
1. Introduction
Diapirism is an important mechanism of heat and mass transport in the Earth (e.g., Ramberg, 1968; Schubert 
et al., 2001; Turcotte & Schubert, 2021; Whitehead & Luther, 1975). It mainly occurs in viscously deforming rock 
(e.g., Turcotte & Schubert, 2021), but can also be initiated in settings with frictional overburden (e.g., Poliakov 
et al., 1993, 1996). Diapirism can occur on various temporal and spatial scales and is a mechanism for the ascent 
of, for example, magma (e.g., Burov et al., 2003; Cruden, 1988; Cruden & Weinberg, 2018; Marsh, 1982; Michail 
et al., 2021; Miller & Paterson, 1999; Rabinowicz et al., 1987; Weinberg & Podladchikov, 1994, 1995), rock 
salt (e.g., Jackson & Vendeville, 1994; Jackson et al., 1990; Poliakov et al., 1993; Schultz-Ela et al., 1993), mud 
(e.g., Mazzini et al., 2009) or sediments buried at subduction zones (e.g., Behn et al., 2011; Gerya & Yuen, 2003; 
Klein & Behn, 2021; Marschall & Schumacher, 2012; Smye & England, 2023). Magma ascent by diapirism is, 
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Plain Language Summary A diapir is a volume of rock that rises within a larger, denser rock 
mass due to its lower density and the force of gravity. Understanding the speed at which diapirs ascend is 
crucial for determining their significance in specific geologic settings, such as subduction zones. In this study, 
we use advanced computer simulations to calculate the ascent velocity of a spherical diapir within a denser 
surrounding material. The surrounding material is subjected to horizontal shearing, and its behavior resembles 
that of a nonlinear fluid, where its resistance to shear, known as viscosity, depends on the applied stress. By 
conducting three-dimensional computer simulations, we not only test the accuracy of existing mathematical 
equations commonly used to estimate diapir velocity but also make improvements to enhance their precision. 
These equations help us estimate how quickly diapirs rise in different geodynamic environments. By advancing 
our understanding of diapir ascent velocities, we gain valuable insights into the processes that shape our planet's 
geological features.
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for example, an important mechanism contributing to the volcanic and igneous plumbing systems (e.g., Cruden 
& Weinberg, 2018). At subduction zones, for example, sediment diapirs, which detach from subducting slabs 
and rise into the above, hotter mantle wedge, are presumably the reason for the so-called sediment melt signa-
ture in arc lavas (e.g., Behn et al., 2011; Plank & Langmuir, 1993). Furthermore, diapirism was suggested as 
potential mechanism for the exhumation of some high- and ultra-high-pressure, (U)HP, terranes, for which very 
fast, >1 cm/yr, exhumation velocities have been estimated (e.g., Burov et al., 2001, 2014; Little et al., 2011; 
Schmalholz & Schenker, 2016; Schwarzenbach et al., 2021). For all the various forms of diapirism, the ascent 
velocity of the diapir is the essential quantity to assess the importance of diapirism for specific geodynamic 
settings.

The simplest estimate for the ascent velocity of a diapir is given by the so-called Stokes law which is applicable 
for the ascent, or fall, of a rigid sphere in a denser, or lighter, linear viscous fluid (Stokes, 1850). However, diapirs 
in geodynamics are mostly not rigid and are commonly mechanically weaker than the surrounding rocks (e.g., 
Weinberg & Podladchikov, 1994). Furthermore, viscous deformation of natural rock surrounding a rising diapir 
can occur by dislocation creep, which is described by a non-linear, power-law viscous flow flaw (e.g., Weinberg 
& Podladchikov, 1994). In a power-law viscous fluid, the effective viscosity depends on the stress, or alternatively 
the strain rate, in the fluid (e.g., Fletcher, 1974; Schmalholz & Fletcher, 2011; Turcotte & Schubert, 2021). For 
rocks, higher stresses cause smaller effective viscosities (e.g., Hirth & Kohlstedt, 2003; Karato, 2008). Here, 
we refer to the decrease of the effective viscosity caused by an increase in stress as stress weakening (e.g., 
Christensen, 1983). For diapirism, there are two fundamental mechanisms by which the stress, and hence the 
effective viscosity, in rocks surrounding a diapir can change (Figure 1): (a) The rock unit in which the diapir is 
rising undergoes a far-field deformation, for example, due to horizontal simple shear in a strike-slip environment 
(e.g., Michail et al., 2021; Nahas et al., 2023) or corner flow in a mantle wedge (e.g., Klein & Behn, 2021). The 
far-field, or regional, stresses associated with the regional deformation can modify the effective viscosity of the 
rocks surrounding the diapir. (b) The deformation in the surrounding rocks, caused by the rising diapir, generates 
stress variations around the diapir (e.g., Weinberg & Podladchikov, 1994). Such local stress variations around the 
diapir are related to the diapir's buoyancy stress and cause variations in the effective viscosity of the surrounding 
rock.

Analytical estimates of the ascent velocity of a diapir in a power-law viscous fluid have been presented by 
Weinberg and Podladchikov (1994). Weinberg and Podladchikov (1994) show that the reduction of the effec-
tive viscosity due to local stress weakening is essential for magma diapirs to be able to ascent with velocities 
of 10–100 m/yr. Such high velocities are needed so that magma diapirs can reach the upper crust before solid-
ification. Similar high velocities have been suggested for the rise of sediment diapirs across the mantle wedge, 
also enabled by stress weakening in power-law viscous mantle rocks (Klein & Behn, 2021). High velocities 
due to stress weakening in power-law viscous material are supported by two-dimensional (2D) numerical 
simulations of mantle convection (e.g., Larsen & Yeun,  1997). However, the analytical estimates derived 
by Weinberg and Podladchikov (1994) have never been tested and compared to results of full 3D numerical 
calculations.

Here, we perform full 3D numerical calculations to quantify the ascent velocity of a weak diapir in a stronger 
and deforming fluid. The flow law of the surrounding fluid is a combination of linear and power-law viscous 
flow. Such combined flow law can describe rock deformation by a combination of diffusion and dislocation creep 
(e.g., Karato, 2008). Our numerical algorithm is based on the staggered finite difference method and employs an 
iterative solution strategy. We programmed the algorithm in the Julia language and use GPUs for the numerical 
solution. In the numerical calculations, we consider effective viscosity variations in the surrounding fluid due 
to both regional stresses and local stress variations around the diapir. The regional stresses are caused by strike-
slip shearing and the local stresses are caused by the upward movement of the diapir. We further elaborate the 
analytical estimates of Weinberg and Podladchikov (1994) by (a) implementing a combined linear and power-law 
viscous flow law, and (b) considering both regional tectonic stress and local buoyancy stress. We then compare 
the analytical estimates with the 3D numerical calculations.

The aims of our study are to (a) elaborate, test and improve analytical estimates for diapiric ascent velocities in 
a deforming power-law viscous fluid, (b) make a systematic quantification of the ascent velocity based on two 
dimensionless stress ratios, and (c) discuss the applicability of the results to typical crustal and mantle flow laws 
as well as to various diapir scenarios.
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2. Model
2.1. Flow Law and Effective Viscosity

We consider a non-linear, power-law viscous flow law of the general form (Fletcher, 1974; Karato, 2008):

�̇�𝜖 =
1

2
𝐵𝐵𝐵𝐵

𝑛𝑛
, (1)

with 𝐴𝐴 𝐴𝐴𝐴  being the deviatoric strain rate, τ being the deviatoric stress, n being the power-law stress exponent and 
B being a material parameter. All symbols used in the text are listed in Table 1. We reformulate Equation 1 to:

𝜏𝜏 = 2𝐵𝐵−1
𝜏𝜏
(1−𝑛𝑛)

�̇�𝜖𝜖 (2)

Figure 1. Sketch of two geodynamic settings in which diapirism can occur in deforming and stressed rock: (a) Sediment 
diapirs rising in a mantle wedge (after Klein & Behn, 2021). (b) Pluton rising in a crustal strike-slip zone (after Michail 
et al., 2021).
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Next, we multiply the right-hand side of Equation 2 by 𝐴𝐴 𝐴𝐴
(1−𝑛𝑛)

C
∕𝐴𝐴

(1−𝑛𝑛)

C
 , with τC being a characteristic stress magni-

tude that marks the stress at which the deformation behavior changes from diffusion to dislocation creep, and 
rearrange Equation 2 to:

𝜏𝜏 = 2𝜂𝜂

(

𝜏𝜏

𝜏𝜏C

)(1−𝑛𝑛)

�̇�𝜖𝜖 (3)

where 𝐴𝐴 𝐴𝐴 = 𝐵𝐵−1𝜏𝜏
(1−𝑛𝑛)

C
 . Introducing the characteristic stress τC has two benefits: (a) The parameter η has units of a 

viscosity, that is, Pa s, and (b) the impact of τ on the flow law is normalized by the magnitude of τC. The addi-
tional usefulness of introducing τC is presented further below. Equation 3 reduces to a linear viscous flow law for 
n = 1. A linear flow law typically describes diffusion creep (e.g., Karato, 2008; Turcotte & Schubert, 2021). A 

Symbol Name or definition Unit

L Width, height and length of the model domain (m)

R Radius of the spherical diapir (m)

d Distance of ascent (m)

η, ηm Linear viscosity, viscosity of the surrounding medium (Pa · s)

ηE, ηEL Effective viscosity, effective viscosity for local stress (Pa · s)

τPT Pseudo-time (s)

ta, tc Magmatic diapir: time of ascent, cooling time (s)

𝐴𝐴 𝐴𝐴𝐴  Deviatoric strain rate (1/s)

g Gravity acceleration (m/s 2)

ρ Density (kg/m 3)

Δρ Density difference (ρmedium − ρsphere) (kg/m 3)

𝐴𝐴 𝐴𝐴𝐴 Pseudo-density (kg/m 3)

VS Far-field shearing velocity (m/s)

V, Vvert Velocity of ascent (m/s)

V0 Reference velocity (m/s)

VR, VL, VD Velocity estimates considering regional, local, and combined stresses (m/s)

VC Critical velocity (m/s)

P Pressure (mean stress) (Pa)

τ, τvert Deviatoric stress, vertical deviatoric stress (Pa)

τII Square root of second invariant of deviatoric stress tensor (Pa)

τC Characteristic stress (Pa)

τR, τL Regional stress, local stress (Pa)

σ, σvert Total stress, vertical total stress (Pa)

𝐴𝐴 �̃�𝐾𝐾 �̃�𝐺 Pseudo-bulk and pseudo-shear modulus (Pa)

Ω Viscosity ratio (ηmedium/ηsphere) (–)

n Power-law stress exponent (–)

m 1/n, inverse power-law stress exponent (–)

B Material parameter (–)

CR, CL Model parameters (–)

G, M, Xsol Model parameters depending on the parameter m (–)

S Shape factor (–)

δij Kronecker delta (–)

ΔρgR/τR Argand number (–)

Table 1 
Mathematical Symbols Used in the Text
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power-law viscous flow law typically describes dislocation creep (e.g., Karato, 2008; Turcotte & Schubert, 2021) 
but can also effectively describe exponential flow laws describing, for example, low temperature plasticity 
(e.g., Schmalholz & Fletcher, 2011). In nature, both creep mechanisms can occur simultaneously and, hence, 
a combination of a linear and a power-law viscous flow law is often applied in geodynamic applications (e.g., 
Karato, 2008). The effective viscosity, ηE, for such combined flow law is represented by the pseudo-harmonic 
mean of the linear (Equation 3 with n = 1) and power-law (Equation 3 with n > 1) viscosities and is given by (e.g., 
Gerya, 2019; Schmalholz & Podladchikov, 2013):

𝜂𝜂E =
𝜂𝜂

1 +

(

𝜏𝜏

𝜏𝜏C

)(𝑛𝑛−1)
.

 (4)

The general flow law we use in this study reads (e.g., Gerya, 2019; Schmalholz & Podladchikov, 2013):

𝜏𝜏 = 2𝜂𝜂E�̇�𝜖𝜖 (5)

In the combined linear and power-law viscous flow law, the magnitude of τC determines the transition from a 
linear viscous flow to a power-law viscous flow. Examples of magnitudes of τC for crustal and mantle flow laws, 
determined by rock deformation experiments, are presented in the Discussion (Section 4).

2.2. Analytical Estimates for Diapir Ascent Velocity in Deforming Power-Law Viscous Medium

The ascent velocity of a diapir is controlled mostly by the effective viscosity of the surrounding medium and 
not by the effective viscosity of the material forming the diapir (e.g., Weinberg & Podladchikov,  1994). We 
assume that the effective viscosity of the surrounding medium, ηE, is given by Equation 4. We also assume that 
the effective viscosity of the diapir is smaller than the effective viscosity of the surrounding medium by a factor 
Ω, which is termed the viscosity ratio. For a spherical diapir with an effective viscosity that is smaller than the 
effective viscosity of the surrounding medium, the velocity of ascent, V, is given by (e.g., Hadamard,  1911; 
Rybczynski, 1911; Weinberg & Podladchikov, 1994):

𝑉𝑉 =
1

3

Δ𝜌𝜌𝜌𝜌𝜌𝜌2

𝜂𝜂E
𝐶𝐶R, (6)

where Δρ is the density difference between the surrounding medium and the rising diapir, g is the grav-
itational acceleration, R is the radius of the sphere and the constant CR is defined as (e.g., Weinberg & 
Podladchikov, 1994)

𝐶𝐶R =
𝜂𝜂E + 𝜂𝜂E∕Ω

𝜂𝜂E +
3

2
𝜂𝜂E∕Ω

=
1 + 1∕Ω

1 + 3∕(2Ω)
. (7)

If τ/τC = 0, then ηE = η (see Equation 4) and the velocity V corresponds to the ascent velocity of a linear viscous 
diapir rising in a linear viscous medium. We will use further below this velocity for linear viscous flow as refer-
ence velocity, V0, to normalize the ascent velocities for power-law viscous flow. The reference velocity is

𝑉𝑉0 =
1

3

Δ𝜌𝜌𝜌𝜌𝜌𝜌2

𝜂𝜂
𝐶𝐶R. (8)

Since for a power-law viscous flow law ηE depends on τ, the value of τ has to be estimated to calculate V. 
We consider two scenarios to estimate V: (a) There is a homogeneous regional deformation in the surrounding 
medium, for example, a shear deformation in a strike-slip environment, which generates a regional stress τR. This 
value of τR is used to calculate the effective viscosity of the surrounding medium, ηE(τ = τR), and to calculate the 
rising velocity under a regional stress field, VR, with Equations 6 and 7, so that

𝑉𝑉R = 𝑉𝑉 (𝜏𝜏 = 𝜏𝜏R). (9)

(b) Local stress variations around the diapir are caused by the diapir rising in a deformable medium. We assume 
that these local stress magnitudes, τL, have the same magnitude as the buoyancy stress of the diapir, ΔρgR 
(Weinberg & Podladchikov,  1994). The rising velocity for which the impact of local stress variations in the 
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surrounding medium are considered, VL, has been derived by Weinberg and Podladchikov (1994) for a power-law 
viscous flow law and is given by:

𝑉𝑉L =
1

3

Δ𝜌𝜌𝜌𝜌𝜌𝜌2

𝜂𝜂EL

𝐶𝐶L, (10)

where

𝐶𝐶L =

(

𝐺𝐺 + 1∕Ω

𝑋𝑋sol(𝐺𝐺𝐺𝐺 + 3∕(2Ω))

)𝑛𝑛

, (11)

with

𝐺𝐺 = 2.39 − 5.15𝑚𝑚 + 3.77𝑚𝑚2

𝑀𝑀 = 0.76 + 0.24𝑚𝑚

𝑋𝑋sol = 1.3
(

1 − 𝑚𝑚
2
)

+ 𝑚𝑚𝑚

 (12)

where m = 1/n. The parameter CL is only a function of the two dimensionless parameters n and Ω. The effective 
viscosity ηEL for local stress variations is:

𝜂𝜂EL = 2𝑆𝑆𝜂𝜂

(

6𝜏𝜏C

Δ𝜌𝜌𝜌𝜌𝜌𝜌

)(𝑛𝑛−1)

, (13)

where η is the viscosity parameter inside the effective viscosity (Equation 4) of the surrounding medium and S is 
a shape factor. The shape factor S is a fitting parameter that can be adapted to better fit the numerical results. The 
value of S will be discussed in Section 3.3. Finally, the velocity estimate for a weak diapir rising in a deforming 
medium under a regional stress with a flow law combining diffusion and dislocation creep is:

𝑉𝑉D = 𝑉𝑉R + 𝑉𝑉L. (14)

We normalize VD by V0 which yields

𝑉𝑉D

𝑉𝑉0

=
𝑉𝑉R

𝑉𝑉0

+
𝑉𝑉L

𝑉𝑉0

= 1 +

(

𝜏𝜏R

𝜏𝜏C

)(𝑛𝑛−1)

+
3

6𝑛𝑛𝑆𝑆

𝐶𝐶L

𝐶𝐶R

(

Δ𝜌𝜌𝜌𝜌𝜌𝜌

𝜏𝜏C

)(𝑛𝑛−1)

. (15)

We will test the analytical estimate for VD with 3D numerical calculations which are described below.

2.3. 3D Mathematical Model

We assume incompressible flow under gravity. The components of the total stress tensor, σij, are decomposed 
into a pressure (mean stress), P, and deviatoric stress tensor components, τij, so that σij = −δijP + τij, whereby 
indexes i and j run from 1 to 3 and indicate the three spatial directions, and δij is the Kronecker delta (Turcotte & 
Schubert, 2021). The equations for the conservation of mass for an incompressible fluid and for the conservation 
of linear momentum are:

0 =
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

 (16)

0 =
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

−
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

+ 𝜌𝜌𝜌𝜌𝑖𝑖, (17)

where Vi is the component of the velocity vector in direction xi, ρ the density and gi the gravity vector component. 
Components of the deviatoric stress tensor are defined as:

𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜂𝜂E�̇�𝜖𝑖𝑖𝑖𝑖 = 2𝜂𝜂E

(

1

2

(

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

))

, (18)
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where 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖 are the components of the deviatoric strain rate tensor and ηE is defined in Equation 4. For the studied 
3D flow, the value of τ used in Equation 4 is quantified by the square root of the second stress invariant

𝜏𝜏II =

√

1∕2 ∗
(

𝜏𝜏2𝑥𝑥𝑥𝑥 + 𝜏𝜏2𝑦𝑦𝑦𝑦 + 𝜏𝜏2𝑧𝑧𝑧𝑧

)

+ 𝜏𝜏2𝑥𝑥𝑦𝑦 + 𝜏𝜏2𝑥𝑥𝑧𝑧 + 𝜏𝜏2𝑦𝑦𝑧𝑧, (19)

which is independent of the coordinates system.

2.4. Numerical Method

To numerically solve the system of governing equations (Equations 16 and 17) we discretize the differential 
equations using the finite difference method on a staggered grid with constant spacing (e.g., Gerya, 2019; Räss 
et al., 2022). We apply the pseudo-transient (PT) method to solve the discretized, non-linear equations in a matrix 
free fashion (e.g., Räss et al., 2022; Wang et al., 2022). The PT method is one of many iterative methods that exist 
since the 1950’s (Frankel, 1950) and is used to solve stationary problems. The concept of the PT method is to add 
a pseudo-time derivative to the steady-state governing equations (e.g., Räss et al., 2022):

1

�̃�𝐾

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

�̃�𝜌
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

−
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

+ 𝜌𝜌𝜌𝜌𝑖𝑖

1

2�̃�𝐺

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕PT

= −
𝜕𝜕𝑖𝑖𝑖𝑖

2𝜂𝜂E
+

1

2
(∇𝑖𝑖𝜕𝜕𝑖𝑖 + ∇𝑖𝑖𝜕𝜕𝑖𝑖)

 (20)

where 𝐴𝐴 �̃�𝐾 , 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̃�𝐺 are numerical parameters and τPT is a pseudo-time. 𝐴𝐴 �̃�𝐾 and 𝐴𝐴 �̃�𝐺 can be considered as pseudo-bulk 
and pseudo-shear modulus respectively, and 𝐴𝐴 𝐴𝐴𝐴 is a pseudo-density. With the pseudo-time derivatives, Equation 20 
can be considered as pseudo-acoustic and inertial approximations of the mass and momentum balance equations, 
respectively. The initial guess of the pressure and velocity fields do not satisfy the steady state equations, hence 
the PT method consists in iterating until the imbalance is sufficiently small, that is when the PT time derivatives 
(Equation 20) are sufficiently small and have all reached a specific tolerance value. A detailed description of the 
applied PT method with examples of 3D calculations is given in Räss et al. (2022). For completeness, we present 
a numerical resolution and tolerance test in Appendix D. For the presented results, we used a numerical resolution 
of 207 × 207 × 207 and a tolerance for the iterative solver of 5 × 10 −7. The results of the resolution and tolerance 
test show that these values provide velocities which do not change significantly anymore for higher resolution or 
smaller tolerance.

We have also numerical algorithms for the studied 3D power-law viscous flow which are based on the governing 
equations formulated in cylindrical and spherical coordinates. These equations are given in Appendices A and B. 
To test our numerical implementation, we will perform numerical calculations for the same model configuration 
based on the governing equations in Cartesian, cylindrical and spherical coordinates. In the limit of negligible 
curvature and for the same boundary and initial conditions the numerical results based on cylindrical and spher-
ical coordinates must be identical to the results based on Cartesian coordinates. The model configuration for 
cylindrical and spherical coordinates is described in Appendix C.

2.5. Model Configuration

The model configuration is a cube of dimension [−L/2, L/2] × [−L/2, L/2] × [−L/2, L/2] containing a sphere of 
diameter L/3 at its center, with L indicating the model width, length and height (Figure 2). The viscosity parame-
ter, η, of the sphere is always 100 times smaller than the one of the surrounding fluid (Ω = 100). The applied flow 
law is the combined flow law given in Equation 4 and the power-law exponent is always 5. The sphere is always 
less dense than the surrounding fluid and we vary Δρ for different calculations.

We apply horizontal far-field simple shearing parallel to the horizontal x-direction (Figure 2). The boundary 
conditions are (a) free slip on the top and bottom faces of the cube, (b) on the lateral sides parallel to the shear-
ing the velocities in y- and z-direction are zero and in the x-direction they correspond to the applied far-field 
shearing velocity Vs (Vx = −Vs for y = −L/2 and Vx = Vs for y = L/2), and (c) on the lateral sides orthogonal to 
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the shearing  the velocities in y- and z-direction are zero and the velocities in the x-direction vary linearly in the 
y-direction from −Vs to Vs.

The model is configured in dimensionless form and also results will be displayed in dimensionless form. For the 
non-dimensionalization, we use three characteristic scales: one scale for length, which is the radius of the sphere 
R; one scale for stress, which is the buoyancy stress of the sphere ΔρgR; and one scale for viscosity, which is 
the applied value of η in the surrounding medium, termed ηm. To describe the results, we will further use two 
dimensionless ratios, namely the ratio of the applied regional stress to characteristic stress, τR/τC, and the ratio 
of buoyancy stress to characteristic stress, ΔρgR/τC. τR is the magnitude of the homogeneous shear stress in the 
model when the sphere has the same material properties as the surrounding material. Hence, τR represents the 
far-field stress which is not affected by the weak sphere.

The aims of the simulations are (a) to compare magnitudes of buoyancy stress and deviatoric stress around the 
sphere, (b) to perform systematic simulations to quantify the ascent velocity of the sphere in a strike-slip envi-
ronment, by varying Δρ and τC (Equation 15), and (c) to compare the numerically calculated velocities with the 
analytical estimates from Equation 15 and to improve these estimates if possible.

3. Results
3.1. Distribution of Stress, Pressure and Effective Viscosity

For each presented simulation, we have calculated one time step to obtain the full 3D velocity and stress field. 
First, we show the distribution of the resulting effective viscosity, ηE, the second stress invariant, τII, and the 
pressure, P, for a representative simulation (Figure 3). In Figure 3, 1/8th of the cubic model domain is presented. 
The sphere is less dense than its surrounding and, hence, moves upwards as indicated by the velocity arrows in 
Figure 3b. In the following, we refer to the sphere as diapir. The applied simple shear is visible on the horizon-
tal slice through the model domain (Figure 3b). The effective viscosity shows a decrease of about one order of 
magnitude directly above the diapir (Figure 3b). There are two regions on the sides of the diapir where the effec-
tive viscosity is even larger than the ambient viscosity. The variations in ηE can be explained by the distribution of 
τII (Figure 3c). Values of ηE are directly linked to τII (Equation 4): where the stresses are large, such as above the 

Figure 2. Model configuration: cube of size [−L/2; L/2] × [−L/2; L/2] × [−L/2; L/2], with a less dense and weaker spherical 
inclusion of diameter L/3 at the model center. The entire model cube is sheared horizontally, parallel to the x-direction, and 
gravity acts in the vertical, z-direction.
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diapir, the effective viscosity decreases and where stresses are smaller, the effective viscosity does not change or 
even increases. The large stresses above the diapir are due to its upwards movement.

Figure 3d depicts the pressure field. We only consider the dynamic part of the pressure, which means that we 
subtract the lithostatic pressure, because only deviations from the static pressure field can cause movement. An 
interesting feature is the strong pressure gradient inside the diapir, because the pressure is decreasing with depth 
which is opposite to the lithostatic pressure. Similar to the deviatoric stress, the pressure in the surrounding 
medium is largest directly above the diapir.

3.2. Stress Decomposition and Magnitudes

The total vertical stress is decomposed into the pressure and the vertical deviatoric stress, σvert = −P + τvert. We 
quantify σvert, P, and τvert and compare the magnitudes with the buoyancy stress (Figure 4). This quantification is 
important because the analytical estimates for the diapir velocity use the buoyancy stress as proxy for the devia-
toric stress which is used in the power-law flow law.

The vertical continuity of σvert across the diapir boundary in the horizontal middle of the model (at Y  =  0, 
Figure 4d) results from the requirement of the vertical force balance. In contrast, both P and τvert can be discontin-
uous across the diapir boundary (Figures 4e and 4f). Indeed, P and τvert show a discrete jump across the boundary 

Figure 3. Representative numerical results for τR/τC = 1 and ΔρgR/τC = 10: (a) Location of 1/8th of the model shown in panels (b–d). (b) Effective viscosity ηE 
normalized by ηm, the linear viscosity of the surrounding medium. Arrows indicate the velocity field and white contours highlight log10(ηE/ηm) = 0. (c) Second 
invariant of deviatoric stress, τII, normalized by the buoyancy stress ΔρgR. (d) Pressure, P, normalized by buoyancy stress ΔρgR.
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of the diapir. The absolute maximal values of σvert are close to the value of ΔρgR, since the maximal value of their 
ratio is approximately one (Figure 4a). τvert is essentially zero inside the diapir since the effective viscosity inside 
the diapir is 100 times smaller than the one of the surrounding medium. Consequently, the absolute magnitudes 
of P are high inside the diapir at the top and bottom, in order to generate a continuous σvert required by the vertical 
force balance. Maximal values of P inside the diapir are, hence, close to the magnitudes of ΔρgR.

Outside the diapir, directly above and below, maximal magnitudes of τvert are significantly smaller than magni-
tudes of σvert at the same positions. The effective viscosity in the analytical estimate is calculated with the magni-
tude of ΔρgR while in the numerical simulation it is controlled by the correct magnitude of τII. The magnitude 
of τII is smaller than ΔρgR (Figure 3c) and τII is also strongly variable around the diapir. We, therefore, expect 
that the analytical estimates for the diapir velocity will be different to the numerically calculated ones, because 
the stress magnitude which controls the effective viscosity is different in the analytical estimates compared to the 
numerical simulation.

The results presented in Figure 4 are reproduced by the numerical calculations based on cylindrical and spherical 
coordinates and are presented in Appendix C. The agreement between results calculated by three different numer-
ical algorithms indicates the correct numerical implementation of the governing equations.

3.3. Comparison of Analytical and Numerical Ascent Velocities

We compare the analytical estimates for the ascent velocity of a weak and less dense sphere, Equation 15, with 
our numerical results. The analytical estimates (details in Section 2.2) only provide the vertical velocity of the 
raising sphere and do not provide the spatial distribution of stresses. Hence, for each numerical simulation, we 

Figure 4. Numerical results for τR/τC = 1 and ΔρgR/τC = 10. (a–c) Vertical cross sections at position X/R = 0 (see Figure 3a), 
and (d–f) vertical profiles at position X/R = 0 and Y/R = 0. (a, d) Display vertical total stress, (b, e) pressure, and (c, f) 
vertical deviatoric stress. The dashed line in panels (a–c) marks the position of profiles (d–f). All stresses are normalized by 
the buoyancy stress ΔρgR.
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select the maximum vertical velocity obtained for the diapir and consider this velocity as the ascent velocity of 
the diapir. We normalize the vertical velocities by the corresponding values of V0 which is the velocity of a linear 
viscous diapir rising in a linear viscous medium (see Equation 8).

The ascent velocity depends on the two stress ratios τR/τC and ΔρgR/τC (Equation 15). Figure 5 presents the 
comparison between analytical estimates and the numerical results. Figure 5a displays vertical velocities of the 
diapir for various values of ΔρgR/τC and a fixed value τR/τC = 1. For ΔρgR/τC < ∼10 the velocity is controlled 
by VR, for which the regional stress controls the effective viscosity, while for ΔρgR/τC > ∼10 it is controlled by 
VL, for which the buoyancy stress controls the effective viscosity (see Section 2.2). The velocity is constant in 
the domain dominated by the regional stress and increases significantly in the buoyancy dominated domain. The 
numerical results agree with VR and they capture the change in slope of the velocity with increasing ΔρgR/τC. 
However, for ΔρgR/τC > ∼10 the numerical velocities are smaller than the analytically estimated ones. For ΔρgR/
τC > ∼10, the ascent velocities vary by approximately two orders of magnitude while applied values of ΔρgR/τC 
vary by a factor of approximately 4 only.

Figure 5b displays the vertical velocity for various values of τR/τC and a fixed value of ΔρgR/τC = 10. For τR/
τC < ∼1 the velocity is controlled by VL while for τR/τC > ∼1 it is controlled by VR. For τR/τC > ∼1 the velocities 
strongly increase with increasing τR/τC.

We also performed a systematic comparison between the analytically estimated and the numerically calculated 
velocities by varying ΔρgR/τC and τR/τC (Figure 6). Figures 6a and 6b display the vertical velocities of the diapir 
obtained with the analytical estimates and the numerical simulations, respectively. The numerical results show 
the same trend of the velocity with varying values of ΔρgR/τC and τR/τC as the analytical estimates. For normal-
ized velocities >∼10 4, the numerical algorithm did not converge anymore due to the significant nonlinearities and 
the associated significant variations of the effective viscosity around the diapir.

Figure 7 is similar to Figure 5a, but shows analytical estimates for different shape factors, S (see Equation 13). 
The value S = 1 was used in the original derivation of Weinberg and Podladchikov (1994). Increasing S allows 
to better predict the ascent velocity in the buoyancy dominated deformation regime, that is for ΔρgR/τC > 10. 
However, too large values of S lead to an underestimation of the velocities. For three values of S we present the 
correspondence between the numerical and the analytical results. For S = 1, analytical estimates tend to overes-
timate the large velocities, for S = 2.5 the estimations fit better and for S = 5 the analytical estimates generally 
underestimate the ascent velocity.

Figure 5. Comparison of numerical results (symbols, see legend) with analytical estimates from Equation 15 (lines, 
see legend). Analytical estimates are presented in Section 2.2. Vertical axis is the ascent velocity normalized by V0 (see 
Equation 8). Horizontal axis is in (a) ΔρgR/τC for a value of τR/τC = 1, and in (b) τR/τC for ΔρgR/τC = 10.
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A plot of all the numerically calculated velocities versus the corresponding analytical estimates, for the same 
parameters, shows that the analytical estimates capture well the first order trend of the numerical results 
(Figures 8a–8c). The maximal relative error between the analytical estimate and an individual numerical result is 
only 72% for S = 1. Hence, all analytical estimates deviate by less than a factor of 2 from the numerical results. 
The relative error is calculated by (|Vnum − Vana|)/Vnum ∗ 100, hence an error of 100% means a deviation by a factor 
of 2. We varied S between 0.25 and 10 in the analytical estimate and calculated for each value of S the average 

Figure 7. Comparison of numerically and analytically calculated ascent velocities for different shape factors S (see 
Equation 13 and legend). X-axis displays ΔρgR/τC and the vertical axis the ascent velocity normalized by V0 (see Equation 8). 
Results are obtained for τR/τC = 1. Only VL depends on the shape factor.

Figure 6. Analytical and numerical ascent velocities for a systematic variation of ΔρgR/τC and τR/τC. Ascent velocities are 
normalized by V0 (see Equation 8). (a) Analytical estimates and (b) numerically calculated velocities. The stars represent the 
values of ΔρgR/τC and τR/τC for which numerical calculations were performed.
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relative error between the estimates and the numerical results (Figure 8d). The smallest average error occurs for 
S = 1.6 and is 18%.

4. Discussion
4.1. Characteristic Stresses for Experimentally Derived Flow Laws

The characteristic stress, τC, is the stress at which the deformation behavior changes from linear viscous flow, 
such as diffusion creep, to power-law viscous flow, such as dislocation creep. Hence, τC has a significant impact 
on the ascent velocity of a diapir.

To estimate values of τC in the mantle, we use the flow laws of olivine from Hirth and Kohlstedt (2003), their 
Table 1, for diffusion creep (wet olivine with constant COH and 10 mm grain size) and dislocation creep (wet 
olivine with constant COH) (Figure 9a). The values we used are listed in Appendix E. We vary systematically 
pressure, P, and temperature, T, and determine the stress for which the effective viscosities for diffusion and 

Figure 8. Comparison of analytically estimated velocities on the horizontal axis and the numerically calculated velocities on the vertical axis for different shape factors. 
(a) S = 1, (b) S = 2.5, and (c) S = 5. The solid line represent the equivalence between analytical and numerical results. (d) The average relative error of the analytical 
estimates compared to the numerical results for values of S between 0.25 and 10. The vertical red dashed line indicates the minimum relative error of ≈18% for S = 1.6.
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dislocation creep are equal. For P between 1 and 10 GPa and T between 500 and 1,650°C, values of τC are approx-
imately between 0.1 and 100 MPa (Figure 9a).

To estimate values of τC in the lower crust, we use the flow laws for diffusion and dislocation creep of wet anor-
thite from Rybacki and Dresen (2000), their Table 2 (Figure 9b), the used values are listed in Appendix E. These 
flow laws are insensitive to P so we vary systematically T and the grain size to determine τC. For T between 500 
and 1,000°C and grain size between 10 μm and 10 mm, values of τC are between 1 and 500 MPa.

Quartz is a representative mineral to estimate the effective flow law for upper crustal rocks. Many studies indicate 
that a power-law viscous flow law describes well the deformation of quartz under upper crustal conditions (e.g., 
Hirth et al., 2001). For extremely small grain sizes (≈20 μm), such as observed in ultramylonites, quartz can also 
deform by diffusion creep (Kilian et al., 2011). We did here not estimate τC for quartz since most studies suggest 
a power-law viscous flow law for quartz.

Assuming that the flow laws considered above are representative for the mantle lithosphere and the lower crust 
and assuming that typical regional flow stresses, representing τR, in the mantle are between 0.1 and 10 MPa (Hirth 
& Kohlstedt, 2003; Karato, 2008) and in the lower crust between 1 and 100 MPa (Bürgmann & Dresen, 2008), 
ratios of τR/τC between 0.1 and 100 seem feasible.

Furthermore, assuming that typical values of Δρ for diapirs vary between 20 and 200 kg/m 3 and values of R 
between 1 and 100 km (see next Section), provides values of ΔρgR between 0.2 and 200 MPa. Therefore, stress 
ratios of ΔρgR/τC between 0.05 and 50 seem also feasible.

4.2. Increase of Diapir Ascent Velocity by Two Types of Stress Weakening

In our model, the nonlinear fluid surrounding the diapir is a stress weakening fluid for n > 1 because the effective 
viscosity decreases when the stress magnitude, quantified by τII, in the fluid increases. The applied, combined 
linear and power-law viscous flow law can describe diffusion and dislocation creep in crustal and mantle rocks 
(e.g., Karato, 2008; Kohlstedt & Hansen, 2015). Furthermore, the applied power-law viscous flow law can also 
describe low temperature plasticity for which apparent stress exponents can be much larger than 3 (e.g., Dayem 
et al., 2009; Schmalholz & Fletcher, 2011). Hence, the applied combined flow law is applicable to a wide range 
of rocks and deformation mechanisms.

In the analytical estimate for the ascent velocity we consider the impact of two types of stresses: regional stresses, 
τR, associated with far-field tectonic deformation in the rocks surrounding the diapir and buoyancy stresses, 

Figure 9. Color plots of characteristic stress, τC in Equation 4. (a) τC as function of pressure and temperature for upper 
mantle flow laws. The flow laws for diffusion (wet with constant COH and 10 mm grainsize) and dislocation (wet with 
constant COH) creep of olivine from Hirth and Kohlstedt (2003) (their Table 1) were used. (b) τC as function of grain size and 
temperature for lower crustal flow laws. The flow laws for diffusion and dislocation creep of wet anorthite from Rybacki and 
Dresen (2000) (their Table 2) were used.
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ΔρgR, causing deformation locally around the rising diapir. Both stresses can cause stress weakening. If τR/
τC > 1 and/or ΔρgR/τC > 1 both stresses can increase the ascent velocity significantly (Figure 10a). For values of 
n = 3 and Ω = 100, values of ΔρgR/τC > ∼10 are required to generate values of VD/V0 > 1 and, hence, an increase 
in  ascent velocity with respect to the velocity for linear viscous flow. The reason is the pre-factor of 3CL/6 n/S/
CR in front of the term 𝐴𝐴 (Δ𝜌𝜌𝜌𝜌𝜌𝜌∕𝜏𝜏C)

𝑛𝑛−1 in the analytical velocity estimate (Equation 9). This pre-factor is 0.007 for 
n = 3 and Ω = 100 and, hence, reduces the impact of the factor ΔρgR/τC on the velocity increase (Figure 10a). 
Since there is no pre-factor in front of τR/τC, values of τR/τC > 1 cause values of VD/V0 > 1 (Figure 10a).

In the velocity estimate of Weinberg and Podladchikov (1994) only the impact of ΔρgR is considered. Hence, 
diapirs with small R or small Δρ can have values of small ΔρgR which might not cause a significant velocity 
increase. Our solution shows that also diapirs associated with small values of ΔρgR can have fast ascent veloc-
ities if they rise in a tectonically active region with regional stresses τR/τC > 1. Hence, the onset of tectonic 
deformation, such as strike-slip shearing, transpression or transtension can trigger a faster ascent of diapirs which 
had insignificant ascent velocities before the onset of tectonic activity and associated stresses. Indeed, for exam-
ple, many plutons have been emplaced in tectonically active regions suggesting a potential causal link between 
pluton ascent and tectonic stress (e.g., Berdiel et al., 1997; Berger et al., 1996; Brown & Solar, 1999; Hutton & 
Reavy, 1992; Michail et al., 2021). We discuss the potential application of our velocity estimate to the ascent of 
plutons in the next Section.

Figure 10. Color plots of analytical ascent velocities. (a) Velocities (normalized by V0) as function of ΔρgR/τC and τR/τC 
for n = 3 and Ω = 100. (b) Velocities (normalized by V0) as function of R and τR for n = 3, Ω = 100, Δρg = 2,000 Pa/m and 
τC = 1 MPa. Black contour lines in both subplots indicate the corresponding values of ΔρgR/τR.
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For the numerical calculations, we consider a scenario with horizontal far-field simple shear. We do not model 
finite deformations but calculate the instantaneous velocity field. Hence, for our calculations mainly the magni-
tude of τR is important and not the orientation of the stress field. Therefore, our instantaneous solution for the 
far-field horizontal simple shear is approximately applicable to any scenario for which the far-field deformation 
causes deviatoric stresses in rocks surrounding a diapir. For example, for the ascent of diapirs within a deforming 
mantle wedge (e.g., Klein & Behn, 2021).

To illustrate the results with dimensional numbers, we further assume Δρg  =  2,000  Pa/m and τC  =  1  MPa 
(Figure 10b). For τR increasing above 1 MPa, the diapir velocity, VD, increases with respect to the velocity for 
linear viscous flow, V0. Concerning buoyancy stresses, values of R > ∼5 km are required to obtain a veloc-
ity increase (Figure 10b). For τR = 100 MPa the velocity would increase by four orders of magnitude and for 
R ≈ 15 km the velocity would increase by one order of magnitude.

4.3. Applications to Sediment Diapirs, Mantle Plumes, (U)HP Terranes and Plutons

We discuss next some applications of our velocity estimate to different geodynamic settings involving diapirism. 
A dimensionless stress ratio which is frequently used in applications of analytical solutions to geodynamic 
processes is the so-called Argand number (e.g., England & McKenzie, 1982; Schmalholz et al., 2002). The Argand 
number is the ratio of gravity stress to stress caused by tectonic deformation (e.g., England & McKenzie, 1982; 
Schmalholz et  al.,  2002). For the considered scenario of diapirism in tectonically active regions the Argand 
number corresponds to the ratio ΔρgR/τR (black contours in Figure 10). The analytical estimate of Equation 15 
can be modified so that the velocity becomes an explicit function of ΔρgR/τR:

𝑉𝑉D

𝑉𝑉0

= 1 +

(

𝜏𝜏R

𝜏𝜏C

)(𝑛𝑛−1)
(

1 +
3

6𝑛𝑛𝑆𝑆

𝐶𝐶L

𝐶𝐶R

(

Δ𝜌𝜌𝜌𝜌𝜌𝜌

𝜏𝜏R

)(𝑛𝑛−1)
)

. (21)

Values of ΔρgR/τR for specific geodynamic settings may be more reliably estimated than values of ΔρgR/τC 
because they do not require knowledge of the rheology.

We apply the formula for the ascent velocity, Equation 21, to sediment diapirs in subduction zones (e.g., Klein 
& Behn, 2021), mantle plumes (e.g., Schubert et al., 2001), exhumed (U)HP units (e.g., Burov et al., 2014) and 
magmatic plutons associated with crustal deformation (e.g., Michail et al., 2021) (Figure 11). For all scenarios, 
the values of the required parameters, such as Δρ, R or τR/τC, are uncertain and we chose representative values to 
illustrate particular applications of Equation 21. We plot VD versus R and versus the corresponding value of the 
Argand number for different values of the linear viscosity of the rocks surrounding the diapir, ηm (Figure 11). For 
the presented velocity calculations, we assume τR = 10 MPa, n = 3, τC = 1 or 10 MPa, and Δρ = 20 or 200 kg/m 3 
(Figure 11).

For sediment diapirs in subduction zones, representative values of R range between 1 and 4  km and we 
assume Δρ = 200 kg/m 3 as feasible value (example 4.1.1 in Klein & Behn, 2021). Klein and Behn (2021) 
combined the solution of Weinberg and Podladchikov (1994) with heat transfer calculations and a melting 
thermodynamic model. They show that their calculated velocities for rising sediment diapirs, or relamina-
tion, can be between 10 and 100 m/yr (Figures 11a and 11c). To obtain such velocities, values of ηm must 
be significantly smaller than 10 17 Pa  s, if τC = 10 MPa and, hence, τR/τC = 1 (Figure 11a). However, if 
τC = 1 MPa, values of ηm can be in the order of 10 18 Pa s to obtain the same velocities (Figure 11c). The 
plots in Figure 11 show that for a specific velocity a decrease of τC by one order of magnitude increases 
the corresponding values of ηm by approximately two orders of magnitude. In other words, for the same 
ηm, a decrease of τC by one order of magnitude decreases the ηE by two orders of magnitude and, hence, 
increases the velocity by two orders of magnitude. For n > 3 (e.g., Klein and Behn (2021) used a flow law 
with n = 3.5), the stress weakening and velocity increase would be larger. The above example can of course 
be done with smaller values of τR and τC. The results suggest that to achieve the high velocities for sediment 
diapirs, stress weakening in the surrounding rock is essential. Flow stresses in the mantle wedge, for exam-
ple due to corner flow, likely contribute to the stress weakening.

For the application to mantle plumes, we assume R between 100 and 200 km and Δρ = 20 kg/m 3 (Schubert 
et al., 2001) (Figures 11b and 11d). The ascent velocity of plumes may range between few cm/yr up to 1 m/yr 
(Schubert et al., 2001). To achieve such velocities, ηm needs to be between 10 20 and 10 21 Pa s which agrees with 
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viscosity estimates for the mantle (Table 11.3 in Schubert et al., 2001). Deviatoric stresses due to mantle convec-
tion may range between 0.1 and 1 MPa (e.g., Hirth & Kohlstedt, 2003) and τC for olivine ranges between 0.1 and 
0.5 MPa for pressures between 4 and 10 GPa (Figure 9a). Therefore, values of τR/τC could be >1 which would 
increase the corresponding ascent velocities. However, the velocities estimated for mantle plumes can be obtained 
without stress weakening so that for mantle plumes stress weakening seems not essential.

(U)HP crustal units, or terranes, have been exhumed in many places worldwide (e.g., Burov et al., 2014; Kylander-Clark 
et al., 2012). The mechanisms of exhumation are still disputed and may vary for different geodynamic settings (e.g., 
Hacker & Gerya, 2013; Warren, 2013). Exhumation by diapirism has been suggested as potential exhumation mech-
anism (e.g., Burov et al., 2001, 2014; Little et al., 2011; Schmalholz & Schenker, 2016; Schwarzenbach et al., 2021) 
because diapirism is able to explain the sometimes high estimates for ascent velocities of >1 cm/yr (e.g., Hermann 
& Rubatto, 2014), sometimes even >10 cm/yr (e.g., Schwarzenbach et al., 2021). Such high exhumation velocities 
are typically estimated for the deeper part of the exhumation path, where ambient rock pressures are >≈1 GPa. Esti-
mates for Δρ for the exhumation of (U)HP units are commonly between 20 and 200 kg/m 3 and representative spher-
ical radii, which would generate the same spherical volume as the observed (U)HP rock volume, are between 4 and 
20 km (e.g., Kylander-Clark et al., 2012; Schwarzenbach et al., 2021). Stress weakening as mechanism to significantly 

Figure 11. Analytical ascent velocities versus diapir radius and corresponding Argand number (ΔρgR/τR) for different values 
of the linear viscosity, ηm, of the fluid surrounding the diapir. Applied values of τR, τC, and Δρ are indicated in the figure. For 
all calculations n = 3 and Ω = 100 was used. Rectangles indicate range of data reported in literature for different geodynamic 
settings (see Section 4.3). The dotted line indicates the critical ascent velocity of plutons (Equation 22) for which the diapir 
rises as fast as it cools. The black line segment indicates the range of typical radii estimated for plutons (see Section 4.3).
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increase ascent velocities has also been suggested as explanation for potentially fast exhumation velocities (e.g., Burov 
et al., 2014; Schmalholz & Schenker, 2016). For example, Schmalholz and Schenker (2016) proposed that oblique 
subduction and associated strike-slip shearing could have caused stress weakening along the subduction interface 
which might explain the high exhumation velocity, along the subduction interface, of a small UHP unit, namely the 
Brossasco-Isasca sub-unit in the Dora Maira massif, Western Alps.

The mechanisms of pluton ascent in the continental crust are still disputed and velocities of pluton ascent are 
less constrained than exhumation velocities of (U)HP units. Two commonly proposed mechanisms are diapirism 
and dike intrusion associated with fracture propagation (e.g., Clemens & Mawer, 1992; Miller & Paterson, 1999; 
Petford, 1996; Rubin, 1993). A main argument against diapirism is that estimated ascent velocities are so slow 
that the pluton would lose significant heat during ascent, consequently solidify and stop ascending (e.g., Clemens 
& Mawer, 1992; Marsh, 1982; Petford, 1996). However, Weinberg and Podladchikov (1994) suggested that stress 
weakening due to buoyancy stress can increase the ascent velocity sufficiently to avoid significant heat loss 
during ascent. Furthermore, many plutons ascended in tectonically active regions exhibiting some component 
of strike-slip, transpression or transtension (e.g., Berdiel et al., 1997; Berger et al., 1996; Brown & Solar, 1999; 
Hutton & Reavy, 1992; Michail et al., 2021). The regional stresses associated with these tectonic activities could 
have also contributed to stress weakening and velocity increase.

To evaluate whether stress weakening can enable a pluton to rise a significant distance without significant cooling, say 
10 times its radius, we estimate the critical velocity, VC, required for such rise, taking into account the heat loss during 
ascent. We perform here a very simple, back-of-the-envelope, calculation to estimate VC. The time, or duration, of 
ascent of a diapir can be calculated by ta = d/VD whereby d is the distance of ascent. To avoid thermal cooling during 
ascent, the diapir must essentially rise faster than it cools. Assuming first cooling by heat conduction only, the time 
of cooling of a diapir with radius R is tc = R 2/κ, whereby κ is the thermal diffusivity. Considering also enhancement 
of cooling by advection, tc can be modified by using the Nusselt number, Nu (e.g., Marsh, 1982), to get tc = R 2/κ/Nu. 
Solving tc = ta for the velocity provides a critical velocity, VC, for which the pluton rises as fast as it cools:

𝑉𝑉C = 𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑

𝑅𝑅2
. (22)

The pluton velocity, VD, must be faster than VC to avoid large heat loss during ascent. Assuming here that a pluton should 
be able to rise at least a distance of 10 times its radius, d = 10R, yields as condition for pluton ascent by diapirism:

𝑉𝑉D > 𝑁𝑁𝑁𝑁
10𝜅𝜅

𝑅𝑅
. (23)

To plot also VC versus R in Figure 11 we assume typical values Nu = 2 and κ = 10 −6 m 2/s (e.g., Marsh, 1982). 
We further assume R between 2 and 10 km and Δρ = 200 kg/m 3 as feasible values for crustal plutons (e.g., 
Michail et al., 2021; Miller & Paterson, 1999). Based on the above calculation, the velocity for plutons must be 
larger than approximately 10 cm/yr (black segment on dotted lines in Figure 11). For linear viscous flow, ηm of 
the surrounding rocks must then be smaller than approximately 10 19 Pa s (Figure 11a). For stress weakening due 
to tectonic deformation with τR/τC = 10, ηm must be smaller than approximately 10 21 Pa s (Figure 11c). If ηm is 
10 21 Pa s and τR/τC = 100, then VD is approximately 100 times faster than VC and pluton ascent by diapirism seems 
possible. Our simple calculations suggest that pluton ascent by diapirism is possible if τR is high, say between 
10 and 100 MPa, and τC is low, say between 0.1 and 1 MPa. More generally, tectonic activity may cause regional 
stresses which are significantly larger than critical stresses so that stress weakening can significantly decrease the 
effective viscosity of the surrounding rock. This viscosity decrease can be large enough so that plutons can rise 
as diapirs considerably faster than they cool.

4.4. Simplifications

Our study focuses on creating and testing analytical estimates for the velocity at which diapirs rise in a ductile 
rock under far-field stress. To achieve this, we have simplified the geodynamic scenario and numerical model 
configuration compared to natural situations.

We calculate only one numerical time step to determine the instantaneous ascent velocity for a spherical diapir. As 
a diapir rises, it may change its geometry. For example, when it rises to areas with higher viscosity, it can flatten 
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vertically and become elliptical, with its long axis being perpendicular to the direction of ascent (e.g., Weinberg 
& Podladchikov, 1994). The ascent velocity of a diapir with such an elliptical shape is smaller than the velocity 
for spherical geometry. For elliptical aspect ratios of 2 and power-law stress exponents of 3, the ascent velocity of 
an elliptical diapir is a factor of 2 slower compared to a spherical diapir, and for a power-law stress exponent of 5, 
it is a factor of 4 slower (e.g., Weinberg & Podladchikov, 1994). Given our focus on order-of-magnitude variations 
in ascent velocity resulting from stress weakening, the variation in ascent velocity due to diapir shape changes, 
falling within a range of two to fourfold, has a minor impact on our primary findings.

We employ a combination of linear and power-law viscous flow laws, that is applicable to a range of defor-
mation mechanisms, including diffusion creep, dislocation creep, and exponential creep, commonly known as 
low-temperature plasticity (e.g., Karato, 2008). The power-law viscous flow law is also well-suited for describing 
diffusion creep involving grain size evolution, where grain size dynamically responds to flow stress (e.g., Montési 
& Zuber, 2002). Additionally, a power-law viscous flow law with a high stress exponent effectively captures 
pressure-insensitive plastic deformation, such as deformation governed by a von Mises yield stress (e.g., Fletcher 
& Hallet, 1983). Consequently, the chosen flow law encompasses a broad range of ductile deformation mech-
anisms. Potential enhancements to our analytical and numerical models could include (a) more sophisticated 
models for grain size evolution, such as the paleo-wattmeter model (e.g., Austin & Evans, 2007), (b) the incorpo-
ration of frictional-plastic deformation, which involves pressure-sensitive yield stress (e.g., Poliakov et al., 1993), 
or (c) the consideration of fluid and reaction-induced weakening linked to (de)hydration reactions and melting 
(e.g., Jamieson et al., 2011; Schmalholz et al., 2020; White & Knipe, 1978).

5. Conclusions
In this study, we investigated the ascent velocity of a weak and buoyant spherical inclusion within a nonlinear 
viscous fluid under far-field stress, which is relevant to a wide range of natural diapirism in tectonically active 
regions. By deriving analytical estimates for the diapir ascent velocity in dimensionless form, we scaled the 
velocity with the corresponding velocity for linear viscous flow. The ascent velocity is controlled by two stress 
ratios: (a) the ratio of the diapir's buoyancy stress, ΔρgR, to the characteristic stress, τC, at the transition from 
linear to power-law viscous flow, and (b) the ratio of regional stress, τR, to τC, whereby τR is caused by the far-field 
tectonic deformation. The equation for the analytical estimates shows that both stress ratios can significantly 
increase the velocity because the stress ratios are added and both ratios exhibit the same power-law stress expo-
nent of (n − 1). The stress ratios start to considerably increase the ascent velocity once they become larger than 
one. Hence, both local buoyancy and regional tectonic stresses can increase the ascent velocity because they can 
cause stress weakening in the rocks surrounding the diapir.

Comparing the analytical estimates with full 3D numerical calculations, we found that the analytical estimates 
are accurate within a factor of less than two, with a relative error smaller than 80%, across a wide range of 
stress ratios. This highlights the usefulness of the analytical estimates in assessing the importance and impact of 
diapirism in diverse geodynamic settings. However, the analytical estimates deviate the most from the numeri-
cal results when buoyancy stresses dominate the ascent velocity. This discrepancy arises because the analytical 
estimates use the diapir's buoyancy stress as a proxy for the deviatoric stress, which is required to calculate the 
effective, stress-dependent viscosity in the surrounding fluid. Numerical calculations demonstrate that deviatoric 
stresses around the diapir can be significantly smaller than buoyancy stresses, leading to less intense stress weak-
ening in the surrounding fluid than predicted by the analytical estimates. Introducing a shape factor improves the 
accuracy of the analytical estimates. The numerical results further show that the pressure inside the weak diapir 
deviates from the lithostatic pressure and the deviation is on the order of ΔρgR.

We calculated τC for typical mantle and lower crustal flow laws and estimated ranges of magnitudes for τR and 
ΔρgR. Both ratios of τR/τC and ΔρgR/τC could vary between 0.1 and 100 in nature. For the applied parameters, a 
significant increase of the ascent velocity caused by stress weakening starts for τR/τC > 1 and ΔρgR/τC > 10. Our 
calculations show that stress weakening can cause ascent velocities of diapirs that are up to four orders of magni-
tude faster compared to ascent velocities calculated for linear viscous flow. Therefore, lithospheric and mantle 
stresses as well as temporal and spatial changes of these stresses can have a dramatic effect on diapir ascent veloc-
ities. Similarly, changes in rock rheology, due to for example fluid infiltration or grain size variation, can change 
magnitudes of τC and, consequently, strongly affect ascent velocities. The presented analytical estimates facilitate 
the quantification of such stress-induced changes in diapir ascent velocities.
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Appendix A: Cylindrical Coordinate System
The equations for conservation of mass and linear momentum for an incompressible fluid under gravity in cylin-
drical coordinates are:

0 = −

(

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
+

𝜕𝜕𝑟𝑟

𝑟𝑟

)

0 =
𝜕𝜕(−𝑃𝑃 + 𝜏𝜏𝑟𝑟𝑟𝑟)

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜏𝜏𝑟𝑟𝜃𝜃

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜏𝜏𝑟𝑟𝑧𝑧

𝜕𝜕𝑧𝑧
+

(−𝑃𝑃 + 𝜏𝜏𝑟𝑟𝑟𝑟)

𝑟𝑟
−

(−𝑃𝑃 + 𝜏𝜏𝜃𝜃𝜃𝜃)

𝑟𝑟
− 𝜌𝜌𝜌𝜌

0 =
𝜕𝜕𝜏𝜏𝑟𝑟𝜃𝜃

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕(−𝑃𝑃 + 𝜏𝜏𝜃𝜃𝜃𝜃)

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜏𝜏𝜃𝜃𝑧𝑧

𝜕𝜕𝑧𝑧
+ 2

𝜏𝜏𝑟𝑟𝜃𝜃

𝑟𝑟

0 =
𝜕𝜕𝜏𝜏𝑟𝑟𝑧𝑧

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜏𝜏𝜃𝜃𝑧𝑧

𝜕𝜕𝜃𝜃
+

𝜕𝜕(−𝑃𝑃 + 𝜏𝜏𝑧𝑧𝑧𝑧)

𝜕𝜕𝑧𝑧
+

𝜏𝜏𝑟𝑟𝑧𝑧

𝑟𝑟

 (A1)

with Vr, Vθ, and Vz being the components of the velocity vector in direction r, θ, and z respectively. τij are the (i,j) th 
components of the deviatoric stress tensor, P is the pressure, ρ is the density and g the gravitational acceleration. 
Components of the deviatoric stress tensor are defined as:

𝜏𝜏𝑟𝑟𝑟𝑟 = 2𝜂𝜂E�̇�𝜖𝑟𝑟𝑟𝑟 = 2𝜂𝜂E

(

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟

)

𝜏𝜏𝜃𝜃𝜃𝜃 = 2𝜂𝜂E�̇�𝜖𝜃𝜃𝜃𝜃 = 2𝜂𝜂E

(

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝑟𝑟

𝑟𝑟

)

𝜏𝜏𝑧𝑧𝑧𝑧 = 2𝜂𝜂E�̇�𝜖𝑧𝑧𝑧𝑧 = 2𝜂𝜂E

(

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧

)

𝜏𝜏𝑟𝑟𝜃𝜃 = 2𝜂𝜂E�̇�𝜖𝑟𝑟𝜃𝜃 = 2𝜂𝜂E

(

1

2

(

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜃𝜃
−

𝜕𝜕𝜃𝜃

𝑟𝑟

))

𝜏𝜏𝑟𝑟𝑧𝑧 = 2𝜂𝜂E�̇�𝜖𝑟𝑟𝑧𝑧 = 2𝜂𝜂E

(

1

2

(

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑟𝑟
+

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑧𝑧

))

𝜏𝜏𝜃𝜃𝑧𝑧 = 2𝜂𝜂E�̇�𝜖𝜃𝜃𝑧𝑧 = 2𝜂𝜂E

(

1

2

(

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝑧𝑧

))

 (A2)

where 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖 are the (i,j) th components of the strain rate tensor, and ηE is the effective viscosity used in the numerical 
calculations (see Section 2.3, Equation 4).

The numerical implementation used is the same as for the Cartesian coordinates (see Section 2.4):

1

�̃�𝐾

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕PT

= −

(

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
+

𝜕𝜕𝑟𝑟

𝑟𝑟

)

�̃�𝜌
𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕(−𝜕𝜕 + 𝜕𝜕𝑟𝑟𝑟𝑟)

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑟𝑟𝜃𝜃

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜕𝜕𝑟𝑟𝑧𝑧

𝜕𝜕𝑧𝑧
+

(−𝜕𝜕 + 𝜕𝜕𝑟𝑟𝑟𝑟)

𝑟𝑟
−

(−𝜕𝜕 + 𝜕𝜕𝜃𝜃𝜃𝜃)

𝑟𝑟
− 𝜌𝜌𝜌𝜌

�̃�𝜌
𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕𝜕𝜕𝑟𝑟𝜃𝜃

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕(−𝜕𝜕 + 𝜕𝜕𝜃𝜃𝜃𝜃)

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜕𝜕𝜃𝜃𝑧𝑧

𝜕𝜕𝑧𝑧
+ 2

𝜕𝜕𝑟𝑟𝜃𝜃

𝑟𝑟

�̃�𝜌
𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕𝜕𝜕𝑟𝑟𝑧𝑧

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃𝑧𝑧

𝜕𝜕𝜃𝜃
+

𝜕𝜕(−𝜕𝜕 + 𝜕𝜕𝑧𝑧𝑧𝑧)

𝜕𝜕𝑧𝑧
+

𝜕𝜕𝑟𝑟𝑧𝑧

𝑟𝑟

1

2�̃�𝐺

𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕PT

+
𝜕𝜕𝑟𝑟𝑟𝑟

2𝜂𝜂E
=

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟

1

2�̃�𝐺

𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃

𝜕𝜕𝜕𝜕PT

+
𝜕𝜕𝜃𝜃𝜃𝜃

2𝜂𝜂E
=

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝑟𝑟

𝑟𝑟

1

2�̃�𝐺

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕PT

+
𝜕𝜕𝑧𝑧𝑧𝑧

2𝜂𝜂E
=

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧

1

2�̃�𝐺

𝜕𝜕𝜕𝜕𝑟𝑟𝜃𝜃

𝜕𝜕𝜕𝜕PT

+
𝜕𝜕𝑟𝑟𝜃𝜃

2𝜂𝜂E
=

1

2

(

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜃𝜃
−

𝜕𝜕𝜃𝜃

𝑟𝑟

)

1

2�̃�𝐺

𝜕𝜕𝜕𝜕𝑟𝑟𝑧𝑧

𝜕𝜕𝜕𝜕PT

+
𝜕𝜕𝑟𝑟𝑧𝑧

2𝜂𝜂E
=

1

2

(

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑟𝑟
+

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑧𝑧

)

1

2�̃�𝐺

𝜕𝜕𝜕𝜕𝜃𝜃𝑧𝑧

𝜕𝜕𝜕𝜕PT

+
𝜕𝜕𝜃𝜃𝑧𝑧

2𝜂𝜂E
=

1

2

(

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝑧𝑧

)

 (A3)

where 𝐴𝐴 �̃�𝐾 , 𝐴𝐴 𝐴𝐴𝐴 , and 𝐴𝐴 �̃�𝐺 are numerical parameters and τPT is a pseudo-time. 𝐴𝐴 �̃�𝐾 and 𝐴𝐴 �̃�𝐺 can be considered as pseudo-bulk 
and pseudo-shear modulus, respectively, and 𝐴𝐴 𝐴𝐴𝐴 as a pseudo-density. With these parameters, Equation A3 can be 
considered as acoustic and inertial approximations of the mass and momentum balance equations respectively.
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Appendix B: Spherical Coordinates System
The equations for conservation of mass and linear momentum for an incompressible fluid under gravity in spher-
ical coordinates are:

0 = −

(

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜑𝜑

𝜕𝜕𝜑𝜑
+ 2

𝜕𝜕𝑟𝑟

𝑟𝑟
+

𝜕𝜕𝜃𝜃

𝑟𝑟
cot(𝜃𝜃)

)

0 =
𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑟𝑟𝜃𝜃

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝑟𝑟𝜑𝜑

𝜕𝜕𝜑𝜑
+ 2

𝜕𝜕𝑟𝑟𝑟𝑟

𝑟𝑟
−

𝜕𝜕𝜃𝜃𝜃𝜃

𝑟𝑟
−

𝜕𝜕𝜑𝜑𝜑𝜑

𝑟𝑟
+

𝜕𝜕𝑟𝑟𝜃𝜃

𝑟𝑟
cot(𝜃𝜃) − 𝜌𝜌𝜌𝜌

0 =
𝜕𝜕𝜕𝜕𝑟𝑟𝜃𝜃

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜃𝜃𝜑𝜑

𝜕𝜕𝜑𝜑
+ 3

𝜕𝜕𝑟𝑟𝜃𝜃

𝑟𝑟
+

𝜕𝜕𝜃𝜃𝜃𝜃

𝑟𝑟
cot(𝜃𝜃) −

𝜕𝜕𝜑𝜑𝜑𝜑

𝑟𝑟
cot(𝜃𝜃)

0 =
𝜕𝜕𝜕𝜕𝑟𝑟𝜑𝜑

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃𝜑𝜑

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑

𝜕𝜕𝜑𝜑
+ 3

𝜕𝜕𝑟𝑟𝜑𝜑

𝑟𝑟
+ 2

𝜕𝜕𝜃𝜃𝜑𝜑

𝑟𝑟
cot(𝜃𝜃)

 (B1)

with Vr, Vθ, and Vφ being the components of the velocity vector in direction r, θ, and φ respectively. τij are the 
(i,j) th components of the deviatoric stress tensor, P is the pressure, σij = −P + τij is the total stress, ρ is the density 
and g the gravitational acceleration. Components of the deviatoric stress tensor are defined as:

𝜏𝜏𝑟𝑟𝑟𝑟 = 2𝜂𝜂E�̇�𝜖𝑟𝑟𝑟𝑟 = 2𝜂𝜂E

(

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟

)

𝜏𝜏𝜃𝜃𝜃𝜃 = 2𝜂𝜂E�̇�𝜖𝜃𝜃𝜃𝜃 = 2𝜂𝜂E

(

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
+

𝜕𝜕𝑟𝑟

𝑟𝑟

)

𝜏𝜏𝜑𝜑𝜑𝜑 = 2𝜂𝜂E�̇�𝜖𝜑𝜑𝜑𝜑 = 2𝜂𝜂E

(

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜑𝜑

𝜕𝜕𝜑𝜑
+

𝜕𝜕𝑟𝑟

𝑟𝑟
+

𝜕𝜕𝜃𝜃

𝑟𝑟
cot(𝜃𝜃)

)

𝜏𝜏𝑟𝑟𝜃𝜃 = 2𝜂𝜂E�̇�𝜖𝑟𝑟𝜃𝜃 = 2𝜂𝜂E

(

1

2

(

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜃𝜃
−

𝜕𝜕𝜃𝜃

𝑟𝑟

))

𝜏𝜏𝑟𝑟𝜑𝜑 = 2𝜂𝜂E�̇�𝜖𝑟𝑟𝜑𝜑 = 2𝜂𝜂E

(

1

2

(

𝜕𝜕𝜕𝜕𝜑𝜑

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜑𝜑
−

𝜕𝜕𝜑𝜑

𝑟𝑟

))

𝜏𝜏𝜃𝜃𝜑𝜑 = 2𝜂𝜂E�̇�𝜖𝜃𝜃𝜑𝜑 = 2𝜂𝜂E

(

1

2

(

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜑𝜑

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜑𝜑
−

𝜕𝜕𝜑𝜑

𝑟𝑟
cot(𝜃𝜃)

))

 (B2)

where 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖 are the (i,j) th components of the strain rate tensor, and ηE is the effective viscosity used in the numerical 
calculations (see Section 2.3, Equation 4).

The numerical implementation used is the same as for the Cartesian coordinates (see Section 2.4):

1

�̃�𝐾

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕PT

= −

(

𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜑𝜑

𝜕𝜕𝜑𝜑
+ 2

𝜕𝜕𝑟𝑟

𝑟𝑟
−

𝜕𝜕𝜃𝜃

𝑟𝑟
cot(𝜃𝜃)

)

�̃�𝜌
𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑟𝑟𝜃𝜃

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝑟𝑟𝜑𝜑

𝜕𝜕𝜑𝜑
+ 2

𝜕𝜕𝑟𝑟𝑟𝑟

𝑟𝑟
−

𝜕𝜕𝜃𝜃𝜃𝜃

𝑟𝑟
−

𝜕𝜕𝜑𝜑𝜑𝜑

𝑟𝑟
+

𝜕𝜕𝑟𝑟𝜃𝜃

𝑟𝑟
cot(𝜃𝜃) − 𝜌𝜌𝜌𝜌

�̃�𝜌
𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕𝜕𝜕𝑟𝑟𝜃𝜃

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜃𝜃𝜑𝜑

𝜕𝜕𝜑𝜑
+ 3

𝜕𝜕𝑟𝑟𝜃𝜃

𝑟𝑟
+

𝜕𝜕𝜃𝜃𝜃𝜃

𝑟𝑟
cot(𝜃𝜃) −

𝜕𝜕𝜑𝜑𝜑𝜑

𝑟𝑟
cot(𝜃𝜃)

�̃�𝜌
𝜕𝜕𝜕𝜕𝜑𝜑

𝜕𝜕𝜕𝜕PT

=
𝜕𝜕𝜕𝜕𝑟𝑟𝜑𝜑

𝜕𝜕𝑟𝑟
+

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝜃𝜃𝜑𝜑

𝜕𝜕𝜃𝜃
+

1

𝑟𝑟 sin(𝜃𝜃)

𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑

𝜕𝜕𝜑𝜑
+ 3

𝜕𝜕𝑟𝑟𝜑𝜑

𝑟𝑟
+ 2

𝜕𝜕𝜃𝜃𝜑𝜑

𝑟𝑟
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where 𝐴𝐴 �̃�𝐾 , 𝐴𝐴 𝐴𝐴𝐴 , and 𝐴𝐴 �̃�𝐺 are numerical parameters, τPT is a pseudo-time. 𝐴𝐴 �̃�𝐾 and 𝐴𝐴 �̃�𝐺 can be considered as pseudo-bulk 
and pseudo-shear modulus respectively, and 𝐴𝐴 𝐴𝐴𝐴 as a pseudo-density. With these parameters, Equation B3 can be 
considered as acoustic and inertial approximations of the mass and momentum balance equations respectively.

Appendix C: Comparison of Cartesian, Cylindrical, and Spherical Coordinate 
Systems
C1. Model Configuration

The model configuration in Cartesian coordinates is displayed in Figure 2. In cylindrical coordinates, the r-axis 
is the radial component, the θ-axis is the angular coordinate (θ ∈  [0, 2π]) and the z-axis is the height of the 
cylinder (Figure C1a). Gravity acts in the radial direction pointing toward the central axis of the cylinder and 
shearing occurs along direction Z, parallel to the cylinder axis. The model configuration is essentially the same 
as in Cartesian coordinates (Figure 2), and a pseudo-cube, representing the model domain, is taken at the rim of 
the cylinder (Figure C1a). This method allows to decrease the curvature of the model domain by increasing the  
radius of the cylinder. In spherical coordinates, r is the radial distance, θ ∈ [0, π] is the polar angle and φ ∈   
[0, 2π] is the azimuthal angle (Figure C1b). In the spherical model, gravity acts along the radial axis, pointing 
toward the center of the sphere. Shearing occurs along the azimuthal axis φ. The model configuration is again  
essentially the same as in Cartesian coordinates (Figure 2), and a pseudo-cube is taken at the surface of the sphere. As  
in cylindrical coordinates, this method allows to decrease the curvature of the model domain by increasing the 
radius of the sphere.

As a first step of comparison of the results of the three different coordinate systems, we consider a large radius 
defining the curvature in the cylindrical and spherical coordinate systems. Hence, the geometry of the employed 
model domain for the cylindrical and spherical coordinates is essentially the same cube as for the Cartesian 
coordinate system. Consequently, also the applied boundary conditions are essentially identical for the three 
coordinates systems. The aim of these simulations is to compare the results obtained for Cartesian, cylindrical 
and spherical coordinates, which represents a test of three different numerical algorithms employing different 
system of equations. If the results from the three algorithms are equal, then the numerical implementation of the 
employed system of equations is correct.

Figure C1. Model domain in (a) cylindrical and, (b) spherical coordinates systems. (a) Cylinder is rotated so the Z-axis 
becomes a horizontal coordinate and gravity acts in the radial direction. The cylindrical coordinates (r, θ, Z) are displayed 
in orange. Model domain of size L × L × L is taken at the rim of the cylinder (blue area) and shearing occurs in direction Z 
(yellow arrows). (b) For the spherical coordinates, axis (r, θ, φ) are displayed in orange and gravity points toward the center 
of the sphere. The model domain of size L × L × L is at the surface of the sphere (blue area) and the shearing occurs along the 
φ-direction (yellow arrows). In both coordinates systems, the diapir is of size L/3 and is located at the center of the domain 
(see Figure 2).
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C2. Results

We performed the stress quantification with three different numerical algorithms for different governing equa-
tions that are formulated for Cartesian, cylindrical and spherical coordinates (compare Section 2.3, Appendices A 
and B). Figure C2 displays the comparison between the three algorithms for the total vertical stress, pressure and 
vertical deviatoric stress (for a detailed explanation of these stresses and their relationship, see Section 3.2). The 
numerical results of the three algorithms are identical. This agreement suggests that the three algorithms and the 
three systems of equations are correct (Figure C2). This agreement is further confirmed by Figure 5, which shows 
that the maximum vertical velocities calculated by the three algorithms are equal.

Figure C2. Numerical results for τR/τC = 1 and ΔρgR/τC = 10. Vertical cross sections at position X/R = 0 and θ/R = 0 (see Figure 3a) of vertical total stress (a, d, g), 
pressure (b, e, h) and vertical deviatoric stress (c, f, i) in Cartesian (a, b, c), cylindrical (d, e, f) and spherical (g, h, i) coordinates. All stresses are normalized by the 
buoyancy stress ΔρgR. For comparison, the curvature used in the cylindrical and spherical coordinates is so small that it is not visible.
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Appendix D: Numerical Performances
Evaluating the performance of an algorithm is a challenging task, especially if one seeks at employing 
some absolute instead of relative metrics. In the present study, we are relying on iterative and matrix-free 
stencil-based solvers. In that particular configuration, we identify three criteria to evaluate performance, 
namely: (a) the effective memory throughput, (b) the scalability of iteration count with resolution, and (c) the 
parallel efficiency.

First, the effective memory throughput (Figure D1b) is used to evaluate the amount of non-redundant memory 
transfer that leads to saturating the memory bandwidth, which is the limiting factor in our configuration since we 
are memory-bound (further details in Räss et al., 2022). This means that in our implementation, data transfers 
between computer units and main GPU memory are the bottleneck, and not the arithmetic operations themselves. 
The effective memory throughput is defined as Teff = Aeff/tit, where Aeff is the effective memory access in GB and 
tit is the time per iteration in seconds. Evaluating Teff as function of resolution, we reach a plateau for resolutions 
larger 255 (Figure D1b). This means that passed this resolution the memory bandwidth is saturated, hence the 
maximal performance is reached. Also, the peak value of Teff, here about 200 GB/s for an Nvidia A100 GPU, 
means that we are about 6× below memory copy only rates (if not doing any actual computations). Further 
opti mizations such as using shared memory to reduce cache misses could lead to bridge most of this gap, espe-
cially for 3D computations.

Second, we assess the scalability of the iteration count as function of numerical resolution (Figure D1a). The 
iteration count per time step normalized by the numerical grid resolution in one of the spatial direction, iter/nr, 
remains constant and even slightly drops while resolution increases, confirming the (super-)linear scaling of the 
accelerated pseudo-transient (PT) method.

Third, we evaluate the parallel efficiency of our multi-GPU implementation (Figure D1c). Multi-GPU configu-
ration is required if the problem we solve is larger than the optimal problem size we can fit onto a single GPU. 
In this case, we use a weak scaling approach to increase the computational resources proportionally to the 
global problem size. In this configuration, the parallel efficiency of the solver is important as no time should 

Figure D1. Performance evaluation. (a) Scaling of the normalized iteration count as function of the spatial resolution nr, (b) effective memory throughput Teff as 
function of numerical grid resolution nr evaluated on two different GPUs (Nvidia Tesla P100 and Tesla V100), and (c) the parallel efficiency E evaluated on two 
different GPUs.
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be lost in communication overhead given the distributed memory setup. Our results show that increasing the 
number of GPUs has almost no effect on the time per iteration. We achieve this ideal scaling by overlapping 
MPI communication behind the physics calculations. Our algorithm scales ideally up to 2,197 GPUs, on the 
Piz Daint supercomputer at the Swiss National Supercomputing Center (CSCS). Hence it can be used to solve 
larger problems.

Finally, we also evaluate the sensitivity of the physical results on the numerical resolution and exit criteria (toler-
ance) for our iterative solver. The exit criteria represents the nonlinear tolerance value we converge the residuals 
to using the PT scheme (Equation 20). Figure D2 shows that a spatial resolution of minimum 207 grid points 
in one of the spatial directions (total resolution is 207 3) and an exit criteria of maximum 10 −6 are necessary to 
deliver accurate results.

Appendix E: Parameters Used in Figure 9
In this section, we provide the parameters used to calculate the flow laws in Figure 9 (Table E1).

Figure D2. Numerical convergence test. (a) Numerical resolution, and (b) nonlinear tolerance required to obtain accurate 
results. Convergence is achieved when values of Vvert/V0 reach a constant value.
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Data Availability Statement
Current and future versions of the SphericalStokes.jl software used in this study are publicly available on GitHub 
at https://github.com/PTsolvers/SphericalStokes. The exact version used in this study is archived on Zenodo and 
can be accessed at https://zenodo.org/doi/10.5281/zenodo.10093648 (Macherel et al., 2023).

References
Austin, N. J., & Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35(4), 343–346. https://

doi.org/10.1130/g23244a.1
Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R., & Massonne, H.-J. (2011). Diapirs as the source of the sediment signature in arc lavas. 

Nature Geoscience, 4(9), 641–646. https://doi.org/10.1038/ngeo1214
Berdiel, T. R., Gapais, D., & Brun, J.-P. (1997). Granite intrusion along strike-slip zones in experiment and nature. American Journal of Science, 

297(6), 651–678. https://doi.org/10.2475/ajs.297.6.651
Berger, A., Rosenberg, C., & Schmid, S. (1996). Ascent, emplacement and exhumation of the Bergell pluton within the southern steep belt of the 

central alps. Schweizerische mineralogische und petrographische Mitteilungen, 76, 357–382.
Brown, M., & Solar, G. (1999). The mechanism of ascent and emplacement of granite magma during transpression: A syntectonic granite para-

digm. Tectonophysics, 312(1), 1–33. https://doi.org/10.1016/s0040-1951(99)00169-9
Bürgmann, R., & Dresen, G. (2008). Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observa-

tions. Annual Review of Earth and Planetary Sciences, 36(1), 531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326
Burov, E., François, T., Agard, P., Le Pourhiet, L., Meyer, B., Tirel, C., et al. (2014). Rheological and geodynamic controls on the mechanisms 

of subduction and HP/UHP exhumation of crustal rocks during continental collision: Insights from numerical models. Tectonophysics, 631, 
212–250. https://doi.org/10.1016/j.tecto.2014.04.033

Burov, E., Jaupart, C., & Guillou-Frottier, L. (2003). Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. Journal of 
Geophysical Research, 108(B4), 2177. https://doi.org/10.1029/2002jb001904

Burov, E., Jolivet, L., Le Pourhiet, L., & Poliakov, A. (2001). A thermomechanical model of exhumation of high pressure (HP) and ultra-
high pressure (UHP) metamorphic rocks in alpine-type collision belts. Tectonophysics, 342(1–2), 113–136. https://doi.org/10.1016/
s0040-1951(01)00158-5

Christensen, U. (1983). Convection in a variable-viscosity fluid: Newtonian versus power-law rheology. Earth and Planetary Science Letters, 
64(1), 153–162. https://doi.org/10.1016/0012-821x(83)90060-2

Clemens, J., & Mawer, C. (1992). Granitic magma transport by fracture propagation. Tectonophysics, 204(3–4), 339–360. https://doi.
org/10.1016/0040-1951(92)90316-x

Cruden, A. R. (1988). Deformation around a rising diapir modeled by creeping flow past a sphere. Tectonics, 7(5), 1091–1101. https://doi.
org/10.1029/TC007i005p01091

Cruden, A. R., & Weinberg, R. (2018). Mechanisms of magma transport and storage in the lower and middle crust—Magma segregation, ascent 
and emplacement. In Volcanic and igneous plumbing systems (pp. 13–53). https://doi.org/10.1016/b978-0-12-809749-6.00002-9

Dayem, K. E., Houseman, G. A., & Molnar, P. (2009). Localization of shear along a lithospheric strength discontinuity: Application of a contin-
uous deformation model to the boundary between Tibet and the Tarim basin. Tectonics, 28(3), TC3002. https://doi.org/10.1029/2008tc002264

England, P., & McKenzie, D. (1982). A thin viscous sheet model for continental deformation. Geophysical Journal International, 70(2), 295–321. 
https://doi.org/10.1111/j.1365-246x.1982.tb04969.x

Fletcher, R. C. (1974). Wavelength selection in the folding of a single layer with power-law rheology. American Journal of Science, 274(9), 
1029–1043. https://doi.org/10.2475/ajs.274.9.1029

Fletcher, R. C., & Hallet, B. (1983). Unstable extension of the lithosphere: A mechanical model for basin-and-range structure. Journal of 
Geophysical Research, 88(B9), 7457–7466. https://doi.org/10.1029/jb088ib09p07457

Frankel, S. P. (1950). Convergence rates of iterative treatments of partial differential equations. Mathematics of Computation, 4(30), 65–75. 
https://doi.org/10.1090/s0025-5718-1950-0046149-3

Gerya, T. (2019). Introduction to numerical geodynamic modelling. Retrieved from https://www.ebook.de/de/product/34700198/taras_gerya_
introduction_to_numerical_geodynamic_modelling.html

Gerya, T., & Yuen, D. A. (2003). Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth and 
Planetary Science Letters, 212(1–2), 47–62. https://doi.org/10.1016/s0012-821x(03)00265-6

Hacker, B. R., & Gerya, T. V. (2013). Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics, 603, 79–88. https://doi.
org/10.1016/j.tecto.2013.05.026

Hadamard, J. (1911). Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquid visqueux. Comptes Rendus de l'Académie des 
Sciences, 152, 1735–1738.

Hermann, J., & Rubatto, D. (2014). Subduction of continental crust to mantle depth: Geochemistry of ultrahigh-pressure rocks. In Treatise on 
geochemistry (2nd ed.). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00309-0

Hirth, G., & Kohlstedt, D. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Geophysical 
Monograph-American Geophysical Union, 138, 83–106. https://doi.org/10.1029/138GM06

Hirth, G., Teyssier, C., & Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally 
deformed rocks. International Journal of Earth Sciences, 90(1), 77–87. https://doi.org/10.1007/s005310000152

Hutton, D., & Reavy, R. (1992). Strike-slip tectonics and granite petrogenesis. Tectonics, 11(5), 960–967. https://doi.org/10.1029/92TC00336
Jackson, M., Cornelius, R., Craig, C., Gansser, A., Stöcklin, J., & Talbot, C. (1990). Salt diapirs of the Great Kavir, central Iran. https://doi.

org/10.1130/MEM177-p1
Jackson, M., & Vendeville, B. (1994). Regional extension as a geologic trigger for diapirism. Geological society of America bulletin, 106(1), 

57–73. https://doi.org/10.1130/0016-7606(1994)106〈0057:REAAGT〉2.3.CO;2
Jamieson, R. A., Unsworth, M. J., Harris, N. B., Rosenberg, C. L., & Schulmann, K. (2011). Crustal melting and the flow of mountains. Elements, 

7(4), 253–260. https://doi.org/10.2113/gselements.7.4.253
Karato, S.-I. (2008). Deformation of earth materials. An introduction to the rheology of Solid Earth, 463. https://doi.org/10.1017/

CBO9780511804892

Acknowledgments
This work was supported by SNSF Grant 
200020 197218. LR acknowledges the 
Swiss University Conference and the 
Swiss Council of Federal Institutes of 
Technology for supporting this research 
through the Platform for Advanced Scien-
tific Computing (PASC) program and the 
Swiss National Supercomputing Center 
(CSCS) through project ID c23. This 
work was supported by the University of 
Lausanne.

 15252027, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011115 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/PTsolvers/SphericalStokes
https://zenodo.org/doi/10.5281/zenodo.10093648
https://doi.org/10.1130/g23244a.1
https://doi.org/10.1130/g23244a.1
https://doi.org/10.1038/ngeo1214
https://doi.org/10.2475/ajs.297.6.651
https://doi.org/10.1016/s0040-1951(99)00169-9
https://doi.org/10.1146/annurev.earth.36.031207.124326
https://doi.org/10.1016/j.tecto.2014.04.033
https://doi.org/10.1029/2002jb001904
https://doi.org/10.1016/s0040-1951(01)00158-5
https://doi.org/10.1016/s0040-1951(01)00158-5
https://doi.org/10.1016/0012-821x(83)90060-2
https://doi.org/10.1016/0040-1951(92)90316-x
https://doi.org/10.1016/0040-1951(92)90316-x
https://doi.org/10.1029/TC007i005p01091
https://doi.org/10.1029/TC007i005p01091
https://doi.org/10.1016/b978-0-12-809749-6.00002-9
https://doi.org/10.1029/2008tc002264
https://doi.org/10.1111/j.1365-246x.1982.tb04969.x
https://doi.org/10.2475/ajs.274.9.1029
https://doi.org/10.1029/jb088ib09p07457
https://doi.org/10.1090/s0025-5718-1950-0046149-3
https://www.ebook.de/de/product/34700198/taras_gerya_introduction_to_numerical_geodynamic_modelling.html
https://www.ebook.de/de/product/34700198/taras_gerya_introduction_to_numerical_geodynamic_modelling.html
https://doi.org/10.1016/s0012-821x(03)00265-6
https://doi.org/10.1016/j.tecto.2013.05.026
https://doi.org/10.1016/j.tecto.2013.05.026
https://doi.org/10.1016/B978-0-08-095975-7.00309-0
https://doi.org/10.1029/138GM06
https://doi.org/10.1007/s005310000152
https://doi.org/10.1029/92TC00336
https://doi.org/10.1130/MEM177-p1
https://doi.org/10.1130/MEM177-p1
https://doi.org/10.1130/0016-7606(1994)106%E2%8C%A90057:REAAGT%E2%8C%AA2.3.CO;2
https://doi.org/10.2113/gselements.7.4.253
https://doi.org/10.1017/CBO9780511804892
https://doi.org/10.1017/CBO9780511804892


Geochemistry, Geophysics, Geosystems

MACHEREL ET AL.

10.1029/2023GC011115

28 of 29

Kilian, R., Heilbronner, R., & Stünitz, H. (2011). Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion 
creep. Journal of Structural Geology, 33(8), 1265–1284. https://doi.org/10.1016/j.jsg.2011.05.004

Klein, B. Z., & Behn, M. D. (2021). On the evolution and fate of sediment diapirs in subduction zones. Geochemistry, Geophysics, Geosystems, 
22(11), e2021GC009873. https://doi.org/10.1029/2021GC009873

Kohlstedt, D., & Hansen, L. (2015). 2.18—Constitutive equations, rheological behavior, and viscosity of rocks. In G. Schubert (Ed.), Treatise on 
geophysics (2nd ed., pp. 441–472). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00042-7

Kylander-Clark, A. R., Hacker, B. R., & Mattinson, C. G. (2012). Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. 
Earth and Planetary Science Letters, 321, 115–120. https://doi.org/10.1016/j.epsl.2011.12.036

Larsen, T. B., & Yeun, D. A. (1997). Fast plumeheads: Temperature-dependent versus non-Newtonian rheology. Geophysical Research Letters, 
24(16), 1995–1998. https://doi.org/10.1029/97GL01886

Little, T., Hacker, B., Gordon, S., Baldwin, S., Fitzgerald, P., Ellis, S., & Korchinski, M. (2011). Diapiric exhumation of earth’s youngest (UHP) 
eclogites in the gneiss domes of the d’entrecasteaux islands, Papua New Guinea. Tectonophysics, 510(1–2), 39–68. https://doi.org/10.1016/j.
tecto.2011.06.006

Macherel, E., Räss, L., & Schmalholz, S. M. (2023). PTsolvers/SphericalStokes: SphericalStokes.jl 1.0.1 [Software]. Zenodo. https://doi.
org/10.5281/zenodo.10093728

Marschall, H. R., & Schumacher, J. C. (2012). Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5(12), 
862–867. https://doi.org/10.1038/ngeo1634

Marsh, B. D. (1982). On the mechanics of igneous diapirism, stoping, and zone melting. American Journal of Science, 282(6), 808–855. https://
doi.org/10.2475/ajs.282.6.808

Mazzini, A., Nermoen, A., Krotkiewski, M., Podladchikov, Y., Planke, S., & Svensen, H. (2009). Strike-slip faulting as a trigger mechanism for 
overpressure release through piercement structures. implications for the lusi mud volcano, Indonesia. Marine and Petroleum Geology, 26(9), 
1751–1765. https://doi.org/10.1016/j.marpetgeo.2009.03.001

Michail, M., Rudolf, M., Rosenau, M., Riva, A., Gianolla, P., & Coltorti, M. (2021). Shape of plutons in crustal shear zones: A tectono-magmatic 
guide based on analogue models. Journal of Structural Geology, 150, 104417. https://doi.org/10.1016/j.jsg.2021.104417

Miller, R., & Paterson, S. (1999). In defense of magmatic diapirs. Journal of Structural Geology, 21(8), 1161–1173. https://doi.org/10.1016/
S0191-8141(99)00033-4

Montési, L. G., & Zuber, M. T. (2002). A unified description of localization for application to large-scale tectonics. Journal of Geophysical 
Research, 107(B3), ECV-1. https://doi.org/10.1029/2001jb000465

Nahas, I., Gonçalves, L., Gonçalves, C. C., & Raposo, M. I. B. (2023). Unraveling the relationship between a tonalitic pluton and shear zones: 
Insights from magnetic fabrics and microstructures of the Alto Maranhão batholith, Mineiro belt, southern São Francisco craton. Journal of 
Structural Geology, 172, 104887. https://doi.org/10.1016/j.jsg.2023.104887

Petford, N. (1996). Dykes or diapirs? Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1–2), 105–114. https://
doi.org/10.1017/S0263593300006520

Plank, T., & Langmuir, C. H. (1993). Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362(6422), 
739–743. https://doi.org/10.1038/362739a0

Poliakov, A. N., Podladchikov, Y., & Talbot, C. (1993). Initiation of salt diapirs with frictional overburdens: Numerical experiments. Tectonophys-
ics, 228(3–4), 199–210. https://doi.org/10.1016/0040-1951(93)90341-G

Poliakov, A. N., Podladchikov, Y. Y., Dawson, E. C., & Talbot, C. J. (1996). Salt diapirism with simultaneous brittle faulting and viscous flow. 
Geological Society, London, Special Publications, 100(1), 291–302. https://doi.org/10.1144/GSL.SP.1996.100.01.19

Rabinowicz, M., Ceuleneer, G., & Nicolas, A. (1987). Melt segregation and flow in mantle diapirs below spreading centers: Evidence from the 
Oman ophiolite. Journal of Geophysical Research, 92(B5), 3475–3486. https://doi.org/10.1029/JB092iB05p03475

Ramberg, H. (1968). Fluid dynamics of layered systems in the field of gravity, a theoretical basis for certain global structures and isostatic adjust-
ment. Physics of the Earth and Planetary Interiors, 1(2), 63–87. https://doi.org/10.1016/0031-9201(68)90051-4

Räss, L., Utkin, I., Duretz, T., Omlin, S., & Podladchikov, Y. Y. (2022). Assessing the robustness and scalability of the accelerated pseudo-transient 
method. Geoscientific Model Development, 15(14), 5757–5786. https://doi.org/10.5194/gmd-15-5757-2022

Rubin, A. M. (1993). Dikes vs. diapirs in viscoelastic rock. Earth and Planetary Science Letters, 117(3–4), 653–670. https://doi.
org/10.1016/0012-821X(93)90109-M

Rybacki, E., & Dresen, G. (2000). Dislocation and diffusion creep of synthetic anorthite aggregates. Journal of Geophysical Research, 105(B11), 
26017–26036. https://doi.org/10.1029/2000JB900223

Rybczynski, W. (1911). Über die fortschreitende bewegung einer flüssigen kugel in einen zähen medium. Bulletin International de Academie des 
Sciences de Cracovie, 1, 40–46.

Schmalholz, S. M., & Fletcher, R. C. (2011). The exponential flow law applied to necking and folding of a ductile layer. Geophysical Journal 
International, 184(1), 83–89. https://doi.org/10.1111/j.1365-246X.2010.04846.x

Schmalholz, S. M., Moulas, E., Plümper, O., Myasnikov, A. V., & Podladchikov, Y. Y. (2020). 2D hydro-mechanical-chemical modeling of (de) 
hydration reactions in deforming heterogeneous rock: The periclase-brucite model reaction. Geochemistry, Geophysics, Geosystems, 21(11), 
e2020GC009351. https://doi.org/10.1029/2020gc009351

Schmalholz, S. M., Podladchikov, Y., & Burg, J.-P. (2002). Control of folding by gravity and matrix thickness: Implications for large-scale folding. 
Journal of Geophysical Research, 107(B1), ETG-1. https://doi.org/10.1029/2001JB000355

Schmalholz, S. M., & Podladchikov, Y. Y. (2013). Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation 
of high-pressure rocks. Geophysical Research Letters, 40(10), 1984–1988. https://doi.org/10.1002/grl.50417

Schmalholz, S. M., & Schenker, F. L. (2016). Exhumation of the Dora Maira ultrahigh-pressure unit by buoyant uprise within a low-viscosity 
mantle oblique-slip shear zone. Terra Nova, 28(5), 348–355. https://doi.org/10.1111/ter.12227

Schubert, G., Turcotte, D. L., & Olson, P. (2001). Mantle convection in the earth and planets. Cambridge University Press. https://doi.org/10.1017/
CBO9780511612879

Schultz-Ela, D., Jackson, M., & Vendeville, B. (1993). Mechanics of active salt diapirism. Tectonophysics, 228(3), 275–312. https://doi.
org/10.1016/0040-1951(93)90345-K

Schwarzenbach, E. M., Zhong, X., Caddick, M. J., Schmalholz, S. M., Menneken, M., Hecht, L., & John, T. (2021). On exhumation velocities 
of high-pressure units based on insights from chemical zoning in garnet (Tianshan, NW China). Earth and Planetary Science Letters, 570, 
117065. https://doi.org/10.1016/j.epsl.2021.117065

Smye, A. J., & England, P.  C. (2023). Metamorphism and deformation on subduction interfaces: 2. Petrological and tectonic implications. 
Geochemistry, Geophysics, Geosystems, 24(1), e2022GC010645. https://doi.org/10.1029/2022GC010644

 15252027, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011115 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.jsg.2011.05.004
https://doi.org/10.1029/2021GC009873
https://doi.org/10.1016/B978-0-444-53802-4.00042-7
https://doi.org/10.1016/j.epsl.2011.12.036
https://doi.org/10.1029/97GL01886
https://doi.org/10.1016/j.tecto.2011.06.006
https://doi.org/10.1016/j.tecto.2011.06.006
https://doi.org/10.5281/zenodo.10093728
https://doi.org/10.5281/zenodo.10093728
https://doi.org/10.1038/ngeo1634
https://doi.org/10.2475/ajs.282.6.808
https://doi.org/10.2475/ajs.282.6.808
https://doi.org/10.1016/j.marpetgeo.2009.03.001
https://doi.org/10.1016/j.jsg.2021.104417
https://doi.org/10.1016/S0191-8141(99)00033-4
https://doi.org/10.1016/S0191-8141(99)00033-4
https://doi.org/10.1029/2001jb000465
https://doi.org/10.1016/j.jsg.2023.104887
https://doi.org/10.1017/S0263593300006520
https://doi.org/10.1017/S0263593300006520
https://doi.org/10.1038/362739a0
https://doi.org/10.1016/0040-1951(93)90341-G
https://doi.org/10.1144/GSL.SP.1996.100.01.19
https://doi.org/10.1029/JB092iB05p03475
https://doi.org/10.1016/0031-9201(68)90051-4
https://doi.org/10.5194/gmd-15-5757-2022
https://doi.org/10.1016/0012-821X(93)90109-M
https://doi.org/10.1016/0012-821X(93)90109-M
https://doi.org/10.1029/2000JB900223
https://doi.org/10.1111/j.1365-246X.2010.04846.x
https://doi.org/10.1029/2020gc009351
https://doi.org/10.1029/2001JB000355
https://doi.org/10.1002/grl.50417
https://doi.org/10.1111/ter.12227
https://doi.org/10.1017/CBO9780511612879
https://doi.org/10.1017/CBO9780511612879
https://doi.org/10.1016/0040-1951(93)90345-K
https://doi.org/10.1016/0040-1951(93)90345-K
https://doi.org/10.1016/j.epsl.2021.117065
https://doi.org/10.1029/2022GC010644


Geochemistry, Geophysics, Geosystems

MACHEREL ET AL.

10.1029/2023GC011115

29 of 29

Stokes, G. (1850). On the effect of internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 
9(8), 106. Retrieved from http://mural.uv.es/daroig/documentos/stokes1850.pdf

Turcotte, D., & Schubert, G. (2021). Geodynamics. Cambridge University Press. Retrieved from https://www.ebook.de/de/product/21880842/
donald_turcotte_gerald_schubert_geodynamics.html

Wang, L. H., Yarushina, V. M., Alkhimenkov, Y., & Podladchikov, Y. (2022). Physics-inspired pseudo-transient method and its application 
in modelling focused fluid flow with geological complexity. Geophysical Journal International, 229(1), 1–20. https://doi.org/10.1093/gji/
ggab426

Warren, C. (2013). Exhumation of (ultra-) high-pressure terranes: Concepts and mechanisms. Solid Earth, 4(1), 75–92. https://doi.org/10.5194/
se-4-75-2013

Weinberg, R. F., & Podladchikov, Y. (1994). Diapiric ascent of magmas through power law crust and mantle. Journal of Geophysical Research, 
99(B5), 9543–9559. https://doi.org/10.1029/93jb03461

Weinberg, R. F., & Podladchikov, Y. Y. (1995). The rise of solid-state diapirs. Journal of Structural Geology, 17(8), 1183–1195. https://doi.
org/10.1016/0191-8141(95)00004-w

White, S. T., & Knipe, R. (1978). Transformation-and reaction-enhanced ductility in rocks. Journal of the Geological Society, 135(5), 513–516. 
https://doi.org/10.1144/gsjgs.135.5.0513

Whitehead, J. A., Jr., & Luther, D. S. (1975). Dynamics of laboratory diapir and plume models. Journal of Geophysical Research, 80(5), 705–717. 
https://doi.org/10.1029/JB080i005p00705

 15252027, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011115 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://mural.uv.es/daroig/documentos/stokes1850.pdf
https://www.ebook.de/de/product/21880842/donald_turcotte_gerald_schubert_geodynamics.html
https://www.ebook.de/de/product/21880842/donald_turcotte_gerald_schubert_geodynamics.html
https://doi.org/10.1093/gji/ggab426
https://doi.org/10.1093/gji/ggab426
https://doi.org/10.5194/se-4-75-2013
https://doi.org/10.5194/se-4-75-2013
https://doi.org/10.1029/93jb03461
https://doi.org/10.1016/0191-8141(95)00004-w
https://doi.org/10.1016/0191-8141(95)00004-w
https://doi.org/10.1144/gsjgs.135.5.0513
https://doi.org/10.1029/JB080i005p00705

	Quantifying Diapir Ascent Velocities in Power-Law Viscous Rock Under Far-Field Stress: Integrating Analytical Estimates, 3D Numerical Calculations and Geodynamic Applications
	Abstract
	Plain Language Summary
	1. Introduction
	2. Model
	2.1. Flow Law and Effective Viscosity
	2.2. Analytical Estimates for Diapir Ascent Velocity in Deforming Power-Law Viscous Medium
	2.3. 3D Mathematical Model
	2.4. Numerical Method
	2.5. Model Configuration

	3. Results
	3.1. Distribution of Stress, Pressure and Effective Viscosity
	3.2. Stress Decomposition and Magnitudes
	3.3. Comparison of Analytical and Numerical Ascent Velocities

	4. Discussion
	4.1. Characteristic Stresses for Experimentally Derived Flow Laws
	4.2. Increase of Diapir Ascent Velocity by Two Types of Stress Weakening
	4.3. Applications to Sediment Diapirs, Mantle Plumes, (U)HP Terranes and Plutons
	4.4. Simplifications

	5. Conclusions
	Appendix A: Cylindrical Coordinate System
	Appendix B: Spherical Coordinates System
	Appendix C: Comparison of Cartesian, Cylindrical, and Spherical Coordinate Systems
	C1. Model Configuration
	C2. Results
	Appendix D: Numerical Performances
	Appendix E: Parameters Used in Figure 9
	Data Availability Statement
	References


