in order to have the best alignment of AI 
systems with clinical practice. 

5.2. Bias and domain adaptation 

5.2.1. Importance and consequences 
While AI systems can easily achieve state-of-the-art performance on 

many computer vision tasks, they often lack the ability to generalize well 
to images that are outside the distribution of the training domain 
(Bengio et al., 2017). Even when the training set may be balanced for the 

Fig. 6. Multimodal solution for AI-based detection of reticular pseudodrusen, a key feature in age-related macular degeneration (AMD) strongly associated to disease 
progression, from color fundus photographs (CFP) alone, their corresponding fundus autofluorescence (FAF) images alone, or CFP-FAF image pairs (Chen et al., 
2021). The proposed system is composed of three models: one for CFP, one for FAF, and one for CFP-FAF image pairs. In the first stage of development, the three 
models (CFP-alone, FAF-alone, and CFP-FAF models) are trained simultaneously. The CFP model takes a CFP as input, and the FAF model takes the corresponding 
FAF image as input. Each image is processed by a convolutional neural network backbone, followed by an attention module to capture important image features. The 
important features captured from the CFP and FAF images form the basis of the CFP-FAF model, using cross-modality attention. In the second stage, the three models 
are fine-tuned separately, using the corresponding modality as input. The CFP and FAF models are trained first; the attention modules of the finalized CFP and FAF 
models are used to extract features for fine-tuning the CFP-FAF model. This makes the system useable when only one of the modalities is available. 
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intended target labels, the distribution of the images may be imbalanced 
with respect to other conditions. For example, a dataset for training a 
binary classifier to distinguish cats vs dogs may have equal number of 
both animals, but since pictures of cats are found mainly indoors, a 
trained classifier may generalize to perform poorly when given a picture 
of a cat outdoors at test time. While this may seem a trivial example, this 
effect translates to algorithmic bias in the medical domain that is 
important to quantify and protect against. Algorithmic bias has impor
tant medical ethics considerations that are directly related to inequities 
in healthcare (Obermeyer et al., 2019; Abràmoff et al., 2021). 

For instance, a dataset that is used to train an AI system on CFP for 
the classification of AMD will most likely be unbalanced on at least two 
different axes: age and race. This stems directly from the epidemiolog
ical nature of AMD in that the more severe forms of AMD happen later in 
life and that Caucasians are more likely to have AMD compared to other 
races (Klein et al., 2004). AI systems have two possible fallacies when 
trained on such a dataset. First, they may generalize poorly to patients 
who are of a different race since the pigmentation of the retina is of a 
different color distribution than in Caucasians. This is referred to as 
source bias. The second is that they may be dependent on a correlated 
spurious feature and thus have a context bias and lead to shortcut 
learning. For example, prevalence of AMD is higher in older patients, but 
other changes due to aging can be observed in these subjects as well, 
such as cataracts or certain vascular abnormalities. If an end-to-end 
model is trained on a dataset where a subset of the images contain 
both AMD as well as other features unrelated to the disease, the resulting 
classifier may not be extracting features relevant to the disease in 
question and instead learning spurious correlated features. These two 
types of biases can work towards directly harming patients in clinical 
care where AI systems are deployed. The decreased performance may 
lead to incorrect automated diagnoses or segmentations and, eventually, 
inappropriate clinical management of the patient. 

Another aspect that conditions the generalization of AI systems in 
ophthalmology is the lack of domain adaptation across devices for a 
given imaging modality. Given the fragmentation in the market and the 
proliferation of different vendors and devices (seen in Section 2.2), this 
weakness in AI systems manifests in a critical manner. In the context of 
OCT imaging, most clinical centers have adopted one particular OCT 
scanner and thus the large training sets derived from these centers are 
heavily represented by a single imaging device. The resulting trained 
models generalize poorly to other devices (De Fauw et al., 2018; de 
Vente et al., 2021). Even though visually OCT B-scans from different 
vendors may appear similar to clinicians’ eyes, each device model per
forms different post-processing of the OCT signal leading to differences 
in texture, speckle noise, brightness, and contrast. These differences can 
lead to poor performance of deep learning models even between 
different versions of the same OCT scanner (Owen et al., 2021). 

In line with the generation of trustworthy AI systems, fairness and 
generalizability are increasingly included in official guidelines, which 
urge to assess the communication of perceived biases and the measures 
taken for identification and mitigation (European Commission, 2019). 
Related policies are also under consideration, such as a data quality 
control for AI systems to be introduced in the NHS (Harwich and Lay
cock, 2018). Addressing bias and domain adaptation is therefore a pri
ority for AI integration. 

5.2.2. Proposed solutions and considerations 
Solutions to mitigate bias and lack of domain adaptation of an AI 

system can be generally categorized into pre-processing solutions, aimed 
to modify the development data before training, in-processing solutions, 
aimed to modify the system during training, and post-processing solu
tions, applied after training the system (Mehrabi et al., 2021). 

Pre-processing solutions try to modify the development data so that 
underlying bias and domain adaptation issues are removed before 
training the system, while keeping data usability. The main goal of these 
solutions is to align the development data with the data found at the 

point of care where a system is aimed to be applied, so that it is able to 
generalize across domains and adapt to real-world disease prevalence 
and population distributions (Faes et al., 2020). Some approaches can be 
applied during data collection, for instance, by collecting data uniformly 
from different population groups or domains (different camera devices 
or scanners, etc.), with the possibility of oversampling unrepresented 
groups (Parikh et al., 2019), and including such data in the training 
stage (and not only when performing an external validation) (Phene 
et al., 2019). If bias is still observed, it might be possible to inject sup
plements of missing data or to perform distributional shifts (Esteva et al., 
2021). These solutions are nevertheless hindered due to the hurdles of 
(multi-centered) data collection (as seen in Section 3), and become 
unfeasible when using retrospective data for development. Conse
quently, solutions based on GANs have gained an increasing interest in 
different applications, with the aim of generating synthetic ophthalmic 
images that are anatomically consistent and indiscernible from real data 
(Bellemo et al., 2018). GANs can be used to synthesize data of group 
minorities or less frequent anomalies or disease stages, as done in Bur
lina et al. (2021) and Joshi and Burlina (2021), where racial bias is 
addressed in the context of automated screening of DR and AMD in CFP, 
respectively (Fig. 7). However, it is currently hard for generative models 
to capture all biological variability of a protected factor (such as the 
presentation of a low-prevalence disease across ethnic groups, age 
groups, image acquisition protocols, etc.), or to control a specific feature 
while keeping other attributes unchanged (Joshi and Burlina, 2021). 
More work is necessary until solutions based on GANs are mature 
enough. 

In the case of lack of domain adaptation across OCT scanners, pre- 
processing solutions are commonly applied, such as image size and in
tensity standardization across scans from different vendors or domain- 
specific data augmentation protocols (Bogunovic et al., 2019; Ven
huizen et al., 2018). Solutions based on GANs have also been explored to 
ensure generalization across OCT devices, specifically, those based on 
CycleGANs, which allow to perform unsupervised image translation 
from one domain (i.e., vendor) to another. For instance, Romo-Bucheli 
et al. (2020b) applied this technique to improve the generalization of 
AI-based segmentation of fluid and the photoreceptor layer in OCT 
scans. 

In-processing solutions tackle bias and domain adaptation during the 
training process of the system by modifying the learning algorithm. 
Some approaches aim to mitigate algorithmic bias in the objective/loss 
function through regularization or imposing constraints that force the 
algorithm to account for protected factors (ethnicity, age, sex…) (Zhang 
et al., 2018). Other in-processing approaches are based on alternative 
learning techniques. Low-shot learning, a type of machine learning 
aimed to maintain algorithmic performance when there are limited data 
for development, has shown potential to address AI bias due to devel
opment data that may have few examples from certain population 
groups or low-prevalence ophthalmic diseases (Burlina et al., 2020). 
Multi-task learning has also been shown beneficial to increase general
izability and usefulness in this scenario, by training models that are able 
to perform a variety of tasks, from which more examples are available, 
rather than one narrowly defined task (Chen et al., 2021; Robinson et al., 
2021; Asgari et al., 2019). Curriculum learning is also beneficial for the 
detection of low-prevalence ophthalmic diseases or features; it allows 
models to exploit hierarchical information available in the training data, 
enabling knowledge transfer from general, higher-prevalence features to 
specific, low-prevalence features (González-Gonzalo et al., 2021). An 
important consideration is that a trade-off between algorithmic perfor
mance and fairness/generalizability arises when applying these ap
proaches. Some of them make use only of “traditional” performance 
metrics, such as accuracy or F1 score, which do not capture completely 
such trade-off nor different fairness requirements (Mehrabi et al., 2021), 
which are then disregarded but remain relevant regarding applicability 
of AI systems in real-world clinical settings. The inclusion of fairness 
metrics (Gajane and Pechenizkiy, 2017) will be therefore key to 
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determine whether the outputs of an AI system are fair or not for pro
tected groups. 

When it comes to domain adaptation across OCT scanners, one 
common in-processing solution is to train different models using 
development data from each different vendor (Schlegl et al., 2018). 
When fewer scans from a given vendor are available for development, it 
is possible to use the parameters of a model trained with data from 
another vendor to initialize and fine-tune a new model for that given 
vendor. For instance, in De Fauw et al. (2018), a segmentation model 
able to segment different types of healthy and pathological tissue in 
scans from vendor A is re-trained using a mixed dataset with scans from 
vendors A and B, in order to generate a new segmentation model able to 
reach high performance in scans from vendor B (Fig. 8). In the case of 
automated classification in OCT, labels are commonly available at vol
ume level, which supposes an additional hurdle to generalize across 
vendors, due to not only differences in appearance but also in B-scan 
spacing. In order to overcome this, de Vente et al. (2021) proposed a 
multiple instance learning approach where intermediate information is 
extracted from each B-scan separately, being invariant to B-scan 
spacing, and then combined to provide a grade of AMD severity for the 
full OCT volume (Fig. 9). 

The integration during development of interpretability and uncer
tainty techniques, further explored in Section 5.3, does not only provide 
a better understanding of a system’s decisions, but can also be used as a 
tool to identify bias and lack of domain adaptation. These techniques 
allow to visually check if a system is focusing on clinically meaningful 
areas of the input data to reach its decisions (González-Gonzalo et al., 
2020a), and to detect samples that fall out of the distribution of the data 
used for development (de Vente et al., 2020). 

Post-processing solutions are aimed to be applied once the system 
has been trained, without modifying the development data or the 

learning algorithm. Since we consider that preprocessing and/or in- 
processing solutions should be considered when addressing bias and 
domain generalization during AI development, we recommend to use 
post-processing solutions only in addition to other solutions, or when 
dealing with a system already in deployment. Some post-processing 
approaches aim to alter a system’s predictions to increase fairness, for 
instance, by keeping the proportion of decisions of protected and un
protected groups or focusing on the predictions that fall close to the 
system’s decision boundary (Mehrabi et al., 2021). Tools such as the one 
proposed in Wexler et al. (2019) are specifically designed for probing 
implemented models under different hypotheses and fairness defini
tions, as explored in Singh et al. (2021) in the context of automated 
prediction of visual acuity in diabetic macular edema patients. 

A correct preparation and setup of a system’s validation are also 
essential for the detection and mitigation of bias and lack of domain 
generalization. A multi-institutional and multi-vendor setup is impor
tant to determine the generalizability of a system (Lee et al., 2021). 
Healthcare institutions and reading centers, potentially aided by 
ophthalmological societies and working groups or committees, can help 
identify and determine which bias and domain adaptation factors need 
to be acknowledged during validation. For this purpose, it becomes 
imperative to count with a diverse team and provide the necessary ed
ucation for bias awareness to all stakeholders involved. 

5.3. Explainability 

5.3.1. Importance and consequences 
Although AI systems have achieved expert-level performance, they 

are often referred to as “black boxes” due to the lack of interpretability 
or explainability of their predictions and decision-making processes. 
This results in an important challenge for their integration in clinical 

Fig. 7. Generation of synthetic 
ophthalmic images via generative 
adversarial networks (GANs) as pre- 
processing solution to mitigate bias in 
the context of AI-based diabetic reti
nopathy (DR) screening in color fundus 
photography (CFP) (Burlina et al., 
2021). In this study, GANs are used to 
generate synthetic images and perform a 
subsequent fine manipulation on them 
to accentuate specific factors that are 
originally missing in the development 
data (i.e., images of referable DR from 
darker-skin individuals). From a1 to a3: 
a synthetic image corresponding to a 
darker-skin individual (left) is used as 
input to generate a new image that ac
centuates the attribute “referable DR” 
(right), leaving the amount of coloration 
due to the melanin concentration and all 
other markers unchanged. From b1 to 
b3: a synthetic image corresponding to 
an individual with referable DR (left) is 
used as input to generate a new image 
that accentuates the attribute “darker-
skin individuals” (right), while preser
ving the DR lesions as well as the 
vasculature.   
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Fig. 8. Re-training of a segmentation model and vendor-agnostic classification as in-processing solutions to mitigate lack of domain adaptation across optical 
coherence tomography (OCT) scanners from different vendors (De Fauw et al., 2018). In this study, a two-stage approach is proposed: first, they use a segmentation 
model to generate intermediate representations of different healthy and pathological tissues for each B-scan in an OCT volume; second, they use these representations 
as input to a vendor-agnostic classification model that outputs diagnosis probabilities for different lesions and a referral suggestion at volume level. The original 
segmentation model, based on the combination of the output of five separate segmentation networks, is able to segment different types of healthy and pathological 
tissue in scans from vendor A. The figure shows how the segmentation model fails when scans from a new device of vendor B (a) are used as input. The poor quality 
segmentation maps generated by the five networks in the original segmentation model (b) lead to failure of the original classification model as well. However, after 
re-training the segmentation model with OCT scans from both vendor A and vendor B, the new segmentation model is able to reach high performance on scans from 
vendor B (c and d). The classification network is vendor-agnostic and, therefore, unchanged. 

Fig. 9. Multiple instance learning approach to mitigate lack of domain adaptation across optical coherence tomography (OCT) scanners from different vendors in AI- 
based age-related macular degeneration (AMD) grading (de Vente et al., 2021). In this task, as well as other classification tasks using OCT, labels are commonly 
available at volume level, which hinders a system’s generalization across vendors, due to not only differences in appearance but also in B-scan spacing. Large 
differences in B-scan spacing make 3D features learned on data from one vendor inappropriate for data from another vendor. As observed in the pipeline (left), the 
proposed approach makes use of a 2D convolutional neural network (ResNet-18) to process each B-scan separately. This aspect of the approach makes it invariant to 
B-scan spacing and, consequently, robust to the variability of scanning protocols across vendors. Even though volume-level annotations are used for training, grades 
at B-scan-level can be obtained. Then, a multiple instance learning pooling layer combines the intermediate output scores related to each B-scan and outputs an AMD 
grade estimation for the full OCT volume, equivalent to the grade predicted with a highest score. An AI system was trained using scans from vendor A (B-scan spacing: 
~250 μm), following the proposed approach. When the system was applied to OCT scans from vendor B (B-scan spacing: ~50 μm), its performance was well 
maintained, as observed in the example (right). 
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settings (Litjens et al., 2017). On one hand, it hinders trust from 
healthcare providers, who might be reluctant to trust an output if pro
vided without further reasoning, such as visual evidence of which fea
tures were discriminant for the decision. It can lead to misinterpretation 
of a system’s output, if there is no additional information on how certain 
the system was about its decision. Counseling and education of patients 
about their diagnoses become hampered as well (Amann et al., 2020), 
affecting their trust and consent. Lack of interpretability also hinders 
sanity checks along development and deployment: the identification of 
errors, biases, and confounders, as well as validating whether a system is 
applying clinical recommendations correctly (Kelly et al., 2019). 

Besides the relevance of the technical and clinical dimensions, 
explainability also has strong ethical and legal components. Some 
studies highlight that omitting explainability in clinical decision support 
poses a threat to core ethical values (Amann et al., 2020). Consequently, 
explainability is becoming increasingly required by regulatory bodies: 
EU’s GDPR currently governs a “right to explanation” (European Com
mission, 2016), and the FDA requires an appropriate level of trans
parency aimed at users (Food and Drug Administration, 2021). 
Providing explanations that align with human reasoning contributes to 
generating trustworthy AI while increasing the intrinsic trust of users on 
AI systems (Jacovi et al., 2021). 

5.3.2. Proposed solutions and considerations 
Most focus has been put on answering “why this decision?”. Among 

the proposed solutions, those based on visual attribution have become 
very popular. Attribution techniques allow to highlight features in the 

input image that contribute to the output prediction of an image-based 
classification system (Ancona et al., 2017). When applied to medical 
imaging, this generates a “heatmap” that highlights the areas the system 
considered relevant for diagnosis. These techniques have been widely 
applied in AI-based screening or grading of different eye diseases such as 
DR, AMD, and glaucoma in CFP and OCT (González-Gonzalo et al., 
2020a; Mehta et al., 2021). Visual attribution has also been applied as a 
tool to unveil new visual features or biomarkers in diagnosis (e.g., for the 
estimation of retinal sensitivity from OCT scans (Kihara et al., 2019), or 
the estimation of refractive error from CFP (Varadarajan et al., 2018)), 
and prognosis (e.g., for the prediction of future DR development using 
baseline CFP (Bora et al., 2021), or the prediction of treatment 
requirement in neovascular AMD using OCT (Romo-Bucheli et al., 
2020a)). Visual attribution has also been used when establishing links 
between ophthalmic imaging and systemic medical conditions or spe
cific target variables, such as the prediction of cardiovascular risk factors 
(Poplin et al., 2018), anemia (Mitani et al., 2020), or chronic kidney 
disease (Sabanayagam et al., 2020) from CFP. 

There are several considerations when generating explainability 
using visual attribution. Firstly, attribution techniques were developed 
and optimized with natural images, and it has been shown that they 
localize only the most discriminative regions (Singh and Lee, 2017). As a 
consequence, in ophthalmic images, abnormal areas that have less in
fluence on the output prediction are ignored, although they could be still 
important for diagnosis (González-Gonzalo et al., 2020a). Additionally, 
interpretability of abnormal predictions requires the localization of 
different types of lesions of varying appearance and histologic 

Fig. 10. Visual evidence for AI-based grading of diabetic retinopathy (DR) and age-related macular degeneration (AMD) in color fundus photography (CFP) 
(González-Gonzalo et al., 2020a). The figure shows the initial visual evidence, generated with visual attribution, and the augmented visual evidence, generated after 
an iterative process that combines visual attribution and selective inpainting. The augmented visual evidence maps highlight less discriminative areas that might also 
be relevant for the final diagnosis, including abnormalities of different types, shapes and sizes, and improving the system’s performance for weakly-supervised lesion 
localization. This is shown for images correctly classified as moderate non-proliferative DR (first row), severe non-proliferative DR (second row), intermediate AMD 
(third row), and advanced AMD (fourth row). 
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composition that can be simultaneously present and be responsible for 
the predicted diagnosis. In González-Gonzalo et al. (2020a), it was 
shown that visual evidence can be iteratively augmented by combining 
visual attribution and selective inpainting, in a process where the 
abnormal regions highlighted by visual attribution are modified using 
healthy, surrounding local information, guiding the attention of the 
system to new relevant areas, including less discriminative lesions and 
different types of lesions relevant for diagnosis. Improved interpret
ability was achieved for automated grading of DR and AMD in CFP when 
using different attribution techniques (Fig. 10). 

Secondly, only a few approaches that use visual attribution for 
interpretability perform further analysis to better understand if the 
generated visual evidence includes the biomarkers considered by ex
perts for diagnosis. Qualitative validation is possible by having a subset 
of heatmaps rated by experts. In Rim et al. (2020), a survey with ten 
retina specialists was included to rate the correlation between actual 
biomarkers and the areas highlighted by a system that identifies neo
vascular AMD in OCT scans, using a Likert scale for different related 
lesions. The specialists showed strong agreement that the biomarkers 
the system was focusing on were correct for pigment epithelial detach
ment and subretinal fluid; however, for intraretinal fluid and mixed 
pathology, the heatmaps were not deemed satisfactory by the specialists. 
Quantitative validation can be performed by using a small set of images 
with expert lesion-level annotations to compare with the highlighted 
areas in the heatmaps, and to evaluate the weakly-supervised localization 
performance of a classification system. This has been done for different 
lesion types relevant to DR and AMD grading (González-Gonzalo et al., 
2020a; Quellec et al., 2017). Although the heatmaps allowed to locate 
pathological areas in the classified images, the number of missed lesions 
and false positives might be still large so as to be deemed clinically 
dependable in applications where precise quantitative measures are 
required for clinical management. However, they can be a useful tool in 
diagnostic applications, where qualitative support in lesion recognition 
is often enough. Nevertheless, these types of validations are not possible 
when unveiling new visual biomarkers or when trying to establish a link 
between the fundus and a given systemic condition or variable. It be
comes unclear how to interpret “non-traditional features” identified by 

visual attribution: as novel biomarkers or erroneous correlations learned 
by the system (Waldstein, 2020). 

There is an increasing interest in approaching explainability by 
answering the question “how certain is the system about this decision?”. 
The same way the confidence of a diagnosis made by a medical expert is 
not the same in common cases as in ambiguous or complicated cases, AI 
systems also make decisions with different levels of uncertainty (Kendall 
and Gal, 2017). Integrating uncertainty quantification has important 
benefits during development and deployment. During the system’s 
development stage, it allows to check for well-calibrated uncertainties, i. 
e., the system is neither overconfident nor insufficiently confident in 
ambiguous cases (Kendall and Gal, 2017). During deployment, confi
dence scores provide an additional context to the system’s decisions. It 
particularly provides context on how to interpret and how to make a 
correct use of the output, thereby increasing experts’ trust. In de Vente 
et al. (2020), an ensemble of models was used to provide uncertainty 
estimation for AMD grading in OCT. They showed that in a 
well-calibrated system, high confidences were associated with correct 
predictions, whereas lower confidences corresponded to ambiguous 
cases, such as scans with questionable grading or with high levels of 
noise (Fig. 11). As such, uncertainty quantification can be very useful to 
reduce the workload in screening settings, where only those cases with 
high uncertainty estimates would need to be referred for subsequent 
expert analysis. Segmentation tasks can also benefit from integrating 
uncertainty techniques, so as to identify potential system’s errors and 
ambiguous areas in the quantification of lesions. 

In line with recent analyses, it is important to disprove the myth that 
there is necessarily a trade-off between system’s performance and 
explainability (Rudin, 2019). This belief can lead stakeholders to forgo 
the attempt to generate and require explainable systems. Considering 
available techniques and proposed solutions, as well as the increasing 
efforts in this aspect, different forms of explainability can be considered 
and integrated in the system without damaging performance. Simulta
neously, as mentioned by Schmidt-Erfurth et al. (2018), the black-box 
phenomenon is often also intrinsic to daily routine with ophthalmic 
imaging, where some decisions are currently based on experience or 
detection of features that go beyond clinically visible correlates. 

Fig. 11. Uncertainty estimation for AI-based age-related macular degeneration (AMD) grading in optical coherence tomography (OCT) (de Vente et al., 2020). The 
system makes a prediction based on the full OCT volume. Each image represents a B-scan extracted from an OCT volume. The prediction of the model, the reference 
standard, and the confidence of the system are shown below each image. The first row includes scans with correct predictions, associated to high confidence scores. 
The second row includes scans with incorrect predictions and lower confidence scores. The lower confidence of the first image in the second row could be due to the 
high amount of noise in the scan. In the second image, it is ambiguous whether the patient has intermediate or early AMD. The third image does not have choroidal 
neovascularization (CNV), but the system could have been confused by the small intraretinal cyst. In the last image, there is both geographic atrophy and CNV; 
however, the correct prediction according to the reference standard should have been advanced AMD with CNV. 
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Generalizability and repeatability of a system’s performance should be 
considered as relevant as explainability in those cases, if not a substitute. 
We consider the intrinsic trust provided by explainable decisions to be 
complementary to the extrinsic trust provided by verifiable behavior, 
such as demonstrating repeatable and generalizable performance during 
a system’s validation (Jacovi et al., 2021). 

Although there is an increasing demand on explainability by regu
latory bodies, as mentioned previously, there is not a clear definition of 
the right level of explainability required in a given context (Beaudouin 
et al., 2020). The creation of a framework that considers all the di
mensions around explainability (clinical, technical, ethical, legal), as 
well as associated social and economic costs and benefits, would help to 
define the right level of explainability in each setting and clinical 
application. A baseline for such frameworks in clinical settings could be 
established by regulatory bodies. However, in order to define explain
ability requirements for specific points of care, applications, and set
tings, which vary greatly across countries, the intervention, when 
possible, of ophthalmological societies and working groups or commit
tees will be key. Similarly, different levels of explainability might be 
required by different stakeholders, i.e., yielding interpretable AI systems 
might mean opening the black box in different ways for developers, 
healthcare providers, patients, or regulatory bodies (Bhatt et al., 2020). 

5.4. Robustness to malicious attacks and manipulation 

5.4.1. Importance and consequences 
Recent reports predict an increasing trend of cyberattacks targeted at 

systems powered by AI, and the healthcare industry is expected to suffer 
two to three times more attacks than the average amount for other in
dustries (Cisco and Cybersecurity Ventures, 2019). Limited resources 
and fragmented governance on cybersecurity, combined with larger 
consequences at both financial and human levels make healthcare 
particularly vulnerable to cyberattacks (Martin et al., 2017). There are 
two main factors that amplify the threat of cyberattacks in the medical 
domain: financial interests and technical sources of vulnerability 
(Bortsova et al., 2021; Finlayson et al., 2018). 

The first factor is strongly associated with healthcare fraud, which 
has been shown to be committed by large companies as well as in
dividuals, and translates into a significant economic loss from the global 
health expenditure (Gee and Button, 2015). Some parties involved in 
healthcare might have a financial interest in manipulating patient data 
when it comes to insurance, clinical, or drug/device approval decisions. 
Cyberattacks can boost current fraudulent behavior in these decisions, 
and they would be facilitated because the attacker would be already 
inside the healthcare infrastructure. The second factor of vulnerability is 
mainly associated to the security of healthcare technological infra
structure. In this case, attacks would be most commonly performed from 
outside the healthcare infrastructure by means of a breach, implying 
multiple security risks, such as blackmail, ransomware, and malicious 
data manipulation. In a recent investigation, more than 45 million 
medical images and their patient metadata were found to be exposed 
and freely accessible, without hacking tools required, on over 2000 
unprotected medical servers across 67 countries (CybelAngel, 2020). 
Imaging systems (including systems for image acquisition, viewers, 
workstations, and servers) have been found to have the most security 
issues, mainly derived from user practice and outdated infrastructure 
(Healthcare Innovation, 2018). 

Malicious attacks can result in deteriorated quality of healthcare, 
financial loss, decreased trust in AI systems and hence impediments to 
their integration into clinical practice. In this manuscript, we set the 
focus on adversarial attacks (Szegedy et al., 2013), which have become 
very popular in computer vision in the last years. Such attacks apply a 
carefully engineered, subtle perturbation to the input of a target model 
to cause wrong predictions. They have been shown effective against 
AI-based classification systems (Goodfellow et al., 2014b), and multiple 
works have exposed their threat in different medical imaging modalities 

and applications, including automated screening of DR in CFP (Finlay
son et al., 2018). However, in these works the attacks are performed in a 
white-box setting (Goodfellow et al., 2014b), where the attacker has full 
access and/or knowledge about the target system. However, in 
real-world deployment settings, there is restricted knowledge and access 
to the target system and design factors, such as the data that was used for 
development. In realistic scenarios, adversarial attacks would be per
formed in a black-box setting (Papernot et al., 2017), in which the 
attacker does not have full access to the target model and usually uses 
another model, commonly referred to as surrogate model, to craft 
adversarial inputs that are then transferred to the target model. This 
aspect conditions the actual vulnerability of AI systems to adversarial 
attacks in clinical settings (Bortsova et al., 2021). By defining the actual 
threat that adversarial attacks pose in ophthalmic settings, it will be 
possible to adapt the necessary solutions to ensure systems’ robustness 
without damaging trust unnecessarily. 

5.4.2. Proposed solutions and considerations 
Following the recommendations provided by Bortsova et al. (2021), 

AI developers, aided by other stakeholders such as healthcare in
stitutions and users, are expected to assess the ophthalmic setting where 
an AI system is meant to be integrated in order to identify the motiva
tions and the capacity to perform undetected attacks by any user. If there 
is a significant risk of successful adversarial attacks, proactive measures 
should be taken. 

Numerous defense methods have been proposed to protect AI sys
tems from adversarial attacks either by training networks to increase 
their adversarial robustness (Goodfellow et al., 2014b) or by detecting 
or neutralizing adversarial inputs during inference (Lu et al., 2017). 
Although defense methods are only partially effective (Yuan et al., 
2019), applying the most successful methods is likely to increase the 
difficulty of manipulating a system. In addition, using techniques for 
interpretability and quantifying uncertainty of the system’s predictions, 
such as the ones included in Section 5.3, may aid in detecting adversarial 
attacks (Li and Gal, 2017; Tao et al., 2018). However, they also provide 
only partial protection (Smith and Gal, 2018). The transferability of 
adversarial attacks in black-box settings have been observed to increase 
between similar models, i.e., when the attacker makes use of certain 
design components also used in the target system, such as the same 
network architecture, the same development data, or the same network 
initialization with ImageNet pre-training. This has been shown in the 
setting of automated screening of DR in CFP (Bortsova et al., 2021) 
(Fig. 12). To further increase the difficulty of emulating the target sys
tem for an attacker, the use of standard design components and public 
datasets should not be the sole basis of deployed systems, considering 
the threat to patient safety and privacy it represents. 

We observe there are different levels in the requirements of infor
mation to disclose about a system meant to be deployed in clinical 
practice, in order to ensure robustness and, consequently, trustworthi
ness. When it comes to the general public, there exists a trade-off in the 
amount of disclosed information. Limiting the amount of publicly- 
available information related to the design of the system is recom
mendable (Bortsova et al., 2021). However, design details that do not 
represent a threat to patient privacy and safety and information related 
to the validation of the system (methods, procedures, results) should be 
made publicly-available. The use of public datasets to facilitate bench
marking should be encouraged, as indicated in Section 6.1. When it 
comes to the stakeholders involved in the design of the system, as well as 
external agents such as regulatory or governmental bodies, transparency 
is key. A trustworthy system should be reproducible and exhaustive 
information about the system should therefore be made available by AI 
developers, for instance, in audit trails (Section 2.1). When it comes to 
front-line users, certain information about the system’s design could be 
provided to allow for a better context on how to incorporate the system’s 
outputs into clinical decisions. A close collaboration between AI de
velopers, healthcare institutions, and ophthalmological societies and 
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working groups or committees will help define the adequate level of 
required information to prevent misinterpretation and misuse (Section 
6.2). 

A combination of the mentioned proactive measures would provide 
the most comprehensive security (Bortsova et al., 2021). It is acknowl
edged that protective measures could hamper performance (Zhang et al., 
2019), however, for AI systems to be deployed in clinical practice, 
robustness needs to be considered as well, as part of building responsible 
and trustworthy AI (Leslie, 2019). The decision on how much perfor
mance to sacrifice for robustness will differ per case depending on the 
likelihood of adversarial attacks and the potential consequences. The 

setup of an evaluation study of adversarial robustness can help on this 
regard, aimed at obtaining realistic robustness estimates by testing the 
system under the most likely attack scenarios, considering that the 
attacker will not have complete access or knowledge about the system. 
Evaluation practices such as the ones provided by Bortsova et al. (2021) 
help for the standardization of robustness studies and, consequently, for 
their inclusion by regulatory bodies when establishing guidelines for 
trustworthy AI. 

Fig. 12. Adversarial black-box attacks in AI-based screening of diabetic retinopathy (DR) in color fundus photography (CFP) (Bortsova et al., 2021). Original images, 
adversarial images, and corresponding adversarial noise (difference between original and adversarial image) in different black-box settings, where the attacker does 
not have full access to the target model and usually uses another model, commonly referred to as surrogate model, to craft adversarial inputs that are then transferred 
to the target model. Settings from left to right: target and surrogate models both pre-trained on ImageNet; target and surrogate models both randomly initialized; 
target and surrogate models both randomly initialized plus surrogate developed using a different and reduced dataset. The average area under the receiver operating 
characteristic curve (AUC) is indicated above of each configuration for the no-attack setting and the black-box settings. Green frame indicates correct classification of 
referable or non-referable DR; red frame, incorrect classification. It can be observed that attack transferability decreases when target and surrogate models are less 
similar. Reduced access and knowledge about the target model by the attacker leads to less impact in performance. 
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5.5. Adaptability and updates 

5.5.1. Importance and consequences 
Traditionally, AI systems undergo a training phase and are then 

deployed for inference. The systems learn from a snapshot of the data 
initially available and the learned concepts and parameters remain un
changed during the deployment phase. Deploying these systems into 
non-stationary environments, such as clinical settings, is a potential to 
failure because 1) the behavior of AI systems is unpredictable when the 
input data are generated within a dynamic setting with shifting char
acteristics; and 2) the systems cannot seamlessly adapt to evolving 
clinical and operational practices or feedback from experts. If we look at 
how healthcare providers learn and improve their skills, the process is 
very different, for instance, ophthalmologists are continuously trained 
to become reliable experts, incrementally improving their diagnostic 
skills and autonomously adjusting their knowledge in consultation with 
peers. 

The adoption of new clinical guidelines or the introduction of new 
operational procedures would require an update of the AI system’s inner 
working and could be easily identified if properly reported by healthcare 
institutions. The magnitude of the update and the need of stakeholders’ 
involvement for re-training the system or re-annotating data will depend 
on the difference between the new and current clinical practice. For 
example, the adoption of an updated diabetic retinal disease (DRD) 
staging system to incorporate relevant advances in the field would 
require automatic methods for DR screening to jointly analyze systemic 
health measures (e.g., measures of glycemic control or blood pressure) 
and additional aspects of functional vision, such as visual fields, or low- 
luminance acuity, together with the currently used CFP (Sun et al., 
2021). Training flexible models that, for example, can process as input 
different type of information (as seen in Section 5.1) would facilitate a 
quick update of the AI systems and, consequently, the rapid adoption of 
these new guidelines. 

Subtle, progressive shifts in the input data characteristics are, how
ever, more difficult to identify and adapt to. For example, the imple
mentation of new treatment regimens can slowly shift the definition and 
prevalence of disease stages, invalidating adopted operating points of AI 
systems and increasing the risk for errors and misuse. The introduction 
of a new predictive algorithm may cause also changes in practice, 
resulting in a new distribution compared to that used to train the system 
(Kelly et al., 2019). Therefore, the development of robust methods to 
identify data shift and monitor performance over time to proactively 
identify problems, alongside easily implemented strategies for 
re-training are crucial to prevent unacceptable harm during the 
deployment phase. 

One important aspect to consider during the design and development 
phase of AI algorithms is how the communication with the clinical team 
will take place. The report of errors and incidents as well as suggestions 
for improvements should be facilitated and systems should be adapted 

accordingly to address them. AI developers often fail to anticipate all the 
potential risks associated with the systems they develop, including both 
inadvertent failures and deliberate misuse. Although ophthalmology has 
a poor representation of qualitative implementation research relative to 
other specialties, a recent study by Beede et al. (2020) reflected the 
importance of this aspect in the context of DR screening. The possibility 
to create a communication channel between users and AI developers to 
notify and address these incidents would provide a collaborative way to 
mitigate these risks. Working towards AI incident sharing platforms for 
healthcare, similar to the ones developed for other fields (e.g., 
Partnership on AI’s AI Incident Registry), could provide an objective 
way for reporting. Systems would then need to be designed to handle 
reported errors and feedback and deploying fixes. 

It should be noted that AI systems without appropriate safeguards to 
monitor their activity and act consequently would not only become 
obsolete and unreliable but could represent a potential risk for patients’ 
lives, promoting their withdrawal from clinical workflows and the in
direct reduction of trust on this technology. Adaptability should then be 
considered during AI development as part of the strategy for risk miti
gation (Rivera et al., 2020) and as a way to maintain claims about AI 
accuracy and reliability over time. 

5.5.2. Proposed solutions and considerations 
The adaptability of an AI system to users’ feedback, new clinical 

practices, or data shift, is closely related to a machine learning technique 
called continual learning (also known as lifelong, incremental, or online 
learning), in which a model continuously learns from new patient data 
and the generated outcomes, fine-tuning its current task, or even 
incrementally learning new tasks, while retaining previously learned 
knowledge (Parisi et al., 2019). Continual learning models have there
fore similar ways of learning to that of healthcare providers, since they 
are able to incrementally learn from their mistakes and fine-tune their 
performance with progressively more data. In diagnostic tasks, a 
continual learning system would first perform inference when new pa
tient data become available, the new data would also be manually an
notated, and then the annotations and the system’s predictions would be 
used to update the system (Fig. 13). In the context of error analysis and 
integrating users’ feedback, Liu et al. (2019) proposed an online 
learning system to improve the automated detection of glaucomatous 
optic neuropathy and glaucoma diagnosis in CFP with a 
human-computer interaction loop. The loop consists of three iterative 
steps: first, the system diagnoses glaucoma with a high sensitivity rate 
on new patient data; second, ophthalmologists manually confirm the 
positive samples predicted by the system; third, the confirmed samples 
are used to fine-tune the system for the next iteration. The online 
learning system was implemented in a teleophthalmology setting, 
sequentially collecting new samples on a weekly basis, and its perfor
mance was shown to increase with each iteration. This shows the po
tential of online learning systems to improve with the help of human 

Fig. 13. Continual learning pipeline for diagnostic tasks (Lee and Lee, 2020). In this setting, an AI system is trained to provide a diagnosis and is continually updated 
with new patient data. When the new data are fed into the current system, the model provides its diagnosis output. Meanwhile, the same new data are manually 
annotated. Both sources of information are fed into the continual learning system, updating its current state to integrate users’ feedback after error analysis, or to 
adapt to new clinical practices or data shift. 
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experts, while the systems help human experts to be more efficient in 
diagnosing negative samples. Related to the adaptability of systems to 
new clinical practices, He et al. (2021) explored incremental learning to 
integrate new required tasks in the context of automated segmentation 
of DR-related lesions. Their system is able to distill the knowledge of a 
previous model to learn a new task and improve the performance of the 
current model, which also helps to reduce the required amount of new 
data to annotate. When it comes to adaptability due to data shift, it 
becomes critical to count with methods that identify and quantify the 
shift, monitoring performance over time to then define the necessary 
periodic updates to the system (Kelly et al., 2019). Data-driven testing 
approaches have been proposed to recommend the most appropriate 
update, from simple re-calibration to full model retraining (Davis et al., 
2019). 

An important consideration regarding the use of continual learning 
in diagnostic tasks is that manual labelling of new data is time- 
consuming and limits the overall usability of the system. However, 
using the system’s inference predictions directly as reference standard 
could negatively affect patients’ outcomes and cause an unwanted data 
shift (Lee and Lee, 2020). Reliable, manual labels are therefore indis
pensable. A subsample of the new data could be selected in order to 
reduce the workload of manual labelling. This could be done, for 
instance, by using the data that fall close to the system’s decision 
boundary for (re-)annotation and fine-tuning, or by integrating specific 
approaches such as active learning, where the system would proactively 
select the most beneficial set of images to (re-)annotate (Sánchez et al., 
2010). When performing error analysis, it is important that the human 
graders are not given only system’s outputs to correct/re-annotate, since 
that could bias graders towards minimal corrections on an output that 
would be already “good enough”. It is therefore also advisable to involve 
only the most experienced graders, who would be more likely to keep 
their own grading criteria when correcting the output of the system. 

Continual learning could also be applied for prognostic tasks, where 
a system would predict a clinical outcome from new data and then be 
updated after comparing its prediction with the actual outcome. In this 
case, there would be a waiting period between using the new clinical 
data as input and the extraction of the actual clinical outcome. However, 
this setting would not require manual annotations and the standard of 
care would not change, making it a safer scenario to test continual 
learning systems. It is important to note that before the system’s pre
dictions are used to change clinical decisions, a prospective randomized 
clinical trial should be done to compare against the standard of care (Lee 
and Lee, 2020). 

Continual learning systems could therefore be advantageous in real- 
world ophthalmic settings, in comparison to traditional, locked AI sys
tems. Nevertheless, the technique is not completely mature yet and 
several considerations arise in its deployment (Lee and Lee, 2020). One 
important consideration is related to the way new patient data are 
incorporated to update the system. On one hand, if only the new data are 
used for fine-tuning the system, catastrophic forgetting can happen, 
leading to an overwrite of the model’s previous knowledge. On the other 
hand, completely re-training the system every time new data are 
available can be computationally expensive and restrict real-time 
inference. Additionally, this would require access to retrospective 
training data, which might have use constraints and might not be 
accessible after the first stage of development, and merging clinical data 
from a larger number of patients, which might generate privacy and 
liability concerns. A question also arises regarding whether a system 
should be continuously updated exclusively on a local level (i.e., per 
healthcare institution) or integrate updates on a more general level as 
well (i.e., per region, per country…). On one hand, local updates are 
desired to optimize the AI system specifically for a given clinical setting; 
on the other hand, regional or national updates could be beneficial to 
improve the system’s knowledge to generalize. What is clear is that 
centralized updates, equivalent to version updates in a software or in an 
operating system, are necessary for integrating global adjustments such 

as security fixes or new features. It will be thus necessary to define the 
most adequate level of updates and how to synchronized them with 
centralized changes. Another consideration is the absence of established 
methods for assessing the quality of continuous learning systems. 
Traditional metrics used to measure the performance of the original 
system would not suffice, since other factors need to be accounted for, 
such as the automated collection of data for (re-)annotation, the 
knowledge transfer between original and new patient data, or the 
required update to avoid overfitting the system, i.e., ensure it is able to 
generalize to the new data while keeping the original performance. 

Regulatory challenges are also significant. Traditional AI systems are 
locked for safety to prevent post-approval changes. In contrast, 
continual learning systems would be incrementally learning and 
updating their state once deployed. Consequently, the original valida
tion results would not be valid anymore. Regulation policies, further 
discussed in Section 7, are currently outdated in this aspect and are not 
prepared for continuous adaptability and updates of AI systems. 
Nevertheless, progress towards lifecycle regulation is being made. The 
FDA recently proposed an action plan covering modifications in medical 
AI systems, in order to facilitate updates without going through the 
entire pre-market review process again (Food and Drug Administration, 
2021). Recently implemented, the new EU Medical Device Regulation 
increases post-market surveillance requirements, including the prepa
ration of a plan that ensures continuous assessment of risks and indicates 
how users’ feedback will be collected and integrated (European Com
mission, 2017). Potential data shifts could also be planned ahead and 
included as regulatory standard. Besides the external periodic audits 
performed by regulatory bodies, internal audits could also be performed 
to check if the system is performing as expected. The same way 
healthcare institutions are expected to study the developments of newly 
applied clinical guidelines, they should also be involved when auditing 
an AI system during deployment in their clinical setting. Internal audits 
would help define the most adequate level of updates and how to syn
chronize them with centralized updates, as previously mentioned. The 
obtained conclusions would be then used by developers to perform the 
required modifications to the system. Regulatory bodies and AI manu
facturers should work together to generate a list of allowable modifi
cations that can be applied to an AI system that would be subject to a 
“safe harbor” and thus not necessarily require a new pre-market review 
for approval (Hwang et al., 2019). 

6. Prospective validation 

The vast majority of existing validation studies are carried out in a 
retrospective manner, i.e., the performance of a given AI system is 
validated using historically labelled data (Kelly et al., 2019). Although 
this type of validation can help to demonstrate claims regarding the 
trustworthy behavior of AI systems, the performance is likely to be 
worse when encountering real-world data in uncontrolled clinical set
tings, as shown by Abràmoff et al. (2018). A prospective validation or 
pre-market validation consists in establishing documented evidence, 
prior to deployment, that a system does what is proposed to do based on 
predefined protocols. A prospective validation is therefore key to un
derstand the true utility of AI systems when introduced in clinical 
practice. However, prospective studies for AI systems are generally 
scarce; a recent study by Wu et al. (2021) showed that only 3% of 130 
FDA-approved AI devices had undergone a prospective validation at 
their submission. Prospective studies are also scarcely reported for AI 
systems targeted to ophthalmic practice (Heydon et al., 2020; Abràmoff 
et al., 2018; Beede et al., 2020; Gulshan et al., 2019). Due to its 
importance, prospective studies, as well as randomized con
trolled/clinical trials involving AI, will be increasingly considered prior 
to approval and integration in clinical practice. Publicly available evi
dence of claims, following established guidelines such as CONSORT-AI 
(Liu et al., 2020) and SPIRIT-AI (Rivera et al., 2020), will be also 
needed to transparently report the benefits of AI systems for patient 
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care. 
In this section, we focus on three different aspects to consider while 

planning and performing prospective studies that can facilitate the 
integration of trustworthy AI systems in ophthalmic settings: 

• Reproducibility of systems and benchmarking, so as to obtain addi
tional evidence on performance and its variability in diverse settings, 
allowing comparison with other systems.  

• Study interaction between users and AI to detect and prevent misuse 
and misinterpretation.  

• Monitor the impact of systems on different dimensions of the clinical 
workflow, such as healthcare economics, healthcare providers, and 
patients. 

6.1. Reproducibility and benchmarking 

6.1.1. Importance and consequences 
Reproducibility of results in AI is a key way of enabling verification 

of claims about a system’s performance and properties, as well as 
determining its trustworthiness in the improvement of patients’ out
comes. Reproducibility describes whether an AI system exhibits the 
same behavior when repeated under the same conditions, enabling AI 
developers and regulatory bodies to accurately describe what AI systems 
do and to process technical auditing and other forms of accountability. 

The non-deterministic nature of AI systems, restricted access to the 
underlying data and code, and the use of expensive computational re
sources pose a challenge to reproduce AI results (Beam et al., 2020). The 
randomness inherent to the analysis, especially true for DL models, 
hampers a rigorous comparison between AI experiments. Even if 
deterministic behavior is enforced, the reproduced result might not be 
representative of the initial experiments. Besides the well-known limited 
access to clinical data, for which solutions are being actively sought and 
implemented (Section 3), requiring large computing resources for the AI 
system training and deployment could prevent the independent repro
ducibility of results. However, most AI models currently available or 
under research for ophthalmology are smaller and can be easily repro
duced on fairly standard computer hardware. For those cases where 
more resources are required, the use of standardized, publicly-available 
hardware (sometimes called “commodity hardware”) could overcome 
this issue. 

A main problem for reproducibility is that AI systems lack traceable 
logs of steps taken in problem-definition, design, development, and 
operation, decreasing the ability of outside parties to verify claims made 
about AI systems and leading to a lack of accountability for subsequent 
claims about those systems’ properties and impacts (Brundage et al., 
2020). The creation of reporting standards and audit trails can improve 
the verifiability of claims as well as facilitating reproducible systems 
(Collins and Moons, 2019; European Commission, 2019). However, they 
are not yet a mature mechanism in the context of healthcare AI. 

Benchmarking is a way to foster reproducibility and, if properly ar
ranged, to provide a centralized manner for healthcare institutions and 
users to compare and select the best AI system for their clinical work
flows and patient population. However, rigorous benchmarking requires 
taking into account realistic scenarios with real-world data. For 
example, benchmarking AI systems for the quantification of intraretinal 
fluid for the assessment of treatment response using curated OCT data
sets might not reproduce properly the accuracy and reliability of these 
systems based on OCT scans acquired during the short time frame of a 
busy clinic. 

Note that reporting validation performance scores alone is insuffi
cient for reproducibility; trustworthiness requires additional meaningful 
reporting about the model and environmental details, such as the data, 
code, computational resources, and other decisions made along the AI 
design pipeline, to ensure reliable conclusions. Failing to reproduce the 
reported claims may limit the validity, comparability, and usefulness of 

the performed research. 

6.1.2. Proposed solutions and considerations 
A first step to generate reproducible AI systems and facilitate 

benchmarking is to adhere to the protocol and reporting guidelines for 
prospective clinical trials (Liu et al., 2020; Rivera et al., 2020), and make 
clear whether and how the AI system and/or its code can be accessed or 
re-used, including details about license and possible access restrictions. 
Adhesion to official guidelines during AI development and validation 
(Collins and Moons, 2019; Sounderajah et al., 2020) (currently under 
development) will help increase transparency about how the AI system 
is trained and validated; this will also result in greater reproducibility 
and replicability. 

Greater openness and participation of AI manufacturers in inde
pendent validation and benchmarking or head-to-head studies, such as 
the ones carried out by Lee et al. (2021) and Tufail et al. (2016) in the 
context of automated DR screening in CFP, would facilitate comparison 
between available systems. In Lee et al. (2021), of 23 companies 
approached, only 5 agreed to participate, providing in total seven sys
tems for evaluation. One main obstacle for the participation of com
panies might be their lack of control over the marketing of the results. 
However, head-to-head studies are necessary to advance the field and 
benefit the global population. 

Validation of AI systems on public datasets also allows for direct 
benchmarking given a clinical task. Several public datasets containing 
ophthalmic imaging can be accessed and have been used in previous 
studies (Khan et al., 2020). Examples are Messidor, for the detection of 
diabetic eye disease in CFP (Abràmoff et al., 2016; González-Gonzalo 
et al., 2020b; Gulshan et al., 2016); Diaret-DB1, for the localization of 
lesions related to DR (González-Gonzalo et al., 2020a; Quellec et al., 
2017); or the SD-OCT dataset made available by Farsiu et al. (2014), and 
used for automated layer and drusen segmentation (Liefers et al., 2019; 
Asgari et al., 2019), and localization of the fovea in OCT scans (Liefers 
et al., 2017). The popularity of public challenges, which allow to 
compare solutions with data and evaluation procedures common to all 
participants, has also increased for ophthalmic tasks. Challenges have 
been proposed for the automated detection of DR (Kaggle DR detection, 
APTOS, IDRiD), glaucoma (REFUGE), or pathological myopia (PALM) in 
CFP, detection and segmentation of various types of fluids in OCT scans 
from different vendors (RETOUCH, Bogunovic et al. (2019)), and, more 
recently, for the detection of multiple ocular diseases in CFP (RIADD), 
and the use of multimodal data (CFP and OCT) for the grading of 
glaucoma (GAMMA). Nevertheless, benchmarking based on public 
datasets and challenges is not always possible, since they do not cover all 
relevant clinical tasks, disease populations are unevenly represented 
(DR, AMD, and glaucoma are overrepresented in comparison to other 
eye diseases), and the vast majority focus currently on CFP. Addition
ally, certain population groups, mainly regarding ethnicity, are still 
underrepresented (Khan et al., 2020; Ibrahim et al., 2021; Burton et al., 
2021). 

Additional tests for reproducibility by regulatory bodies or health
care institutions might require access to the original data used for system 
development and/or validation. However, this might not be possible due 
to privacy concerns and access restrictions to the clinical data. In these 
cases, a “walled garden” approach might be a solution, where the 
external agents are given access to a private network subject to a data 
use agreement for the duration of the reproducibility analysis (Beam 
et al., 2020). 

Another alternative for healthcare institutions in order to check for 
reproducibility and compare available systems is the curation of an in
dependent local test set constructed using a representative sample of the 
target population. A supplementary local training set could also be 
provided to allow fine-tuning or re-calibration of the systems prior to the 
formal testing (Kelly et al., 2019; Bora et al., 2021), or certain adjust
ments to the systems could be allowed regarding, for instance, image 
acquisition protocol (Lee et al., 2021). Centralized platforms with a 
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user-friendly interface, such as Grand Challenge, can facilitate this 
process for healthcare institutions. This platform allows to create public 
or private archives of medical data which can be used to set up a reader 
study for labelling the data, to set up a public or private challenge to 
benchmark systems, or to run a specific algorithm (Fig. 14). 

6.2. Misinterpretation and misuse 

6.2.1. Importance and consequences 
The conduct of prospective studies and deployment of AI systems in 

ophthalmic practice requires clear and open communication between AI 
developers and end users. Healthcare providers need thus to be well 
informed about the specific type of setting where a system is meant to be 
used, as well as the type and quality of data it expects as input so as to 
provide reliable predictions (Abràmoff et al., 2020). Additionally, they 
need to be made aware of the potential risks and consequences if AI 
systems are not deployed properly or are misused in their practice. For 
instance, users may experience “alert fatigue” due to excessive warnings 
or over-referrals generated by a system (Singh et al., 2020). There is also 
the risk of confirmatory or automation bias, where users over-rely on 
results from AI systems instead of applying their own critical judgement; 
which could potentially cause harm to patients (Lehman et al., 2015). 
Eventually, as discussed later in Section 7.2, users can be held liable for 
possible harm or injury to patients when incorporating AI output into 
clinical decisions (Abràmoff et al., 2020). While transparency in the 
reporting of limitations of AI systems has been stressed, guardrails to 
protect against possible risks and consequences of inappropriate use of 
AI systems still need to be developed (Sendak et al., 2020). 

With regard to the interpretation of results from AI systems, rela
tively little attention has been given to practical pitfalls of performance 
metrics. Maier-Hein et al. (2018), however, identified inappropriate 
selection of metrics as one of the core issues related to performance and 
quality assessment in challenges for biomedical imaging (mentioned in 
Section 6.1). For correct interpretation of AI results, it is important that 
performance metrics are aligned with the clinical task, and that results 
are reported with a terminology that is understandable to users (Yana
gihara et al., 2020; Faes et al., 2020). Otherwise, systems will not pro
vide any actionable guidance. 

Overall, the misinterpretation of AI results and the misuse of AI 
systems will be detrimental to clinical decision making and the quality of 
care given to patients. Misinterpretation and misuse can also diminish 

users’ trust in AI systems and, in the worst case scenario, cause “algo
rithm aversion” (Dietvorst et al., 2015). Systematic efforts to ensure that 
ophthalmologists and other users know how and when to integrate the 
output of AI systems and solutions to improve the interpretation of such 
output are needed to allow a safe and more rapid integration of AI 
systems into ophthalmic practice. 

6.2.2. Proposed solutions and considerations 
A recent study by Sendak et al. (2020) proposed that AI developers 

include a “model facts label”, i.e., a 1-page of relevant and actionable 
information to ensure that front-line users know how, when, how not, 
and when not to incorporate AI output into clinical decisions. The label 
includes a short summary about the AI system, the working mechanism 
(including the source and baseline characteristics of data used for AI 
development), results of validation studies, guidelines for use (including 
benefits and appropriate decision support), warnings (including poten
tial risks and consequences), and other relevant information related to 
the AI system. A question arises on how should developers make infor
mation accessible, intelligible, and assessable to users. In this regard, a 
close collaboration with healthcare institutions and ophthalmological 
societies and working groups or committees would help define the 
adequate information to be provided and ensure it reaches the final 
users. Nevertheless, it is not completely clear yet how to deal with po
tential conflicts of interest. For example, developers or other stake
holders may not want to share certain facts for proprietary or financial 
reasons. While some questions still need answering, model facts labels 
might provide a first step towards systematic prevention of misinter
pretation of AI output and inappropriate use of AI systems. 

Others have highlighted and addressed the limitations of AI perfor
mance metrics and their impact on the misinterpretation of AI systems. 
Recently, a large-scale initiative was started by Reinke et al. (2021) to 
raise awareness about the limitations of commonly used metrics in the 
field of medical image analysis, and to provide developers with guide
lines and tools to choose the performance metrics in a problem-aware 
manner. The authors have constructed a document that specifically fo
cuses on segmentation tasks, including fundamental mathematical 
properties, suitability, aggregation, and combination of segmentation 
metrics, but a final document will cover classification and detection 
metrics as well. Yu et al. (2019) highlighted limitations of frequently 
used metrics for classification tasks. They indicated that metrics such as 
area under the receiver operating characteristic curve (AUC), sensitivity, 

Fig. 14. Example of an algorithm publicly available at Grand Challenge. The AI-based algorithm performs automated segmentation of intraretinal fluid, subretinal 
fluid, and pigment epithelial detachments in optical coherence tomography (OCT) scans. The algorithm was developed with training data from the RETOUCH 
challenge (Bogunovic et al., 2019), which contains scans from three different vendors. Users in the platform can upload their OCT volumes and inspect the algo
rithm’s results using the web-based image viewer shown in the figure, or directly download the segmentation masks. As observed, each type of fluid is assigned a 
different color in the output masks and a quantification of its volume is provided. Although this algorithm is not meant for clinical use, it allows to explore the 
possibilities of analyzing reproducibility of AI systems in ophthalmology. 
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and specificity may have limitations for imbalanced datasets. Subse
quently, they suggested developers should report additional metrics to 
improve interpretation, i.e., the positive predictive value and area under 
the precision–recall curve (AUPRC) for datasets that contain more 
healthy cases than disease cases, and the negative predictive value for 
datasets that are dominated by disease cases. 

The trade-off between test characteristics is another point of atten
tion. For instance, when computing the AUC, a threshold for sensitivity 
and specificity needs to be pre-specified. AUC may be calibrated to a 
higher level of sensitivity, with a corresponding lower level of speci
ficity. Whatever trade-off is selected, the AI system will still generate 
false positives, false negatives, and indeterminate results, as must be the 
case with any method of classification. The key consideration would be 
whether inaccurate results are outweighed by the benefits and whether 
they are distributed among patients in an equitable manner (Char et al., 
2020). To further improve interpretability and applicability of AI 
output, studies have investigated the use of AI systems across varying 
operating points, i.e., sensitivity/specificity pairs. Yim et al. (2020) used 
two operating points to demonstrate whether an AI system could predict 
a fellow-eye conversion to neovascular AMD in OCT scans. Authors 
included a “conservative” operating point, where the system predicted 
conversion at 34% sensitivity and 90% specificity, and a “liberal” 
operating point, where it predicted conversion at 80% sensitivity and 
55% specificity. Similarly, Phene et al. (2019) used three different 
operating points to demonstrate whether an AI system was able to detect 
referable glaucomatous optic neuropathy. Operating points were chosen 
based on the system’s performance on a tuning (validation) set and 
included points with a high sensitivity, high specificity, and a balanced 
sensitivity/specificity. In short, the use of varying operating points can 
increase the flexibility of AI systems and allows to configure AI systems 
as required by individual clinical settings, healthcare systems, or ther
apeutic drug indications. Trade-offs and thresholds should be therefore 
re-evaluated when AI systems move from internal validations to pro
spective validations and to deployment stage (Beede et al., 2020). At the 
same time, pre-specified operating points for the primary endpoints of 
AI systems can be established by regulatory bodies prior to a prospective 
validation. For instance, the FDA set mandatory levels of sensitivity 
(more than 85%) and specificity (more than 82.5%) in the prospective 
study carried out for the approval of the first autonomous AI system for 
detection of DR and DME (Abràmoff et al., 2018). In reporting primary 
endpoints, the computation of confidence intervals (CI) is key. It will 
show whether the variation of a system’s performance, especially at the 
lower bounds of the CI, is still clinically acceptable. To determine 
whether the lower bounds of a system’s performance will reach a certain 
level, it is possible to perform a power calculation and compute the 
minimum number of samples to generate significant results. Tufail et al. 
(2016) calculated that 24,000 screening episodes in the NHS Diabetic 
Eye Screening Programme were required in their study to ensure that the 
lower bound of the 95% CI for sensitivity of severe DR grading would not 
fall below 97%. 

When validating AI systems, it should also be considered that 
quantitative metrics might not always relate to qualitative assessment 
by experts. In Wilson et al. (2021), an AI system for macular fluid seg
mentation performed inferiorly to expert gradings based on quantitative 
metrics, while qualitatively the AI-based segmentations were assessed as 
clinically acceptable. Both quantitative and qualitative validations are 
therefore desirable and should be reported for a complete interpretation 
of a system’s performance. 

The terminology used in the reporting of AI output is another point of 
attention. Metrics used to report on the performance of a system should 
reflect both its technical and clinical behavior. Stakeholders should 
therefore be familiarized with the terminology employed for both 
technical and clinical aspects so as to be able to interpret the system’s 
potential and limitations in all relevant dimensions. There is also a need 
for consistency in the used terminology for AI output (Kim et al., 2020). 
Guidelines such as CONSORT-AI (Rivera et al., 2020) and STARD-AI 

(Sounderajah et al., 2020) (under development) may help to stan
dardize the terminology when reporting about performance of AI 
systems. 

Several steps have been made towards improving interpretation of AI 
results and appropriate use of AI systems. Nevertheless, it is clear that 
several hurdles remain to be overcome before their widespread imple
mentation into ophthalmic practice can occur. AI developers, healthcare 
institutions, and other stakeholders should continue to develop sys
tematic efforts to address the potential risks and consequences of 
misinterpretation and misuse of AI systems. Ensuring the appropriate 
use of AI systems will require ongoing monitoring, as discussed later in 
Section 6.3. An appropriate setup for prospective validations is also key, 
since they provide a suitable scenario to observe the interaction between 
system and users and detect and register those situations or cases where 
users tend to misuse the system and/or misinterpret its output. This will 
allow to identify and apply the necessary measures towards a more 
seamless integration. The training of ophthalmologists and other users 
in early stages could also help prevent misinterpretation and misuse of 
AI systems. Healthcare institutions and reading centers could provide 
healthcare providers and graders, respectively, with specific training 
and/or practice periods to become AI competent in their daily practice, 
aided by AI experts. Medical schools could prepare students to become 
AI competent, by learning how to interpret a model’s predictions, 
explainability, and uncertainty measures. 

6.3. Impact on clinical workflow 

6.3.1. Importance and consequences 
Besides numerous potential benefits, the integration of AI systems 

also involves significant changes in financial and human aspects within 
the clinical workflow. While performance tends to be the main focus of 
study in prospective validations, the impact of AI on different di
mensions of the clinical workflow has not been properly analyzed yet. 
We put the focus on the impact of AI on health economics, healthcare 
providers, and patients. 

The integration of AI will suppose a shift in financial resources and 
clinical workload. For example, in the case of DR screening, AI will allow 
to increase the number of detections in early stages of the disease, 
especially in those areas without current coverage when combined with 
telemedicine. However, this may lead to an increase in the workload of 
ophthalmologists and a shift in the time available for patient treatment 
and follow-up. Substantial manpower and funding are required for AI 
deployment in practice and apply the necessary updates in the current 
clinical protocols and infrastructure to ensure interoperability (Section 
2.2). Additionally, as seen in Section 5.5, optimal performance of AI 
systems will require ongoing monitoring and maintenance to ensure 
adaptability to users’ feedback after error analyses, new clinical prac
tices, or data shift, and to perform the necessary system updates. All of 
this monitoring and maintenance activity will require significant effort 
in human capital as well (He et al., 2019). With increased cost pressure 
on healthcare systems, AI systems need to be subject to cost-benefit 
analyses tailored to the healthcare setting and intended use, and 
compared with the standards followed in current practice. These ana
lyses will be key to be granted reimbursement within a healthcare sys
tem (Section 7.3) and for widespread deployment. 

The automation of certain tasks by AI systems will also bring a shift 
in healthcare providers’ roles and responsibilities. If the roles of AI and 
healthcare providers are not fully understood and communicated, this 
may lead to lack of trust from the users and/or a fear of replacement, as 
well as to misuse and misinterpretation of the systems once deployed 
(Section 6.2). This will cause the potential benefits to be lost. Further
more, even though an AI-based support tool is coherent with clinical 
grounds, it is often abandoned by adopters if direct or indirect conse
quences run counter to their clinical routines and values (Beede et al., 
2020; Yang et al., 2019). The uncertainty in human–AI interactions may 
result in significant variation in users’ performance and systems’ 
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performance (He et al., 2019). It is therefore key to overcome the 
paucity of implementation studies, particularly scarce in ophthal
mology, and invest in a suitable infrastructure for prospective valida
tions that allows to analyze how to best integrate AI within the 
healthcare providers’ workflow. 

The integration of AI will also have an impact on patients, who might 
be concerned about the use of AI in their ophthalmic care and the pri
vacy of their data. Similarly to obtaining consent for undergoing a MRI 
scan, the patient might not necessarily need to know every detail but 
certainly has to be informed about the core principles of the procedure, 
and especially the risks. However, it is difficult to establish to what 
extent the patient has to be made aware or agree with clinical decisions 
that were assisted by AI (Amann et al., 2020). Public attitude towards AI 
is expected to increasingly influence AI policies and, consequently, 
widespread deployment of AI systems (Zhang and Dafoe, 2020). It be
comes thus crucial to incorporate patients’ views and predisposition to 
using AI in prospective validations, while ensuring an adequate man
agement of patient consent. 

6.3.2. Proposed solutions and considerations 
A traditional way of conceptualizing benefit of a novel intervention 

in terms of health economics is using a cost-effectiveness model. To 
populate a cost-effectiveness model, detailed current costings of all as
pects of current clinical pathways and modified pathways need to be 
acquired. Such information gathering should be built into AI system 
validation studies, preferably in a prospective way. The decision to 
implement a given AI system in clinical practice will depend on whether 
the increased cost of per-patient encounter is worth it for the additional 
benefit, and can be described by means of different outcome variables, 
mainly as either the incremental cost-benefit ratio or in terms of the net 
benefit compared to existing practice (Simoens, 2009). For instance, in 
the context of DR screening, several studies have focused in comparing 
the cost-effectiveness of current manual grading with that of using AI as 
a filter prior to level-one human grading and that of replacing level-one 
human graders. Tufail et al. (2016, 2017) validated several AI systems in 
the NHS Diabetic Eye Screening Programme in the UK, and showed that 
AI was cost-saving compared to manual grading, either as a replacement 
for human grading or as a filter prior to human grading, although the 
latter approach was less cost-effective (Fig. 15). In Lee et al. (2021), as 
part of a retrospective validation on US′ veterans’ CFP, a 
cost-effectiveness analysis reported similar per-patient encounter costs 
among seven AI systems, with significant annual labor savings when 
used as a filter in the DR screening pathway. 

Although the results from retrospective reports are promising, cost- 
benefit analyses using data from prospective use of AI systems are 
necessary, as recently done by Heydon et al. (2020). Future prospective 
studies should also focus on assessing cost-effectiveness of AI systems for 
other clinical applications and points in patient care, where changes in 
economic and societal costs when applying AI might differ greatly. Be
sides system-related cost-saving outcomes, other beneficial outcomes 
related to cost-effectiveness should be considered, such as reduced 
hospital visits, reduced costs for patients, early treatment of patients, 
and reduced burden of over-referral for clinicians (Hopkins et al., 2020). 
Prospective cost-effectiveness analyses should also be performed in 
resource-limited settings, where introducing AI systems might require 
building basic infrastructure and a system to identify all eligible pa
tients. Similarly to what has been discussed concerning bias in Section 
5.2, different ethnic groups and low-cost image capture systems would 
need to be assessed, since they may alter cost-effectiveness in different 
population subgroups. Validations in resource-limited settings are 
therefore crucial to ensure access to AI for disadvantaged patients, 
contributing to the medical ethics principle of equity (Abràmoff et al., 
2021). 

After extracting the results from performed analyses, depending on 
the intervention and healthcare system, Health Technology Assessment 
(HTA) groups in public health bodies or healthcare institutions would 

need to consider whether the incremental cost-effectiveness is reason
able to support an AI system’s introduction over current practice. Payers 
(government agencies or private health insurers) can also consider these 
analyses to generate reimbursement agreements over the use of AI 
(Section 7.3). 

To determine the impact of AI systems on healthcare providers and 
other users in ophthalmic practice, one should consider human-AI 
interaction analyses. Interaction studies from other medical domains, 
including pathology, dermatology, cardiology, and radiology, have 
shown significant synergistic effects of human-AI interaction (Bulten 
et al., 2021; Tschandl et al., 2020; Yang et al., 2019; Lakhani and Sun
daram, 2017). Existing literature on this topic within the ophthalmology 
domain is limited. Nevertheless, synergy between retinal specialists and 
an AI-based DR screening system was shown in a study by Sayres et al. 
(2019). It was observed that AI-assisted retinal specialists graded DR 
more accurately than unassisted specialists or the standalone AI system. 
The study also showed that retinal specialists had greater confidence in 
ratings and that although the time of AI-assisted grading increased for 
cases of DR, it decreased with more use experience. Human-AI interac
tion analyses will help clarify and establish the changes in roles and 
responsibilities that ophthalmologists and other users might experience 
as AI systems become more prevalent in ophthalmic practice. For 
instance, while AI systems might perform faster, more accurately, and 
more sensitive than humans at processing patient data, especially in 
triaging tasks, clinicians will still have important roles, although more 
focused on management, knowledge-handling, and communication. 
AI-supported decisions will require the participation of interdisciplinary 
personnel with knowledge from both technological and medical disci
plines, which is rare at present (Sun and Medaglia, 2019). A role 
expansion for non-medical staff is to be expected as well (Beede et al., 
2020; Gillan et al., 2019). The possibility of workforce deskilling has 
also been pointed out as a consequence of healthcare providers surren
dering to the autonomy of AI (Liberati et al., 2017). On the other hand, a 
virtuous cycle effect has been suggested, where AI complements pro
viders’ competencies and skills instead of threatening their professional 
autonomy, and incentivizes them to pursue markers of quality on a 
routine basis. How AI systems reduce or intensify labor needs to be 
further analyzed (Pope and Turnbull, 2017). Future user-centered 
studies will help understand better these factors and their impact on 
healthcare providers’ roles and responsibilities. 

Opinion, evaluation surveys, and interviews among potential users of 
AI systems are also important to better understand their expectations, 
concerns, and needs regarding the implementation of AI systems. 
Consequently, they can also help identify and prevent certain aspects 
that could affect negatively AI integration and its impact on the clinical 
workflow. This will be possible if they are adequately designed in 
collaboration between AI developers, healthcare institutions, reading 
centers, and ophthalmological societies and working groups or com
mittees. A study by Al-Khaled et al. (2020) performed a web-based 
survey among ophthalmologists to identify their perception of AI sys
tems. Among 170 ophthalmologists from a range of subspecialties, 89% 
reported that they agreed with understanding the concept of AI. 
Approximately 75% believed that AI will improve the practice of 
ophthalmology, reported interest in integrating AI into their clinical 
practice, and indicated that there should be formal instruction in AI 
during medical school and residency training. However, almost half 
(45%) reported concerns over the diagnostic accuracy of AI. Further
more, 22% were concerned that the patient-physician relationship 
would be impacted by AI and 36% had concerns about AI replacing 
ophthalmologists. 

User-centered analysis should therefore be integrated in prospective 
validations. Through interviews and observation of human-AI interac
tion it is possible to identify those environmental factors that will 
determine the successful implementation of an AI system. For instance, 
in the context of automated DR screening across local clinics in 
Thailand, Beede et al. (2020) observed that poor lighting conditions led 
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to ungradable CFP (Section 5.1) and user frustration, and network 
connectivity issues caused unnecessary delays for patients and 
rescheduled appointments (Section 2.2). Furthermore, concerns for 
potential patient hardship (time, cost, and travel) due to on-the-spot 
referral recommendations from the system, caused some nurses to 
discourage patient participation in the study. It is thus important to 
consider that negative consequences cannot always be controlled 
despite a careful planning of the study, and that although certain envi
ronmental factors can be potentially reduced, the necessary adjustments 
may be costly and infeasible in low-resource settings. Engagement with 
real-life challenges of human-AI interaction as early as possible in the AI 
design pipeline is therefore essential. 

Regarding the impact of AI on patients, surveys and interviews are 
also a useful mechanism to better understand patient acceptability of 
using AI systems in their care, as done in Keel et al. (2018). In this study, 
96 adults with diabetes were prospectively recruited from two outpa
tient clinics in Australia. Each participant underwent screening by an AI 
system, as well as manual screening where images were transferred to a 
reading center and outcomes were shared with patients within 2 weeks. 
Of the participants, 96% reported that they were satisfied with auto
mated screening, and 78% even reported that they preferred automated 
over manual screening. Drawbacks of manual screening were high
lighted, e.g., delayed communication of the results was prevented with 
automated screening, as it allowed real-time reporting of results. While 
more studies are needed to assess the impact of AI systems on patients, 
this study provides some initial evidence that AI systems in ophthal
mology may be feasible and well accepted by patients in a screening 
setting. Nevertheless, a survey by Ongena et al. (2020) performed within 
clinical radiology workflows pointed out that the implementation of AI 
systems will create a general need for patients to be well-informed on 
various aspects of AI deployment, including image acquisition, pro
cessing, and interpretation. As such, stakeholders should consider 
involving patients in the design and development of AI systems. Most 
IRB panels already include patient representatives to review AI research 
studies from an ethical and privacy perspective. Additionally, patient 
representatives could participate along the AI design pipeline to help 
define what outcomes are meaningful to patients, and to help determine 
how patients want outcomes communicated during doctor-patient 
counseling. 

Future studies should also focus on acceptability of AI in non- 
diseased populations, for example, at general practitioners’ or opti
cians’ offices. This will help increase early-stage detection of eye dis
eases that are currently only detected in the clinic by coincidence. To 
allow such screenings, solutions for non-patient consent should be 
developed and implemented with AI systems. People at high risk of 
developing eye diseases may be a first focus, as they are likely to be more 
open to consent. In any case, the expectation is that healthcare providers 
will play a key role in providing patients (and non-patients) with 
important and transparent information about AI systems prior to con
sent, as their judgements are generally trusted. Widespread education 
and training of healthcare professionals to become AI competent, as 
mentioned in Section 6.2, will be fundamental also in this regard. It will 

(caption on next column) 

Fig. 15. Cost-effectiveness analysis of using AI within the NHS Diabetic Eye 
Screening Programme in the UK (adapted from Tufail et al. (2016)). The figure 
shows the proposed decision-tree model to calculate the cost-effectiveness of 
manual grading (a) versus using an AI system as a filter prior to the initial 
grading performed by level-one human graders (b) and versus replacing 
level-one human graders with an AI system (c). The authors validated several AI 
systems and showed that AI was cost-saving compared to manual grading, 
either as a replacement for human grading or as a filter prior to human grading, 
although the latter approach was less cost-effective. D-, disease absent classi
fication by AI system; D+, disease present classification by AI system; TF, 
technical failure; R0, no retinopathy; M0, no maculopathy; R1, background 
retinopathy; M1, maculopathy; R2, pre-proliferative retinopathy; R3, prolifer
ative retinopathy; U, ungradable images. 
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allow healthcare providers to act as educators, counselors, and advisors 
of patients regarding the use of AI output in their care (Liu et al., 2018). 
This will also contribute positively to the medical ethics principle of 
patients’ autonomy to decide about their own participation in the use of 
AI (Abràmoff et al., 2021). 

In conclusion, retrospective cost-effectiveness and human-AI inter
action analyses have shown good results and have helped to build the 
understanding of the impact of AI on the clinical workflow, allowing to 
design potential solutions prior to system development and validation. 
However, research using prospective data in a contextual environment 
can provide better opportunities to identify vital factors ahead of 
widespread deployment. Monitoring ongoing clinical use of AI systems 
within healthcare institutions during prospective validations, as well as 
a part of post-market surveillance (covered in Section 7.1), will allow to 
better understand their impact on healthcare economics, healthcare 
providers, and patients. It will also help reduce the risk of AI systems 
failing at deployment, and will increase the likelihood for meaningful 
improvements in ophthalmic care. Only a few studies have described 
systematic approaches to monitoring the impact of AI systems in clinical 
practice. Xie et al. (2020) outlined several methods for safety analysis 
during monitoring of AI systems to ensure that a system could “fail 
safely”. This could be done via failure mode effects analyses, 
system-theoretic process analyses, and bowtie analyses. These methods 
consider clinical, technical, social, and organizational sources of AI 
systems to identify safety issues and their potential consequences. 
Although they are time-consuming and resource-intensive, they provide 
a systematic approach to understand and develop solutions for technical 
and organizational AI safety risks. 

7. Regulation 

Regulation plays an essential role for the widespread integration of 
AI systems in healthcare, as well as for AI acceptance by healthcare 
providers, patients, and society in general. Currently, regulatory bodies 
and policy making institutions have not established updated approval 
pathways covering trustworthy AI aspects, such as those regarding data 
privacy (Section 3.1), adaptability of systems to ensure reliable behavior 
over time (Section 5.5), or liability implications regarding the use of 
medical AI devices (Section 7.2). Although some aspects are being 
currently considered, more effort on dedicated regulations for trust
worthy AI systems is required to accelerate AI integration in healthcare. 
It is worth noting that a comprehensive set of regulations is required, 
focused on the highest standards of patient safety while enabling prog
ress in innovation. 

In this section, we discuss three aspects relevant for the regulation of 
trustworthy AI systems:  

• The approval process to reach regulatory standards for an adequate 
assessment of AI claims.  

• Liability and identification of responsible actors in case of medical 
malpractice incurred by the use of AI systems.  

• Reimbursement and identification of fair financial incentives to 
integrate and use AI medical devices in practice. 

7.1. Approval 

7.1.1. Importance and consequences 
One key factor for the widespread integration of AI systems in 

healthcare is the development of regulatory standards for an adequate 
assessment of their effectiveness and safety. AI systems are defined as a 
medical device, under the term Software as a Medical Device (SaMD), by 
the International Medical Device Regulators Forum (IMDRF), whose 
members include Australia, Brazil, Canada, China, Europe, Japan, 
Russia, Singapore, South Korea, and the US. However, no specific reg
ulatory pathway for AI systems has been defined yet. Conventional 

medical device approval pathways are currently applicable to AI sys
tems, despite their lack of suitability to specific aspects of AI systems, 
such as the way patient data is handled (Section 3.1), the necessity for 
periodic updates to ensure optimal performance and adaptability over 
time (Section 5.5), or new implications regarding liability (Section 7.2). 

The regulation and approval of medical devices are handled differ
ently around the world (Muehlematter et al., 2021; He et al., 2019). In 
the US, the centralized FDA classifies medical devices as class I, II, or III, 
indicating increasing risk of illness or injury and thus requiring higher 
regulatory control (He et al., 2019). There are three possible approval 
pathways in the US: pre-market approval (strictest regulation for class III 
devices), the 510(k) pathway (for class I, II, and III devices for which 
pre-market approval is not indicated; devices must be compared to one 
or more similar devices already marketed), and the de-novo pre-market 
review (an alternative pathway for novel class I and II devices). In 
Europe, medical devices are not approved by a centralized regulatory 
agency. For low-risk devices (class I), the manufacturer has the re
sponsibility to comply with the corresponding regulation without un
dergoing an approval process. For higher-risk devices (class IIa, IIb, and 
III, and in-vitro devices), private organizations called Notified Bodies 
perform a conformity assessment and provide the Conformité Europeénne 
(CE) mark; the manufacturer can choose any recognized Notified Body 
in Europe to undergo the certification process. 

A recent study by Muehlematter et al. (2021) identified 222 AI-based 
medical devices approved by the FDA and 240 AI-based CE-certified 
devices in Europe, reflecting a steep increase in the number of approved 
devices between 2015 and 2020 (24.7 times more in the US and 17.5 
times more in Europe). However, the number of approved devices varies 
greatly across medical specialties. While there are 129 (58.5%) 
FDA-approved and 126 (53%) CE-certified AI systems to be used in 
radiology, there are only 2 (0.01%) FDA-approved and 12 CE-certified 
(5%) AI systems for ophthalmology. Two devices for ophthalmology 
have been approved in both markets: EyeArt, for automated detection of 
DR, and IDx-DR, for automated DR and DME assessment. IDx-DR was 
also the first FDA-approved autonomous AI system in any medical spe
cialty, undergoing the de-novo pre-market pathway. For the approval 
process, the FDA based its clearance on the performance of the system in 
a pre-registered clinical trial with pre-defined endpoints which included 
900 subjects from 10 primary care sites across the US (Abràmoff et al., 
2018). Some of the contributing factors to the small number of approved 
devices in ophthalmology are the reduced amount of curated datasets 
for AI development compared to other specialties, and the harder inte
gration of AI systems with the current clinical infrastructure (Section 
2.2). By any means, based only on the number of approved AI systems, 
one cannot extrapolate that they are actually being used in the clinic. 
Similarly, the actual clinical benefits cannot be often defined based on 
the validation studies that were considered for approval. A recent study 
by Wu et al. (2021) highlights this aspect. They showed that only 3% of 
130 FDA-approved AI devices had undergone a prospective validation at 
their submission and therefore demonstrated their true utility when 
used in clinical practice, as seen in Section 6. Additionally, 71.5% of 
FDA-approved AI devices had not reported a multi-site evaluation, 
which is key to prevent AI bias and problems of domain adaptation, as 
seen in Section 5.2. 

There has been favorable progress in the development of specific 
approval pathways for AI-based medical devices across regulatory 
bodies. In the US, the FDA has expressed the need for an updated reg
ulatory framework. It has recently published an action plan whose goal 
is to facilitate the FDA and AI manufacturers to evaluate and monitor a 
product from pre-market assessment to post-market performance, 
enabling iterative software modifications while ensuring patient safety 
(Food and Drug Administration, 2021). The European Commission has 
recently proposed additional regulations for high-risk AI devices, which 
include medical devices (European Commission, 2021b). They would 
complement the proposed coordinated plan on AI (European Commis
sion, 2021a) and the guidelines for trustworthy AI (European 
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Commission, 2019), and stand next to the new Medical Device Regula
tion (European Commission, 2017) and other key legislation including 
the GDPR (European Commission, 2016). In other countries with a 
rapidly growing market for AI medical devices, such as China, there has 
also been a significant regulatory development in order to accelerate AI 
deployment (Li, 2020). 

7.1.2. Proposed solutions and considerations 
We identify two important objectives to facilitate updates in regu

lations and approval pathways and, consequently, facilitate the 
deployment of trustworthy AI systems in ophthalmology: collaboration 
and standardization. 

A collaborative approach among stakeholders is key to guarantee 
new approval pathways that fit both clinical settings and the techno
logical, clinical, ethical, and legal aspects of AI systems. The recently 
proposed guidelines for clinical trials involving AI systems (Liu et al., 
2020; Rivera et al., 2020), as well as the guidelines for AI development 
and validation, currently under development (Collins and Moons, 2019; 
Sounderajah et al., 2020), are fruit of multi-stakeholder collaborations. 
The standardization of reporting guidelines will help streamline and 
guide the approval pathways set by regulatory bodies (Campbell et al., 
2020). The current efforts of professional organizations, such as the 
Institute of Electrical and Electronics Engineers or the International 
Organization for Standardization, in the development of international 
standards for designing and monitoring AI systems will also be crucial 
for regulatory success (Cihon, 2019). Similarly, the update of standards 
of care by ophthalmological societies and working groups or committees 
will also accelerate the update of approval pathways, by acknowledging 
AI systems and their application from a more precise perspective 
(Abràmoff et al., 2021). In the context of DR screening, the standards of 
care in diabetes by the American Diabetes Association recognize from 
2020 the use of FDA-approved AI systems as an alternative to traditional 
screening approaches, indicating that optimal utilization has yet to be 
fully determined (American Diabetes Association, 2020). Currently at an 
earlier stage, other ophthalmological societies and working groups or 
committees have also carried out evidence and cost-effectiveness ana
lyses on the use of AI systems in screening settings, as done in The 
Netherlands (Nederlands Oogheelkundig Gezelschap, 2021) or the UK 
(Tufail et al., 2016; UK National Screening Committee, 2021). The 
acceptance of AI systems by ophthalmological societies and working 
groups or committees is essential for the improvement of regulatory 
processes, and, consequently, the successful integration of AI in 
ophthalmic practice. 

The standardization of pre-market assessment or review by regula
tory bodies could also facilitate broader and faster access to AI systems. 
Pre-market assessment should establish normative standards for trust
worthy AI, by means of well-defined data quality control, reproduc
ibility and benchmarking tests, and examinations of other aspects such 
as fairness, explainability, and liability, which should be facilitated by 
AI manufacturers. Ideally, AI systems would be evaluated in standard
ized prospective clinical trials using meaningful endpoints for patients, 
satisfying minimal acceptable criteria conforming to existing procedures 
in the corresponding clinical application (Rivera et al., 2020; Abràmoff 
et al., 2021). Clinical evidence extracted from the trials and used to 
support the initial approval should be summarized, peer-reviewed, and 
made publicly-available, as in Abràmoff et al. (2018). The definition of 
minimal acceptable criteria for AI systems is however not straightfor
ward, as there is currently a lack of scientific evidence on this regard 
(Abràmoff et al., 2021). To improve and accelerate pre-market exami
nations, regulatory bodies must enable oversight and collaboration from 
other entities, including healthcare institutions, insurance companies, 
ophthalmological societies, and patient associations. In case of privacy 
concerns and access restrictions to the clinical data and the software 
during the approval process, regulatory bodies could acquire a central
ized information-sharing role (Price, 2017). 

The standardization of post-market surveillance will also be crucial. 

As indicated in Section 5.5, the new European Medical Device Regula
tion (European Commission, 2017) requires a plan for continuous risk 
assessment and mitigation, where it should be possible to indicate how 
to plan and integrate system’s updates; and the action plan for specific 
regulation of medical AI devices recently published by the FDA included 
lifecycle modifications (Food and Drug Administration, 2021). Approval 
pathways that acknowledge the continual learning nature of AI will 
allow to exploit the benefits of AI systems’ adaptability without going 
through the whole process of pre-market review again. This will be 
facilitated by periodic audits, both internal and external. Internal audits 
and monitoring would ensure a given system is performing as expected 
and check for necessary updates. Long-term monitoring after deploy
ment will allow to better understand the impact of AI on the clinical 
workflow, analyzing actual changes in healthcare providers’ perfor
mance and effectiveness. It will also allow to extract metrics that reflect 
actual improvements in patients’ outcomes (i.e., global improvement of 
visual acuity in a diabetic population where AI is used to perform DR 
screening), and allow to check whether a system ensures patient’s safety 
in the long term, committing to the medical ethics principle of 
non-maleficence (Abràmoff et al., 2021). Protocols for internal audits 
could be discussed and standardized by the corresponding ophthalmo
logical societies and working groups or committees. External audits 
would be performed by the corresponding regulatory agency to review 
accumulated modifications and certify that the risk-benefit profile of the 
system remains acceptable (Hwang et al., 2019). Sentinel, FDA’s 
monitoring system for medical products, could also be used to monitor 
AI systems. In Europe, additional efforts to implement such a system 
would be required, considering the heterogeneity of the judicial and 
political landscapes and the current decentralization of the approval 
pathway (Cohen et al., 2020). 

More transparency on regulatory and approval processes will 
improve public trust and increase safety and quality of AI systems to be 
deployed in clinical practice. Publicly available databases or registries of 
approved systems are necessary to provide a better overview of what 
products are currently available (Muehlematter et al., 2021). These 
databases should contain a summary about each approved system using 
precise definitions of terms associated to AI from manufacturers and 
regulatory bodies, the statement of approval and the associated clinical 
evidence, and, preferably, up-to-date information of the settings where 
it has been deployed. In the USA, the FDA offers an open database of 
approved medical devices, although the information provided is 
currently limited in scope and can be vague in content. In Europe, the 
European’s Commission’s database on medical devices (Eudamed2) is 
not publicly available; however, a more comprehensive database 
(EUDAMED) will be soon available, with the aim to enhance access to 
information for the public and healthcare professionals and coordina
tion between the different countries in the EU. Parallel efforts could be 
done to create an open platform focused on AI in ophthalmology, in 
order to provide a complete overview of available AI-based software for 
ophthalmic practice, and aid the comparison, selection, and imple
mentation of such software. This has been done recently for CE-certified 
AI products in radiology (AI for Radiology), accompanied by a study on 
the scientific evidence of 100 commercially-available products (van 
Leeuwen et al., 2021). 

7.2. Liability 

7.2.1. Importance and consequences 
In order to avoid liability for malpractice, healthcare providers must 

provide care at a competent level, considering available resources. 
However, the situation becomes more complicated with the integration 
of AI systems in clinical settings (Price et al., 2019). If an AI system fails 
at an assigned task, one could propose multiple error sources: the data 
used for development, the programming code, the input data, the 
improper operation, or other factors. And who should be thus held 
responsible: the developers who built the algorithm, the healthcare 
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institution that allowed its deployment, the healthcare provider as final 
user? (Wang and Siau, 2018; He et al., 2019). In ethics, this is defined as 
a “problem of many hands”, where due to the complexity of the situation 
and the number of actors involved, it is impossible or very difficult to 
hold someone solely responsible (Van de Poel et al., 2012). 

Current regulations on liability are no longer fit for purpose given the 
rapid technological change. Current regulations protect clinicians from 
liability as long as they adhere to the standard of care. To simplify, it can 
be assumed that: 1) an AI system makes a recommendation either within 
or without the current standard of care; 2) the AI recommendation could 
be either correct or incorrect; 3) a clinician could either follow or reject 
the AI recommendation. As depicted in Price et al. (2019), eight possible 
scenarios result, treated differently by current regulation. It can be 
observed that regulation privileges following the standard of care: when 
clinicians adhere to the standard of care, they will not generally be held 
liable, regardless of a bad patient outcome. Therefore, the “safest” way 
to use medical AI is as a confirmatory tool to support existing 
decision-making processes, rather than as a tool to improve care. As long 
as the use of AI is not part of the standard of care, current regulations 
minimize the potential value of AI, since the threat of liability in
centivizes clinicians to reject AI recommendations that fall out of the 
current standard of care, in some cases to patients’ detriment (Price 
et al., 2019). Although AI recently became part of the standards of care 
for DR screening by the American Diabetes Association (American 
Diabetes Association, 2020), the process might be slower in different 
countries, as well as for AI applied to higher-risk clinical tasks, such as 
critical treatment decisions for blindness prevention. 

In order to accelerate AI integration in clinical settings and motivate 
its use by the final users, it is therefore necessary to update the necessary 
regulations to provide clear guidance on what entity or entities hold 
liability. Similarly, the insurance for medical malpractice needs to be 
clear about liability coverage when decisions are made in part by an AI 
system (Yu et al., 2018). Only this way, it will be possible to exploit the 
full potential of medical AI and its benefits for patients and healthcare 
systems. 

7.2.2. Proposed solutions and considerations 
Several approaches to liability have been identified in case serious 

errors occur in relation to AI systems and individuals are harmed. They 
include the healthcare provider and healthcare institution being held 
solely responsible, the AI manufacturer being held solely responsible, or 
a division of responsibility (Smith and Heath Jeffery, 2020). The first 
approach focuses on whether the healthcare provider acted in accor
dance with common practice, the second focuses on whether the AI 
system functioned within acceptable limits. The third approach avoids 
assigning fault to a specific entity, where each would bear some re
sponsibility in the outcome. This approach would address difficulties in 
ascertaining how a particular decision was reached by AI, but may mean 
that AI manufacturers would require medical indemnity insurance to 
pay claims (Vladeck, 2014). 

In dealing with the division of responsibility, one should consider the 
purpose of the AI system. For an autonomous AI system, Abràmoff et al. 
(2020) suggested that AI manufacturers would have to assume liability 
for potential harm, but only if it was used properly. The responsibility 
for proper use and maintenance of the device lies with the healthcare 
providers and institution. This view has recently been endorsed by the 
American Medical Association (AMA) in its 2019 AI Policy (American 
Medical Association, 2019). Nevertheless, a shift in liability from 
healthcare providers to AI manufacturers for autonomous AI systems has 
not yet manifested itself in concrete legal reforms. Courts have been 
reluctant to assign product liability to AI manufacturers in healthcare, 
partly due to the fact that most systems have been characterized pri
marily as assistive AI systems (Price, 2017). Such systems solely provide 
information or analysis for healthcare providers to help make decisions. 
As clinicians are able to make an independent evaluation of output by 
assistive AI, they remain fully liable for such instances (Abràmoff et al., 

2020). The authors have also highlighted differential settings in which 
AI systems can be developed. For an AI system that is privately designed 
and sold as a finished product, the AI manufacturer would have to bear 
the responsibility for errors in the output. For a similar AI system that is 
built in partnership with a healthcare system and will be used in a 
large-scale setting, the legal responsibility is more diffuse, and likely lies 
with the healthcare system and other parties for which liability can be 
divided through a comparative analysis of responsibility. 

To facilitate the division of responsibility for potential errors, a study 
by Smith and Fotheringham (2020) proposed to use risk pooling through 
utilizing insurance. With risk pooling, parties collectively accept and 
prepare for the potential for harm to arise when AI systems are used, and 
will pay the insurance company according to their own risk. The concept 
of risk pooling is based on the following: “If X performs an action which 
imposes an unreasonable risk of harm on Y, then X is liable to Y, and 
therefore obliged to make an ex ante compensation into a social pool 
that is roughly equivalent to the cost of expected harm (i.e., the prob
ability of actual harm multiplied by the amount of the cost incurred by 
the harm)” (Song, 2019). As mentioned, certain exceptions need to be 
made. If the healthcare provider has not used the system in the way 
intended, it may not be reasonable for the AI manufacturer to subsidize 
the provider’s wrongs. Also, if the healthcare provider has used the AI 
system appropriately and was unable to detect a system error, the AI 
manufacturer should subsidize the provider (Smith and Fotheringham, 
2020). Nevertheless, risk pooling will allow a better construct for divi
sion of responsibility, and will also allow a rapid mechanism of 
compensation to injured patients via insurance, without necessitating 
long expensive court battles. 

In shaping the liability issue, and to improve AI-related ophthal
mology practices in the future, it is also imperative that ophthalmolo
gists and other users learn how to better use and interpret AI systems. 
This includes how and in what situations available AI systems should be 
applied, and how much confidence should be placed in recommenda
tions from systems (Price et al., 2019). Ophthalmologists are also 
encouraged to support their institutions to take steps toward AI evalu
ation. Healthcare institutions need guidelines in place for validation of 
systems prior to integration, as seen in Section 6, and for the correct 
deployment of systems, including clear liability practices. The partici
pation of ophthalmological societies and working groups or committees 
will help ensure these guidelines truly reflect what is needed in clinical 
care. Considering all scenarios and the positions of the different stake
holders involved, regulatory bodies may proceed to update the corre
sponding legislation concerning liability. Transparency and auditability 
along the design pipeline, ensured by AI developers, will also be key for 
identifying issues concerning liability on time and prevent errors that 
could potentially harm patients (Char et al., 2020). 

7.3. Reimbursement 

7.3.1. Importance and consequences 
Healthcare reimbursement is the process by which a payer, i.e., a 

government agency or a private health insurer, pays for a service pro
vided by a healthcare institution based on a prior billing agreement. 
With the arrival of new technology, such as AI, there exists the necessity 
of defining new agreements to ensure that its use by healthcare pro
viders is financially covered and, consequently, incentivized. Payers 
decide the updates in medical management that will improve healthcare 
and, simultaneously, are cost-effective. While most AI manufacturers 
have focused on medical outcomes, such as diagnostic performance, 
they are not the only relevant variables for having AI systems reim
bursed and used in real-world ophthalmic settings. Cost-effectiveness 
and outcomes in terms of efficiency and healthcare quality have an 
impact as big or bigger when it comes to reimbursement decisions. 
Without enough evidence of the return on investment, i.e., without 
knowing if the clinical workflow can be updated without a significant 
financial burden, payers will not define reimbursement agreements and 
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healthcare institutions will not buy and integrate AI-based products. 
Approval of AI systems by regulatory bodies it is thus not enough 
without a financial incentive to use them. 

An important step towards reimbursement of medical AI systems was 
made recently, when the USA’s Centers for Medicare and Medicaid 
Services (CMS) accepted a new Current Procedural Terminology (CPT) 
code to allow the use of autonomous AI in a reimbursable primary care 
setting. The new code was submitted by the American Academy of 
Ophthalmology with the support of Digital Diagnostics to facilitate the 
correct billing of IDx-DR, the first FDA-authorized system for automated 
diagnostic assessment for DR and DME (Digital Diagnostics, 2020). 
Nevertheless, there is still significant uncertainty about financial reim
bursement in other countries and reimbursement models. Such uncer
tainty affects whether healthcare institutions choose to be early adopters 
of AI systems (Singh et al., 2020). 

7.3.2. Proposed solutions and considerations 
First, it is key to study each healthcare system where an AI system is 

meant to be deployed, since healthcare systems in different countries 
have different payers, structures, and buying incentives. It is important 
to align the benefits of the AI system with the local incentives, such as 
having a preference for efficiency and/or for quality gains, and the 
different roles of the involved stakeholders (healthcare providers, 
healthcare institutions, public health bodies, government agencies, 
private insurers…) (van Duffelen, 2021). 

When applying for being granted reimbursement, the medical out
comes of an AI system should not be the only evidence to provide, but an 
extensive study on cost-effectiveness and return of investment, prefer
ably performed in the target healthcare system. These studies can be 
performed in a retrospective setting, as done in the context of DR 
screening (Tufail et al., 2016, 2017; Lee et al., 2021). However, as 
indicated in Section 6.3, it is preferable to study cost-effectiveness as 
part of a prospective validation, as done in Heydon et al. (2020) when 
evaluating the performance of an AI system to triage retinal images 
within the NHS Diabetic Eye Screening Programme. Currently, better 
guidance on what makes a positive business case within a given 
healthcare system is necessary. The corresponding institutions and 
payers need to create or update their guides for buyers of medical AI 
systems (such as the NHSX report “A Buyer’s Guide to AI in Health and 
Care” (NHSX, 2020)) and include cost-effectiveness requirements, 
considering their influence on reimbursement decisions. 

A re-definition of reimbursement decisions is expected to happen 
with the integration of AI in ophthalmic practice. It could happen that 
certain payers start to consider the recommendations provided by AI 
systems as a precondition for reimbursement and refuse to cover pro
cedures or treatments when the AI recommended against them (Vayena 
et al., 2018). As a consequence, healthcare institutions might end up 
prioritizing profitable low-cost and low-risk patients in order to ensure 
reimbursement while reducing liability complexities (Section 7.2). It is 
thus crucial to avoid AI reimbursement decisions to take over the ben
efits of the patient benefits and the dialogue between healthcare pro
viders and patients. One solution is the shifting of reimbursement 
models towards value-based rather than volume-based reimbursement, 
that is, where payers would pay healthcare providers based on the 
quality rather than the quantity of care given to patients. This becomes 
especially relevant in fee-for-service models, such as the one in the US, 
where many payers are already shifting from rewarding providers by 
treatment volume to rewarding by treatment outcome (Jiang et al., 
2017). The generalization of value-based healthcare might be acceler
ated as a necessary side effect of AI integration (Coiera, 2019). 

A communicative and collaborative approach will be key for the re- 
definition of reimbursement policies in ophthalmology. Payers should 
assess the value created by AI systems and revise their reimbursement 
policy to reduce the cost of healthcare while focusing on patient benefits 
(Yu et al., 2018). In the same way, healthcare institutions and users, 
such as ophthalmologists and technicians, supported by 

ophthalmological societies and working groups or committees, should 
be able to demand changes in reimbursement policies to better accom
modate the needs of AI-based healthcare (Price et al., 2019). Changes in 
reimbursement policies are likely to develop more rapidly in the US 
because they are a central point within their healthcare system, as 
observed with the recent acceptance of a CPT code for the use of 
autonomous AI for DR and DME assessment in primary care settings. 
Subsequent updates in reimbursement policies will allow not only to 
standardize costs, but to increase transparency in applied procedures 
and clinical decisions, and to better track over time patients for whom AI 
was used in their care. 

8. Conclusions and future directions 

AI systems that are able to achieve or even exceed expert-level per
formance are the here and now, and an increasing number of studies are 
demonstrating their potential to improve patients’ outcomes, healthcare 
providers’ workflow, and access to ophthalmic care. Trustworthy AI is 
the necessary next step to contribute to close the current gap between 
the development and integration of those systems in ophthalmology. 
Considering the aspects and challenges studied in this manuscript and 
integrating the corresponding mechanisms during development, vali
dation, and deployment will allow to generate trustworthy AI systems 
and, consequently, allow the benefits of AI to reach real-world 
ophthalmic settings. We acknowledge that important aspects and chal
lenges can also arise after initial deployment of AI, for instance, con
cerning adoption, scale-up, spread, and sustainability. This manuscript 
limits its scope to those stages prior to integration and does not elaborate 
on posterior stages that can also affect trustworthiness. However, we 
believe that additional, prospective studies applying AI in ophthal
mology are necessary for a better understanding and extraction of more 
solid conclusions about the challenges that can take place after initial 
integration. This would result in an interesting analysis for future work. 

We observe there is a key factor to make trustworthy AI possible, 
present along the various stages of the AI design pipeline: the necessity 
for multistakeholder collaborations where the different parties involved 
in AI for ophthalmic care are represented, i.e., AI developers, reading 
centers, healthcare providers, healthcare institutions, ophthalmological 
societies and working groups or committees, patients, regulatory bodies, 
and payers. We acknowledge nonetheless that multi-stakeholder col
laborations are complex and can be hindered by diverse factors, 
including conflicts of interest and lack of financial incentives. A 
collaborative approach is time- and resource-intensive, however, is one 
of the biggest determinants whether an AI system will be successfully 
integrated in clinical practice (Watson et al., 2020). Forming a successful 
collaboration will likely be a process, starting with smaller 
multi-stakeholder groups. An order along the AI design pipeline could be 
beneficial, for instance, setting a collaboration first between AI de
velopers and healthcare institutions and providers, then involving rep
resentatives from regulatory and legal backgrounds, then 
representatives from patient groups and ophthalmological societies and 
working groups or committees, then payers and governmental agencies. 
Organizations where representatives from different stakeholders come 
together will have an important role regarding the creation of networks 
and providing an environment that helps find common ground on AI 
development and integration. The organization of workshops would be 
an interesting starting point. This seems possible in single-payer 
healthcare systems, where there is an increasing number of bodies 
clearly designated as a potential single point for implementation of AI in 
clinical care and communication between stakeholders (e.g., NHSX in 
the UK). This might be a greater challenge outside of single-payer sys
tems. However, there are a few bodies like the Collaborative Community 
on Ophthalmic Imaging (CCOI) that would be prime candidates for this. 
Bringing the key stakeholders together might represent a similar chal
lenge to that of implementing a new drug into clinical care, where 
CE-certification and FDA-approval do not necessarily result in 
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Table 1 
List of main action points at the various stages of the AI design pipeline to generate trustworthy AI systems and facilitate their integration in ophthalmology. For 
each stakeholder involved in AI for ophthalmic care, a symbol was added in those points where his action/s and collaboration are required; the type of symbol 
indicates the main action required. Types of main actions: ×, definition/identification; ○, development and report; □, verification/supervision; +, integration/ 
adoption; Δ, validation/test. Stakeholders: D, AI developers (academic and industrial manufacturers); RC, reading centers; HP, healthcare providers (ophthal
mologists, nurses, optometrists, technicians); HI, healthcare institutions; OS, ophthalmological societies and working groups or committees; P, patients; RB, reg
ulatory bodies; PY, payers (government agencies or private insurers). 
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implementation into clinical care without the approval of ophthalmo
logical societies, HTA groups, patient groups, etc. The process can be 
facilitated if there is a clear body in a particular country or region and a 
transparent process that ensures that AI cannot be clinically deployed 
until input from all key stakeholders is achieved. We believe that action 
taken by the corresponding regulatory bodies is necessary to incentivize 
and, eventually, ensure multi-stakeholder collaborations along the 
design of AI in healthcare. 

Table 1 summarizes the main action points discussed in this manu
script to generate a trustworthy AI system in ophthalmology, indicating 
when the participation of each stakeholder is required and the type of 
action/s to be taken. As observed, there are action points that require a 
general representation of all stakeholders, such as the establishment of a 
sustainable business model at the beginning of the design process, where 
potential conflicts of interests coming from all involved stakeholders 
need to be communicated and acknowledged. This is also the case for the 
update and development of specific regulations for medical AI devices, 
where the input and diverse actions taken by multiple stakeholders, 
including AI developers and ophthalmological societies and working 
groups or committees, will be essential for a realistic and clinically 
meaningful assessment of AI systems’ quality and maintenance over 
time. On the other hand, other action points are more specific and 
require the attention of a smaller number of stakeholders. For instance, 
the action by reading centers, aided by ophthalmological societies and 
working groups or committees, will be indispensable to create reliable 
protocols to define the minimum quality of reference standards and 
observer studies. Similarly, AI developers are the most responsible 
stakeholder for algorithm training and the implementation of technical 
methods that address the different aspects concerning trustworthy AI. 
Table 1 is not meant to be fixed, but to be updated whenever new action 
points need to be added. Collaborative efforts among stakeholders will 
allow to identify new action points and assign new responsibilities. At its 
current state, the table already hints that the integration of AI in 
ophthalmic practice will bring changes in the tasks, responsibilities, and 
roles currently assimilated by the different stakeholders. 

Nevertheless, the fragmented governance in the healthcare sector 
might hinder the division of tasks and responsibilities, as well as the 
coordination of efforts (Panch et al., 2019). For instance, in several 
healthcare systems, there is a generalized lack of clarity over the re
sponsibility to promote and carry out the necessary updates in the 
clinical infrastructure for AI integration, as well as in the associated 
protocols relating, for instance, data privacy and cybersecurity. 
Collaborative efforts and the support from all involved stakeholders at 
high- and low-level are required. At high-level, it becomes crucial to 
present a compelling use case around the integration of AI in ophthalmic 
settings and its benefits, defining and justifying the required updates in 
the current infrastructure. Subsequent updates in regulation are also 
necessary to define the responsibilities and align the financial incentives 
from the different parties. Although not recognized by regulatory bodies 
yet, promising efforts have been made by multi-stakeholder groups 
formed by AI and clinical experts in the creation of guidelines that 
facilitate the standardization of practices and transparent reporting 
along the AI design pipeline, from the development and retrospective 
validation of AI systems (Sounderajah et al., 2020; Collins and Moons, 
2019), to prospective clinical trials involving AI (Rivera et al., 2020; Liu 
et al., 2020). Efforts at a more specific level by ophthalmological soci
eties and national working groups or committees are also necessary to 
make such guidelines more applicable to the actual clinical applications, 
generate a clear definition of tasks and responsibilities, and accelerate 
the update of regulations (Abràmoff et al., 2021). 

In terms of low-level efforts to overcome the obstacles due to frag
mented governance and yield a successful integration of AI in 
ophthalmic settings, we observe that the creation of interdisciplinary 
teams at healthcare institutions and reading centers will be essential. 
Building upon the concept of “algorithmic stewardship” introduced by 
Eaneff et al. (2020), such team or department would be responsible for 

AI-related activities within the institution. We would like to emphasize 
the team should be composed of experts with a diverse skills set (tech
nical, clinical, ethical, regulatory), e.g., not exclusively clinicians, or 
methodologists or AI experts, so as to cover the domain expertise 
necessary to ensure an optimal implementation and use of medical AI 
over time. The team of “AI stewards” could therefore represent the 
institution within the multi-stakeholder collaborative efforts along the 
AI design pipeline. Among the main responsibilities, observed in 
Table 1, the team would be responsible to verify that the different as
pects concerning trustworthy AI are being considered by developers, 
and participate in the necessary mechanisms to address them. For 
instance, they should ensure a correct handling of patients’ data privacy 
and participate in the application of data protection methods, such as 
federated learning. The team would have an important role in the setup 
of validation studies and would be responsible for the necessary internal 
monitoring during prospective validations and post-market surveillance. 
Internal monitoring of the use of AI at the institution will be essential to 
analyze the impact of AI on the clinical workflow and to identify the 
necessary updates to ensure systems’ adaptability and patients’ safety 
over time. They would also be responsible for the selection, acquisition, 
and benchmarking of AI systems to select the most adequate system 
given a use case and the clinical infrastructure at the institution, prior
itizing interoperability and potentially organizing head-to-head studies 
to generate publicly available clinical evidence. The team would thus 
work in constant collaboration with AI developers, patient societies, and 
payers, and would be advised and updated with the latest developments 
by the corresponding regulatory bodies and ophthalmological societies 
and working groups or committees. 

Table 1 clearly shows that generating trustworthy AI is not a re
sponsibility of a sole stakeholder. However, algorithm aversion, oppo
sition to AI displacement effect, or, simply, the competition to lead the 
emerging technological race have led to attempts to centralized AI 
development under one stakeholder. A monopolistic control of AI 
development should be discouraged as it can restrain the creation of 
responsible AI solutions and slow down AI integration in healthcare. A 
unilateral AI design by one stakeholder might disregard the multifaceted 
nature of trustworthiness, promoting self-interest over ethics, for 
example. As the European Commission stated, “the impact of AI systems 
should be considered not only from an individual perspective, but also from 
the perspective of society as a whole” (European Commission, 2020). 
Likewise, a unilateral development would naturally reduce variety in 
domain expertise and specialization, impeding as well the proper iden
tification of responsibilities and leading to suboptimal regulations and 
liability approaches. Dysfunctional meta-control can also inhibit prog
ress in innovation and hamper efforts towards a socially beneficial AI 
(Parasuraman and Riley, 1997). Therefore, the AI for healthcare com
munity could benefit from safeguards against the potential for this type 
of monopolistic behavior. 

It should be noted that trust (an attitude of the trustor, e.g., 
ophthalmologist) and trustworthiness (a property of the trustee, i.e., AI 
system) are entirely distinct. A trustworthy system does not necessarily 
gain trust and trust can exist in a system that is not trustworthy (Jacovi 
et al., 2021). For example, a doctor might have more confidence on an AI 
system for DR screening because it is embedded in a high-quality visual 
interface, independently of the model’s performance ability, as shown in 
Ghassemi et al. (2018). A misalignment between trust and trustworthi
ness can cause issues of abuse, disuse or misuse of AI solutions, and harm 
AI adoption in practice (Parasuraman and Riley, 1997). Discovering the 
causes of that misalignment is a necessary step towards an optimal 
human-AI interaction and a well-founded acceptability of AI solutions in 
healthcare. 
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