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Abstract. Local formalism deals with weighted unoriented networks, specified by
an exchange matrix, determining the selection probabilities of pairs of vertices. It
permits to define local inertia and local autocorrelation relatively to arbitrary net-
works. In particular, free partitioned exchanges amount in defining a categorical
variable (hard membership), together with canonical spectral scores, identical to
Fisher’s discriminant functions. One demonstrates how to extend the construction
of the latter to any unoriented network, and how to assess the similarity between
canonical and original configurations, as illustrated on four datasets.

1 Introduction

Bavaud, F., Cocco, C. : Factor Analysis of Local Formalism. In: Lausen, B. et al. (Eds.)

Data Science, Learning by Latent Structures, and Knowledge Discovery, pp. 57–67.

(Series: Studies in Classification, Data Analysis, and Knowledge Organization). Springer,

Heidelberg (2015)

Introducing a neighborhood relation between pairs of observations permits
to construct a local formalism, and a local variance in particular. Comparing
the latter to the ordinary variance defines the Durbin-Watson, Moran or Geary
measures of autocorrelation. Local formalisms are central to spatial statistics
ever since the fifties (Moran 1950; Geary 1954); they have also been considered
by a few authors in the data analytic community (e.g. Lebart 1969; Le Foll
1982; Meot et al. 1993; Thioulouse et al. 1995).

Section 2 exposes a quite general yet tractable local formalism, based upon
two primitives only, namely an exchange matrix E between observations, de-
termining the selection probabilities of pairs of observations, defining an un-
oriented weighted network together with the observation weights, and a dis-
similarity matrix D between observations, chosen as squared Euclidean. This
formalism, closely related to reversible Markov chain theory and spectral clus-
tering, defines in particular a local inertia and a relative inertia, generalising
the local variance and Moran’s I.

Categorical variables, that is groups of observations, emerge as a particular
instance of the local formalism, namely under free partitioned exchange ma-
trices (section 3.1). This circumstance enables to generalise for any network
the computation of canonical scores (Fisher discriminant functions), maximis-
ing the between-groups dispersion (section 3.2). Canonical scores and factor
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scores (the latter maximising the global inertia) are compared by means of two
presumably original weighted configuration similarity indices (section 3.3).

In the last part (section 4), the theory is illustrated on four datasets. The
higher the relative inertia, the more similar are the canonical and factor con-
figurations. Also, the Markovian origin of the formalism allows to consider
higher-order exchange matrices, and to construct iterated canonical configu-
rations, in contrast to ordinary discriminant analysis, idempotent in nature.

2 Definitions and notations

2.1 Exchange matrix and local variance

In spatial or temporal contexts, neighborhood relations between n observa-
tions can be expressed by means of an n × n exchange matrix (Berger and
Snell 1957; Bavaud 2008), describing an unoriented weighted network:

E = (eij) eij ≥ 0 eij = eji fi :=
∑
j

eij > 0
∑
ij

eij = 1 .

Here eij can be interpreted as the probability to select the pair of individuals
(i, j), and fi as the probability to select individual i, that is the weight of the
observation. The ordinary (weighted) variance reads as

var(x) =
∑
i

fi(xi − x̄)2 =
1

2

∑
ij

fifj(xi − xj)2 where x̄ :=
∑
i

fixi .

The local variance (Lebart 1969; see also e.g. Bavaud 2013) is defined as

varloc(x) =
1

2

∑
ij

eij(xi − xj)2 = var(x)− cov(x,Wx) wij :=
eij
fi

(1)

where W = (wij) is the transition matrix of a reversible Markov chain. The
canonical measure of autocorrelation - Moran’s I - is defined as

I(x) :=
var(x)− varloc(x)

var(x)
with − 1 ≤ I(x) ≤ 1 .

Iterated exchange matrices are given by E(r) := ΠW r, where W is given in
(1) and Π = diag(f). As E(0) = Π (frozen network) and, at least for regular
chains, E(∞) = ff ′ (complete network), one gets δ(r=0) = 1 and δ(r=∞) = 0.

2.2 Eigen-decomposition

The standardised exchange matrix Es = (esij) and its spectral decomposition

esij :=
eij − fifj√

fifj
Es = T Γ T ′ T = (tiα) Γ = diag(γα) (2)
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enjoy numerous properties of interest. First, Es can be iterated: (Es)2 points
to the neighbors of the neighbors, and (Es)r generates neighbors of order r.
The dependence among nodes of the network can be measured by the chi-
square χ2(E) = Tr((Es)2), whose minimum 0 is attained with the complete
network as described by the free exchange eij = fifj , and its maximum n− 1
for the frozen network eij = fiδij , where δij is Kronecker delta.

The standardised exchange matrix is related to the so-called normalised
Laplacian L (e.g. Chung 1997) as Es = I − L −

√
f
√
f
′
, with essentially

the same eigenstructure. In particular, the eigenvalues γα ∈ [−1, 1] of Es

are those of W with the exception of the trivial Perron-Frobenius unit value,
transformed to γ0 = 0, with corresponding eigenvector ti0 =

√
fi. The largest

eigenvalue obeys γ1 ≤ 1, with equality iff the network is reducible, that is
composed of two of more disconnected components. The smallest eigenvalue
obeys γn−1 ≥ −1, with equality iff the network is bipartite. The network is
diffusive if E is positive semi-definite (p.s.d.), that is if γα ≥ 0, and off-diagnal
if eii = 0. Note that off-diagonal networks cannot be diffusive. Proofs of the
above elements, exposed in Bavaud (2010 and 2013) in the present context,
can be found in the standard literature on Markov chains.

2.3 Distances, kernels, MDS, covariances and factor scores

Squared Euclidean dissimilarities between observations, as obtained from the
n× p (possibly pre-transformed) data matrix X = (xik), are

Dij =

p∑
k=1

(xik − xjk)2 = ‖xi − xj‖2 .

Scalar products B, and weighted scalar products or kernels K are defined as

B = −1

2
HDH ′ = Xc(Xc)′ K = Π

1
2BΠ

1
2

where H := I − 1f ′ is the centering matrix, centering the data as Xc = HX,
and Π = diag(f) is the diagonal matrix of object weights. By construction, K
possesses a trivial eigenvalue λ0 = 0 corresponding to the eigenvector

√
f , and

non-negative non-trivial eigenvalues λβ ≥ 0 for β ≥ 1, decreasingly ordered.

Weighted MDS consists in extracting, from K, a set of min(n−1, p) uncor-
related coordinates X̃ = (x̃iβ) reproducing the distances as Dij = ‖x̃i − x̃j‖2
and expressing a maximum amount of variance in the first non-trivial spectral
dimensions. The solution is

x̃iβ =

√
λβ√
fi

uiβ whereK = UΛU ′, U = (uiβ) and Λ = diag(λβ). (3)

Weighted covariances are given by S = (Xc)′ΠXc. By the singular value
decomposition, the non-zero eigenvalues of S are identical to those of K, that
is S = V ΛV ′, where the loadings V serve at obtaining the factor scores of
principal component analysis as F = (Fiβ) := XcV .
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2.4 Local inertia, relative inertia and local covariance

Moran’s I (section 2.1) can be generalised to the multivariate setting by defin-
ing the inertia ∆, the local inertia ∆loc and the relative inertia δ(E,D) as

∆ :=
1

2

∑
ij

fifjDij = Tr(K) = Tr(S) ∆loc :=
1

2

∑
ij

eijDij δ :=
∆−∆loc

∆

Here ∆loc = Tr(Sloc), where Sloc := (Xc)′(Π − E)Xc is the local covariance.
Under the null hypothesis of absence of autocorrelation, the expected value

of δ is δ0 = −1/(n − 1) for off-diagonal networks (e.g. Cliff and Ord 1973),
and δ0 = (m − 1)/(n − 1) for m isolated complete sub-networks described
by the free partitioned exchange matrices of section 3.1 (e.g. Bavaud 2013).
Alternative expressions read (cf. (2) and (3)) :

δ =
Tr(EsK)

Tr(K)
=

∑
α,β≥1 γαλβCαβ∑

β≥1 λβ
where Cαβ := (

∑
i

tiαuiβ)2 ≤ 1 .

In particular, −1 ≤ γn−1 ≤ δ ≤ γ1 ≤ 1, where the maximum of δ(E,D) for E
fixed is attained for Dij = C (ti1/

√
fi− tj1/

√
fj)

2 with C > 0 (Bavaud 2010).

3 Local formalism as a generalised discriminant analysis

3.1 Free partitioned exchanges and within-groups covariance

An important special case consists of partitioned complete weighted networks
made of m components, described by free partitioned exchange matrices

eij := fifj

m∑
g=1

I(i ∈ g) I(j ∈ g)

ρg
ρg :=

∑
i∈g

fi . (4)

where I(i ∈ g) is the 0/1 indicator function of the event “observation i belongs
to group g”. In this setup, ∆loc = ∆W , the within-groups inertia associated to
the hard partitionning of the n observations into m groups (e.g. Le Foll 1982,
Meot et al. 1993, Lebart 2005). Similarly, Sloc is the within-groups covari-
ance SW . It is thus tempting to define, in the general case, a between-groups
covariance and a between-groups inertia as

SB := S − Sloc = (Xc)′EXc ∆B := ∆−∆loc

with the caveat that, in contrast to S or Sloc, SB is not p.s.d., unless E is
diffusive. This is indeed the case for reducible exchanges (4), obeying (Es)2 =
Es, thus making γα = 1 or γα = 0.

Hence the relative autocorrelation reads as δ = ∆B/∆, behaving as a
kind of F -ratio for any general neighborhood structure E - reducible or not,
diffusive or not. Also, hard partitionning and discriminant analysis appear as
particularly cases of the local formalism.
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3.2 Factor analysis and canonical scores for unoriented networks

Fisher canonical scores consist of mutually orthogonal linear combinations of
scores maximizing the relative between-groups dispersion ∆B/∆ (or, equiva-
lently, maximising δ under the linear requirement; compare with section 2.4
for the unconstrained maximising configuration). They can be shown to be
F can := XcU can, where U can contains eigenvectors of S−1SBu

can
σ = λcan

σ ucan
σ ,

yet to be normalised (e.g. Mardia et al. 1979; Flury 1997; Saporta 2006).
Canonical scores are related to the normalised eigenvectors of the symmetric
matrix A := S−

1
2SBS

− 1
2 = U̇ΛcanU̇ ′ as U can = S−

1
2 U̇ Ξ, where the freely ad-

justable matrix Ξ = diag(ξ) is diagonal and fixes the normalisation: canonical
scores are centered, with covariance

Scan = (F can)′ΠF can = Ξ2 = (δστ ξ
2
σ) . (5)

Canonical dissimilarities turn out to be of the form

Dcan

ij =
∑
σ

(F can

iσ − F can

jσ )2 =
∑
kl

mkl(xik − xjk)(xil − xjl) (6)

where M = (mkl) = S−
1
2 U̇Ξ2U̇ ′S−

1
2 . Equivalently, canonical scores F can are

given by MDS coordinates resulting of the spectral decomposition of the kernel
Kcan = Π

1
2XcM(Xc)′Π

1
2 .

Canonical scores and canonical dissimilarities are, ultimately, fully specified
by requiring a normalisation relation of the form ξ2σ = h(λcan

σ ), making the
canonical and local canonical covariances diagonal:

Scan = h(Λcan) Scan

loc := (F can)′(Π − E)F can = h(Λcan)(I − Λcan) .

Then

M = S−
1
2 U̇h(Λcan)U̇ ′S−

1
2 = S−

1
2h(A)S−

1
2 = S−

1
2h(S−

1
2SBS

− 1
2 )S−

1
2 .

The choice h(λ) ≡ 1 yields M = S−1, that is canonical dissimilarities (6)
identical to Mahalanobis distances. The choice h(λ) = 1/(1 − λ), which we
shall adopt in this paper, turns out to produce the local metric M = S−1loc .
Note that M = S−1SBS

−1 for h(λ) = λ, a legitimate choice provided E is
diffusive (section 3.1), insuring that M is p.s.d. and Dcan in (6) is Euclidean.

3.3 Similarity between two weighted configurations

For future use, let us propose two similarity indices between two weighted con-
figurations (fA, DA) and (fB , DB) on n observations, with associated kernels
KA and KB , namely

configuration similarity 1 CS1AB := Tr(KAKB)√
Tr(K2

A)Tr(K2
B)

configuration similarity 2 CS2AB :=
Tr(K

1
2
AK

1
2
B )√

Tr(KA)Tr(KB)
=

Tr(K
1
2
AK

1
2
B )√

∆A∆B
.
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The similarity indices constitute a simple alternative to Procrustean analysis,
as well as to the RV-coefficient (Robert and Escoufier 1976) or to the distance
correlation coefficient (Székely et al. 2007). By construction, 0 ≤ CS1AB ≤
CS2AB ≤ 1. Also, D̃AB := 1 − CS1AB and D̂AB := 1 − CS2AB constitute
squared Euclidean distances between weighted configurations.
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Fig. 1. Factor (top) and canonical (bottom) correlations circle and spectral scores
(section 4.1). Plotting symbols refer to cantons: 4 = FR, 5 = GE, © = VD, � =
VS, � = NE, • = JU. Groups are fairly homogeneous (δ = 0.63, to be compared to
δ0 = (6-1)/(47-1) = 0.11), resulting in high similarities (CS1 = 0.72 and CS2 = 0.89).
Canonical configuration further increases the groups homogeneity, as it must.

4 Illustrations and cases studies

Let us illustrate the theory on four datasets, each endowed with a local struc-
ture (E,D). After computing δ, the factor scores F and canonical scores
F can, together with their correlations with the original features X (corre-
lations circle), are determined and plotted. Also, the similiarity coefficients
CS1(X,F can)=CS1(F, F can) and CS2(X,F can)=CS2(F, F can) are computed.
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4.1 Swiss 19th century socio-economic data

p = 6 socio-economic standardised variables are measured on n = 47 districts,
partitioned into m = 6 cantons (source: swiss{datasets} in R). Here E is
the free partitioned exchange matrix (section 3.1), and the setup amounts to
ordinary discriminant analysis (Figure 1).
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Fig. 2. Factor and canonical analysis of the musical piece, with periodic neighbour-
hoods of order r = 1, 2, 3. For r = 1: δ = 0.03, CS1 = 0.61, CS2 = 0.87. For r = 2:
δ = −0.51, CS1 = 0.40, CS2 = 0.78. For r = 3: δ = −0.12, CS1 = 0.54, CS2 = 0.84.

4.2 Correspondence analysis of musical scores

A simple musical illustration is provided by the circle of fifths progression, split
into n = 8 time intervals of one half-note each (Figure 2, top left). First, one
constructs the 8×7 contingency table Ψ = (ψik) counting the relative duration
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of note k (k = C,D,E, F,G,A,B) in each interval i, with
∑
k ψik = 1, on

which chi-square dissimilarities Dij between the rows of Ψ (that is between
time intervals) are computed. Secondly, one considers periodic neighbourhoods
of ordrer r ≥ 1, in which each column and each row of E[r] have two non-zero
entries 1/(2n) at distance r (modulo n) from the main diagonal. Note that

fi = 1/n and E[2r] 6= (E[r])
2
, that is periodic neighbourhoods of order r do

not form an iterated family (see section 2.1).
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Fig. 3. Factor and canonical scores for the textual example of section 4.2. Auto-
correlation is absent (δ(r) ∼= δ0 = −1/(n − 1)), yet similarities between factorial
and canonical configurations remain fairly high, despite appearances: CS1 ∼ .45 and
CS2 ∼ .75 for r = 1, 5; CS1 = .61 and CS2 = .84 for r = 2; CS1 ∼ .745 and CS2 ∼ .88
for r = 3, 4.

4.3 Local CA for text-document matrix

The play Sganarelle ou le Cocu imaginaire (Molière 1660) contains n = 24
short scenes (the observations) including p = 339 verbs. Analysing the scenes-
verbs matrix yields fairly constant chi-square distances Dχ between scenes, in
the range [9.9, 25.7], with a non-significant χ2[df = 7774] = 195.9, impeding
the emergence of a textual structure by low-dimensional CA compression.

Scene profiles xi are chosen as standardised coordinates resulting from uni-
form MDS on Dχ. As in the previous section, exchange matrices are periodic
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neighbourhoods of order r, resulting in uniform weights fi = 1/n. Autocor-
relation is absent, with a δ close, for various r, to its expected value under
independence δ0 = −1/23 = −0.043. Canonical scores, minimizing the relative
local dispersion, exhibit unexpected patterns (Figure 3), yet to be elucidated.

4.4 Distances between world cities

n = 313 world cities over 106 inhabitants, with latitudes θi, longitudes αi and
relative weights fi (proportional to the population size) have been extracted
from the R file world.cities{maps}.

Geodesic or arc-lengh dissimilarities Dij = arccos2(κij), where κij =
sin θi sin θj + cos θi cos θj cos(αi − αj), are squared Euclidean. They may
serve at constructing “gravity-like” exchange matrices of the form eij =
Cbibj exp(−βDij) for i 6= j, where b is the eigenvector centrality, that is the
dominant eigenvector of exp(−βDij), and eii is adjusted so that

∑
j eij = fi

(see Bavaud 2013 for details). Figure 4 shows the results obtained with β = 1.
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Fig. 4. World cities scatterplots (section 4.4), where plotting symbols refer to the
continents : 4 = Africa, • = Oceania, © = Asia, � = Europa, • = America.
The central figure results from weighted MDS. The depicted factor scores, whose
two first dimensions account for 79.63% of the inertia, are highly similar to the
canonical scores (91.77% of the inertia): δ = 0.98, CS1 = 0.73 and CS2 = 0.96.

5 Conclusion

Exchange matrices specify weighted unoriented networks. This contribution
underlines their role as soft categorical variables associated to the neighbor-
hood relation between observations, permitting to generalise linear discrimi-
nant analysis and hard partitionning to any local setup.

In general, the higher the relative autocorrelation is, the more similar are
the factor and canonical configurations accordingly to CS1 and CS2 - but not
the other way round (see Figure 3).
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Further studies could develop the concepts of cross-autocorrelation be-
tween two distinct data sets, and of partial autocorrelation beyond the time-
series framework. Local clustering, favouring the grouping of observations with
small dissimilarities and strong exchanges, is to be further investigated.
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de Statistique des Universités de Paris, XVIII, 81–112.
LEBART, L. (2005): Contiguity Analysis and Classification. In : W. Gaul, O. Opitz

and M. Schader M. (Eds.): Data Analysis. Springer, Berlin, 233–244.
LE FOLL, Y. (1982): Pondération des distances en analyse factorielle. Statistique et

Analyse des Données, 7, 13–31.
MARDIA, K. V., KENT, J.T. and BIBBY, J.M. (1979): Multivariate analysis. Aca-

demic Press, London.
MEOT A., CHESSEL D. and SABATIER R. (1993): Opérateurs de voisinage et
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