
SlimCodeML: An Optimized Version of
CodeML for the Branch-Site Model

Hannes Schabauer∗, Mario Valle†, Christoph Pacher‡, Heinz Stockinger§,
Alexandros Stamatakis¶, Marc Robinson-Rechavi∗, Ziheng Yang‖, and Nicolas Salamin∗

∗University of Lausanne, Department of Ecology and Evolution and
SIB Swiss Institute of Bioinformatics (CH)

†Swiss National Supercomputing Centre, Scientific Computing Group (CH)
‡AIT Austrian Institute of Technology, Safety & Security Department (AT)

§SIB Swiss Institute of Bioinformatics, Vital-IT Group (CH)
¶Heidelberg Institute for Theoretical Studies, Scientific Computing Group (DE)

‖Department of Biology, University College London (UK)
Email: hannes.schabauer@unil.ch

Abstract—CodeML (part of the PAML package) im-
plements a maximum likelihood-based approach to de-
tect positive selection on a specific branch of a given
phylogenetic tree. While CodeML is widely used, it is
very compute-intensive. We present SlimCodeML, an
optimized version of CodeML for the branch-site model.
Our performance analysis shows that SlimCodeML
substantially outperforms CodeML (up to 9.38 times
faster), especially for large-scale genomic analyses.

Keywords-scientific computing; molecular evolution;
phylogenetics; codon models; likelihood computation

I. INTRODUCTION

The recent advances in high-throughput sequencing
techniques are providing researchers with a wealth of
genome scale data that allows us to study evolutionary
questions that were not feasible a decade ago [1],
[2]. Notably, the increase in molecular data available
for non-model organisms is creating a surge toward
comparative genomics that is strengthened by recent
new theoretical developments [3], [4]. However, the
full potential of these new data will only be achieved
by the developments of further computational and
mathematical techniques.

In particular, the analysis of protein-coding gene
evolution has benefited from the development of codon
models. They allow a drastic increase of the number
of genes identified as evolving under positive selection
[5]–[7]. Their use show that similar selection pressures
can lead to the repeated emergence of the same phe-

notype in distant lineages via identical genetic changes
[8].

The main computational issue hampering wider use
of codon models relates to the need to integrate them
within a phylogenetic framework. Transition proba-
bilities between all possible pairs of codons must be
computed from the substitution matrix describing the
codon model, which is done by computing the matrix
exponential for each branch of a phylogenetic tree.
Unlike simple nucleotide models that are represented
by a 4 × 4 substitution matrix, a codon model is rep-
resented by a 61× 61 matrix. Several approximations
have been proposed to reduce model complexity [9,
p.137], but the high dimensionality of the problem is
still challenging the use of these approaches to study
genomic data.

Our aim is to reduce the computational time when
optimizing the likelihood function used to estimate the
parameters of the substitution matrix. This is done
through a series of novel optimizations which we
implemented in existing software. Our new approach
makes it feasible to use these codon models on large-
scale genomic data.

A. Motivation and problem statement

An important question in evolutionary biology is to
understand how protein-coding genes evolve through
time and in the various organisms that exist today. One
particular evolutionary force that is of great interest is
the so-called positive or Darwinian selection, which

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.88

700

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.88

700

drives the appearance of functional changes in those
protein-coding genes. The importance of detecting
positive selection is crucial as this evolutionary force
is not just the best explanation for adaptation but the
only physically possible purely causal explanation [10,
p.25]. Yet because of computational limitations the
global incidence of positive selection in genomes
remains uncharacterized. The increasing number of
available genomes [11] is rendering the problem even
more complex, because the addition of new species
increases the number of branches and thus the number
of computations to make.

The most common method to detect positive selec-
tion is to test through likelihood ratio test [12] if a
codon model allowing positive selection on a particular
branch of a phylogenetic tree (hypothesis H1) explains
the data better than a codon model that does not
allow for positive selection (hypothesis H0). If this
test is significant and positive selection is confirmed,
Bayesian approaches are used to assess the posterior
probability of a particular codon along the protein-
coding gene sequence to be evolving under positive
selection [13]. This is done iteratively for each branch
of a phylogenetic tree [14].

CodeML [15] is the main software to carry out tests
of positive selection. It has been designed to test one
gene and one branch at a time. It is widely used in the
community, and few alternatives exist to detect positive
selection. CodeML is also the central component for
populating the Selectome database [16], which carries
out genome-wide analyses of positive selection. As the
size of the data analyzed for the Selectome database
poses a major computational challenge [17], [18],
there is a keen interest in reducing the computational
time. Many other researchers will benefit from a faster
version of CodeML.

The focus of CodeML is on richness and flexibility
of the implemented codon models. In this article, we
focus on optimizations for large-scale computations
and for next-generation high performance computing
systems of one type of codon models called branch-site
model (BSM). Therefore, we present SlimCodeML, a
newly developed optimized version of CodeML.

B. Related work

There is a rich choice of software available for
phylogenetic reconstruction and molecular evolution
analyses based on nucleotide data. Most of the current

implementations use Maximum Likelihood (ML) esti-
mation of the model parameters, but there are very few
ML-based software packages to estimate parameters of
codon models: HyPhy [19], CodeML (PAML) [20],
IQPNNI [21], and BEAGLE [22]. However, only
CodeML implements the branch-site model, which is
of strong interest for current genomic analyses.

In contrast to most phylogenetic software available,
we are not interested in reconstructing the phylogenetic
tree itself (tree topology remains unchanged). The
latter one has been shown to lead to a memory bound
problem [23] due to the necessity to store different tree
topologies in memory. The problem presented here is,
however, CPU bound because of the need to compute
the transition probabilities of a 61 × 61 substitution
matrix over up to 2s − 3 branches of a phylogenetic
tree with s extant species.

Synopsis

The remainder of this paper is organized as follows.
Section II discusses computational methodology and
the mathematical background, while Section III dis-
cusses the corresponding implementations. Section IV
summarizes experimental results for SlimCodeML in
terms of accuracy and runtime behavior, and Section V
concludes and points out future work.

II. METHODOLOGY

The current implementation of CodeML requires as
input a multiple sequence alignment (MSA) for a set
of species and a phylogenetic tree in Newick format,
where the specific branch to test for positive selection
is identified (Fig. 1). In addition, a dedicated parameter
file is read by CodeML to set model parameters and
corresponding optimization options [24].

A. Branch-Site Model

CodeML implements different codon substitution
models by means of continuous-time Markov mod-
els [25]. The codon substitution process is described
by the instantaneous rate matrix Q = {qij}, where qij
corresponds to the instantaneous transition rate from
codon i to codon j (i 6= j). Models implemented in
CodeML assume that codon transitions can only occur
through the change of a single nucleotide in one of the
three positions forming a codon (Fig. 1). Transition
rates for multiple nucleotide changes are set to 0. The
nucleotide changes within each codon are represented

701701

A CCC TAC TGC CCC AAG GAG
B CCC TAC TGC CCC AAG GAG
C CCC TAC TGC CCC AAG GAG
D CCC TAT TGC CCC AAG GAG
E CCC TAC TGC ACC AAG GAG

aligned sequences
(5 different species)

phylogenetic tree

codon
(3 nucleotides)

specific branch
to be tested for
positive selection

TAC TAC TAT TACTAC

Figure 1. CodeML input. (left): exemplary MSA for 5 different
species, each with 6 codons; (right): binary phylogenetic tree with
the 5 species indicated by black nodes. Inner nodes in the tree
represent extinct ancestors. The last common ancestor of all species
is called the root node.

by two parameters. First, the nucleotide change can
either be a transition (purine→ purine or pyrimidine→
pyrimidine) or a transversion (purine → pyrimidine or
pyrimidine→ purine) whose ratio is represented by the
parameter κ. Second, the substitution can be synony-
mous (i.e., no change in the amino acid coded by codon
i and j) or non-synonymous (i.e., the coded amino acid
changes), which corresponds to the parameter ω (i.e.,
selective pressure). Finally, the codon frequencies πi
used in the model are determined empirically from the
MSA. See Eq. 1 for a summary of the applied codon
substitution model [9, p.48].

qij =

0 two or more differences

πj synonymous transversion

κπj synonymous transition

ωπj non-synonymous transversion

ωκπj non-synonymous transition

(1)

The BSM [26] further models how changes occur
along the branches of a phylogenetic tree. It a priori
divides the branches into one foreground branch and
background branches. The ω in Eq. 1 takes different
values corresponding to Table I. There are two classes
of sites along the background branches: conserved (0 <
ω0 < 1) and neutral (ω1 = 1). On the foreground
branch, there is a proportion 1−p0−p1 of sites under
positive selection with ω2 > 1. Table I depicts the
applied branch-site model A (H1) (see [9, Table 8.4]).
H0 is the same as model A but with ω2 = 1 [9, p.281].

The model parameters that need to be estimated are
thus: κ, ωm (m = {0, 1, 2} for H1 or m = {0, 1} for
H0), p0, p1, and the branch lengths tk of the tree.

Site class Proportion Background Foreground
0 p0 0 < ω0 < 1 0 < ω0 < 1
1 p1 ω1 = 1 ω1 = 1

2a (1−p0−p1)p0
p0+p1

0 < ω0 < 1 ω2 > 1

2b (1−p0−p1)p1
p0+p1

ω1 = 1 ω2 > 1

Table I
PROPORTIONS AND SELECTIVE PRESSURE OF BRANCH-SITE

MODEL A FOR CORRESPONDING BRANCHES
IN THE FOUR SITE CLASSES.

TAA TAC TAT

0.0 0.0 1.0

TAA TAC TAT

0.0 1.0 0.0

child l child r

parent p

Figure 2. Fundamental operations for computing the phylogenetic
likelihood function.

B. Computational approach

In order to compute the likelihood for the BSM,
we apply Felsenstein’s pruning algorithm [27] that
conducts a post-order tree traversal propagating from
the leaves toward the root. Along each branch, a partial
conditional probability vector for the branch’s parent
node is computed (Fig. 2) by applying the transition
probability matrix to the child’s conditional probability
vector. The latter one is obtained from the exponen-
tial of the instantaneous substitution rate matrix Q
multiplied by the corresponding branch length t. At
each internal node the conditional probability vectors
of each child are multiplied element-wise to obtain the
node conditional probability vector. The conditional
probability vector of the root node is used, together
with the equilibrium codon frequencies, to obtain the
likelihood of the BSM.

The maximization of the likelihood of the BSM
is achieved through iterative maximization algorithms
such as Newton-Raphson methods or an approximation
like the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [28, p.162].

702702

C. Likelihood computation

A detailed discussion of phylogenetic likelihood
computations can be found in [29]. The computation-
ally most demanding parts to estimate the likelihood
of the BSM are the matrix exponential to obtain the
transition probability matrix and the computation of
the conditional probability vector at each branch. The
likelihood of the tree is obtained by computing the
dot product of the remaining children’s conditional
probability vectors at the root of the tree.

1) Transition probability matrix: Given a codon
substitution matrix S (n = 61 codon states), a diagonal
matrix of codon frequencies Π (π1, . . . , π61 > 0),
and a branch length t, the goal is to compute the
resulting transition probability matrix Pt. This is done
by taking the exponential of the instantaneous rate
matrix Q = SΠ times t to obtain Pt = eQt (cf.
e.g. [30]). The presented approach of computing the
matrix exponential Pt is an improved version of the
one presented in [31], [9, p.68]. In [32] and [33], the
authors present the same decompositional approach but
without exploiting the symmetry of S.

First, we transform the problem of computing the
matrix exponential of the non-symmetric matrix Qt
into the problem of computing the matrix exponential
of a symmetric matrix At:

A := Π
1

2SΠ
1

2 ; (2)

eQt =

∞∑
i=0

(SΠt)n

n!
, (3)

= Π−
1

2

(∞∑
i=0

(At)n

n!

)
Π

1

2 , (4)

= Π−
1

2 eAtΠ
1

2 . (5)

The new problem of computing the matrix exponential
of a symmetric At is always well-conditioned [34] and
can be solved efficiently for distinct t using the eigen-
decomposition of A, i.e., A = XΛX>, where X con-
tains the left eigenvectors and Λ = diag(λ1, . . . , λ61)
contains the real eigenvalues:

A = XΛX> ⇒ (6)

Z := eAt = XeΛtX> = (7)

X · diag
(
eλ1t, . . . , eλ61t

)
·X>. (8)

In [31], the author proceeds with the left to right
matrix multiplication, i.e., by computing Ỹ = X ·

diag
(
eλ1t, . . . , eλ61t

)
, and

Z := Ỹ X>. (9)

Eq. 9 involves the product of two distinct square
matrices, where effective implementations like dgemm
(BLAS) consume approximately 2n3 elementary float-
ing point operations (flops). See, e.g., [35, p.83] for
approximate computational costs in flops of basic
matrix-matrix operations. As the eigendecomposition
of A is symmetric, in our approach we compute Z as

Z := Y Y >, (10)

where Y := XeΛt/2. (11)

Eq. 10 involves the product of a square matrix
times its transpose, where implementations like dsyrk
(BLAS) consume approximately n3 flops. This oper-
ation saves about half of the flops and consequently
constitutes a major benefit to reduce the runtime of the
phylogenetic likelihood function. This benefit always
applies, but different speedups may be expected for
distinct tree topologies.

2) Conditional probability vectors: For a specific
branch length t, we need to apply the transition prob-
ability matrix Pt = eQt to a conditional probability
vector w, that is, w′ = Ptw along all branches of the
phylogenetic tree (Fig. 2). This operation is done for
each site of the MSA.

After finishing the evaluations on which we report
in the next sections, we became aware that a further
improvement is possible. The product of the matrix
exponential of Qt and the vector w can be computed
as follows.

eQtw = Ŷ Ŷ >(Πw), (12)

where Ŷ = Π−1/2XeΛt/2. (13)

The main advantage compared to the computation
above is that he final matrix vector multiplication now
involves a symmetric matrix. The latter operation saves
about half of the memory accesses and is therefore
faster. This is especially beneficial for long MSAs, as
the operation is applied to each site.

III. IMPLEMENTATION

CodeML 4 is entirely written in C. SlimCodeML
is the optimized version of CodeML v4.4c, where
we focus on the BSM. SlimCodeML is written in

703703

compliance with the ISO C++ Standard 1998. We use
some routines from the Basic Linear Algebra Sub-
programs (BLAS) [36]–[38] and the Linear Algebra
PACKage (LAPACK) [39], [40] for key parts of the
likelihood computations. Thereby we can guarantee
high and portable performance of the computational
core routines across a large variety of present and
future platforms (E.g., [41]).

A. Matrix exponential

Based on the mathematical methods in Sec-
tion II-C1, the matrix exponential Pt = eQt has been
implemented as a sequence of the following steps.
1. Matrix × diagonal matrices. A := Π

1

2SΠ
1

2 . S
is multiplied from the left and the right by diagonal
matrices, hence this step needs O(n2) flops.
2. Symmetric eigenvalue problem. This O(n3) op-
eration comprises the computation of the eigenvalues
Λ and eigenvectors X of A. The eigenvalue problem
solver routine dsyevr (LAPACK) first reduces the
symmetric matrix A to tridiagonal form via House-
holder transformations. Then, whenever possible, the
eigenspectrum is computed using multiple relatively
robust representations (MRRR) or a QR/QL method
otherwise.
3. Matrix × diagonal matrix. Y := XeΛ t

2 . The
dense matrix X is multiplied by a diagonal matrix
(containing eλi

t

2) from the right. This requires O(n)
flops for building the diagonal matrix and O(n2) flops
for the matrix multiplication.
4. Symmetric rank-k operation. Z := Y Y >. We
use the symmetric rank-k operation routine dsyrk
(BLAS) consuming approximately n3 flops to compute
Z. See Eq. 9 and 10 for a discussion of this improve-
ment.
5. Matrix × diagonal matrices. The computation of
Pt := Π−

1

2ZΠ
1

2 consumes O(n2) flops.

B. Conditional probability vector

w′ := Ptw. We apply dgemv (BLAS) to multi-
ply the previously computed general matrix Pt with
the vector w consuming O(n2) flops for each site
of the MSA. By bundling the individual matrix ×
vector operations into a single matrix × matrix vector
operation dgemm (BLAS) including all sites of the
MSA, we can utilize BLAS level 3 and would further
improve runtime performance [42]. However, in order
to have a rapid prototype of SlimCodeML, for our first

evaluations we abstained from the necessary changes
in data structures and hence also from this additional
optimization opportunity.

IV. EVALUATION

Our evaluations have been done on an Intel Xeon
W3540 CPU @ 2.93 GHz and 8 Gbyte RAM, running
Ubuntu 11.10, using GCC 4.5.2. We generated the
GotoBLAS2 1.13 library for a single-threaded 64-bit
architecture (to have a fair comparison with the purely
sequential CodeML), and we compiled LAPACK 3.2.2
and linked it against the aforementioned GotoBLAS2.
We did not evaluate alternative compilers because the
performance of our code is dominated by BLAS and
LAPACK performance. As observed in initial tests
(data not shown), the influence of the compiler on op-
timizing the remaining code is negligible. To generate
comparable and reproducible results, we fixed the seed
for the random number generator, which is used to set
the initial tree parameter values in CodeML and in
SlimCodeML to the same value. We compared the
performance of SlimCodeML to CodeML v4.4c (in
the following simply denoted as CodeML).

Table II contains the four datasets we used for eval-
uation. With respect to the Selectome database, these
real-world datasets are representative for the cases i)
small number of species / average sequence length, ii)
small number of species / very large sequence length,
iii) average number of species / small sequence length,
and iv) large number of species / short sequence length.
Due to the exponential growth of sequenced genomic
data, for future analyses we expect both a growing
number of species in the MSAs and larger sequences.

Memory consumption of CodeML and Slim-
CodeML for these datasets is < 200 Mbyte and there-
fore not performance-critical. Note that due to slightly
different intermediate results between SlimCodeML
and CodeML, the model parameter optimizations and
associated local likelihood optima potentially require
a distinct number of iterations. This sensitivity is not
a specific property of SlimCodeML, it can also be
observed in CodeML when executed with different
seed values for the random number generator.

1) Accuracy: We assess the relative differences
in obtained likelihood values between CodeML and
SlimCodeML (each received with six decimal places)
by applying a relative difference D = |lnL− ˆlnL|

|lnL| ,
where lnL is the logarithmic likelihood of CodeML

704704

No. Full name No. of species Length (codons) Ensembl release
i ENSGT00390000016702.Primates.1.2 7 299 61
ii ENSGT00580000081590.Primates.1.2 6 5004 55
iii ENSGT00550000073950.Euteleostomi.7.2 25 67 61
iv ENSGT00530000063518.Primates.1.1 95 39 61

Table II
ENSEMBL TEST DATASETS (HTTP://ENSEMBL.ORG) AS USED FOR SELECTOME (HTTP://SELECTOME.UNIL.CH)

WITH TESTED SUBTREE AND BRANCH.

CodeML SlimCodeML
No. Runtime [s] Iterations Runtime [s] Iterations

i 85 108 43 108
ii 121 80 65 74
iii 1010 241 407 252
iv 52822 1039 8298 509

Table III
RUNTIMES AND NUMBERS OF ITERATIONS FOR CODEML AND

SLIMCODEML ON DATASETS I-IV COMBINED FOR H0+H1 .

and ˆlnL is the logarithmic likelihood returned by
SlimCodeML. See Section I-A for a description of H0

and H1. We obtained D = 0, 9.8 · 10−12, 5.5 · 10−8,
and 3 ·10−9 for H0 datasets i–iv, respectively. For H1,
D = 0, 0, 4.9 · 10−8, and 1.1 · 10−8, respectively. The
numerical results of CodeML and SlimCodeML are
very similar. Therefore, we do not expect to observe
differences in the biological interpretation of the results
obtained by either implementation.

2) Runtimes and speedups: We measured runtimes
of CodeML and SlimCodeML for our test datasets and
computed three distinct speedup flavors. The runtimes
and corresponding iterations on datasets i–iv can be
found in Table III. The deviations in iterations between
CodeML and SlimCodeML are caused by slightly
different intermediate results (see Section IV); this
sensitivity can also be observed by distinct seeds to
compute tree parameter start values. A higher num-
ber of species usually results in a higher number of
branches and consequently in a higher number of
iterations and amount of time spent per iteration. This
explains the excessive runtimes of dataset iv.

Overall speedups are computed according to So =
St1

St2
, where St1 is the total runtime of CodeML and St2

is the total runtime of SlimCodeML for either H0 or
H1, respectively. Per-iteration speedups are computed
according to Si = Si1

Si2
, where Si1 is the total runtime of

CodeML and Si2 is the total runtime of SlimCodeML

normalized by the number of iterations for either H0 or
H1, respectively. The combined speedup Sc calculates
the speedup of H0 and H1 combined. Table IV depicts
the measured speedups for four different datasets,
while Fig. 3 focuses on dataset iv for a varying number
of species. In the best case the runtime was reduced
from 8 hours and 38 minutes to 55 minutes. The peaks
in Fig. 3 can again be explained by deviations in
iterations. Per-iteration speedups vary less due to the
normalization with respect to the number of iteration
steps.

Dataset i ii iii iv
Overall speedup H0 1.9 2.3 2.6 9.4
Overall speedup H1 2.0 1.6 2.4 4.4

Combined speedup H0+H1 2.0 1.9 2.5 6.4
Per-iteration speedup H0 2.1 1.8 2.7 3.3
Per-iteration speedup H1 1.9 1.7 2.5 3.0

Per-iteration speedup H0+H1 2.0 1.7 2.6 3.1

Table IV
SPEEDUPS OF SLIMCODEML IN COMPARISON WITH CODEML

FOR FOUR DIFFERENT DATASETS.

V. CONCLUSIONS

A. Summary

We presented SlimCodeML, an optimized version
of CodeML for the branch-site model (BSM). The
improved likelihood computation includes a novel ap-
proach to compute the matrix exponential eQt imple-
mented utilizing the BLAS and LAPACK.

SlimCodeML has very encouraging performance
with speedups up to 9.38. On the one hand, the reduced
runtime can be attributed to the improved likelihood
computation; on the other hand, we partly reach similar
likelihoods in a smaller number of iterations. The
latter observation suggests further studies concerning
the tree parameter optimization process. We achieve
high accuracy with respect to likelihood scores.

705705

Combined speedup H0+H1

Overall speedup H1

Overall speedup H0

Number of species

S
p
e
e
d
u
p

958575655545352515

10

9

8

7

6

5

4

3

2
1.5
1

Figure 3. Speedups of SlimCodeML in comparison with CodeML
for dataset iv on 15 – 95 species.

B. Future work

SlimCodeML represents the first step toward Fast-
CodeML which will be a new parallel and distributed
version of CodeML adapted to the BSM test. While
in this paper we focus on the BSM, the optimized
likelihood computation can also be applied to further
maximum likelihood-based evolutionary models.

C. Rules of thumb

Based on our experience optimizing CodeML, we
suggest “rules of thumb” for optimizing the phyloge-
netic likelihood function which could be applied to a
broad range of phylogenetics software, especially for
large-scale computations.
• Use BLAS for basic linear algebra operations like
scaling of vectors, dot products, matrix × vector, and
matrix × matrix operations. Benefits: highly tuned for
specific architectures, because one can choose from
various individual implementations; easy portability to
future architectures.
• Use LAPACK for advanced linear algebra operations
like eigenvalue problems. Benefits: highly tuned due to
utilization of BLAS as basic building block; moreover,
benefits from using BLAS are inherited.
• Bundle operations and corresponding data structures
(e.g., use a single matrix-matrix multiplication instead
of a sequence of matrix-vector operations to utilize
BLAS level 3 [42]).
• Exploit matrix properties (e.g., symmetric, triangular,
diagonal) by using dedicated routines.

• Consider matrix storage schemes. Row major order
(e.g., C) or column major order (e.g., Fortran) have to
be respected to increase performance.

ACKNOWLEDGMENTS

This work is supported by the Swiss Platform for
High-Performance and High-Productivity Comput-
ing (HP2C), the Swiss Federal Government through
the Federal Office of Education and Science, and
the Swiss National Science Foundation. We thank
Sébastien Moretti for providing test datasets.

REFERENCES

[1] M. Anisimova and D. Liberles, “The quest for natural
selection in the age of comparative genomics,” Hered-
ity, vol. 99, no. 6, pp. 567–579, 2007.

[2] R. Jing, A. Vershinin, J. Grzebyta, P. Shaw, P. Smýkal,
D. Marshall, M. Ambrose, T. N. Ellis, and A. Flavell,
“The genetic diversity and evolution of field pea
(Pisum) studied by high throughput retrotransposon
based insertion polymorphism (RBIP) marker analy-
sis,” BMC Evol. Biol., vol. 10, no. 44, 2010.

[3] S. Blanquart and N. Lartillot, “A site- and time-
heterogeneous model of amino acid replacement,” Mol.
Biol. Evol., vol. 25, no. 5, pp. 842–858, 2008.

[4] N. Rodrigue, H. Philippe, and N. Lartillot, “Mutation-
selection models of coding sequence evolution with
site-heterogeneous amino acid fitness profiles,” P. Natl.
Acad. Sci. USA, vol. 107, no. 10, pp. 4629–4634, 2010.

[5] M. Han, J. P. Demuth, C. L. McGrath, C. Casola, and
M. Hahn, “Adaptive evolution of young gene duplicates
in mammals,” Genome Res., vol. 19, pp. 859–867,
2008.

[6] R. A. Studer, S. Penel, L. Duret, and M. Robinson-
Rechavi, “Pervasive positive selection on duplicated
and nonduplicated vertebrate protein coding genes,”
Genome Res., vol. 18, no. 9, pp. 1393–1402, 2008.

[7] N. Singh, A. Larracuente, T. Sackton, and A. Clark,
“Comparative Genomics on the Drosophila Phyloge-
netic Tree,” Annu. Rev. Ecol. Evol. Syst., vol. 40, pp.
459–480, 2009.

[8] P.-A. Christin, D. Weinreich, and G. Besnard, “Causes
and evolutionary significance of genetic convergence,”
Trends Genet., vol. 26, no. 9, pp. 400–405, 2010.

706706

[9] Z. Yang, Computational Molecular Evolution. Oxford
University Press, 2006.

[10] A. Rosenberg and D. McShea, Philosophy of Biology
– A Contemporary Introduction. Routledge, 2008.

[11] D. Haussler, S. J. O’Brien, O. A. Ryder, and et al.,
“Genome 10K: A Proposal to Obtain Whole-Genome
Sequence for 10 000 Vertebrate Species,” J. Hered.,
vol. 100, no. 6, pp. 659–674, 2009.

[12] M. Anisimova, J. Bielawski, and Z. Yang, “Accuracy
and Power of the Likelihood Ratio Test in Detect-
ing Adaptive Molecular Evolution,” Mol. Biol. Evol.,
vol. 18, no. 8, pp. 1585–1592, 2001.

[13] Z. Yang, W. Wong, and R. Nielsen, “Bayes Empirical
Bayes Inference of Amino Acid Sites Under Positive
Selection,” Mol. Biol. Evol., vol. 22, no. 4, pp. 1107–
1118, 2005.

[14] A. Anisimova and Z. Yang, “Multiple Hypothesis Test-
ing to Detect Lineages under Positive Selection that
Affects Only a Few Sites,” Mol. Biol. Evol., vol. 24,
no. 5, pp. 1219–1228, 2007.

[15] Z. Yang, “PAML: a program package for phyloge-
netic analysis by maximum likelihood,” Comput. Appl.
Biosci., vol. 13, no. 5, pp. 555–556, 1997.

[16] E. Proux, R. A. Studer, S. Moretti, and M. Robinson-
Rechavi, “Selectome: a Database of positive selection,”
Nucleic Acids Res., vol. 37, pp. 404–407, 2009.

[17] A. Kraut, S. Moretti, M. Robinson-Rechavi,
H. Stockinger, and D. Flanders, “Phylogenetic
Code in the Cloud – Can it Meet the Expectations?”
in HealthGrid. IOS Press, 2010, pp. 55–63.

[18] R. A. Studer and M. Robinson-Rechavi, “Large-Scale
Analyses of Positive Selection Using Codon Models,”
in Evol. Biol., P. Pontarotti, Ed. Springer, 2009, pp.
217–235.

[19] S. K. Pond, S. Frost, and S. Muse, “HyPhy: Hypothesis
Testing Using Phylogenies,” Bioinformatics, vol. 21,
no. 5, pp. 676–679, 2005.

[20] Z. Yang, “PAML 4: Phylogenetic Analysis by Maxi-
mum Likelihood,” Mol. Biol. Evol., vol. 24, no. 8, pp.
1586–1591, 2007.

[21] L. Vinh and A. v. Haeseler, “IQPNNI: Moving Fast
Through Tree Space and Stopping in Time,” Mol. Biol.
Evol., vol. 21, no. 8, pp. 1565–1571, 2004.

[22] D. L. Ayres, A. Darling, D. J. Zwickl, P. Beerli, M. T.
Holder, P. O. Lewis, J. P. Huelsenbeck, F. Ronquist,
D. L. Swofford, M. P. Cummings, A. Rambaut, and
M. A. Suchard, “BEAGLE: an Application Program-
ming Interface and High-Performance Computing Li-
brary for Statistical Phylogenetics,” Syst. Biol., vol. 61,
no. 1, pp. 170–173, 2011.

[23] A. Stamatakis, “RAxML-VI-HPC: maximum
likelihood-based phylogenetic analyses with thousands
of taxa and mixed models,” Bioinformatics, vol. 22,
no. 21, pp. 2688–2690, 2006.

[24] Z. Yang, PAML User Guide Version 4.3, 2009.

[25] J. Norris, Markov Chains. Cambridge University
Press, 1997.

[26] J. Zhang, R. Nielsen, and Z. Yang, “Evaluation of an
Improved Branch-Site Likelihood Method for Detect-
ing Positive Selection at the Molecular Level,” Mol.
Biol. Evol., vol. 22, no. 12, pp. 2472–2479, 2005.

[27] J. Felsenstein, “Evolutionary trees from DNA se-
quences: A maximum likelihood approach,” J. Mol.
Evol., vol. 17, no. 6, pp. 368–76, 1981.

[28] D. Sorensen and D. Gianola, Likelihood, Bayesian, and
MCMC Methods in Quantitative Genetics, K. Dietz,
M. Gail, K. Krickeberg, J. Samet, and A. Tsiatis, Eds.
Springer, 2006.

[29] A. Stamatakis, “Orchestrating The Phylogenetic Likeli-
hood Function on Emerging Parallel Architectures,” in
Bioinformatics – High Performance Parallel Computer
Architectures, B. Schmidt, Ed. CRC Press, 2011, pp.
85–115.

[30] T. Müller and M. Vingron, “Modeling Amino Acid
Replacement,” J. Comput. Biol., vol. 7, no. 6, pp. 761–
776, 2000.

[31] Z. Yang, “Notes on Calculation of the Transition Prob-
ability Matrix P (t) = exp(Qt),” University College
London, UK, Tech. Rep., 2003, (bundled with PAML
releases).

[32] X. Huang, “Sequence Alignment with an Appropriate
Substitution Matrix,” J. Comput. Biol., vol. 15, no. 2,
pp. 129–138, 2008.

[33] K. Strimmer and A. von Haeseler, “Genetic distances
and nucleotide substitution models,” in The Phyloge-
netic Handbook: A Practical Approach to Phylogenetic
Analysis and Hypothesis Testing, 2nd ed. Cambridge
University Press, 2009, ch. 4.

707707

[34] C. Moler and C. V. Loan, “Nineteen Dubious Ways
to Compute the Exponential of a Matrix, Twenty-Five
Years Later,” SIAM Rev., vol. 45, no. 1, pp. 3–49, 2003.

[35] R.A. van de Geijn and E.S. Quintana-Ortí, The Science
of Programming Matrix Computations, 2008.

[36] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Ba-
sic Linear Algebra Subprograms for Fortran Usage,”
ACM T. Math. Software, vol. 5, no. 3, pp. 308–323,
1979.

[37] J. Dongarra, “Basic Linear Algebra Subprograms Tech-
nical Forum Standard,” J. of High Performance Ap-
plications and Supercomputing, vol. 16, no. 1/2, pp.
1–111/115–199, 2002.

[38] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Ham-
marling, G. Henry, M. Heroux, L. Kaufman, A. Lums-
daine, A. Petitet, R. Pozo, K. Remington, and R. Wha-
ley, “An Updated Set of Basic Linear Algebra Subpro-
grams (BLAS),” ACM T. Math. Software, vol. 28, no. 2,
pp. 135–151, 2002.

[39] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, 3rd ed. SIAM, 1999.

[40] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum,
A. McKenney, J. D. Croz, S. Hammerling, J. Demmel,
C. Bischof, and D. Sorensen, “LAPACK: a portable
linear algebra library for high-performance computers,”
in Supercomputing. IEEE, 1990, pp. 2–11.

[41] S. Kestur, J. Davis, and O. Williams, “BLAS Compar-
ison on FPGA, CPU and GPU,” in Annual Symposium
on VLSI (ISVLSI). IEEE, 2010, pp. 288–293.

[42] K. Goto and R. van de Geijn, “High-Performance
Implementation of the Level-3 BLAS,” ACM T. Math.
Software, vol. 35, no. 1, pp. 4:1–4:14, 2008.

708708

