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Abstract Remote sensing and geophysical imaging techniques are often limited in1

terms of spatial resolution. This prevents the characterization of physical properties2

and processes at scales finer than the spatial resolution provided by the imaging sen-3

sor. In the last decade, multiple-point statistics simulation has been successfully used4

for downscaling problems. In this approach, the missing fine scale structures are im-5

ported from a training image which describes the correspondence between coarse6

and equivalent fine scale structures. However, in many cases, large variations in the7

amplitude of the imaged physical attribute, known as trends, pose a challenge for8

the detection and simulation of these fine scale features. Here, we develop a novel9

multiple-point statistics simulation method for downscaling coarse resolution images10

with trends. The proposed algorithm relies on a multi-scale sequential simulation11

framework. Trends in the data are handled by an inbuilt decomposition of the target12

variable into a deterministic trend component and a stochastic residual component at13

multiple scales. We also introduce the application of kernel weighting for computing14

distances between data events and probability aggregation operations for integrating15

different support data based on a distance-to-probability transformation function. The16

algorithm is benchmarked against two-point and multiple-point statistics simulation17

methods, and a deterministic interpolation technique. Results show that the approach18

is able to cope with non-stationary data sets and scenarios in which the statistics of19

the training image differ from the conditioning data statistics. Two case studies using20

digital elevation models of mountain ranges in Switzerland illustrate the method.21
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1 Introduction24

Surface and subsurface investigations often need to estimate phenomena at scales25

finer than the spatial resolution provided by imaging sensors. Downscaling methods26

are commonly employed to achieve this. Atkinson (2013) provides an overview of27

statistical downscaling in remote sensing. From a statistical perspective, downscaling28

is an ill-posed problem because the upscaling of different fine resolution images may29

result in the same coarse scale image (Bertero and Boccacci 1998 Boucher and Kyr-30

iakidis 2007). The problem is resolved by producing multiple equiprobable synthetic31

fine resolution images. This allows determination of the uncertainty associated with32

the sub-pixel predictions, and propagation of the impact of the fine scale uncertainty33

to the response of a target transfer function. Therefore, the goal is to produce a finer34

resolution version of the original image, which is coherent with its low-resolution35

counterpart, and a given prior fine scale structural model.36

Geostatistical simulation provides a potential framework for stochastic down-37

scaling problems. Traditional covariance-based simulation methods (Goovaerts 1997)38

have been adapted for downscaling and integration of coarse and fine scale data (Jour-39

nel 1999 Kyriakidis and Yoo 2005 Boucher and Kyriakidis 2007 Liu and Journel 200940

Zagayevskiy and Deutsch 2015). Two-point simulation has also been applied for con-41

flation and downscaling of terrain elevation data (Kyriakidis et al. 1999 Hengl et al.42

2008). These methods assume that the second-order statistics characterized through43

variogram models are sufficient for describing the missing fine scale structures. In44

addition, two-point statistics simulation approaches implicitly adopt the higher-order45

statistics embedded in the simulation algorithm (Remy et al. 2009). These higher-46

order statistics are often high-entropy in character, which leads to maximization of the47

spatial disorder beyond the input variogram model (Journel and Deutsch 1993). Such48

assumptions may be inappropriate for modeling low entropy Earth textures that de-49

pict spatial connectivity between extreme data values, such as permeability in porous50

media (Renard and Allard 2013), curvilinear geological structures (Strebelle 2002),51

and topographic features including surface drainage networks (Tang et al. 2015).52

Multiple-point statistics (MPS) simulation (Remy et al. 2009) offers an alter-53

native to two-point statistics simulation for modeling low entropy textures. It does54

not require the definition of an explicit random function model. Rather, the task of55

generating a simulated realization is formulated as a stochastic imaging problem.56

The structural model is commonly referred to as a training image, which consists57

of an analog or a conceptual representation of the studied phenomenon. The spa-58

tial structure and statistics of the random field are then extracted from the training59

image based on computed conditional probability distribution functions (CPDFs)60

(Guardiano and Srivastava 1993 Strebelle 2002), or by direct sampling (Mariethoz61
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et al. 2010). Boucher (2009b), Mariethoz et al. (2011), and Straubhaar et al. (2016)62

proposed different applications of MPS simulation for downscaling problems.63

Another common characteristic of Earth science data sets is the presence of64

trends. Trends consist of large scale variations, usually low spatial frequencies, of65

the physical property under study. In these cases, the expected values of the ran-66

dom variables (RVs) representing such properties are deemed unknown (Journel and67

Rossi 1989). These local expectations are often modeled with a trend function (e.g.68

a locally varying mean) that can be a function of the spatial coordinates of the re-69

gionalized variable, or an estimate of the expected value based on a correlated aux-70

iliary variable. The RV is thus decomposed into two components: a deterministic71

low-frequency trend and its associated complementary stochastic higher-frequency72

residual. Tang et al. (2015) used a similar approach for digital elevation data fusion73

based on MPS using a modified version of the simulation algorithm developed by74

Zhang et al. (2006).75

The necessity to infuse complex fine scale features in non-stationary coarse res-76

olution images requires the development of new statistical downscaling methods. In77

this paper, we present a MPS simulation algorithm for downscaling coarse resolution78

images with trends. The approach is inspired by the concept of image pyramids in-79

troduced by Burt and Adelson (1983) for image compression. Here, the pyramid data80

structure is adapted for enhancing the spatial resolution of a given target coarse scale81

image. The missing fine scale structures are imported from a multi-resolution training82

image, which contains structural information at several scales. The spatial resolution83

of the target image is gradually enhanced through a series of conditional iterations84

of the downscaling algorithm. At each iteration, the algorithm generates features at a85

specific sub-pixel scale, such that the simulation of finer resolution features is condi-86

tioned to previously simulated coarser structures. This framework shares similarities87

with the multiple-grid approach proposed by Tran (1994). To address the presence of88

trends in the data set, at each scale, the input variable is decomposed into a trend and a89

residual component. The trend component is downscaled with a smooth deterministic90

interpolation technique. The residual component is downscaled using a quasi-pixel-91

based sequential simulation approach. Realizations of the sub-pixel residual variable92

are generated by integrating coarse and fine scale information with a probability ag-93

gregation operator. After the simulation of each pyramid level, the trend and residual94

components are summed back together, and the procedure is repeated at the next95

scale. We illustrate the methodology with the downscaling of digital elevation mod-96

els (DEMs) in two mountain ranges in Switzerland. The algorithm is benchmarked97

against two-point and multiple-point statistics simulation techniques, as well as a de-98

terministic interpolation method. Results are validated by a series of statistical and99

structural metrics.100

The paper is organized as follows. In Section 2, we introduce the fundamental101

concepts of the methodology. The proposed downscaling algorithm is described in102

Section 3. In Section 4, we present the two case studies. The results are discussed in103
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Section 5. Finally, in Section 6, we summarize the methodology and outline future104

work.105

2 Stochastic Downscaling106

This section presents the fundamentals of the stochastic downscaling method. Sub-107

section 2.1 introduces the concept of representing multi-resolution imagery data as108

a stochastic spatial signal. This signal can be decomposed into a deterministic low-109

frequency component (trend), and a stochastic higher-frequency component (resid-110

ual). The term spatial frequency refers to a characteristic related to the scale of struc-111

tural features on the image, which is interpreted as the inverse of structure scale. The112

trend component describes smooth large scale structures on an image, whereas the113

residual component represents small scale features. The downscaling of the trend and114

the residual components are presented in Subsection 2.2. Subsection 2.3 describes the115

conditional simulation of the fine scale residual variable with the sequential simula-116

tion formalism. Subsection 2.4 focuses on the estimation of local conditional prob-117

abilities from distances between conditioning and training data events. Finally, the118

probability aggregation method for integrating coarse and fine scale information is119

discussed in Subsection 2.5.120

2.1 Stochastic Representation of Imagery Data121

Let zV (u) be the sensor measurement of a physical property assigned to a coarse122

pixel V centered at the location u on a target coarse resolution image denoted by zV .123

In addition, let zv(u) be the small scale measurement of the same property on a fine124

pixel v indexed on a target co-registered fine resolution image zv. The coarse-to-fine125

resolution ratio between zV and zv is defined as G =
√
|V |/|v|, where |V | and |v|126

are the areas of the coarse and fine pixels, respectively. The notation is presented in127

Table 1.128

In this paper, we make the assumption that any coarse datum zV (ui) corresponds129

to the linear average of the discrete set of G2 co-registered fine resolution pixel values130

zv(ui) = [zv(ug),g = 1, . . . ,G2]131

zV (ui) =
1

G2

G2

∑
g=1

zv(ug) ∀i = 1, . . . ,N, (1)

where zv(ui) is referred as a patch (a square array of fine scale pixel values) centered132

at the position ui (Fig. 1), and N is the total number of pixels on zV .133



Title Suppressed Due to Excessive Length 5

Table 1 Notation.

Notation Description

α probability aggregation weight for fine scale data
β kernel weights normalizing constant
λ (h j) kernel weight as a function of h j
σ kernel shape parameter
φ(·) distance-to-probability transformation function
Ψ dual-resolution training image
Ω conditioning data
θ generic vector of algorithm parameters
Ψ multi-resolution training image
h j coordinates offset of the j-th node from u
D(u) local distance vector centered at u
Dk(u) k-th element of the local distance vector
Rv(u) multivariate fine residual RV centered at u
rv(u) fine residual patch centered at u
u data location
zv(u) fine generic patch centered at u
D(·) distance function
d(u) data event centered at u
F(·) MPS simulation algorithm
G coarse-to-fine resolution ratio
K number of data events for computing the local CPDF
m(u) trend value centered at u
m trend image
N number of pixels on zV and rV
n(u) number of pixels in the search neighborhood centered at u
qk rank of the k-th training data event
R(u) residual RV centered at u
r(u) residual value centered at u
r residual image
(s) superscript indicating simulated data
(t) superscript indicating training data
V subscript indicating coarse scale data
v subscript indicating fine scale data
Z(u) generic RV centered at u
z(u) generic datum value centered at u
z generic image
ˆ operator indicating estimated data

In geostatistics, zV (u) and zv(u) can be interpreted as realizations of the contin-134

uous RVs ZV (u) and Zv(u), respectively. The RV Z(u) will be used to denote both135

ZV (u) and Zv(u) in expressions dealing with attributes at the same scale. Here, we136

propose to model Z(u) as a spatial signal composed of two variables137

Z(u) = m(u)+R(u), (2)

where m(u) is a deterministic low-frequency signal (trend), and R(u) is a RV repre-138

senting its associated complementary stochastic higher-frequency signal (residual).139
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Fig. 1 Pixels’ configuration for multiple coarse-to-fine resolution ratios. Left: reference coarse pixel (G =
1). Middle left: co-registered patch of fine pixels (G = 2). Middle right: co-registered patch of fine pixels
(G = 3). Right: co-registered patch of fine pixels (G = 4). Black dots indicate pixel centroids, red dots
indicate patch centroids.

It is assumed that R(u) is a spatially autocorrelated RV, that is, it has some sort of140

spatial structure.141

An estimate of m(u) might be obtained by applying an appropriate spatial low-142

pass filter on z(u). The estimator m̂(u) is formulated as a weighted linear combination143

of z(u) and its neighboring values {z(u+h j), j = 1, . . . ,n} within a moving search144

window145

m̂(u) =
n

∑
j=0

λ (h j)z(u+h j) with
n

∑
j=0

λ (h j) = 1, (3)

where h j is the set of n+ 1 coordinates lag vectors radiating from u, with z(u) =146

z(u+h0) and n� N. The weights λ (h j) are precomputed based on a kernel and set147

as function of h j. The value of r(u), which is interpreted as a realization of R(u), is148

the complement of m̂(u).149

2.2 Stochastic Downscaling of Images with Trends150

The goal of downscaling is to predict zv such that the prediction is coherent with zV151

and a given prior fine scale structural model. In order to access the uncertainty of152

such prediction, a stochastic approach for downscaling is proposed. The objective153

is to estimate the unknown true value zv(u) by generating S realizations of Zv(u),154

denoted as {z(s)v (u),s = 1, . . . ,S}, conditioned to coarse resolution observations on155

zV .156

In practice, the fine scale variables m̂v(u) and rv(u) cannot be directly com-157

puted because one has no knowledge of zv(u). As a result, mv(u) has to be esti-158

mated from neighboring coarse scale data. The sub-pixel trend estimator m̂v(u) is159

thus obtained by downscaling m̂V with a given deterministic interpolation method.160

Conversely, RV (u) is downscaled through stochastic simulation. A MPS simulation161

algorithm F(·) is used to generate conditional simulated realizations of Rv(u), de-162

noted as r(s)v (u). This algorithm is parametrized by: a vector of parameters θ asso-163
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ciated with F(·), and a dual-resolution training image Ψ which describes the spatial164

relationship between the coarse and fine scales165

Rv(u|Ω) = F(θ,Ψ |Ω) 7→ {r(s)v (u|Ω),s = 1, . . . ,S}, (4)

where |Ω refers to the conditioning to both coarse measurements assigned on zV and166

previously simulated fine scale data on zv.167

The dual-resolution training image is constructed from a pair of co-registered168

coarse and fine resolution images denoted by z(t)V and z(t)v , respectively. It consists169

of an extensive multi-dimensional associative array listing all co-registered pairs of170

coarse and fine residual data events present on z(t)V and z(t)v . The residual training171

variables, indicated by r(t)V (u) and r(t)v (u), respectively, are filtered out from z(t)V (u)172

and z(t)v (u) with Equation (2).173

The simulated sub-pixel variable z(s)v (u) is reconstructed by rewriting Equa-174

tion (2) as follows175

z(s)v (u) = m̂v(u)+ r(s)v (u). (5)

Figure 2 summarizes the methodology. Rounded white rectangles indicate the176

coarse resolution target image and the training data. Processes are represented as177

gray rectangles and intermediate data structures are depicted as rounded gray rect-178

angles. The downscaled image corresponds to the rounded black rectangle. The pre-179

processing step, indicated by the dashed rounded rectangle, encompasses all the pro-180

cesses and data required for the construction of the dual-resolution training image.181

This step is performed only once. The spatial low-pass filtering and deterministic182

interpolation processes are identical for both target and training images.183

2.3 Downscaling with Sequential Simulation184

Let Rv(ui) = [Rv(ug),g = 1, . . . ,G2] denote the fine resolution multivariate continu-185

ous RV co-registered with rV (ui). Hence, the fine scale residual patch rv(ui) is re-186

garded as a joint realization of Rv(ui). The downscaling of rV (ui) is performed by187

generating a series of realizations of Rv(ui), denoted by r(s)v (ui), using sequential188

simulation (Goovaerts 1997). The multivariate conditional probability Pr{Rv(ui) =189

rv|Ωi−1} for i = 1, . . . ,N is given by the recursive Bayes relation190
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Fig. 2 Methodology flowchart. The rounded white rectangles indicate the input images. Processes are
represented as gray rectangles and intermediate data structures are depicted as rounded gray rectangles.
The output downscaled image corresponds to the rounded black rectangle.

Pr{Rv(u1) = rv, . . . ,Rv(uN) = rv|ΩN} (6)

= Pr{Rv(u1) = rv|Ω0} ·
N−1

∏
i=2

Pr{Rv(ui) = rv|Ωi−1},

where |Ω0 refers to the conditioning of the first iteration of the downscaling to the191

initial set of coarse observations, and |Ωi−1 to the conditioning of the i-th iteration192

to the i−1 previously simulated patches of fine pixels and the initial low-resolution193

data. The index sequence i = 1, . . . ,N defines the simulation path. The conditional194

probability Pr{Rv(ui) = rv|Ωi−1} is approximated by the simulation algorithm F(·)195

based on Ψ .196

2.4 Computing Local Conditional Probabilities197

Let dV (ui) denote the coarse resolution target data event centered at the location ui.198

This data structure is comprised of the central value rV (ui) and its nV neighboring199

coarse values200

dV (ui) = {rV (ui +h j), j = 0, . . . ,nV}. (7)
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A larger set of coordinates lag vectors is used to retrieve the co-registered fine201

scale conditioning data event dv(ui)202

dv(ui) = {r(s)v (ui +h j), j = 1, . . . ,nv(ui)}, (8)

where r(s)v (ui +h j) corresponds to the current set of previously simulated fine pixels203

that are collocated with dV (ui) (Fig. 3).204

Fig. 3 Pair of co-registered coarse and fine scale conditioning data events (G = 2). Left: coarse scale data
event. Right: incomplete fine scale data event. Black dots indicate the data events’ centroids. White pixels
with red crosses denote non-informed values, green pixels indicate locations to be simulated.

Conditioning to the coarse information in dV (ui) is achieved by restricting the205

sampling of training data events d(t)
V (u) that minimize the coarse scale distance func-206

tion207

D(dV (ui),d
(t)
V (u)) =

nV

∑
j=0

λ (h j)‖rV (ui +h j)− r(t)V (u+h j)‖2, (9)

where λ (h j) are the weights from a given kernel. Note that a kernel function that208

provides higher values for λ (h0) ensures better conditioning of the downscaling to209

the local measurement zV (ui).210

The reproduction of fine scale spatial features is imposed by the minimization211

of the additional distance function212

D(dv(ui),d
(t)
v (u)) =

nv(ui)

∑
j=1

λ (h j)‖r(s)v (ui +h j)− r(t)v (u+h j)‖2, (10)

where d(t)
v (u) corresponds to a fine resolution training data event. Equation (10) en-213

sures the sampling of compatible training data events by taking into account previ-214

ously simulated fine scale data.215
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In order to combine the two different sources of information given by Equa-216

tions (9) and (10), both distances are converted into conditional probabilities. Most217

distance-based MPS simulation methods implicitly adopt a distance-to-probability218

transformation function. Simulation algorithms that rely on a threshold distance value219

as a criterion for accepting a given training data event, for example, assume a uniform220

local CPDF. As proposed by Hoffimann et al. (2017), the local CPDFs can also be221

defined as a function of the distances between data events. In this case, the transfor-222

mation function φ(·) needs to be defined explicitly such that conditional probabilities223

can be assigned to each candidate training data event. Probabilities are made inversely224

proportional to the distances to a given target data event.225

The transformation function φ(·) also has to take into account the relative dis-226

persion of distance values within the local pool of candidates. If all the K candidates227

are equally compatible with the conditioning data, the local CPDF should resemble228

a uniform distribution. In contrast, if only a small number of training data events is229

similar, the assignment of higher probabilities should be preferentially limited to this230

set of data events. This also applies to the opposite scenario (i.e. when several training231

data events are significantly dissimilar to the local conditioning data).232

The coarse scale conditional probability is thus expressed as233

Pr{Rv(ui) = r(t)v (uk)|dV (ui)}= φ(D(ui)), (11)

where r(t)v (uk) refers to the central patch of d(t)
v (uk), and D(ui) is a (K × 1) local234

vector that stores the distances between dV (ui) and the set of K best training data235

events {d(t)
V (uk),k = 1, . . . ,K} (i.e. the training data events that minimize Eq. (9)).236

Note that Equation (11) is also used to estimate Pr{Rv(ui) = r(t)v (uk)|dv(ui)}.237

2.5 Integrating Coarse and Fine Scale Information238

To simulate structures from the training image that are compatible with the condi-239

tioning data, we integrate the local conditional probabilities derived from coarse and240

fine scale information with the log-linear pooling operator (Allard et al. 2012). The241

conditional probability Pr{Rv(ui) = rv|Ωi−1} in Equation (6) is approximated by242

Pr{Rv(ui) = rv|Ωi−1} ≈ Pr{Rv(ui) = r(t)v (u)|dV (ui),dv(ui)} (12)

= Pr{Rv(ui) = r(t)v (uk)|dV (ui)}1−αi ·Pr{Rv(ui) = r(t)v (uk)|dv(ui)}αi ,

where αi = ∑
nv(ui)
j=1 λ (h j).243
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The weight αi controls the relative importance of previously simulated fine res-244

olution data during the aggregation process, based on the number of informed fine245

pixels and the kernel weights λ (h j). The value of αi changes throughout the simu-246

lation process. In the beginning of the simulation, conditional probabilities derived247

from coarse resolution data tend to dominate the shape of the aggregated CPDFs,248

however as the simulation progresses and r(s)v becomes more populated, the impor-249

tance of fine scale conditional probabilities gradually increases.250

3 Algorithm251

The following section aims at presenting the MPS simulation algorithm developed for252

downscaling. The simulation framework is later generalized as a multi-scale iterative253

process which allows the downscaling to handle large coarse-to-fine resolution ratios.254

Algorithm 1 summarizes the downscaling of the target coarse resolution image255

zV using sequential simulation. The vector of algorithmic parameters θ includes in-256

formation related to the kernel function parameters for the spatial low-pass filters257

and distance functions, and the number of candidate training data events K used for258

computing the local CPDFs. For reproducibility, a seed is used to initialize a pseudo-259

random number generator which defines the order of the simulation path and the260

sampling of local CPDFs. Multiple conditional simulated realizations are generated261

by feeding the algorithm different random seeds.262

Initially, the residual image rV is extracted from zV with Equation (2), and the263

fine scale trend image m̂v is estimated from m̂V using a deterministic interpolation264

method. For each coarse pixel rV (ui) visited along the simulation path, the algo-265

rithm retrieves its corresponding pair of co-registered conditioning data events and266

computes the distance function in Equation (9) for all training data events stored267

in Ψ with fast Fourier transform (FFT) (Kwatra et al. 2003). The K best training268

data events are then sorted in ascending order according to the coarse scale distance269

function. Subsequently, the distances between dV (ui) and this subset of training data270

events are stored in D(ui), which is later used to estimate the local CPDF. The same271

procedure is repeated for the co-registered fine resolution conditioning data event,272

however, only for those K preselected locations. Once the simulation is finished, z(s)v273

is restored with Equation (5) (line 12 of Algorithm 1).274

When the coarse-to-fine resolution ratio is large (e.g. G > 3), Algorithm 1 has to275

be adapted to allow a better reproduction of the different structures that can be found276

over a range of scales in r(t)v . To this end, we adopt a multi-scale iterative process277

based on smaller magnification factors. The downscaling of zV is done through a278

series of hierarchical conditional simulations. This is accomplished by constraining279

simulations at finer resolutions to previously simulated coarser outputs. The process280

is interrupted when the downscaled image reaches a target spatial resolution of size281

|v′| which is the fine pixel size of the finest dual-resolution training image available.282



12 Luiz Gustavo Rasera et al.

Algorithm 1 Downscaling with sequential simulation
input: a target coarse resolution image zV , a vector of algorithmic parameters θ, and the dual-

resolution training image Ψ

output: a conditional simulated realization z(s)v

1: Compute rV and m̂v
2: Generate a path visiting rV (ui), i = 1, . . . ,N
3: for each rV (ui), i = 1, . . . ,N along the path do
4: Retrieve the data events dV (ui) and dv(ui)

5: Compute D(dV (ui),d
(t)
V (u)) for all training data events in Ψ

6: Retrieve the K best pairs of coarse and fine training data events
7: Compute D(dv(ui),d

(t)
v (uk)) for k = 1, . . . ,K

8: Estimate Pr{Rv(ui) = r(t)v (uk)|dV (ui),dv(ui)},k = 1, . . . ,K
9: Draw a simulated patch r(s)v (ui) from the local CPDF

10: Add r(s)v (ui) to r(s)v

11: end for
12: z(s)v ← m̂v + r(s)v

13: return the conditional simulated realization z(s)v

Note that this iterative procedure entails replacing Ψ with a vector of dual-resolution283

training images.284

The multi-scale downscaling of the target image zV is summarized in Algorithm285

2. The simulation of the sub-pixel residual variable is performed at multiple scales286

based on a series of conditional iterations of Algorithm 1. At the end of each iteration,287

the output realization z(s)v is assigned as the new target coarse scale image (line 3 of288

Algorithm 2). The process is repeated until the desired target spatial resolution is289

reached.290

Algorithm 2 Multi-scale downscaling with sequential simulation
input: a target coarse resolution image zV , a vector of algorithmic parameters θ, and the multi-

resolution training image Ψ

output: a conditional simulated realization z(s)v

1: while |V |> |v′| do
2: Perform Algorithm 1 using the appropriate Ψ stored in Ψ

3: zV ← z(s)v

4: end while
5: return the conditional simulated realization z(s)v

4 Case Studies291

The methodology is demonstrated with illustrative examples using DEMs from two292

mountain ranges in Switzerland. Our MPS-based downscaling method is used to gen-293

erate fine resolution conditional simulations. The coarse and fine resolution DEMs of294
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both study areas consist of coarsened versions of the Swisstopo swissALTI3D DEM295

(Wiederkehr and Möri 2013) produced with linear upscaling. Although there is a296

natural degree of similarity between both data sets as they originate from universal297

tectonic and surface processes, such as orogeny and mass wasting, they represent very298

distinct geomorphological settings. The maximum amplitude of the trend component299

in the two case studies is vastly different: In the Western Alps example it reaches 1.5300

km, whereas in the Jura Mountains case it is only 300 m. The two mountain ranges301

are also characterized by contrasting landforms. The Western Alps are dominated by302

steep gradients, debris cones, and braided drainage systems, while the Jura Mountains303

are predominately karsts with lower gradients mainly driven by dissolution processes.304

In Subsection 4.1, we define the kernel used for generating the weights for the305

spatial low-pass filter and distance functions as well as the distance-to-probability306

transformation function. The estimation of the sub-pixel trend image and the con-307

struction of multi-resolution training images are also discussed. Subsection 4.2 de-308

scribes the setup of the other downscaling methods used for benchmarking. The sta-309

tistical and structural metrics used to validate the results are discussed in Subsec-310

tion 4.3. Subsection 4.4 presents an example using DEMs of the Western Alps, and311

Subsection 4.5 illustrates the method with DEMs from the Jura Mountains.312

4.1 Kernels and Distance-to-Probability Transformation Function313

In both case studies, a normalized Gaussian radial basis function is used for comput-314

ing the kernel weights for the spatial low-pass filter (Eq. (3)) and distance functions315

(Eqs. (9) and (10))316

λ (h j) =
1

2πσ2β
exp

(
−
‖h0−h j‖2

2σ2

)
, (13)

where σ is the kernel shape parameter, and β is the normalizing constant (i.e. the317

sum of all kernel weights).318

The transformation function φ(·) assigns conditional probabilities to the local319

pool of candidate training data events. This function should be flexible enough to320

allow the sampling of either a large or a small portion of the K candidate training321

data events. The availability of a large pool of candidates for sampling is desirable322

for generating sub-pixel variability in the simulated realizations. However, a more323

thorough sampling might be important to enforce the reproduction of less frequent324

features present in the training image.325

Based upon the aforementioned criteria, we formulated the following distance-326

to-probability transformation function327
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φ(Dk(ui)) =

(
Dk(ui)−min(D(ui))

max(min(D(ui)),c)
+1

)−qk

, (14)

where Dk(ui) = D(dV (ui),d
(t)
V (uk)) or D(dv(ui),d

(t)
v (uk)), c is a small constant in-328

serted in the denominator to avoid division by zero, and qk corresponds to the rank of329

d(t)
V (uk) after the sorting operation.330

Note that Equation (14) allows one to consider a variable number of candidate331

training data events at each location to be simulated. If all the distances stored in332

D(ui) are similar, a larger set of the K training data events is considered for sampling.333

Conversely, if such distances are significantly dissimilar, only the most compatible334

data events are likely to be drawn. The numerator of the base term in Equation (14)335

measures the dispersion within the pool of candidates by computing the difference336

in distance units between all the K elements against the best candidate training data337

event. The denominator converts the absolute values into relative measurements to-338

wards the smallest element in the set. The exponent −qk scales the base such that339

higher conditional probabilities are assigned to the training data events that minimize340

the numerator. Adding +1 to the base term allows assigning uniform probabilities if341

all candidate training data events have roughly the same distance to the target data342

event. Computed conditional probabilities are later re-scaled to sum up to one.343

The algorithm is driven by three parameters: one kernel shape parameter for344

the spatial low-pass filter denoted by σF , another shape parameter for the distance345

functions σD, and the number of candidate training data events K. Additionally, we346

compute m̂v(u) and m̂(t)
v (u) by downscaling the coarse scale trend estimates with347

bicubic interpolation. In both examples, the multi-resolution training images are built348

directly from z(t)v by linear upscaling. At each scale, the decomposition between trend349

and residual is done using a spatial low-spatial filter with a radius that is proportional350

to the pixel size of the current coarse scale. The sequential simulation process is351

performed using a random path.352

4.2 Benchmarking Against Other Techniques353

The proposed algorithm is benchmarked against the two-point statistics area-to-point354

simulation method (Kyriakidis and Yoo 2005), the direct sampling MPS simulation355

algorithm (Mariethoz et al. 2010), and the bicubic interpolation method (Keys 1981).356

In order to carry a fair comparison between techniques, zV is detrended prior to sim-357

ulation. Realizations are conditioned to both rV and previously simulated fine resolu-358

tion data. The downscaled DEMs are then restored by addition of the estimated trend359

component m̂v computed with bicubic interpolation.360
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The downscaling by area-to-point simulation is performed with the error simu-361

lation framework (Journel and Huijbregts 1978 Liu and Journel 2009). As the simu-362

lation paradigm only applies to Gaussian variables, the reproduction of the fine scale363

target histogram must be achieved through post-processing. The empirical CDF of364

r(t)v is used as source distribution for a normal score transform. The histogram trans-365

formation morphs this empirical CDF into a zero mean Gaussian distribution with366

unit variance through quantile mapping. An artificial coarse scale Gaussian variable367

is constructed through linear upscaling of the transformed version of r(t)v . The his-368

togram transformation is then applied to rV using the previous Gaussian distribution369

as target CDF. Note that this approximation inherently introduces conditioning errors370

since the upscaling function between the original coarse and fine resolution residu-371

als is actually non-linear. Unlike the trended component, each coarse residual pixel372

value does not necessarily corresponds to the arithmetic mean of its co-registered fine373

residual patch due to the trend removal operation. Unconditional fine resolution real-374

izations of a zero mean Gaussian process are generated with the FFT moving average375

simulation algorithm (Ravalec et al. 2000). The inference of the fine scale (i.e. point-376

support) variogram model is carried out as a two-step process. The first part consists377

of inferring the shape of the variogram model near the origin (i.e. for lags smaller378

than the coarse pixel size). This is performed based on the Gaussian transform of r(t)v .379

The second step is the inference of the variogram model geometric anisotropy, which380

is calibrated based on the transformed version of rV . Each conditional realization is381

then back-transformed into the original variable space using the empirical CDF of382

r(t)v as target distribution.383

Downscaling with the direct sampling algorithm can be seen as a conditional384

simulation problem with an exhaustive secondary variable. The two required pre-385

processing steps are the resampling of the coarse scale DEMs (in order to have co-386

located neighbors for both primary and secondary variables) and the variable normal-387

ization operations. In this study, rV and r(t)V are resampled at the fine scale pixel size388

using nearest neighbor interpolation. The target and training residual DEMs are nor-389

malized using a min-max scaling. The minimum and maximum values are extracted390

from the training data. After simulation, output realizations are re-scaled.391

Although not a geostatistical technique, the bicubic interpolation method is widely392

used in practical applications owing to its capability for generating smooth surfaces393

with a short processing time. Interpolations are performed based solely on zV . Its ap-394

plication to the data sets hereby studied is straightforward, and it provides a reference395

point for comparison and analysis of the results.396

4.3 Validation397

The downscaled DEMs are evaluated based on a series of statistical and structural398

metrics. The reproduction of the reference fine scale terrain elevation probability dis-399
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tribution is verified with empirical cumulative distribution functions (CDFs). The400

conditioning quality of the simulations to the input coarse data is quantified based401

on the average mean error (ME) and root-mean-square error (RMSE) between the402

reference coarse resolution DEMs and the upscaled realizations. The structural accu-403

racy of the downscaling is assessed by computing empirical variograms, high-order404

cumulant maps (Dimitrakopoulos et al. 2010), probability of connection curves, and405

the mean structural similarity (SSIM) index (Wang et al. 2004) between simulated406

realizations and the reference residual DEMs. The topology of the realizations is de-407

scribed using the Euler characteristic. Detailed information about the probability of408

connection function and the Euler characteristic, and their application for the eval-409

uation of continuous random fields can be found in Renard and Allard (2013). All410

the validation metrics, with exception of the ME and RMSE, are computed on the411

residual DEMs to remove the effect of large scale topographic structures.412

4.4 The Western Alps Example413

This example considers DEMs from a portion of the Western Swiss Alps. The to-414

pography in this region is characterized by a rough terrain with steep natural slopes,415

high altitude peaks, and glacially carved valleys. The reference DEMs and their re-416

spective residual DEMs are shown in Figure 4. The coarse DEM has dimensions of417

64×64 pixels, and each pixel has size of 32×32 m, which is approximately the spa-418

tial resolution of the 1-arc second near-global DEM produced from NASA’s Shuttle419

Radar Topography Mission (SRTM). The medium and fine DEMs have dimensions420

of 128×128 pixels and 256×256 pixels, with pixel sizes of 16×16 m and 8×8 m,421

respectively. The footprint of the DEMs is roughly 4 km2. The coarse DEM is used422

for conditioning, while the medium and fine resolution DEMs are used for valida-423

tion of the simulations. The residual DEMs were computed using a spatial low-pass424

filter with σF = 64 m. Negative relief features in the residual variable represent gul-425

lies and drainage networks, whereas positive relief structures correspond to cliffs and426

mountain ridges.427

Figure 5 illustrates the training DEMs and their respective residual DEMs. These428

DEMs are from a neighboring area that shares similar topographic features with the429

reference data set. The training data set has a significantly larger footprint than the430

target area (≈ 16 km2). The training DEMs should be extensive enough to include the431

expected range of relevant structural patterns to be determined. The coarse, medium,432

and fine resolution DEMs have the following dimensions: 128×128 pixels, 256×256433

pixels, 512× 512 pixels, respectively, with the same pixel size configuration of the434

reference data set. The training residual DEMs are displayed using the same spatial435

low-pass filter setup. Table 2 lists summary statistics from the target and training436

coarse resolution DEMs used in both case studies. Note that all residual DEMs show437

similar mean values, but the training DEMs have higher variance and range than their438

corresponding target data sets.439
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Fig. 4 The Western Alps reference DEMs. Top left: coarse resolution DEM. Top center: coarse resolution
residual DEM. Top right: coarse resolution zoom. Middle left: medium resolution DEM. Middle cen-
ter: medium resolution residual DEM. Middle right: medium resolution zoom. Bottom left: fine resolution
DEM. Bottom center: fine resolution residual DEM. Bottom right: fine resolution zoom. The residual com-
ponent of the trended DEMs has a vertical exaggeration factor of 8x. Green boxes highlight the magnified
area. Colorbars’ unit is meter.

An ensemble of 20 simulated realizations with a magnification factor of 4x was440

generated based on two iterations of the algorithm. Since the pixel sizes of the multi-441

resolution training DEMs are all multiples of 2, the magnification factor per iteration442

was set equal to G = 2. The search window used by the spatial low-pass filter and the443

retrieval of data events at the coarse scale has dimensions of 5×5 pixels. The size of444

the corresponding fine resolution search window is 10×10 pixels.445

The parameters used for the two iterations of the downscaling of the Western446

Alps example are listed in Table 3. Parameters were chosen such that the algorithm447
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Table 2 Summary statistics of the target and training coarse resolution DEMs from the Western Alps and
the Jura Mountains examples. Values are in residual elevation (in meters).

mean std. dev. min. max.

Western Alps (target) −0.38 5.94 −34.71 31.19
Western Alps (training) −0.11 7.81 −57.04 60.26

Jura Mountains (target) −0.05 2.84 −14.66 13.11
Jura Mountains (training) −0.03 4.30 −18.00 27.66

performs reasonably well for both data sets. Typically, they may be inferred from448

the dual-resolution training image through cross-validation. The spatial low-pass fil-449

ter kernel shape parameter σF is calibrated in order to generate an auto-correlated450

residual. The simulation of the fine resolution residual component is only feasible if451

the spatial low-pass filter is applied to zV prior to its interpolation. This leads to a452

significant improvement in the structural accuracy of the simulated realizations. The453

distance functions’ kernel shape parameter σD is set such that the central pixel of the454

coarse scale data events receives roughly half of the sum of the kernel weights. The455

weight given to the central pixel directly affects the conditioning quality of the down-456

scaling to the target DEM. The number of candidate training data events K is adjusted457

to achieve a trade-off between the structural accuracy of the simulated realizations,458

sub-pixel variability, and computational efficiency.459

Table 3 Algorithm parameters used in the Western Alps and Jura Mountains examples.

Parameter Unit G = 2 G = 4

σF m 64 32
σD m 16 8
K – 20 20

The downscaling by area-to-point simulation is performed using a global search460

neighborhood. The fitted variogram model consists of a normalized anisotropic k-461

Bessel model whose parameters are listed in Table 4. The direct sampling algorithm462

parameters are configured to enforce the scanning of the entire training image. The463

normalized acceptance threshold is set to a small value to maximize the structural464

quality of the output realizations. Table 5 lists the algorithm parameters used for465

the Western Alps and Jura Mountains examples. A standard configuration setup is466

employed which includes the use of an isotropic search radius for the retrieval of467

data events, and the L2 norm for distance computation. The exponent in the distance468

function is set to zero. For a detailed description of the algorithm and its parameters,469

the reader is referred to Mariethoz et al. (2010) and Meerschman et al. (2013).470

Figures 6–9 illustrate two realizations and interpolations of the sub-pixel DEMs471

and their corresponding residual topographies generated with the four benchmarked472
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Table 4 Area-to-point simulation parameters used in the Western Alps and Jura Mountains examples.

Example Parameter Unit G = 2 G = 4

σF m 64 64
Variogram model – k-Bessel k-Bessel

Western Max. range m 22.4 20.8
Alps Min. range m 19.2 17.6

Azimuth degrees 90 90
Shape parameter – 2 2

σF m 64 64
Variogram model – k-Bessel k-Bessel

Jura Max. range m 65.6 65.6
Mountains Min. range m 40.0 40.0

Azimuth degrees 90 90
Shape parameter – 1 1

Table 5 Direct sampling algorithm parameters used in the Western Alps and Jura Mountains examples.

Variable Parameter Unit G = 2 G = 4

σF m 64 64
Training image scanning fraction – 1.0 1.0

Normalized acceptance threshold – 0.005 0.005
Coarse Max. search radius number of pixels 5 10

Max. neighborhood size number of pixels 9 21

Normalized acceptance threshold – 0.005 0.005
Fine Max. search radius number of pixels 5 10

Max. neighborhood size number of pixels 8 20

techniques. Summary statistics for the downscaling results are listed in Table 6. Sta-473

tistical and structural validation metrics for the realizations and interpolations are474

depicted in Figures 10–13 and Table 7. The empirical CDFs, directional variograms,475

Euler characteristic, and connectivity curves for the proposed method, area-to-point476

simulation, and the direct sampling algorithm are displayed as min-max envelopes477

generated from 20 realizations (Figs. 10 and 11). Statistics and validation metrics478

calculated from simulated realizations consist of the mean values plus or minus one479

standard deviation.480

Statistically, the medium and fine resolution DEMs generated with the proposed481

downscaling algorithm are the closest to the reference data set when compared to the482

realizations produced by other techniques (Table 6). However, a systematic underes-483

timation of the reference standard deviation values is observed. Figure 6 illustrates484

reproduction of low entropy patterns characterized by the spatial connectivity be-485

tween high and low residual elevation values. These structures can be observed in the486

reference fine resolution residual DEM (Fig. 4). The area-to-point simulation realiza-487

tions overestimate the standard deviation and spread of the reference residual DEMs488

(Table 6). This is likely a consequence of the mismatch between the probability dis-489
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tributions of the fine scale residuals from the training image and the reference data490

set. The histogram transformations are based on the empirical CDF of the fine reso-491

lution training image which has a larger range than the fine scale reference histogram492

(Table 6). As expected, area-to-point simulation realizations have a higher degree of493

spatial entropy. Simulated textures tend to disconnect high and low residual elevation494

values (Fig. 7). Realizations also exhibit high-frequency structures in areas that are495

predominantly bland in the reference fine resolution residual DEM (Figs. 4 and 7).496

The direct sampling realizations have slightly lower variance than the results pro-497

duced by the proposed algorithm. The bicubic interpolation predictions consist of498

blurred representations of the fine scale reference DEM (Fig. 9). The spatial smooth-499

ing caused by the interpolation process is also observed in the summary statistics,500

characterized by the underestimation of the variance and the sample minimum and501

maximum (Table 6).502

On average, the proposed algorithm generates fine resolution terrain models that503

are consistent with the coarse scale conditioning data. The average ME and RMSE be-504

tween the reference coarse resolution DEM and the upscaled realizations are smaller505

than the ones produced by the direct sampling and bicubic interpolation (Table 7).506

The area-to-point simulation realizations have the smallest RMSE for both magnifi-507

cation factors. However, they produce similar ME values. The scatter plots in Figs. 10508

and 11 reveal an unbiased dispersion between the reference coarse resolution residual509

elevation and the coarse scale conditioning error for realizations generated with the510

proposed algorithm. The direct sampling error dispersion is somewhat higher. Nega-511

tive correlation between the reference residual elevation and the conditioning errors512

for the upper and lower ends is observed (Figs. 10 and 11). In contrast, area-to-point513

simulations provide precise reproduction of intermediate coarse resolution measure-514

ments but they generate a positive correlation towards low and high values. The bicu-515

bic interpolation results clearly show a negative correlation between the conditioning516

errors and the coarse residual elevation (Figs. 9 and 10).517

Structural validation metrics reveal that the proposed downscaling method is518

more effective at reproducing the reference fine scale variability and sub-pixel struc-519

tures. This is reflected in the agreement between the simulations and the reference520

data in the directional variograms, Euler characteristic, and probability of connec-521

tion plots (Figs. 10 and 11). Area-to-point simulations generate more variability and522

are unable to reproduce the spatial connectivity of fine scale residuals. It is also ev-523

ident that the bicubic interpolation method underestimates the sub-pixel variability524

and does not reproduce the topology and the connectivity of the reference residual525

DEMs. The direct sampling realizations tend to generate less variability when com-526

pared to the proposed algorithm and have issues for reproducing the Euler character-527

istic curves for residual elevation values within the interval between −10 and 10 m528

for G = 4. However, it is worth noting that the proposed algorithm seems to under-529

estimate the reference negative Euler number values for residual elevation thresholds530

within the interval from −10 to 10 m (Figs. 9 and 10). In addition, similarly to the531

other stochastic techniques, simulated realizations tend to produce erratic fluctuations532

in the probability of connection for residual elevation values under −15 m and over533
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15 m for G = 4 (Fig. 10). This is most likely to be due to random noise inherent to534

the simulation process and its respective propagation across scales (i.e. in the follow-535

ing iterations). As a result, the structural accuracy of the realizations is expected to536

deteriorate at higher magnification factors.537

The bicubic interpolation estimates have the highest mean SSIM for both the538

medium and fine resolution predictions whereas the area-to-point simulated realiza-539

tions display the smallest scores (Table 7). Stochastic methods will generally yield540

lower SSIM because, by construction, they do not aim to minimize the local variance541

of the predictions. The bicubic interpolation produces smooth surfaces devoid from542

noise. Withal, the resulting textures are deprived from the sub-pixel patterns imported543

from the dual-resolution training image. Figures 12 and 13 show the mean absolute544

error (MAE) between the simulated and the reference sub-pixel residual elevation545

third and fourth-order cumulant maps. The spatial templates used for computing the546

experimental cumulants are displayed next to the maps. As expected, the MPS-based547

approaches outperform the other two methods. The MAE generated at short lags con-548

figurations by both MPS methods are approximately one order of magnitude smaller549

than the MAE produced by area-to-point simulation and bicubic interpolation. The550

proposed approach tends generate larger small scale errors in the third-order cumu-551

lant map compared to the direct sampling algorithm. This is likely caused by edge552

artifacts between adjacent simulated patches. Nevertheless, the scenario is reversed553

in the fourth-order cumulant MAE map.554

Table 6 Summary statistics of the downscaled DEMs from the Western Alps example. Values are in
residual elevation (in meters).

G mean std. dev. min. max.

Training 2 −0.12 8.99 −63.69 72.44
Reference 2 −0.45 6.83 −40.54 37.37
Proposed method 2 −0.44±0.00 6.67±0.01 −40.08±1.16 37.35±1.69
Area-to-point 2 −0.44±0.00 7.10±0.01 −54.63±2.89 55.96±3.20
Direct sampling 2 −0.45±0.00 6.57±0.02 −39.32±2.01 38.74±2.92
Bicubic 2 −0.45 6.19 −34.62 31.48

Training 4 −0.11 8.89 −63.33 85.03
Reference 4 −0.41 6.76 −41.43 37.36
Proposed method 4 −0.41±0.00 6.55±0.02 −42.07±1.98 40.07±2.38
Area-to-point 4 −0.41±0.00 7.06±0.02 −57.93±2.84 60.96±3.80
Direct sampling 4 −0.42±0.00 6.42±0.01 −43.59±1.52 40.39±1.90
Bicubic 4 −0.42 5.95 −35.23 31.38

4.5 The Jura Mountains Example555

The second case study uses DEMs from a subset of the Jura Mountains. This sub-556

alpine mountain range is characterized by karst topography and relative low-gradient557
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Table 7 Validation of the Western Alps example.

G ME (cm) RMSE (cm) SSIM

Proposed method 2 0.90±0.76 58.62±1.17 0.914±0.001
Area-to-point 2 −1.24±0.37 40.63±0.94 0.883±0.003
Direct sampling 2 1.50±0.82 86.43±1.50 0.893±0.002
Bicubic 2 1.33 68.05 0.932

Proposed method 4 1.13±0.80 60.15±1.00 0.877±0.002
Area-to-point 4 −1.44±0.58 46.98±1.18 0.832±0.002
Direct sampling 4 1.24±0.66 67.17±1.20 0.875±0.001
Bicubic 4 1.68 79.45 0.897

landforms when compared to the Western Alps example. Figure 14 illustrates the558

reference DEMs and the residual terrain elevation models. The training trended and559

residual DEMs from a neighboring analog area are depicted in Figure 15. The spatial560

low-pass filter configuration for obtaining the residuals, the DEMs dimensions, pixel561

sizes, footprints are identical to the ones presented in Subsection 4.4.562

A set of 20 conditional simulations was generated using the same multi-scale563

iterative downscaling approach and parameters setup used in the Western Alps case564

study (Table 3). The area-to-point simulation and the direct sampling algorithm pa-565

rameters used for this example are listed in Tables 4 and 5, respectively. Simulated566

realizations and estimates are shown in Figures 16–19. Summary statistics are listed567

in Table 8. The statistical validation metrics are depicted in Table 9 and Figures 20–568

23.569

The results for the Jura Mountains example confirm the ones from the Western570

Alps case study. The proposed MPS algorithm outperforms the other techniques for571

the majority of validation metrics. The method is able to reproduce relatively well572

the fine scale terrain elevation probability distributions for both magnification factors573

(Table 8 and Figs. 20, 21). The area-to-point simulated realizations generate more574

variability than the reference data set. Similarly to the previous example, this is most575

likely caused by the reliance on the training image fine scale empirical CDF for the576

histogram transform. The conditioning ME, RMSE in Table 9 and the error disper-577

sions displayed in the scatter plots for both medium (Fig. 20) and fine resolution578

(Fig. 21) predictions are akin to the results presented in Subsection 4.4, although the579

magnitude of the errors is significantly smaller. The proposed approach generates the580

smallest ME for both magnification factors, and the highest SSIM values among the581

stochastic simulation methods (Table 9).582

The structural accuracy of the downscaled DEMs produced by the different tech-583

niques are also akin to the Western Alps case study. Notwithstanding, the loss of fine584

scale variability is significantly less pronounced in this example. The relative dif-585

ferences between the standard deviations of the reference and simulated DEMs is586

approximately halved (Table 8). This can also be observed in the improved match587

between the empirical variograms (Figs. 20 and 21). The Euler characteristic and588
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probability of connection plots indicate that the proposed algorithm generates less589

random noise. Underestimation of negative Euler numbers within the range of −5590

to 5 m is evident after two iterations of the algorithm. However, the erratic fluctua-591

tions in the connectivity curves for small and large residual elevations are much less592

pronounced (Fig. 21). The noise reduction might be related to the fact that the topog-593

raphy in this region is not as rugged as in the Western Alps. The spatial patterns in594

the training DEMs are generally smoother and, consequently, less noise is propagated595

throughout the simulation process. The area-to-point simulation and the bicubic in-596

terpolation method are unable to the reproduce the fine scale variability present in597

the reference data, and cannot adequately mimic the topology and the spatial con-598

nectivity of the sub-pixel residual variable (Figs. 20 and 21). The proposed algorithm599

and the direct sampling realizations tend to produce similar Euler characteristic and600

connectivity curves for G = 2 (Figs. 20). However, these curves start to differentiate601

themselves when G= 4. The proposed algorithm managed to outperform all the other602

methods in the reproduction of high-order statistics. Figures 22 and 23 reveal that the603

approach generates the smallest MAE between the simulated and the reference third604

and fourth-order cumulant maps for both magnification factors. Fine scale errors in605

the third and fourth-order cumulant maps are roughly one order of magnitude lower606

than the ones produced by other techniques.607

Table 8 Summary statistics of the downscaled DEMs from the Jura Mountains example. Values are in
residual elevation (in meters).

G mean std. dev. min. max.

Training 2 −0.04 4.93 −21.57 34.30
Reference 2 −0.06 3.25 −18.09 15.88
Proposed method 2 −0.06±0.00 3.20±0.00 −17.64±0.65 15.93±0.70
Area-to-point 2 −0.06±0.00 3.42±0.01 −17.87±0.38 17.33±0.73
Direct sampling 2 −0.06±0.00 3.16±0.00 −16.68±0.25 16.59±0.90
Bicubic 2 −0.06 3.05 −14.54 14.65

Training 4 −0.04 4.76 −21.65 38.56
Reference 4 −0.05 3.16 −19.22 16.21
Proposed method 4 −0.05±0.00 3.10±0.00 −18.13±0.84 16.97±0.83
Area-to-point 4 −0.05±0.00 3.34±0.01 −18.18±0.37 18.10±1.11
Direct sampling 4 −0.05±0.00 3.06±0.00 −17.69±0.25 16.86±1.00
Bicubic 4 −0.05 2.91 −15.00 14.26

5 Discussion608

Results demonstrate that the proposed method is able to downscale coarse images609

with trends and reproduce target fine scale statistics. Simulations in both case studies610

are unbiased regarding conditioning to coarse resolution measurements. Fine scale611

topological properties such as the Euler characteristic and the probability of connec-612
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Table 9 Validation of the Jura Mountains example.

G ME (cm) RMSE (cm) SSIM

Proposed method 2 −0.07±0.20 21.75±0.39 0.936±0.001
Area-to-point 2 0.66±0.24 18.32±0.59 0.840±0.003
Direct sampling 2 −0.42±0.37 29.86±0.66 0.914±0.002
Bicubic 2 0.19 25.42 0.946

Proposed method 4 0.00±0.21 22.04±0.43 0.906±0.001
Area-to-point 4 0.62±0.25 19.72±0.58 0.803±0.003
Direct sampling 4 −0.59±0.25 23.73±0.27 0.893±0.001
Bicubic 4 0.24 29.94 0.917

tion curves are also relatively well reproduced. Results also indicate good reproduc-613

tion of second, third, and fourth-order statistics.614

The exhaustive scanning of the training image for the K best training data events615

allows the proposed framework to handle non-stationary data sets. This is often the616

case when one has to deal with non-constructed training images or simulate non-617

repetitive structures. The distance-to-probability transformation function improves618

the reproduction of less frequent spatial structures and values by assigning higher619

conditional probabilities to the training data events that are more compatible with620

the local conditioning data. At the same time, it also allows the algorithm to gener-621

ate variability on output realizations whenever multiple compatible data events are622

available in the training image. Building each local CPDF based upon the distance-623

to-probability transformation function is particularly important within the proposed624

iterative downscaling framework. Since fine scale features are conditionally simu-625

lated based on previously simulated data, the propagation of errors across scales can626

potentially compromise the simulation of finer resolution features. The framework627

is also particularly suitable for simulating textures that might contain both repetitive628

and non-repetitive structures. Conversely, traditional two-point statistics simulation629

methods infer the variogram model and histogram transformations using all avail-630

able data. Therefore, they have trouble reproducing location-specific patterns and631

statistics. This also extends to MPS simulation algorithms which compute conditional632

probabilities based upon the entire training image. The management of non-stationary633

spatial patterns often requires the application of pre-processing routines prior to sim-634

ulation (Boisvert et al. 2009 Boucher 2009a), which are not needed with the proposed635

approach.636

Although the realizations globally honor the statistics and structural properties637

of the reference data, not all fine scale features can be recovered on the downscaled638

DEMs. Visually, it is noticeable that the texture of the realizations (Figs. 6 and 16)639

tends to be less sharp than the corresponding textures found on the reference fine640

resolution DEMs (Figs. 4 and 14). While the algorithm is to be able to generate re-641

alizations that depict the same type of variogram structures present in the reference642

fine resolution DEMs, simulations tend to underestimate the variability of the refer-643
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ence data. This is a common problem for conditional MPS simulations. Straubhaar644

et al. (2016) reported the same phenomenon while running simulations constrained645

to block data, and Oriani et al. (2017) experienced a similar effect when simulating646

rainfall fields conditioned to weather state variables and DEMs. In our experiments,647

this effect is more evident when downscaling high-complexity terrains, such as the648

Western Alps example. One possible reason for this variance underestimation is that649

many of the structures to be recovered are significantly smaller than the pixel size650

of the coarse resolution image. In the super-resolution mapping literature, such sce-651

nario is classified as an L-resolution type problem (Atkinson 2009). Results indicate652

that some of these structures cannot be properly simulated when relying solely on653

coarse scale observations and previously simulated data. Imposed local condition-654

ing constrains combined with the finite size of the training image may also play a655

role in preventing proper reproduction of such features. The addition of auxiliary656

fine scale covariates (e.g. high-resolution remote sensing imagery) might improve657

the simulation of these sub-pixel features. Further work is required to determine the658

magnification factor limits for different types of terrain and data sets.659

A discussion about the criteria for selecting or constructing the dual-resolution660

training image is out of the scope of this paper. In geomorphological applications, the661

training image can be built from a better-informed analog data set. In other research662

areas, where analogs are not generally available, artificial training images might have663

to be employed. Inevitably, either analog-driven selection (Pérez et al. 2014) or ar-664

tificial construction (Maharaja 2008) of training images will rely heavily on addi-665

tional prior information based on expert knowledge. This information is fundamental666

when direct measurements of the fine resolution primary attribute are unavailable. For667

analog-derived training images, the selection process could be potentially guided by668

the coarse scale observations and indirect fine scale covariates (i.e. secondary data).669

Automated routines for training data selection grounded on exhaustive search over670

large training databases could be potentially implemented.671

6 Conclusions672

This paper presents a novel MPS simulation algorithm for downscaling images with673

trends. The method is illustrated with examples using DEMs from two geomorpho-674

logically distinct mountain ranges in Switzerland. Results show that the method is675

capable of generating fine resolution realizations that honor the input coarse resolu-676

tion image and reproduce key structural properties and statistics.677

To address the presence of trends in the data sets, the target variable is decom-678

posed into a trend and a residual component at multiple scales. The trend compo-679

nent is downscaled with a deterministic interpolation method. The sub-pixel residual680

variable is simulated with a multi-scale sequential simulation framework. In order681

to improve the conditioning to coarse scale data, we propose the adoption of kernel682

weighting when computing the distances between target and training data events.683
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We have introduced a new approach for integrating different support data in the684

context of distance-based MPS simulation. The proposed framework is well-suited685

for simulating images with non-repetitive structures, such as DEMs. The generality686

of the framework also offers the possibility to streamline the integration of other687

types of covariates. The transformation of distances between multivariate data events688

(with possibly different units or orders of magnitude) into probabilities facilitates the689

integration of multi-sensor data. The proposed scheme also eases the implementation690

of error/bias control systems (e.g. servo systems) (Remy et al. 2009) through direct691

manipulation of conditional probabilities.692

Future work will explore the conflation of auxiliary variables to improve the693

quality and reduce the uncertainty associated with the downscaling process. The de-694

velopment of strategies to mitigate the generation of random noise on simulated real-695

izations without causing loss of variability has particular importance for applications696

where the spatial structure of the downscaled image has an effect on the transfer697

function response. Particular effort will be put also on the development of an auto-698

mated calibration procedure of the algorithm parameters based on a given training699

image. Additional research topics that should be investigated are the formulation of700

a quantitative criterion for selecting the training image, the evaluation of different701

distance-to-probability transformation functions and their impact on the structural702

quality and variability of simulated realizations, and the adaptation of the algorithm703

for supporting tridimensional data sets.704
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Fig. 5 The Western Alps training DEMs. Top left: coarse resolution DEM. Top right: coarse resolution
residual DEM. Middle left: medium resolution DEM. Middle right: medium resolution residual DEM.
Bottom left: fine resolution DEM. Bottom right: fine resolution residual DEM. The residual component of
the trended DEMs has a vertical exaggeration factor of 8x. Colorbars’ unit is meter.
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Fig. 6 The Western Alps downscaled DEMs produced with the proposed algorithm. Top left: coarse reso-
lution DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle left:
simulated medium resolution DEM. Middle center: simulated medium resolution residual DEM. Middle
right: medium resolution zoom. Bottom left: simulated fine resolution DEM. Bottom center: simulated
fine resolution residual DEM. Bottom right: fine resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 8x. Green boxes highlight the magnified area. Colorbars’ unit
is meter.
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Fig. 7 The Western Alps downscaled DEMs produced with area-to-point simulation. Top left: coarse res-
olution DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle left:
simulated medium resolution DEM. Middle center: simulated medium resolution residual DEM. Middle
right: medium resolution zoom. Bottom left: simulated fine resolution DEM. Bottom center: simulated
fine resolution residual DEM. Bottom right: fine resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 8x. Green boxes highlight the magnified area. Colorbars’ unit
is meter.
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Fig. 8 The Western Alps downscaled DEMs produced with direct sampling. Top left: coarse resolution
DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle left: simu-
lated medium resolution DEM. Middle center: simulated medium resolution residual DEM. Middle right:
medium resolution zoom. Bottom left: simulated fine resolution DEM. Bottom center: simulated fine res-
olution residual DEM. Bottom right: fine resolution zoom. The residual component of the trended DEMs
has a vertical exaggeration factor of 8x. Green boxes highlight the magnified area. Colorbars’ unit is meter.
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Fig. 9 The Western Alps downscaled DEMs produced with bicubic interpolation. Top left: coarse res-
olution DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle
left: interpolated medium resolution DEM. Middle center: interpolated medium resolution residual DEM.
Middle right: medium resolution zoom. Bottom left: interpolated fine resolution DEM. Bottom center:
interpolated fine resolution residual DEM. Bottom right: fine resolution zoom. The residual component
of the trended DEMs has a vertical exaggeration factor of 8x. Green boxes highlight the magnified area.
Colorbars’ unit is meter.
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Fig. 10 Validation of the Western Alps example (G = 2). Top left: sub-pixel empirical CDFs. Top right:
scatter plots between reference coarse residual elevation and conditioning error. Middle left: sub-pixel
empirical variograms along the X axis. Middle right: sub-pixel empirical variograms along the Y axis.
Bottom left: fine scale Euler characteristic. Bottom right: fine scale probability of connection.
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Fig. 11 Validation of the Western Alps example (G = 4). Top left: sub-pixel empirical CDFs. Top right:
scatter plots between reference coarse residual elevation and conditioning error. Middle left: sub-pixel
empirical variograms along the X axis. Middle right: sub-pixel empirical variograms along the Y axis.
Bottom left: fine scale Euler characteristic. Bottom right: fine scale probability of connection.
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Fig. 12 MAE between simulated and reference third and fourth-order cumulant maps from the Western
Alps example (G = 2). Top: third-order cumulant MAE maps for a proposed method, b area-to-point
simulation, c direct sampling, and d bicubic interpolation. Colorbar unit is m3. Bottom: fourth-order cu-
mulant MAE maps for e proposed method, f area-to-point simulation, g direct sampling, and h bicubic
interpolation. Colorbar unit is m4.
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Fig. 13 MAE between simulated and reference third and fourth-order cumulant maps from the Western
Alps example (G = 4). Top: third-order cumulant MAE maps for a proposed method, b area-to-point
simulation, c direct sampling, and d bicubic interpolation. Colorbar unit is m3. Bottom: fourth-order cu-
mulant MAE maps for e proposed method, f area-to-point simulation, g direct sampling, and h bicubic
interpolation. Colorbar unit is m4.
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Fig. 14 The Jura Mountains reference DEMs. Top left: coarse resolution DEM. Top center: coarse res-
olution residual DEM. Top right: coarse resolution zoom. Middle left: medium resolution DEM. Middle
center: medium resolution residual DEM. Middle right: medium resolution zoom. Bottom left: fine resolu-
tion DEM. Bottom center: fine resolution residual DEM. Bottom right: fine resolution zoom. The residual
component of the trended DEMs has a vertical exaggeration factor of 2x. Green boxes highlight the mag-
nified area. Colorbars’ unit is meter.
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Fig. 15 The Jura Mountains training DEMs. Top left: coarse resolution DEM with trend. Top right: coarse
resolution residual DEM. Middle left: medium resolution DEM with trend. Middle right: medium reso-
lution residual DEM. Bottom left: fine resolution DEM with trend. Bottom right: fine resolution residual
DEM. The residual component of the trended DEMs has a vertical exaggeration factor of 2x. Colorbars’
unit is meter.
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Fig. 16 The Jura Mountains downscaled DEMs produced with the proposed algorithm. Top left: coarse
resolution DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle
left: simulated medium resolution DEM. Middle center: simulated medium resolution residual DEM. Mid-
dle right: medium resolution zoom. Bottom left: simulated fine resolution DEM. Bottom center: simulated
fine resolution residual DEM. Bottom right: fine resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 2x. Green boxes highlight the magnified area. Colorbars’ unit
is meter.
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Fig. 17 The Jura Mountains downscaled DEMs produced with area-to-point simulation. Top left: coarse
resolution DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle
left: simulated medium resolution DEM. Middle center: simulated medium resolution residual DEM. Mid-
dle right: medium resolution zoom. Bottom left: simulated fine resolution DEM. Bottom center: simulated
fine resolution residual DEM. Bottom right: fine resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 2x. Green boxes highlight the magnified area. Colorbars’ unit
is meter.
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Fig. 18 The Jura Mountains downscaled DEMs produced with direct sampling. Top left: coarse resolution
DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle left: simu-
lated medium resolution DEM. Middle center: simulated medium resolution residual DEM. Middle right:
medium resolution zoom. Bottom left: simulated fine resolution DEM. Bottom center: simulated fine res-
olution residual DEM. Bottom right: fine resolution zoom. The residual component of the trended DEMs
has a vertical exaggeration factor of 2x. Green boxes highlight the magnified area. Colorbars’ unit is meter.
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Fig. 19 The Jura Mountains downscaled DEMs produced with bicubic interpolation. Top left: coarse res-
olution DEM. Top center: coarse resolution residual DEM. Top right: coarse resolution zoom. Middle
left: interpolated medium resolution DEM. Middle center: interpolated medium resolution residual DEM.
Middle right: medium resolution zoom. Bottom left: interpolated fine resolution DEM. Bottom center:
interpolated fine resolution residual DEM. Bottom right: fine resolution zoom. The residual component
of the trended DEMs has a vertical exaggeration factor of 2x. Green boxes highlight the magnified area.
Colorbars’ unit is meter.
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Fig. 20 Validation of the Jura Mountains example (G = 2). Top left: sub-pixel empirical CDFs. Top right:
scatter plots between reference coarse residual elevation and conditioning error. Middle left: sub-pixel
empirical variograms along the X axis. Middle right: sub-pixel empirical variograms along the Y axis.
Bottom left: fine scale Euler characteristic. Bottom right: fine scale probability of connection.
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Fig. 21 Validation of the Jura Mountains example (G = 4). Top left: sub-pixel empirical CDFs. Top right:
scatter plots between reference coarse residual elevation and conditioning error. Middle left: sub-pixel
empirical variograms along the X axis. Middle right: sub-pixel empirical variograms along the Y axis.
Bottom left: fine scale Euler characteristic. Bottom right: fine scale probability of connection.
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Fig. 22 MAE between simulated and reference third and fourth-order cumulant maps from the Jura Moun-
tains example (G = 2). Top: third-order cumulant MAE maps for a proposed method, b area-to-point
simulation, c direct sampling, and d bicubic interpolation. Colorbar unit is m3. Bottom: fourth-order cu-
mulant MAE maps for e proposed method, f area-to-point simulation, g direct sampling, and h bicubic
interpolation. Colorbar unit is m4.
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Fig. 23 MAE between simulated and reference third and fourth-order cumulant maps from the Jura Moun-
tains example (G = 4). Top: third-order cumulant MAE maps for a proposed method, b area-to-point
simulation, c direct sampling, and d bicubic interpolation. Colorbar unit is m3. Bottom: fourth-order cu-
mulant MAE maps for e proposed method, f area-to-point simulation, g direct sampling, and h bicubic
interpolation. Colorbar unit is m4.




