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A B S T R A C T   

We applied machine learning methods to predict chemical hazards focusing on fish acute toxicity across taxa. We 
analyzed the relevance of taxonomy and experimental setup, showing that taking them into account can lead to 
considerable improvements in the classification performance. We quantified the gain obtained throught the 
introduction of taxonomic and experimental information, compared to classification based on chemical infor
mation alone. We used our approach with standard machine learning models (K-nearest neighbors, random 
forests and deep neural networks), as well as the recently proposed Read-Across Structure Activity Relationship 
(RASAR) models, which were very successful in predicting chemical hazards to mammals based on chemical 
similarity. We were able to obtain accuracies of over 93% on datasets where, due to noise in the data, the 
maximum achievable accuracy was expected to be below 96%. The best performances were obtained by random 
forests and RASAR models. We analyzed metrics to compare our results with animal test reproducibility, and 
despite most of our models “outperform animal test reproducibility” as measured through recently proposed 
metrics, we showed that the comparison between machine learning performance and animal test reproducibility 
should be addressed with particular care. While we focused on fish mortality, our approach, provided that the 
right data is available, is valid for any combination of chemicals, effects and taxa.   

1. Introduction 

One of the pillars of modern civilization is the ability to synthesize 
and/or use an enormous range of chemicals, which allow for new and 
improved products and serve as pharmaceuticals, pesticides, food ad
ditives and the like. However, their benefits need to be weighed against 
their risk. For that purpose, governments put risk assessment procedures 
in place decades ago, with the aim of evaluating the impact of chemicals 
on human and environmental health. In these assessment procedures, 
exposure, i.e. the level of chemical to which organisms are subjected, 
and hazard, i.e. the ability of chemicals to cause negative effects on 
organism/population health, are considered together as determinants of 
risk ([SETAC], 2018). Hazard assessment traditionally depends, to a 
large part, on animal tests using vertebrates, such as tests with mice, rats 
and fish, depending if assessments are for human or environmental 
health. These animal tests are ethically controversial. They are also 

highly resource consuming (time, personnel, test material needed) and 
can, in fact, not comply with the demand of rapid testing of an ever 
increasing chemical universe in need of evaluation (Rovida and Har
tung, 2009). On these grounds, there are global efforts to refine hazard 
assessments using alternative or supplementary strategies (Hamm et al., 
2017; Sullivan et al., 2021). One of them is the employment of machine 
learning (A.H. Vo et al., 2019). 

Machine learning (ML) is a term broadly applied to the use of 
computational algorithms to infer emerging patterns from data. In the 
field of chemical hazard assessment, one can mine chemical structural 
and physico-chemical information, along with effect data reported from 
animal toxicity tests. This comes often with the advantage that the 
domain of applicability is unrestricted, provided that appropriate 
training data is available. 

One of the first applications of ML to hazard assessment was the 
prediction of acute oral toxicity in rats (LD50 values), using local lazy 
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learning, achieving correlation coefficients of R2 = 0.72 on a test set of 
2896 compounds (Lu et al., 2014). Further ML approaches to predict rat 
acute oral toxicity by other investigators (Wu and Wang, 2018) 
improved the R2 to 0.86, and using discrete outputs to measure accu
racies, values reached close to 95% (Xu et al., 2017). However, with 
their focus on single species data, these studies do not cover the 
dimensionality of taxa and species sensitivity differences to be consid
ered if one wants to know chemical impacts on another species, such as 
humans, or on the many species constituting an ecosystem (Furuhama 
et al., 2015; Basant et al., 2016; Ai et al., 2019), the latter of which is the 
focus of ecotoxicology. In this case, the use of ML is even more crucial, 
since in practice it is unthinkable to test all chemicals on all the species 
present in an ecosystem. Acute toxicity predictions have also been the 
focus of few applications of ML in ecotoxicology, though a critical lack of 
literature on machine learning in this area has been denounced (Miller 
et al., 2018). Li et al. aimed to predict toxicity categories for acute 
toxicity to fish of pesticides by making use of nine chemical descriptors 
(Li et al., 2017). Their dataset was rather small (∼ 1000 entries), and 
dominated by two species, rainbow trout (RT) and bluegill sunfish (BS). 
They trained models on the RT and BS data separately, and also trained 
models by mixing all the available taxa together. In binary classification, 
their balanced accuracy (average between sensitivity and specificity, see 
Section 2.4) was lowest when excluding RT and BS, it was about 0.815 
when restricting to a single taxon, and 0.825 when treating the whole 
dataset. However, it is difficult to state whether these differences are 
statistically significant, and, if so, whether it should be attributed to the 
smaller size of the dataset when training without the RT and BS. Tuu
laikhuu et al. studied the EcoTox database, which contained enough 
data to allow for using taxonomy as a training feature (Tuulaikhuu et al., 
2017). They trained random forests to predict acute fish toxicity data 
(LC50), obtaining an R2 = 0.85. They identified fish species and the 
octanol–water partition coefficient (logP or logKow) as the most impor
tant factors to explain species sensitivities differences. Despite the lack 
of a hold-out test set (in addition to train and validation), this result 
seems to suggest that in ecotoxicology we should be training machine 
learning models that infer how toxicity varies across taxa. 

Indeed, when measuring the performances of different approaches, 
one of the fundamental questions is whether the measured differences 
are statistically significant. This issue was tackled by Hou et al. (2020), 
by taking an average of 10 independent hold-out validation sets.This 
procedure allowed an estimation of statistical fluctuations, but it also 
imposed a burden on the training data availability, since these hold-out 
test sets cannot be used for training. 

Another fundamental question is how good should we expect ma
chine learning models to be, since in vivo toxicity data is often noisy (i.e. 
repetitions some of the same experiment can provide very different re
sults), and testing on noisy data cannot return a perfect performance. 
This issue was inspected by Luechtefeld et al. (2018), who, focusing on 
specific OECD2 chemical testing guidelines (all concerned with rabbits, 
guinea pigs, mice, rats or Chinese hamster), adopted a metric to compare 
the performance of their machine learning model with the consistency of 
the experiments themselves. Through this metric, they concluded that 
their model, called Read-Across Structure Activity Relationship 
(RASAR), is ”outperforming animal test reproducibility”. RASAR models 
were developed for binary classification, and adopt a succession of un
supervised and supervised learning, which allows the exploitation of 
information on endpoints that are different from the target one. For 
example, one could predict the LC50 of a chemical by integrating a 
Mortality with a Behavior dataset. Given the great success of RASAR 
models, a natural question is whether they perform equally good in the 
datasets used in ecotoxicology, and how they compare to standard ML 
models. 

Here, we perform an extensive analysis of ML models applied to an 
ecotoxicological dataset focused on fish acute toxicity data, with an eye 
on the extra information that can be obtained from the knowledge about 
the toxicity of the same compound on more than one species. We 
compare several standard machine learning models with the two vari
ants of the RASAR model developed by Luechtefeld et al. (2018). We 
extend RASAR models to an arbitrary number of classes, which allows us 
to study both binary (more toxic versus less toxic) and 5-class (non-toxic, 
slightly toxic, moderately toxic, highly toxic, very highly toxic) classi
fication. We carefully analyze the impact of introducing taxonomic and 
experimental information as extra input features in addition to the 
chemical, since this introduction allows for models with a wide taxo
nomic range of applicability, which can learn the patterns relating to 
toxicity and taxonomic/experimental variability. Finally, we compare 
our results with two indicators of the reproducibility of the experiments. 
These suggest that, given the level of noise in in vivo data (e.g. the same 
experiment repeated twice may have very different outcomes), we are 
close to the maximum achievable performances. However, this should 
not be taken as an indication that these models are outperforming ani
mal test reproducibility. 

2. Materials and Methods 

2.1. Problem Setup 

We are interested in predicting whether an experiment will result in 
a certain chemical being more or less acutely toxic on a given species. 
The outcome of the experiment is the LC50, which is the concentration 
of a chemical required to kill half a population, in our case 50% of fish in 
a 24 h, 48 h, 72 h or 96 h acute exposure scenario. We treat the problem 
as binary classification according to the European regulation (EC) No 
1272/2008 on the classification, labelling and packaging of substances 
and mixtures (CLP Regulation) for acute toxicity data (https://reach
online.eu/clp/en/annex-i-4-4.1-4.1.2.html). To do so, we define the 
binary target label y2: 

y2 =

{
1 if LC50 ≤ 1mg/ℓ,
0 if LC50 > 1mg/ℓ. (1)  

Our main goal is to deduce y2 from the data, which we denote as x→. In F 
we show analogous results for five-class labels. 

2.2. Data 

The data, x→, contains information on chemicals, x→ch, on the tax
onomy of the tested organism, x→tax, and on the experimental conditions, 
x→ex: 

x→= ( x→ch, x→tax, x→ex). (2)  

The vectors x→ch, x→tax and x→ex have respectively 893, 5 and 6 compo
nents. To build x and the related set of labels [Eq. (1)], we take in vivo 
experiments on fishes from the Ecotox database (https://cfpub.epa.gov/ 
ecotox/), provided by the Environmental Protection Agency of the USA. 
This database contains x→tax and x→ex, but it only contains the CAS 
identifier for the used chemical. In A we describe in detail the sources of 
the data, and which features are contained in x→ch, x→tax, and x→ex. 

The used information on the chemical has two different natures. We 
use some standard properties of each chemical (e.g. logP, water solubi
lity, etc.); and the Pubchem2D vectors, that identify chemicals through a 
one-hot encoded 881-dimensional vector (see A). In other words, we can 
write x→ch as the union of the properties x→pr and the Pubchem2D data 
x→pubc, 

x→ch =
(

x→pr, x→pubc
)
. (3) 

2 Organisation for Economic Co-operation and Development. 
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We study in vivo mortality experiments performed on fishes, and take 
into account all the chemicals (mainly organic compounds) and species 
available in the dataset. As for the taxonomic ranks, we use class, order, 
family, genus and species as features. When the same experiment is 
repeated more than once, we merge the multiple entries into a single 
one, and take the median LC50 as an outcome. The data cleaning is 
described in A. 

At the end of the process, we have nchem = 2199 chemicals, tested for 
mortality on nspec = 345 different species of fish. In total, our dataset 
counts 20128 entries. In Fig. 1, we show how the data is distributed into 
each class, in the case that we split the outputs into 2 (left) or 5 classes 
(right). 

In addition to mortality, we also use data related to different effects, 
which is necessary as an input for the Data-Fusion RASAR model (B). 
This adds 3713 further entries to our dataset, spanning over 543 
chemicals. Of those, 117 do not appear in the dataset related to mor
tality. See A for details. 

2.3. Models 

We train Logistic Regressions (LR), Random Forests (RF), K-Nearest- 
Neighbors (KNN), Multi-layer Perceptrons (MLP, this is a standard deep 
neural network model) (Alpaydin, 2020; Goodfellow et al., 2016), 
Simple RASAR (S-RASAR) and Data Fusion RASAR (DF-RASAR) 
(Luechtefeld et al., 2018). Details on the models are provided in B. 

2.3.1. Euclidean Distances 
The KNN and RASAR algorithms require measuring a distance be

tween feature vectors. Initially, we will use Euclidean distances. In other 
words, the distance between two feature vectors u→ and v→ is 

d
(

u→, v→
)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

( u→− v→)
2

√

, (4)  

regardless of whether these vectors have ordinal or one-hot components. 

2.3.2. Per-category Distances 
The fact that our data is clearly separated into the three sources of 

information, xch, xex and xtax, allows us to tailor our models to achieve 
better performance. One way to do this, is to define the distances in the 
KNN and RASAR models as a linear combination of the distances in 
different subspaces of the data. 

We decide to treat separately the pubchem vectors (binary features), 
the chemical fingerprints (ordinal features), and the union of experi
mental and taxonomic details (these are categorical features, so we 
denote them with x→cat = ( x→tax, x→ex)). 

We measure the distance between pubchem vectors, through the 
Hamming distance function, dHam, which measures the number of equal 
entries in the two vectors. The distance between chemical fingerprints is 
a Euclidean distance, dEuc, and for the categorical features we also use 
the Hamming distance. In order to have distances normalized to one (so 
that each set of features has the same weight), we divide the Hamming 
distances between two vectors by their number of components, and the 
Euclidean distances by their maximum over the training set. We call 

d̃Ham and d̃Euc the resulting normalized distances. 
The distance between two experiments u→ and v→ can then be written 

as 

d
(

u→, v→
)
= αprd̃Euc

(
u→pr, v→pr

)
+

+αpubcd̃Ham

(
u→pubc, v→pubc

)
+

+αcatd̃Ham

(
u→cat, v→cat

)
,

(5)  

where αpr,αpubc and αcat are constants whose optimal value is found 
through cross validation (CV). 

Since we are interested in the relative (and not absolute) values of 
these constants, we can safely set αpr = 1. Then, to find the optimal 
values of αpubc and αcat, we perform a search on a grid in the plane (αpubc,

αcat), tuning one dimension at a time, and choosing the alpha with the 
best accuracy. When two or more values of α give the same validation 
accuracy (with a tolerance of 0.001), we choose the smallest value. For 
both αpubc and αcat, we first found the optimum a coarse logarithmic grid, 
and then fine-tuned it with a finer one. Since we have several models 
that employ these distances, and because this hyperparameter tuning is 
computationally expensive, we only find the optimal αs for the K-NN 
algorithm, and use those values for the S and DF RASARs. 

The advantage of using the distances in Eq. (5) is twofold:  

1. It allows to assign a different weight to different subsets of features. 
This is useful because we do not expect all the groups of features to be 
equally important. Splitting the features into smaller groups can 
further improve the performances, but this would be at the expense 
of a longer hyperparameter tuning.  

2. Since the distances dEuc, dpubc and dcat are normalized, the constants α 
automatically tell us the relative importance of each source of data. 
In particular, the value of αcat gives us a direct indication of the role 
played by taxonomy and experiment details. 

2.4. Training and Assessing Performance 

We divide our dataset in a training and a hold-out test set with an 
80:20 ratio. Unless stated otherwise, the training set is further split into 
train and validation sets, through a 5-fold cross-validation procedure 
(the splitting is again 80:20) (Arlot and Celisse, 2010). After we found 
the best model hyperparameters through an exhaustive grid search 
during CV, we retrain the model on the whole train + validation set. The 
final performances are calculated on the test set. Except when explicitly 
stated, we do not use methods to mitigate class imbalance. 

We measure the performances in terms of accuracy (a), recall (r, 
often called sensitivity), specificity (s), precision (p) and F1 score (F1). 
The definition of these indicators is provided in C. 

2.5. Error estimates 

When possible, in order to get an intuition on whether two results are 
significantly different, we compute error bars on the performances as the 
standard error between the cross-validation folds. These error bars 
represent the performance fluctuations of models trained only on the 
validation folds. Since the validation folds are smaller than the test set, 
the fluctuations on the test set should be smaller. In addition, while the 
performances on the validation folds are computed on models trained on 
the training folds, the performance on the test set comes from a model 
trained on training + validation data, so we can expect the test perfor
mance to fluctuate less or equally. While not rigorous, this procedure 
allows for an easier interpretation of the results. The errors bars are the 
number given in parenthesis and are applied to the last significant digit 
(e.g. 0.03(1) stands for 0.03±0.01). 

Fig. 1. Number of experiments per label after binary and 5-class labeling of the 
concentrations. The thresholds that define the classes are summarized in the 
appendix (Table 8). 
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2.6. Reproducibility of the experiments 

Even though from the perspective of a regulator each experiment has 
one true outcome (in the binary case, more vs less toxic), if an experi
ment is performed more than once it sometimes happens that different 
repetitions of the experiment result in different values of the label y2 (or 
y5, if we are in the multiclass setting). We can interpret this variability as 
some source of fluctuations – which derive from elements which are not 
completely under control – around a ground truth value.3 

Since these fluctuations are present in our whole data set, also the 
test set will have some degree of disagreement with the ground truth. As 
a consequence, testing a model that perfectly predicts the ground truth 
will result in an accuracy ã lower than 100%. This means that the 
maximum accuracy that we should expect for our models is not 100%, 
but ̃a, so the performances that we find should be measured in units of ̃a. 
However, we do not have access to ã, so the best we can to is to try to 
estimate it by analyzing the mutual (dis) agreement of experiments that 
were performed more than once. We use two metrics: (a) an estimated 
upper bound to ã, and (b) a conditional estimator proposed in 
Ref. (Luechtefeld et al., 2018). 

2.6.1. Upper Bound 
Intuitive definition. We estimate an upper bound, Aup, to the maximum 

achievable accuracy ̃a. When all the repetitions of an experiment agree, 
we can assume that they correspond to the ground truth. When they do 
not coincide, the accuracy is maximized by assuming that the value of y2 
(or y5) corresponding to the ground truth is the one occurring most 
often. We then define Aup as the accuracy obtained by assuming that 

repetitions of an experiment measure the ground truth more often than 
not. If we restrict the measurement of Aup to the experiments with a 
majority of positive outcomes, we obtain an upper bound to the recall, 
Rup, whereas if we restrict it to the negative outcomes, we obtain an 
upper bound to the specificity, Sup. The balanced accuracy is the average 
between Rup and Sup. In D we provide the formal definitions, for the 
binary and multiclass cases. 

An example. To provide some intuition, let us focus on a single 
experiment (nrep = 1), with binary labels, and assume that it is per
formed five times, with results y2 ≡ (y21,y22,y23,y24,y25) = (0,1,0,1,1). 
Since the value y2 = 1 appears most often, we assume that it corresponds 
to the ground truth, and obtain Aup = 0.6 (similarly, we could obtain a 
lower bound Adown = 0.4). Notice that, by construction, Aup cannot be 
smaller than 0.5. 

2.6.2. Conditional Estimator 
Definition. The conditional estimators of recall and specificity used in 

Ref. (Luechtefeld et al., 2018) aim at calculating the actual value of 
those quantities, instead of an upper bound. Their procedure postulates 
that one of the repetitions of the experiment is the true result, and val
idates the other repetitions assuming it as truth. For a formal definition 
we refer the reader to Ref. (Luechtefeld et al., 2018). 

An example. We can use the previously defined example of an 
experiment repeated five times, with results y2 = (0,1,0,1,1). We take 
the first outcome, y21 = 0, as true, and see that the accuracy with the 
remaining experiments is a1 = 0.25. We then iterate through all the 
outcomes, and obtain a = 1

5
∑5

i ai = 0.4. For this specific example, this 
number is equal to the lower bound Adown obtained in the previous 
section, so it seems like a pessimistic estimate of the consistency of 
repeated experiments. To estimate the recall r (or specificity s), we 
restrict to the examples with a positive (or negative) outcome. We 
therefore have an estimate r = 0.5 and s = 0.25. 

Experiment reproducibility metrics in our dataset. In Table 1 we show 
the value of the upper bound and conditional estimator measured from 
our data. 

Caveat. Note that these estimators ã are measured through different 
repetitions of the same experiment, whereas our models are trained and 
tested on the medians of these repetitions, which arguably make the 
labeling more stable. Thus, it is possible that ã is higher than what we 
would expect from our estimators. 

3. Results 

3.1. Dealing with many species 

Compared with training and testing models on a single species, 
dealing with a large number of species requires a different perspective. 
On one side, [i] only a small number of species-chemical couples are 
present in this kind of dataset. In other words, an ecotoxicological 
dataset is sparse. If our dataset was dense, it would have nspecnchem =

831222 lines, instead of only 20128. On the other side, [ii] the different 
chemicals have different degrees of toxicity depending on which species 
is exposed to them. 

We can test statement [ii] from our dataset. For each chemical that is 
tested on more than one species, we measure the fraction f of species for 
which it results more toxic (i.e. it has a label y2 = 1). If a chemical has 
the same effect on all taxa, then f = 0,1. We plot the histogram of f ,h(f), 
in Fig. 2, where it can be seen that a sizable number of chemicals have 
0 < f < 1, meaning that these chemicals act differently on different 
species. The two peaks at 0 and 1 are expected, since we still expect that 
a number of chemicals have a similar effect across all the orders (espe
cially because our analysis is restricted to a narrow taxonomic range, i.e. 
fishes). Furthermore (i) many of the entries at f = 0,1 come from 
chemicals which are tested on only a couple of species, and (ii) we did 
not filter f according to the taxonomic distance between species. 

Table 1 
Recall, specificity and balanced accuracy (average of recall and specificity) of 
repeated experiments, using two kinds of estimators defined in Section 2.6.  

Metric Classification Recall Specificity Bal. Acc. Acc 

Upper Bound Binary 0.950 0.963 0.956 0.958 
Conditional Binary 0.797 0.871 0.834 0.841 
Upper Bound Multi 0.833 - - 0.878 
Conditional Multi 0.623 - - 0.612  

Fig. 2. Histogram h(f). For each chemical, the quantity f is the fraction of 
species for which the given chemical is labeled as more toxic (y2 = 1, after 
taking the median on the experiment repetitions as described in Section 2.2). If 
f = 0,1, the chemical has the same binary outcome on all species, while if f ∕=

0, 1, the chemical has a different impact according to the species. 

3 An alternative would be to use a Bayesian approach, which describes the 
fluctuations as intrinsic, and would aim for example at reconstructing the full 
probability distribution of the LC50. 
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The quantity f fixes the chemical, and checks how different the 
outcomes are on different species. We can try instead to fix the taxon, in 
order to see whether the outcomes on a specific taxon are very different 
from the others. To do this, for every taxon t, we take all the chemicals 
that were tested on t. Then, for each of these chemicals, we calculate the 
mean value of f, as defined in the previous paragraph. Finally, we 
calculate what we call the taxonomic disagreement parameter, 

g = 1 − 2
⃒
⃒
⃒
⃒f −

1
2

⃒
⃒
⃒
⃒, (6)  

to indicate how different the outcomes on a taxon are from other taxa. If, 
for taxon t, g = 0, then all the chemicals that were tested on t had the 

Fig. 3. The bars depict, for each order, the taxonomic disagreement, g, as defined 
in the main text. If g = 0 for an order, all chemicals tested on that order give the 
same result also on the other orders. If g > 0, that order reacts to chemicals 
differently from other orders. The black line (top x axis) says how many 
chemicals were tested on that order. 

Table 2 
Estimates using only the information on the chemical. Metrics of different 
models, trained and tested on x→ch, i.e. without distinguishing among taxa. We 
highlight the best performance in bold. The numbers in parentheses are an un
certainty estimate (see Section 2.5).  

Model Accuracy Recall Specificity F1 

LR 0.841(5) 0.32(1) 0.969(6) 0.44(2) 
3-NN 0.841(7) 0.46(2) 0.935(7) 0.53(3) 
RF 0.855(5) 0.391(9) 0.969(8) 0.515(9) 
MLP 0.84(2) 0.5(1) 0.93(1) 0.55(8) 
S-RASAR 0.823(7) 0.32(2) 0.946(4) 0.42(2) 
DF-RASAR 0.848(8) 0.30(3) 0.983(6) 0.44(3)  

Table 3 
Out-of-domain generalization, for different models, using only x→ch. Here, 
models are trained on data coming from a single species (Rainbow Trout or 
Fathead Minnow), and they are tested on all the other taxa contained in the data 
set.  

Model Training Species Acc. Recall Spec. F1 

1-NN Fathead Minnow 0.805 0.668 0.880 0.709 
RF Fathead Minnow 0.814 0.647 0.906 0.712 
MLP Fathead Minnow 0.781 0.352 0.916 0.402 
S-RASAR Fathead Minnow 0.807 0.572 0.936 0.678 
DF-RASAR Fathead Minnow 0.817 0.606 0.933 0.702  

1-NN Rainbow Trout 0.820 0.827 0.816 0.753 
RF Rainbow Trout 0.843 0.800 0.865 0.773 
MLP Rainbow Trout 0.798 0.684 0.827 0.583 
S-RASAR Rainbow Trout 0.837 0.767 0.872 0.758 
DF-RASAR Rainbow Trout 0.830 0.788 0.850 0.755  

Table 4 
Estimates of y2 from the whole dataset x→ = ( x→ch, x→tax, x→ex), which combines 
information on chemical, taxonomy and experimental conditions.  

Model Accuracy Recall Specificity F1 

LR 0.882(2) 0.834(5) 0.910(2) 0.841(4) 
3-NN 0.918(1) 0.888(5) 0.892(3) 0.890(2) 
RF 0.932(1) 0.903(3) 0.949(3) 0.909(2) 
MLP 0.913(4) 0.887(4) 0.929(6) 0.887(5) 
S-RASAR 0.910(1) 0.858(7) 0.941(5) 0.877(2) 
DF-RASAR 0.919(2) 0.861(4) 0.953(2) 0.888(3)  

Fig. 4. Accuracy (red) and F1 score (green) of random forests trained with the 
C setup (first three columns, data corresponding to Tables 2,3), and with the 
CTE setup (fourth column, Table 4). 

Table 5 
Estimates of y2 from the whole dataset x→ = ( x→ch, x→tax, x→ex), using the distances 
defined in Eq. (5). We only list the models that rely on the definition of the 
distance [Eqs. (4) and (5)], since the others are unaffected.  

Model Accuracy Recall Specificity F1 

1-NN 0.918(2) 0.898(3) 0.931(4) 0.892(3) 
3-NN 0.917(2) 0.896(2) 0.930(4) 0.890(2) 
5-NN 0.908(4) 0.875(6) 0.928(3) 0.877(4) 
S-RASAR 0.914(1) 0.896(6) 0.924(5) 0.886(1) 
DF-RASAR 0.923(3) 0.884(5) 0.946(3) 0.908(6)  

Fig. 5. Top: Feature importance from the RF. Every bar corresponds to a 
collection of features. The bottom (hatched) part of the bar corresponding to 
the chemicals is related to the chemical fingerprints, whereas the top part de
picts the importance of the pubchems. Bottom: feature importance of the single 
features. For visualization purposes, we only include the 20 most important 
features (see A for a description). 
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same outcome on all the other taxa on which they were tested. If g > 0, it 
means that part of the chemicals that were tested on t had a different 
outcome when tested on different values of the taxonomic rank. In other 
words, if it was useless to use taxa in our dataset, we would always have 
g = 0. The larger g (the maximum value is 1), the more crucial it is to use 
the taxonomic information. 

In Fig. 3 we show the mean value of g for each taxonomic order 
(excluding those for which only a single experiment is available, see A). 
We chose the order for representation clarity, but as we explained this 
can be done in a similar way with any taxonomic rank. 

The value of g is positive and steady across the orders, indicating that 

experiments on one order are not fully representative of other orders, 
and that there is no single order that represents better or worse the other 
orders. The only exception would seem Amiiformes, but this datum is 
poorly significant because we only have two experiments on this order 
(the black line in Fig. 3 indicates the number of available experiments). 

3.2. The C setup: predictions based on chemical properties alone 

Predicting toxicity outcomes based on chemical properties is the 
domain of quantitative structure–activity relationships (QSARs) (Cher
kasov et al., 2014). Most often, existing QSARs are trained on the impact 
that a set of chemicals has on a single species. In our notation, this 
amounts to deducing y2 from x→ch. Approaches of this kind are some
times called global, but since we refer to generic ways of using only x→ch, 
we call this approach the C setup. In this section, we show the outcome 
of this kind of approach on our dataset. 

There are two ways in which we can train models using only x→ch 

(and ignoring x→tax and x→ex): 

Table 6 
Values of αEuc, αpubc and αcat [Eq. (5)] for different models. These parameters are 
found during CV, and indicate the relative importance of the three sources of 
information (chemical fingerprints, pubchems, taxonomy & experimental de
tails) for some of our models (see main text). For the RASAR models we use the 
ones of the 1-NN, since it is both the best K-NN model, and the one that is 
conceptually most similar to the RASAR.  

Model αEuc αpubc αcat 

1-NN 1 0.5623 0.0749 
3-NN 1 1.7433 0.2212 
5-NN 1 0.9459 0.0833 

S-RASAR 1 0.5623 0.0749 
DF-RASAR 1 0.5623 0.0749  

Fig. 6. Histogram of the different orders appearing in our dataset after data 
preparation. 

Fig. 7. For each species, we report the fraction of chemicals that results more 
toxic to it. Species on the x axis are ordered by rank, in order to have a non- 
increasing curve. 

Fig. 8. Distribution of the LC50 values in our dataset.  

Fig. 9. Number of experiments per label after binary and 5-class labeling of the 
concentrations with only chemical features. The thresholds that define the 
classes are summarized in the appendix (Table 8). 

Table 7 
Optimal hyperparameters selected to construct the final MPL for each case as a 
result from hyperparameter tuning. Hyperparameters are: number of dense 
layers (Layers), number of nodes in each layer (Nodes), dropout rate (DR), and 
learning rate (LR).  

Features Classif. Layers Nodes DR LR 

Only chemical Binary 5 384,832,256,640,512 0.3 10− 4 

Only chemical Multi 4 448,1024,896 0.4 10− 3 

Fathead Minn. Binary 3 192,192,704 0.5 10− 2 

Fathead Minn. Multi 3 640,128,448 0.2 10− 3 

Rainbow Trout Binary 3 320,128,896 0.1 10− 2 

Rainbow Trout Multi 3 960,192,448 0.3 10− 3 

All features Binary 2 960,64 0.0 10− 4 

All features Multi 3 448,640,256 0.1 10− 4  
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1. Train and test the models on the whole dataset, merging the x→ch 

related to different taxa. The performances of the different models 
are shown in Table 2.  

2. Train a model with data coming from a single species, and assess how 
well it generalizes to other species. As training taxa we use Rainbow 
Trouts (Oncorhynchus mykiss) and Fathead Minnow (Pimephales 
promelas), which are commonly used (Ankley and Villeneuve, 2006) 

Fig. 11. Permutation-based feature importance from our best RF model. Top: 
Every bar corresponds to a collection of features. The bottom (hatched) part of 
the bar corresponding to the chemicals is related to the chemical fingerprints, 
whereas the top part depicts the importance of the pubchems. Bottom: feature 
importance of the single features. For visualization purposes, we only include 
the 20 most important features. 

Table 8 
LC50 intervals for the binary and multi-class labeling. For the binary labeling, 
we can say that the labels distinguish more (0) from less (1) toxic outcomes. For 
the multi-class, we can refer to the standard thresholds (Organisation for Eco
nomic Co-operation and Development, 2002; Li et al., 2017): non-toxic (0), 
slightly toxic (1), moderately toxic (2), highly toxic (3), very highly toxic (4).  

LC50 interval (mg/ℓ) Binary Score Multiclass Score 

( − ∞,10− 1] 1 4 
(10− 1,100] 1 3 
(100,101] 0 2 
(101,102] 0 1 

(102, + ∞) 0 0  

Table 9 
Metrics of different multi-class models, trained and tested on x→ch, i.e. without 
distinguishing among taxa and experimental details (same as Table 2, but for 
multi-class classification.). The numbers in parentheses are an uncertainty es
timate (see Section 2.5).  

Model Accuracy Recall Precision F1 

LR 0.45(1) 0.400(9) 0.45(3) 0.39(1) 
1-NN 0.459(9) 0.459(5) 0.461(8) 0.458(6) 
RF 0.545(9) 0.517(7) 0.55(1) 0.525(8) 

MLP 0.47(3) 0.47(4) 0.48(2) 0.47(5) 
S-RASAR(RF) 0.445(3) 0.422(7) 0.45(2) 0.426(8) 

DF-RASAR 0.48(2) 0.46(2) 0.48(2) 0.46(2)  

Table 10 
Multi-class out-of-domain generalization, for different models, using only x→ch 

(same as Table 3, but for multi-class classification). Here, models are trained on 
data coming from a single taxon (Rainbow Trout or Fathead Minnow), and they 
are tested on all the other taxa contained in the data set.  

Model Training Taxon Acc. Recall Prec. F1 

1-NN Fathead Minnow 0.493 0.497 0.503 0.498 
RF Fathead Minnow 0.512 0.518 0.525 0.518 

MLP Fathead Minnow 0.461 0.449 0.478 0.458 
S-RASAR Fathead Minnow 0.481 0.487 0.502 0.482 

DF-RASAR Fathead Minnow 0.498 0.505 0.515 0.501 
1-NN Rainbow Trout 0.523 0.532 0.532 0.525 
RF Rainbow Trout 0.541 0.545 0.553 0.541 

MLP Rainbow Trout 0.473 0.500 0.475 0.477 
S-RASAR Rainbow Trout 0.493 0.494 0.522 0.487 

DF-RASAR Rainbow Trout 0.523 0.526 0.539 0.522  

Table 11 
Performance of our models, trained on the full CTE feature space, in multi-class 
classification (same as Table 4, but for multi-class).  

Model Accuracy Recall Precision F1 

LR 0.639(5) 0.643(5) 0.641(6) 0.642(5) 
1-NN 0.760(3) 0.765(3) 0.763(3) 0.764(3) 
RF 0.780(2) 0.787(2) 0.784(2) 0.785(2) 

MLP 0.78(1) 0.78(1) 0.78(1) 0.78(1) 
S-RASAR 0.745(3) 0.750(2) 0.748(3) 0.749(2) 

DF-RASAR 0.778(2) 0.784(2) 0.781(2) 0.782(2)  

Table 12 
Estimates of y2 from the whole dataset x→ = ( x→ch, x→tax, x→ex), using the distances 
defined in Eq. (5) (same as Table 5, but for multi-class).  

Model Accuracy Recall Precision F1 

1-NN 0.769(1) 0.775(1) 0.775(1) 0.774(1) 
3-NN 0.751(4) 0.756(3) 0.753(4) 0.754(3) 
5-NN 0.728(4) 0.729(4) 0.729(4) 0.729(4) 

S-RASAR 0.770(2) 0.775(3) 0.773(2) 0.774(2) 
DF-RASAR 0.781(3) 0.784(2) 0.783(3) 0.783(2)  

Table 13 
Values of αEuc,αpubc and αcat [Eq. (5)] for different models for multiclass.  

Model αEuc αpubc αcat 

1-NN 1 0.3562 0.0127 
3-NN 1 4.8939 0.0853 
5-NN 1 3.0392 0.0672 

S-RASAR 1 0.3562 0.0127 
DF-RASAR 1 0.3562 0.0127  

Fig. 10. Validation performance of the KNN models from Table 2 (using x→ch 

without distinguishing among taxa), Table 3 (using x→ch, training on a single 
species (Rainbow Trout or Fathead Minnow) and testing on all the other taxa) 
and Table 4 (ecotoxicological dataset x→) as a function of K. 
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(we have 2500 and 3000 entries for each, see A). The performances 
of the different models are shown in Table 3.4 

From Tables 2 and 3, it seems less advantageous to blindly mix all the 
taxa, than to train on a single species, and then naïvely extrapolate. The 
reason for this can be that the former method involves merging data 
coming from different taxa before training. This implies that i) the dataset 
becomes smaller and unbalanced (see A - anyhow, this can be partly 
offset by using the F1-score as a metric), and ii) that the labels y2 are 
perturbed in an unknown way, since a label that correctly applies to one 
taxon does not necessarily apply to another. Further tests of the C 

approach are shown in G. 

3.3. The CTE setup: combining chemical, taxon and experimental details 

We now turn to what we define the CTE setup, that combines all the 
different sources of information. At this stage, we treat x→ch, x→tax and x→ex 

on the same footing. For KNN and RASAR we use the distance defined in 
Eq. (4) (details on model training can be found in B). In Table 4, we show 
the performance of each single model, and on Fig. 4 we plot the per
formance of RFs using the C versus the CTE approaches. The better 
performance of models trained with a CTE approach stands out. Even a 
simple linear model such as the LR reaches good performances 
(F1 ≃ 0.82) outperforming all the models obtained with both C ap
proaches (see Tables 2,3). Moreover, the gap between the LR and our 
best non-linear models is below 10%, demonstrating that much of the 

information can be captured through simple linear relationships. The 
best model is the RF, followed by the DF RASAR.5 The better perfor
mance, lower data requirement, and higher simplicity of implementa
tion are strong factors in favor of the RF. However, we must keep in 
mind that the DF RASAR is explicitly designed for problems with a high 
availability of data from different biological effects, while in our dataset 
the effect “mortality” is dominant with respect to the other effects, 
which the DF RASAR uses as input to predict mortality (see A, and 
Appendix B). Furthermore, there is space for improving of RASAR 
models. One way is to replace the Euclidean distance (Eq. (4)) used by 
the RASAR with a distance that gives a different weight to different 
sources of information (Eq. (5)), as described in Section 2.3.2. In Table 5 
we show the performances obtained by using this procedure. We note an 
improvement throughout most of the metrics of all the models (K-NN, S- 
RASAR and DF-RASAR), especially the DF-RASAR, which reaches a =

92.3% and F1=90.8%.6 

From Section 2.6 we know that the maximum achievable accuracy is 
not 100%, but rather an unknown value ã. We cannot measure ã 
directly, but we can estimate it by measuring Aup [Eq. (D.1)]. From 
Table 1, we see that the accuracy of the experiments is at most Aup =

0.958, so we can use this value to rescale our performances. For 
example, the rescaled performance of the RF becomes 
0.932/0.958 ≃ 0.973 ≈ 97%. On another side, we note that most of our 
models perform better than what would be indicated through the con
ditional estimator of ã (Table 1), suggesting that this metric is a too 
pessimistic estimate of ã. 

3.4. Feature Importance 

3.4.1. Importance from Random Forests 
We now discuss the relative importance of the features, when using 

our best model (the RF of Table 4). These importances are estimates of 
how relevant each feature is for the predictions. Since there is no single 
best method to calculate feature importances, we evaluate them through 
two most commonly used methods: permutation-based and impurity- 
based (using Scikit-Learn libraries (Pedregosa et al., 2011)). While the 
permutation-based importance falls short with collinear features, the 
impurity-based tends to overestimate the relevance of high-cardinality 
categorical features (Altmann et al., 2010). Even though we do 
observe some (expected) differences between the two methods, the 
conclusions we draw are consistent across both kinds of analysis. We 
here show the results with the impurity-based method, and provide the 
permutation importance analysis in E. 

In the top chart of Fig. 5, we coarsen the feature importances in three 
groups, corresponding to x→ch, x→tax and x→exp. It can be clearly seen that 
x→tax and x→exp contribute to almost 30% of the information. The 
contribution of the features related to taxonomy and experimental de
tails is even more striking when we look at them one by one: in the 
bottom set of Fig. 5, we show the importance of the single 20 most 
important features. The single most important feature appears to be the 
species. The most important features from x→ch are water solubility and 
LogP. The control type and observation duration (details in A) appear to 
be the most influential experimental details, and the most important 
pubchems have the labels 335, which indicates the presence of the 
substructure C(∼C)(∼C)(∼C)(∼H), and 39, which indicates the 

Table 14 
Estimates of y2 from the whole dataset with chemical stratification split using 
the C approach, x→ = ( x→ch).  

Model Accuracy Recall Specificity F1 

LR 0.810(8) 0.278(26) 0.946(6) 0.373(27) 
2-NN 0.820(8) 0.209(13) 0.969(6) 0.313(16) 
RF 0.818(7) 0.385(20) 0.931(7) 0.467(9) 

S-RASAR 0.843(6) 0.261(7) 0.989(4) 0.400(9) 
DF-RASAR 0.870(3) 0.338(16) 0.983(6) 0.477(14)  

Table 15 
Accuracy on binary classification with dataset stratified splitting by chemical 
stratification split using the CTE approach, x→ = ( x→ch, x→tax, x→ex).  

Model Accuracy Recall Specificity F1 

LR 0.789(23) 0.924(22) 0.590(47) 0.693(40) 
3-NN 0.823(24) 0.751(35) 0.878(19) 0.785(42) 
RF 0.764(21) 0.799(3) 0.699(48) 0.671(42) 

S-RASAR 0.751(15) 0.867(11) 0.560(36) 0.629(39) 
DF-RASAR 0.730(16) 0.948(24) 0.670(37) 0.671(26)  

Table 16 
Accuracy on binary classification with dataset stratified splitting by species 
stratification split using the CTE approach, x→ = ( x→ch, x→tax, x→ex).  

Model Accuracy Recall Specificity F1 

LR 0.852(10) 0.923(13) 0.678(10) 0.727(19) 
9-NN 0.840(5) 0.774(24) 0.885(12) 0.797(18) 
RF 0.895(10) 0.940(14) 0.834(21) 0.871(5) 

S-RASAR 0.852(10) 0.927(10) 0.737(26) 0.797(19) 
DF-RASAR 0.885(7) 0.964(12) 0.842(46) 0.861(39)  

4 We do not report error estimates in Table 3, because restricting the dataset 
to a single species made the training set significantly scarcer, so decided not to 
make a validation set and used the test set to select the hyperparameters. This 
means that the values in Table 3 are at risk of being overestimated, but it 
guarantees that they are not underestimated, which is our aim, as it will become 
clear in Section 3.3. 

5 In G we provide further comparisons between the C and CTE approaches, 
showing that with different kinds of train/test splitting the CTE approach still 
outperforms the C , and that RF and DF-RASAR perform best.  

6 Note that, even though, for completeness, we provide the KNN results for K 
= 1,3,5, comparisons between Tables 4 and 5 should compare KNN as a single 
algorithm. The specificity of S-RASAR shows a decrease but is compensated by 
the higher recall score, achieving a higher F1-score, which is generally the most 
desirable result. 
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presence of more than 4 Cl atoms (Pubchem substructure fingerprint 
documentation). Also with the permutation importance we find that the 
taxonomy- and experiment-related features, taken one by one, carry a 
large importance compared with the chemical descriptors taken one by 
one. These observations are consistent with Ref. (Tuulaikhuu et al., 
2017), where the species is identified as the most important taxonomic 
descriptor, and the LogP as the most important chemical. 

3.4.2. Importance from α 
Since the distances used in Eq. (5) are normalized to one, the optimal 

values of each α tell us how relevant each set of features is. In particular, 
αcat is an indicator of how relevant the data on experiment and taxon, 
x→ex and x→tax are with respect to the information on the chemical. In 
Table 6 we show the optimal values of α for several models. The first 
thing that we point out is that αcat is not zero, meaning that taxonomy 
and experimental details provide useful information. This is consistent 
with our previous feature importance analysis, and the remark that αcat 

is ∼ 20 times smaller than the other two descriptors suggests that these 
models rely more heavily on x→ch than the RFs. Second, we notice that 
now the pubchems ( x→pubc) seem to often play a smaller role than the 
explicit chemical properties ( x→pr), than what we had seen with the RFs. 
We see two possible reasons for this: (i) the same information is con
tained both in the pubchems and in the properties, and which of the two 
is used is decided by the model while training. This is expected at least to 
a degree, since physicochemical properties can be predicted from the 
molecular structure (Mansouri et al., 2018). (ii) The distances in the 
pubchem space do not discern which chemical properties are different, 
and assign the same weight to all kinds of variation. This is also true for 
the chemical properties, x→pr, but the properties are fewer, not binary, 
features. One way to come around this would be to treat different groups 
of pubchems components separately, by introducing more α constants. 

3.5. Multiclass models 

The whole analysis that we showed for binary classification was 
repeated in the case of 5-class labeling. Other than requiring to adjust 
the RASAR in order to also include an arbitrary number of classes (B), 
the analysis was analogous to the binary case. Also the results are 
similar, so we relegate them to F. Here, we only make some remarks:  

• The performances of our models are lower for multiclass, but also the 
self consistency of the data is lower, since with more classes it is more 
likely that the same experiment repeated twice falls into two 
different categories. If we normalize the recall by the upper bounds 
shown in Table 1, we obtain a rescaled accuracy of 89%, and a 
rescaled recall of 95%.  

• The performance of the multiclass DF-RASAR model matches that of 
the RF. 

4. Conclusions 

In this paper, we addressed the problem of predicting the acute 
toxicity of chemicals on different taxa through machine learning. We 
focused on fish datasets where one is interested in knowing about the 
effect of many chemicals on a large number of taxa, and the available 
data only includes few combinations of taxon and chemical. We 
addressed both binary and 5-class classification, with similar results. 

Gain from including taxonomic and experiment information. We showed 
that taking into account the information on the taxon and on the 
experimental conditions is highly beneficial, providing over a 10% gain 
in F1 score (and other metrics, such as accuracy) with respect to the 
standard procedures of dealing with the same dataset. Remarkably, a 
linear model trained on a dataset which includes taxonomic information 
performs better than more sophisticated models which only make use of 
the chemical information. Additionally, we showed how one can take 

into account the peculiarities of each source of data to obtain a further 
gain. 

Best models and comparison to RASARs. The best performances are 
obtained by the RF, followed by the DF-RASAR and other models that 
obtained performances that were not too far. This similarity between 
different models was already found previously (Li et al., 2017; Hou et al., 
2020), and the superiority of RFs had already been pointed out (Hou 
et al., 2020). Even though the DF-RASAR obtains good performances, 
they do not seem to outperform other traditional machine learning 
models. In particular, the S-RASAR does not outperform K-NN, making 
its deployment less justifiable. The DF-RASAR, instead, has several ad
vantages in the integration of the data from different effects, and a po
tential for improvement through some small variations. 

Best performance in terms of maximum achievable performance. For 
binary classification, we obtain a maximum prediction accuracy of 
93.2%. However, since this number comes from a test set which contains 
some inconsistent examples, this number is effectively higher than it 
appears, since it should be normalized by the accuracy of the test set. We 
cannot estimate it, but we see that it is roughly upper-bounded by Aup =

0.958. By rescaling appropriately through Aup, we can argue that the 
real accuracy is around 97%. Similar reamarks are valid for the multi- 
class setting. 

Metrics for comparing ML models with experiment reproducibility. If we 
use the metrics presented in Ref. (Luechtefeld et al., 2018), all our 
models (as long as we use a CTE approach), outperform animal ex
periments. As also mentioned in Ref. (Alves et al., 2019), this statement 
should thus be polished, given the non-rigorous nature of this kind of 
estimators. To deal with this, instead of trying to estimate the accuracy 
(as well as other metrics) of the experiments, we estimated a heuristic 
upper bound. With these upper bounds, we still find evidence that our 
best models (RASAR, RF, KNN and MLP) are outperforming animal tests 
(Section 2.6). However, these comparisons should be taken with a grain 
of salt. In fact, the main problem is that, as stated earlier, this kind of 
comparisons is not rigorously defined. When we estimate the accuracy of 
the experiments, we have no truth value with which we can compare; we 
only have the results of repetitions of the same experiment. Therefore, 
we cannot estimate it without making strong assumptions. When we 
then calculate the accuracy of our models, we test them with a random 
selection of outcomes from experiments. In other words, we are now 
making the implicit (wrong) assumption that the data in the test set is 
not mislabeled (i.e. we are assuming that all the experimental outcomes 
faithfully reflect the ground truth). To overcome this issue, we made 
heuristic arguments on how the test accuracy of the models would be 
affected by the noise in the labels. However, these arguments are also 
not fully representative, since the accuracy of the labels is calculated on 
single repetitions of the same experiments (and assuming that all ex
periments fluctuate in the same way), but the data used for training and 
testing coarsens repeated entries in a single one, since we take the me
dian LC50. Taking the median is desirable, since it arguably produces 
higher-quality data, but makes it even more far fetched to compare the 
performance of the models with that of the experiments. Anyhow, albeit 
not mathematically rigorous, these metrics arguably give a reasonable 
indication of the reliability of experimental results, and can be used to 
get a gross understanding of how accurate machine learning models are. 
In our case, they indicate that some of our models are close to the 
maximum obtainable performance, but only as long as we include 
taxonomic variability as an input variable. This means that, for the data 
we analyzed, the model selection is only marginally relevant with 
respect to the right choice and curation of the input features. 

Most important descriptors. We discriminated which input features 
played the most important role. Most of the important features belong to 
the chemical, demonstrating why it is still possible to obtain decent 
predictions based on the chemical only. Nonetheless, the role of tax
onomy and experimental details is relevant (e.g. it explains 30% of the 
inter-trees variability in the RFs), and the single most important feature 
is the species (the species descriptor is more crucial than the LogP 
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towards assessing toxicity), which is in agreement with previous ob
servations (Tuulaikhuu et al., 2017). Moreover, in this work we 
restricted our analysis to fishes, but expanding the focus to wider 
taxonomic ranges would certainly further increase the importance of 
including the taxonomy. 

Relation to human toxicology. Training models that are efficiently able 
to generalize across taxa is central in ecotoxicology, but it is also crucial 
for human-centered toxicology. In fact, the investigation of toxic effects 
on humans passes through the experimentation on mammals, such as 
rats, mice, guinea pigs and rabbits, and there is no guarantee that these 
species react in the same way as humans to novel toxicants. In recent 
years in silico methods, including machine learning, have been used to 
predict human toxicity - most often based on oral toxicity tested on 
rodents- (Bhhatarai et al., 2015; Gadaleta et al., 2019; Nedelcheva et al., 
2019; Chushak et al., 2021; Mansouri et al., 2021), under the implicit 
assumption that humans react in the same way as the tested mammals. 
Therefore, mastering generalization across taxa can help data-driven 
approaches to infer better from animals to humans. 

Replacing in vivo animal testing. In the long term, it would be desirable 
to replace in vivo testing through machine learning. How far are we from 
that? In order to do this, we would like in silico predictions to be as 
accurate, or almost, as directly performing an in vivo test. Our results 
represent a fraction of all the possible chemicals and taxa that one could 
be interested in testing. In order to expand the domain of applicability of 
our models, we would need to use a wider range of chemicals and taxa 
both for training and, more crucially, for testing. A known problem in 
machine learning is that the performances obtained in the test set often 
degrade when the models are deployed in real application settings, 
because the datasets used to test these models did not comprehensively 
represent the whole feature space. This problem is also known as dataset 
shift (Quiñonero-Candela et al., 2009; Moreno-Torres et al., 2012). One 
main source of dataset shift is the fact that the sampling of data points is 
not completely random, but follows patterns. This is certainly the case in 
(eco) toxicology, where taxa and chemicals that appear in the databases 
are chosen according to specific needs. Therefore, before the deploy
ment of machine learning for risk assessment can become an option, it is 
necessary to have extensive-enough test sets, and a thorough study of 
dataset shift. Even then, it is foreseeable that for exotic chemical/ 

taxonomic categories the machine learning predictions might need to be 
confirmed through tests. Therefore, it is unlikely that machine learning 
alone will soon be able to completely replace animal testing, but it can 
certainly allow to reduce it drastically. In addition, given that it is 
anyhow hopeless to test all chemicals on all taxa, machine learning can 
be effectively used out of the box, even at the current stage of devel
opment, for prioritization: the results of in silico methods can guide us on 
which chemicals/taxa should be tested first. 
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Appendix A. Data 

We use the Ecotox database, provided by the Environmental Protection Agency of the USA (U.E.P. Agency, 2020), and download the whole ASCII 
database. The dataset contains information on the taxonomy of the tested organism, on the conditions under which the experiment was brought 
through, a CAS identifier of the used chemical, and several endpoints related to the studied effects. 

Chemicals. From the CAS codes provided in each EcoTox entry, we extract the SMILES string representing the chemical. We use the rdkit python 
library (RDKit) to extract the following features from the SMILES: number of atoms, number of alone atoms, number of OH groups, number of bonds, 
number of double bonds, number of triple bonds, and number of rings, LogP (octanol–water partition coefficient) and Morgan Density. Additionally, 
we extract molecular weight, water solubility and melting point from the Comptox database (Williams et al., 2017). From the SMILES we also obtain 
the Pubchem2D vector through the pubchempy library (Pubchempy). In a small number of cases we are not able to retrieve crucial information such as 
the SMILES or the Pubchem vectors. We decide to drop those data entries. 

Taxonomy. We filter the dataset keeping only the experiments on fishes. This implies that we can discard the high-rank taxonomic features, ending 
up with 2 classes (Actinopterygii and Cephalaspidomorphi), 26 orders, 83 families, 219 genuses and 345 species. We also exclude organisms at the 
embryo life stage. Note that the data is not equally distributed among taxonomic categories. For example, in Fig. 6 we show how many times every 
order appears in our dataset (after cleaning), which is highly imbalanced. We also show, in Fig. 7, the fraction of chemicals that result more toxic to it. 

Experimental conditions. As for the experiment conditions, we keep those that have a sufficiently small number of missing entries: ’observation 
duration’ (24 h, 48 h, 72 h, 96 h - most are 96 h), ’control type’ (Concurrent control, Insufficient, Unknown, Satisfactory, Carrier or solvent, Multiple 
types, Unsatisfactory, Baseline, Positive controls), ’concentration type’ (Active ingredient, Dissolved, Formulation, Labile [free metal ion], Not 
applicable, Not coded, Not reported, Total, Unionized), ’exposure type’ (Static, Flow-through, Aquatic not reported, Renewal, Lentic, Pulse, Intra
peritoneal, Subcutaneous, Spray), ’application frequency’, ’media type’ (fresh water, salt water). The names are self-explanatory, and we refer to the 
Ecotox documentation for a detailed description of the features (https://cfpub.epa.gov/ecotox/help.cfm?sub = term-appendix). 

Target. We then filter on the desired endpoint and effect. For mortality experiments, the endpoints EC50 and LC50 are equivalent, so we keep both. 
The distribution of the LC50 in our dataset is shown in Fig. 8. For the other effects, that are needed by the DF RASAR as input, we take the EC50. 

Imputation and aggregation. We drop the lines with one or more missing features, and aggregate the experiments with the same CAS, taxonomy, and 
experiment conditions onto a single record, whose LC50 (or equivalent target) is the median LC50 from those repeated experiments. We then use the 
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median LC50 to calculate the labels y2 and y5. While for the mortality data, which constitutes our target, we use the thresholds described in Eq. (1) (or 
Eq. (F.1) for multiclass), for the other effects, which are only used as input features for the DF-RASAR models, we use the median (or 20th,40th,60th and 
80th percentiles for multiclass) in order to obtain maximally well-separated input features. 

Standardization. All the features are rescaled between 0 and 1, and with a prior logarithmic transformation when the quantity spans several orders 
of magnitude. The scripts we used for the data cleaning are freely available (We provide our code at github.com/mbaityje/ML-Tox). 

We end up with 20128 entries in our mortality dataset, including nchem = 2199 chemicals and nspec = 345 species. 
The other studied effects (only for the DF-RASAR, see B) are genetics (777 entries), enzyme (691 entries), biochemistry (684 entries), accumulation 

(608 entries), behavior (422 entries), physiology (242 entries), cells (139 entries), intoxication (98 entries), and multiple (52 entries). 
Class balance. 
As shown in Fig. 1, the data set is balanced both in the binary and in the 5-class classification. If we neglect all the features different from x→ch, we 

need to merge into a single entry all the lines related to different taxa/conditions and the same chemical, which makes the dataset less balanced. We 
end up having 461 positives and 1738 negatives and 543 non toxic, 640 hazardous, 555 toxic, 302 very toxic and 159 extremely toxic for multiclass 
(Fig. 9). If we restrict to fathead minnows, we have 2830 entries. If we restrict to rainbow trouts, we have 2508 entries. 

Appendix B. Models 

In this section we explain, where necessary, the implementations of our machine learning models. All our models are trained by splitting the 
dataset (80:20) into a training and a hold-out test set. The training set is used for 5-fold CV, implying a further 80:20 splitting into training and 
validation sets. The test set is not used until the very end, to produce the performance metrics. 

Except for the RASARs, the models we use are quite standard, so we will not get into the details of most models, but rather in hyperparameter 
tuning and choices. 

B.1. Logistic Regression and Random Forest 

For LR and RF we use the standard implementation from the Scikit Learn python library (Pedregosa et al., 2011; We provide our code at github. 
com/mbaityje/ML-Tox). We rescale all numerical features through min–max normalization and perform one-hot encoding (using the OneHotEncoder 
function from Scikit Learn (Pedregosa et al., 2011)) on all categorical features in the preprocessing step. The hyperparameters adjusted in logistic 
regression include (the range of values in parentheses): C (10− 3 - 103), l1 ratio (0–1), and max iter (100–800). In the random forest model, the adjusted 
hyperparameters are n estimators (200–1000), maximum depth (10–20), minimum sample segmentation (2–10), and minimum sample leaf (1–32). 

B.2. Multi-Layer Perceptron 

As a first preprocessing step, we one-hot encode all the categorical features. Then, we apply a min–max scaler to the data so that the scaled data has 
a minimum of 0 and a maximum of 1. The lower bound of 0 is chosen to keep the sparsity of the categorical features after one-hot encoding. 

We use a tensorflow (Abadi et al., 2015) implementation of MLP and the tuning of hyperparameters is performed on the training set using the 
Hyperband tuning algorithm (Li et al., 2018). The tuned hyperparameters include (value range in brackets): number of layers (2–5), number of nodes 
in each layer (64–1024), dropout rate (0–0.5), and learning rate (10− 5 - 10− 2). One dropout layer is placed after the dense layers and before the output 
layer. The tanh activation function is used in all dense layers. For the output layer, we use the sigmoid and the softmax activation for the binary and the 
multiclass classification, respectively. The selected hyperparameters for each case are shown in Table 7. 

B.3. K Nearest Neighbors 

The KNN algorithm assigns to an unknown entry the target that appears most often among the K nearest-neighbor data points. If two values are 
equally present, the one which is most present in the training set is chosen. For this reason, when the dataset is unbalanced (e.g. Table 2) even values of 
K give a higher performance. We use the KNN functions from SciKit Learn (Pedregosa et al., 2011). 

We select and report for the value of K that gives the highest accuracy value. Differently from what is found in Ref. (Hou et al., 2020), we have a 
better test performance with small values of K. In Fig. 10 we show the validation performance for the different values of K that we tested, for both the 
C and the CTE setup. 

B.4. RASAR 

The RASAR model, presented in Ref. (Luechtefeld et al., 2018), comes in two variants. The S-RASAR requires data on a single effect (mortality in 
our case), whereas the DF-RASAR integrates several effects. 

B.4.1. Simple RASAR 
The S-RASAR is composed of two steps. In the first step, a metadataset is created through a nearest-neighbor algorithm, while in the second step, 

the metadataset is trained through a supervised learning method. The first step does not require any hyperparameter tuning, while the second follows 
the protocol described in B.1. 

For each entry i in the training set, we save the normalized distance ̃d+ from the nearest positive,7 and the one from the nearest negative outcome, 
d̃− (we use the distances defined in Section 2.3). This results in a meta entry 

7 In Ref. (Luechtefeld et al., 2018), the similarity s with the nearest positive and negative is used. Since the distance ̃d is normalized to 1, it is equivalent to use on or 
the other, because s = 1 − d. 
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m(S)
i =

[
d̃
+

i , d̃
−

i

]
(B.1) 

We now have a supervised learning problem, where we need to deduce the labels y2 i from mi. We did this through LR or RF. 8 

Multiclass. In Ref. (Luechtefeld et al., 2018), this algorithm is presented only as a binary classification algorithm, but we can easily extend it to 
multi-class classification. It is enough to measure the distance to the nearest element of each class. The multi-class metadata point is then 

m(S)
i =

[
d̃

1
i , d̃

2
i ,…, d̃

C
i

]
, (B.2)  

where C is the number of classes. 

B.4.2. Data Fusion RASAR 
The DF-RASAR extends the idea of the S-RASAR, by including different sources of information in the metadataset. Since the definition in the binary 

case is already provided in Ref. (Luechtefeld et al., 2018), we define it here in the case of C classes. 
The first, unsupervised, step is performed for E extra effects, beyond the target one, which we denote with a 0 (in our study, mortality). For each 

extra effect e, we construct an extra metadataset. This metadataset contains C+1 elements. The first C elements are the distances to the nearest 
experiment of each label (distance to the nearest 0, to the nearest 1, …), and the (C + 1)th is the label of effect e. In other words, if chemical A was tested 
on taxon B for mortality, now we are including the impact of A on B based on another effect e. If this information is unavailable, we use an extra 
”unknown” label. In the multiclass problem, the introduction of an ”unknown” label implies that the six labels are no longer ordered and need to be 
treated as categorical variables. 

In formulas, for each extra effect e, the metadatapoint corresponding to the ith experiment (i.e. a taxon-chemical couple) is 
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, (B.3)  

where yC(e) is the C-class label (see F) of the eth effect. 
When the features used for the eth effect are different from those of the target effect. In those cases, we restrict the distance to the common features. 
As a result, the ith meta datapoint for a C-class DF-RASAR takes the form 
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We then use RFs on this metadataset to relate it to the target, yCi(0). 

Appendix C. Performance metrics 

Here, we explicitly define the perofmance metrics used in this manuscript: accuracy (a), recall (r, often called sensitivity), specificity (s), precision 
(p) and F1 score (F1). 

The accuracy is the most intuitive of these quantities, and measures the fraction of correct answers, 

a =
#correctguesses

total
. (C.1)  

In terms of the number of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), the remaining metrics are defined as 

r =
TP

TP + FN
, (C.2)  

s =
TN

TN + FP
, (C.3)  

p =
TP

TP + FP
, (C.4)  

F1 = 2
rp

r + p
. (C.5) 

8 Since we did not remark a difference between LR and RF, we only report the results using RFs, in order to be using the same supervised algorithm both in the S- 
RASAR and in the DF-RASAR. 
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The recall measures, out of all the positives in the test set, how many of those were guessed correctly. The specificity does the same, but for the 
negatives. In balanced datasets (i.e. with a similar number of positives and negatives), these are usually similar. With unbalanced datasets, high 
accuracies can be an artifact of the unbalance, and this usually results in very different values of r and s. In those cases, a better indicator of the 
performance is either the balanced accuracy (b = r+s

2 ), or the F1 score (Luque et al., 2019). 
For multiclass classification, we calculate the metrics on each class, and then average between the classes without taking into account how many 

examples there are in each class (this is called a macro average (Opitz and Burst, 2019)). In the multiclass case, the sensitivity does not make too much 
sense, since the negatives of one class include several classes. Therefore, we report the precision, which indicates, out of all the examples that were 
labeled as positive (for a given class) by the classifier, how many of those were actually correct. 

Appendix D. Reproducibility of the experiments: formal definitions 

Here, we define formally the quantities Aup,Rup, Sup and BAup, that we introduced in Section 2.6. Let y(i) = 0,…,C − 1 be a generic label (in this 
work we have C set to 2 or 5 classes), related to an experiment i, which is performed ni times. Let us call nrep the number of experiments that were 
performed at least twice, and yj(i) the label resulting from the jth experiment. Let us also call y(i) the label of experiment i that appears the most times, 
over the ni times that the experiment is performed. Then, we have 

Aup ≡
1
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⎡
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j=1
δ
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⎥
⎥
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where δ(a, b) is the Kronecker function, which is equal to 1 if a = b, and equal to 0 if a ∕= b. Therefore, the term in square brackets is the fraction of 
evaluations of the experiment that resulted in the most common outcome. 

By restricting the measurement of Aup to the experiments with a majority of positive outcomes, we get an upper bound to the recall, Rup. By 
restricting to the negative outcomes, we obtain an upper bound to the specificity, Sup: 

Rup ≡
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[
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Here, are separating the experiments in two subsets. In Eq. (D.2) we are only considering the experiments with a majority of yj(i) = 1 outcomes. This is 
enforced by the term δ(1, y(i)), which is zero unless the label is a 1. Since we discarded a fraction of the experiments, the normalization factor is no 
longer nrep, but the total number of experiments with a majority of yj(i) = 1 outcomes. The definition in Eq. (D.3) is equivalent, but we consider the 
experiments with a majority of yj(i) = 0. 

We obtain an estimated upper bound for the balanced accuracy by taking 

BAup ≡
Rup + Sup

2
. (D.4)  

For multiclass classification, Aup is calculated in the same manner. Since in this case the specificity is not informative, we restrict to the recall. We 
calculate separately the average recall Rup,c related to each class c, and then average over all the classes (i.e. we measure the macro-averaged recall): 

R(MC)
up =

1
C

∑C− 1

c=0
Rup,c. (D.5)  

Appendix E. Permutation-based feature importance 

Since the impurity-based feature importance analysis is at risk of giving too much weight to high-cardinality features (Altmann et al., 2010), we 
also used permutation importance, to ensure that the species (which indeed has a high cardinality), indeed is one of the most important features. In the 
bottom set of Fig. 11 we see that, also when using permutation importance, the species remains one of the most important features. We notice that the 
importance of chemical-related features is now diminished with respect to the impurity-based method (this is also visible from the top chart). This can 
be expected, since the features in x→ch are not linearly independent (i.e. similar information can be carried by more than one feature). 

Appendix F. Multi-class performances 

In this section, we show the results of the main paper, but with a multi-class target, 
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y5 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4 if c⩽0.1mg/ℓ,
3 if 0.1mg/ℓ < c⩽1 mg/ℓ,
2 if 1 mg/ℓ < c ≤ 10mg/ℓ,
1 if 10mg/ℓ < c ≤ 100mg/ℓ,
0 if 100mg/ℓ < c.

(F.1) 

The binary and multi-class (F) thresholds are summarized in Table 8. 
In Tables 9 and 10 we report, for multi-class classification, the same results that in the main text we reported for binary classification (Tables 2,3, 

where we report the precision instead of the specificity, since it is better defined for multi-class classification). We observe the same trend shown for 
binary classification. The F1-score increase obtained by including taxonomy and experiment-related information is of around 15%. The best accuracy 
that we are able to reach with multi-class classification is 0.781 (Table 12), which is close to the estimators of the reproducibility of experiments 
(Aup = 0.878, Table 1), indicating that likely our models are close to achieving the best possible performance in this dataset. If we rescale the 
maximum obtained accuracy by Aup, we obtain 0.781/0.878 ≃ 0.890 ≈ 89%, which is close to we obtained for binary classification. The recall is even 
closer to its estimate maximum Rup, as it is 0.787/0.833 ≃ 0.945 ≈ 95%. (see Table 11) 

Even in the multi-class case, the best models are RF, MLP and DF-RASAR, as it was for binary classification. From the values of the α parameters in 
Table 5 we find the same indications, with αcat being smaller, though not negligibly, than αEuc and αpubc, and the pubchems seemingly less important 
when a smaller number of neighbors is taken into account. 

Appendix G. Stratified splitting 

Here, we show how our models perform in the case of a different splitting of the dataset. We choose two ways of doing stratified splitting: by 
chemical and by taxon. In the first, each CV fold, as well as the hold-out test set, contain exclusively different chemicals. In the second, they contain 
different taxa. 

To do this, we used the GroupShuffleSplit function from SciKit Learn (Pedregosa et al., 2011) to split the train and test dataset, ensuring the 
(chemical, taxon) groups in the test dataset are independent of those in the training dataset. In the 5-fold CV, we used the GroupKFold function. For the 
LR and RF we adopt mitigate class imbalance through class reweighting. 

G.1. Splitting by chemical 

In Table 14 we show the performance of the C approach when stratifying the performances by chemical, and in Table 15 we show the performance 
of the CTE approach in the same conditions. The performances of the CTE approach are better than the C approach also in this case. 

G.2. Splitting by species 

In Table 16 we show the performance of the CTE approach when stratifying the performances by species. 
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