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Carbapenemase-producing Klebsiella pneumoniae strains are increasingly reported
worldwide (1, 2). Therefore, polymyxins (colistin, polymyxin B) often constitute

last-resort antibiotics to treat infections due to those multidrug-resistant carbapen-
emase producers. Here, the genetic basis of the antibiotic resistance determinants of a
carbapenem- and colistin-resistant K. pneumoniae isolate was investigated.

A patient was hospitalized at the Bicêtre Hospital (Paris, France) for multiple bone
fractures that occurred following a 6-floor fall in Bucharest, Romania. K. pneumoniae FR-1
was recovered from routine rectal screening. This first isolate was resistant to carbapenems,
fluoroquinolones, rifampin, trimethoprim-sulfamethoxazole, and fosfomycin. FR-1 pro-
duced the carbapenemase OXA-48 and the extended-spectrum �-lactamase CTX-M-15, as
determined by two specific PCRs. Then, the patient developed high-grade fever. Since an
infection due to resistant Gram-negative bacteria was suspected, he received an empirical
antibiotic treatment consisting of colistin (5 mg/kg of body weight/day) and amikacin (15
mg/kg/day) for 2 days. Eight days later, he developed a wound infection from which K.
pneumoniae strain FR-2 (with the same resistance profile as FR-1) was recovered. The
treatment was therefore switched to tigecycline (100 mg twice/day), colistin (5 mg/kg/day),
and amikacin (15 mg/kg/day). Then, another K. pneumoniae isolate (FR-3) was recovered
from the same wound and exhibited additional resistance to colistin. The antibiotherapy
was modified for doripenem (1 g 4 times/day), fosfomycin (3 g/day), and tigecycline (100
mg twice/day), which cured the infection.

Genome sequencing (see Methods in the supplemental material) of FR-3 shows that it
belongs to sequence type 15 (ST15), a widely distributed multidrug-resistant clone (3, 4).
Genomic investigations of two outbreaks involving ST15 clones in Nepal and in the
Netherlands in 2012 subdivided this clade in two main lineages harboring distinct capsule
synthesis (cps) loci (5). FR-3 exhibits the cps locus serotype K24, the same serotype as the
CTX-M-15-producing outbreak strains from the Netherlands (5). FR-3 and the six ST15
strains from China, Nepal, the Netherlands, and Taiwan compared here harbor the Yersinia
high-pathogenicity island and the ferric-uptake operon kfuABC, both considered as K.
pneumoniae virulence factors (6) (Fig. 1).

Eleven antimicrobial resistance genes were identified (7), in accordance with the phenotypic
resistance pattern (Table 1; Table S1). Detailed analysis of the genome identified neither genes
encoding ADP-ribosylation (Arr) enzymes nor RpoB polymorphism(s) that could explain the
observed resistance to rifampin. PlasmidFinder (8) identified five putative distinct plasmid
replicons, namely, ColRNAI, IncL, ColpVC, and IncFIB, and two distinct IncFII replicons with 95.9%
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identical RNAI-FII sequences. One of the IncFII replicons was identified on the same contig as a
resistance gene (tetA). The blaOXA-48 gene was identified on an IncL backbone. The latter
plasmid sequence was 99% identical to the previously reported 62-kb sequence of pOXA-48a,
known to be self-conjugative and conjugating at high frequency (9).

All contigs carrying resistance genes exhibited much lower median sequencing depth
than the rest of the assembly (between 57 and 83%) (Table 1), similarly to most regions
presenting a high number of hits against the RefSeq plasmid database (Fig. 1). This

FIG 1 Genome map of the K. pneumoniae FR-3 isolate. Circles are as follows: the first indicates contig boundaries and the second open reading frames borne on the
leading and lagging strands. rRNA and tRNA are red. The third circle indicates whole-genome alignments with the following K. pneumoniae strains: two ST15 strains
from the Netherlands outbreak (GCF_001596925.1, GCF_001597245.1), two ST15 strains from Nepal (GCF_000764615.1, GCF_000943095.1), two additional ST15 from
Taiwan and China (GCF_001750805.1, GCF_001663195.1), and three unrelated ST258, ST11, and ST147 strains (GCF_000598005.1, GCF_000240185.1, GCF_001746535.1,
respectively). The fourth circle indicates the GC skew. The fifth indicates GC content, and the sixth is a histogram of the sequencing depth. Regions presenting more
than 3-times-higher depth than the median of the assembly are highlighted in green. Regions presenting a sequencing depth lower than half of the median depth
are red. The 7th circle is a histogram of the count of significant blastp hits versus those in the RefSeq plasmid database (limited to a maximum of 50). The eighth circle
is a histogram of the number of significant blastp hits in the PHAST database. Outer labels highlight relevant genes or operons. Antibiotic resistance genes are red,
virulence genes are blue, and probes of known plasmids identified using PlasmidFinder are black.
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suggests that these genes are located on plasmids. Homologs of type IV secretion system
(type F) proteins were identified on several small contigs, indicating that FR-3 may carry a
second conjugative plasmid.

Two nonsynonymous mutations previously reported to occur in colistin-resistant strains (10)
were identified in the PhoQ/PhoP regulator mgrB gene (N42Y, K43I) likely explaining the
acquired resistance to colistin. Indeed, substitutions or deletions in the mgrB gene of K.
pneumoniae are the most frequent molecular mechanisms of acquired resistance to colistin (11).
Nonsynonymous mutations were also identified in the gyrA (S83F, D87A) and parC (S80I) genes
and are likely responsible for the acquired resistance to fluoroquinolones (Table 1) (12). Efflux
pumps, such as oqxA and oqxB, might also be involved in the observed resistances.

This analysis characterizes the resistance determinants that have accumulated over
time in the FR strain, leading to an almost pan-resistant strain.

Accession number(s). The sequences were submitted to ENA under the accession
number PRJEB20782.
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