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Models of sex-allocation conflict are central to evolutionary biology but have mostly assumed static decisions, where resource

allocation strategies are constant over colony lifespan. Here, we develop a model to study how the evolution of dynamic resource

allocation strategies is affected by the queen-worker conflict in annual eusocial insects. We demonstrate that the time of dispersal

of sexuals affects the sex-allocation ratio through sexual selection on males. Furthermore, our model provides three predictions

that depart from established results of classic static allocation models. First, we find that the queen wins the sex-allocation

conflict, while the workers determine the maximum colony size and colony productivity. Second, male-biased sex allocation

and protandry evolve if sexuals disperse directly after eclosion. Third, when workers are more related to new queens, then the

proportional investment into queens is expected to be lower, which results from the interacting effect of sexual selection (selecting

for protandry) and sex-allocation conflict (selecting for earlier switch to producing sexuals). Overall, we find that colony ontogeny

crucially affects the outcome of sex-allocation conflict because of the evolution of distinct colony growth phases, which decouples

how queens and workers affect allocation decisions and can result in asymmetric control.
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Eusocial Hymenopteran colonies may superficially appear to
function as single organisms, where queens and workers could
be viewed as the germinal and somatic tissues of multicellular or-
ganisms (Macevicz and Oster 1976). However, such individuals
are usually not clonal, whereby some genes, for instance those
influencing sex allocation or reproductive ability of workers, can
experience diverging selection pressures in different individu-
als (e.g., Hamilton 1967; Bourke and Franks 1995; Haig 2003;
Ratnieks et al. 2006).

One of the most intensively studied genetic conflicts is the
queen-worker conflict over sex allocation. In an outbred hap-
lodiploid population where each colony is headed by a singly
mated queen, natural selection on resource allocation strategies
favors alleles in queens that code for equal resource allocation
to males and (sexual) females and alleles in workers that code
for a 3:1 (sexual females to males) allocation ratio (e.g., Trivers
and Hare 1976; Frank 1998; West 2009). Factors such as multiple
related queens per colony and multiple matings by the queen re-
duce the extent of the genetic conflict over sex allocation because

they reduce relatedness asymmetries between individuals within
colonies (e.g., Frank 1998; Ratnieks et al. 2006; West 2009).

The long-term evolutionary “outcome” of the sex-allocation
conflict—the uninvadable resource allocation schedule, is deter-
mined by the mechanisms through which the opposing “parties”
can influence how colony resources are allocated into produc-
ing individuals of different types. In a colony founded by a
single queen, there are two opposing parties: the genes in the
workers and the genes in the colony-founding queen. The ge-
netic control over resource allocation decisions can be achieved
through different genetic, behavioral, and physiological processes
(Beekman and Ratnieks 2003; Mehdiabadi et al. 2003; Helanterä
and Ratnieks 2009). Hereinafter, if one party fully determines a
given resource allocation trait, then this party is said to be “in
control” of that trait (here, “in control” has a related but more
restricted meaning than “having power” as in, e.g., Beekman and
Ratnieks 2003). In general, there are reasons to expect that the
genes in the queen and workers simultaneously control different
resource allocation decisions because both parties are known to
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have means to control different resource allocation decisions and
selection for a party to seize control over a resource allocation de-
cision can be strong if there are means to do so (Trivers and Hare
1976; Bourke and Franks 1995; Helanterä and Ratnieks 2009).
Furthermore, it is often considered most likely that the genes in
the queen determine the primary sex-allocation ratio (allocation of
resources to females vs. males) and the workers control the devel-
opmental fate of the female eggs (Trivers and Hare 1976; Bourke
and Franks 1995; Helanterä and Ratnieks 2009). Hereinafter, we
refer to this scenario as “mixed control.”

Theoretical models of sex-allocation conflict provide three
important insights into fundamental questions in evolutionary bi-
ology (e.g., Pamilo 1991a; Bourke and Chan 1999; Bourke and
Ratnieks 1999; Reuter and Keller 2001; Reuter et al. 2004; Pen
and Taylor 2005). First, they provide clear predictions that allow
to test how relatedness affects selection on social traits (Crozier
and Pamilo 1996). Second, they allow to predict which party is
in control of the underlying resource allocation decisions, given
that one has sex-allocation data. Third, they enable to predict to
what extent the conflicts can be “resolved” (sensu Ratnieks et al.
2006, i.e., conflict outcome with modest colony-level costs) un-
der various assumptions about the mechanisms of genetic control
over the resource allocation decisions. However, all of the afore-
mentioned models consider static allocation decisions without
explicitly taking colony ontogeny into account. Nevertheless, it
is known that many annual eusocial insect species (e.g., vespid
wasps, bumble bees, and sweat bees) grow in two distinct phases
(see references in Mitesser et al. 2007a; Crone and Williams
2016). That is, in the beginning of the season only workers are
produced (ergonomic phase) followed by a drastic shift into exclu-
sive production of males and future queens (reproductive phase).
This life-history schedule was shown to be an evolutionary out-
come in annual eusocial colonies assuming clonal reproduction
by Macevicz and Oster (1976). However, only a few theoretical
studies (Bulmer 1981; Ohtsuki and Tsuji 2009) have considered
sexually reproducing species (thereby including the possibility
of genetic conflicts) and time-dependent resource allocation de-
cisions in the context of colony life-history. The importance of
colony ontogeny in studying within-colony conflict was demon-
strated by Ohtsuki and Tsuji (2009) who showed (in the context
of worker policing) that the expression of conflict depends on the
phase of colony ontogeny.

In his seminal work, Bulmer (1981) showed using a dy-
namic allocation model (i.e., time-dependent decisions) that the
sex-allocation conflict can have a detrimental effect on colony
productivity (sexual biomass) under mixed control because rela-
tively few resources are allocated into producing workers. Indeed,
he predicted that the production of workers is expected to halt ear-
lier under mixed control, but he did not consider the entire colony
ontogeny and his predictions relied on some additional restrictive

assumptions. For example, he assumed that the worker gener-
ations do not overlap within a season (i.e., a colony grows in
separate generations of workers within a season) and that sexuals
can only mate at the very end of the season. Hence, theoretical un-
derstanding of the life-history decisions of eusocial colonies has
mostly relied on the assumption of clonal reproduction with no ge-
netic conflicts (Macevicz and Oster 1976; Mitesser et al. 2007a).

The importance of considering dynamic resource allocation
decisions for studying within-colony conflict is demonstrated by
the fact that the static and dynamic resource allocation models
can make contradicting predictions about which party wins the
sex-allocation conflict under mixed control (Bulmer 1981; Reuter
and Keller 2001). Indeed, the static resource allocation model by
Reuter and Keller (2001) predicts a sex-allocation ratio under
mixed control that is intermediate between the evolutionary pre-
dictions corresponding to worker and queen control. In contrast,
Bulmer’s (1981) dynamic model predicts that the queen wins the
sex-allocation conflict by laying only haploid eggs at the penulti-
mate generations causing the colony to die one generation before
the end of the season if the sex-allocation ratio in the population is
female-biased. However, the generality of Bulmer’s predictions
is limited due to the aforementioned restrictive assumptions of
his model.

Furthermore, in another study assuming queen control of
resource allocation traits and the possibility of sexuals to mate
before the end of the season, Bulmer (1983) showed that sexual
selection on males will lead to protandry (males being produced
before sexual females) if mating can occur over some period of
time. Indeed, sexual selection may thus play an important role
for colony ontogeny because protandry is found among many an-
nual eusocial insects, for example, in paper wasps and bumble
bees (Strassmann and Hughes 1986; Bourke 1997). Evolution of
protandry however contradicts the earlier model by Bulmer (1981)
for mixed control because it predicted that males are produced in
the very end of the season. Hence, there are no theoretical predic-
tions for time-dependent colony resource allocation decisions and
conflicts under mixed control, where individuals can mate over
a finite period of time during the season with sexual selection
occurring throughout.

In this article, we address the limitations of previous studies
by developing a dynamic resource allocation model where we
consider three alternative scenarios of genetic control of resource
allocation decisions: queen control, worker control, and mixed
control; and two alternative scenarios of dispersal of sexuals: de-
layed dispersal (all sexuals simultaneously disperse at the end of
the season to mate) and direct dispersal (sexuals disperse immedi-
ately after eclosion to mate). In light of previous work, the purpose
of this article is to address the following questions: (i) How does
conflict affect colony growth? (ii) How does sexual selection af-
fect the order at which sexuals are produced? (iii) Which party
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wins the sex-allocation conflict for different scenarios of dispersal
of sexuals?

Model
LIFE CYCLE

We consider a seasonal population of haplodiploid eusocial in-
sects consisting of a large (ideally infinite) number of colonies
or breeding sites each occupied by a mated queen. The life cycle
over a season is assumed to consist of the following four events.
(1) Reproduction: at the start of the season of total length T, each
queen occupying one of the n breeding sites initiates a colony that
can grow throughout the season, and where workers, males, and
future queens can be produced. (2) Dispersal: sexuals disperse
out of their natal colony, such that no inbreeding, local mate com-
petition, or local resource competition takes place; we consider
two alternative scenarios for the timing of dispersal (to be de-
tailed below). (3) Mating: random mating occurs and all queens
mate exactly with M ≥ 1 males. (4) Regulation: all individuals
die at the end of the season, except (juvenile) queens who ran-
domly compete for the n breeding slots to initiate colonies of the
next generation.

DISPERSAL AND MATING

The two dispersal scenarios are as follows: (i) delayed dispersal,
where sexuals all disperse at the same time at the end of the season,
and (ii) direct dispersal, where sexuals disperse immediately after
being produced. Females mate immediately with M males in the
mating pool after which they will exit the mating pool. In contrast,
males continue on mating until they die. Hence, the mating success
of a male depends on his mortality rate and the availability of
mating females. To gain fitness, females have to survive until the
end of the season, whereas males have to inseminate females who
survive until the end of the season.

COLONY GROWTH AND PRODUCTION OF SEXUALS

We model explicitly colony population dynamics during stage (1)
of the life cycle. To describe our model, we start by considering
that the population is monomorphic for all phenotypes, and we
will later introduce variation and selection. The size of a focal
colony at time t ∈ [0, T ] in the (monomorphic) population is
yw(t), which gives the number of sterile workers (including the
colony-founding queen, who has been counted as a worker) in the
colony at time t . In addition, by time t , the colony has produced
yq(t) surviving (juvenile) queens and ym(t) surviving (juvenile)
males. By the term “juvenile” we only want to emphasize that
these sexual individuals are regarded as offspring in the current
generation and that they will reproduce in the next generation.
For simplicity, we assume that all individuals are equally costly
to produce, which allows to equate the investment allocation ratio

to the numerical sex ratio. However, the assumption of equal
production cost has no fundamental effect on the evolutionary
process because selection acts only on total investment in the
sexes and not on their numbers and hence is independent of the
production costs of different individuals (West 2009).

Workers acquire resources from the environment to produce
offspring. Let b denote the individual productivity rate of a worker
(i.e., the net rate at which a worker acquires resources for the
colony, measured in individuals produced per unit time). For sim-
plicity, we assume that the availability of resources in the envi-
ronment is constant over time and the rate at which resources are
acquired scales linearly with the colony size (i.e., b is constant).
The latter assumption implies that there are enough resources in
the environment to sustain constant per worker rate of resource
acquisition and the egg-laying rate of the queen is constrained
only by the resources available to the colony.

The number yk(t) of type k ∈ {w, q, m} individuals alive at
time t that were produced in the focal colony is assumed to change
according to

dyk(t)
dt

= bak(t)yw(t) − µk yk(t), yk(0) = yk,0, (1)

where ak(t) is the fraction of resources allocated into producing
type k individuals at time t , µk is the mortality rate of individuals
of type k, and yk,0 is the number of type k individuals in the colony
in the beginning of the season. The initial condition (number of
individuals at the beginning of the season) for the colony is yw,0 =
1 (the colony-founding queen is counted as a worker because she
can, for example, recover some resources from her body fat),
yq,0 = 0 (no juvenile queens), and ym,0 = 0 (no juvenile males).
Note that the number of juvenile queens yq(t) and males ym(t) are
counted regardless if they have dispersed from the colony.

It will turn out to be useful to keep track of the number of
queens that the males from a focal colony have inseminated. Let
yiq(t) be the expected number of females alive at time t , who
have been inseminated by males from a focal colony, given that
females mate only once (i.e., under a monandrous mating system,
M = 1) and it changes according to

dyiq(t)
dt

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, for t < T, with yiq(T ) = ym(T )
yq(T )
ym(T )

(delayed dispersal),

ym(t)
baq(t)yw(t)

ym(t)
− µq yiq(t), yiq(0) = 0

(direct dispersal).

(2)

Under delayed dispersal, all females are inseminated at time t =
T , where a total number of nym(T ) males compete for nyq(T )
females. Hence, the mating success of a male produced in a focal
colony is yq(T )/ym(T ), and the number of males in that colony
at the end of the season is ym(T ). Under direct dispersal, females
mate immediately after being produced, whereby at time t a total
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number of nbaq(t)yw(t) females are available to mate (after which
they will leave the mating pool). In contrast, males stay in the
mating pool, hence at time t , an average number of nym(t) males
compete for the access to females. Therefore, the mating rate of a
male produced in a focal colony is baq(t)yq(t)/ym(t) at time t and
the last term in the second line of equation (2) takes into account
the mortality of the inseminated females. If females mate M times,
then there are on average M times more matings available to males
at any given time. Hence, the number of (surviving) females at
time t , who have been inseminated by males from a focal colony
is Myiq(t) in a population where females mate M times.

RESOURCE ALLOCATION TRAITS

We assume that the allocation schedule, ak(t) (k ∈ {w, q, m}), that
governs the dynamics of individuals produced in the focal colony
(recall equation 1), is controlled by two traits:

aw(t) = vf (t)(1 − vq(t)), aq(t) = vf (t)vq(t),

am(t) = (1 − vf (t)). (3)

The first trait 0 ≤ vf (t) ≤ 1 is the proportion of resources allo-
cated to producing females (individuals destined to become work-
ers or queens) at time t . The second trait 0 ≤ vq(t) ≤ 1, gives the
proportion of resources allocated to producing queens from re-
sources allocated to females at time t ∈ [0, T ]. Thus, (1 − vf (t))
is the proportional allocation to males and (1 − vq(t)) is the pro-
portional allocation of resources directed to producing workers
from resources allocated to females.

Our aim is to investigate the evolution of the resource al-
location schedule during the whole colony ontogeny, that is, the
evolution of v = {vf (t), vq(t)}t∈[0,T ]. In species where workers are
sterile (as assumed here) the queen is often thought to control the
allocation between females and males (trait vf ) because she de-
cides at which rate she lays female and male eggs. However, the
genes in the workers can influence vf , if they are able to redirect re-
sources from male brood to female brood (Sundström et al. 1996;
Chapuisat et al. 1997), but for simplicity we do not consider this
scenario in our article. In many species, the genes in the workers
control the developmental fate of the female larvae (trait vq) by
differential feeding, as the diet provided to the larvae by workers
determines the caste of the female offspring (Ratnieks et al. 2006;
Schwander et al. 2010; Berens et al. 2015). However, in some
species, queens can also alter the caste determination of females
by producing different types of diploid eggs (Wheeler 1986). It is
believed that in many eusocial insects, the queen and the workers
are in control of different resource allocation decisions simul-
taneously and it is often considered most likely that the queen
determines the primary sex ratio (ratio of female to male eggs),
whereas the workers control the developmental fate of the female
eggs (Trivers and Hare 1976; Bourke and Franks 1995; Helanterä

and Ratnieks 2009). Hence, in light of the empirical evidence of
genetic control of resource allocation decisions, we will examine
three possible scenarios of genetic control over these traits: queen
control (i.e., the genes in the queen determine resource allocation
decisions), worker control (i.e., the genes in the queen determine
resource allocation decisions), and mixed control, where the genes
in the queen control vf (the proportional investment into females
vs. males) and the genes in the workers control vq (the proportional
investment into new queens versus workers). Our assumptions of
the genetic control are in accordance with the corresponding as-
sumptions of the static resource allocation model by Reuter and
Keller (2001), where they also considered these three scenarios
with the corresponding static traits.

To analyze the long-term evolution of the resource alloca-
tion traits, we perform an evolutionary invasion analysis (see
Supporting Information Section 1 for more information). That is,
we consider the fate (invasion or extinction) of a single mutant
allele (an allele determines the entire allocation schedule, that is,
a trajectory of the trait over t ∈ [0, T ]) introduced into a popula-
tion of resident individuals and ask what is the (candidate) unin-
vadable allocation schedule v∗ = {v∗

f (t), v∗
q (t)}t∈[0,T ]; namely, the

allocation schedule resistant to invasion by any mutant schedule
that deviates from v∗. We determine the (candidate) uninvadable
allocation schedule v∗ analytically using Pontryagin’s maximum
principle (see Supporting Information Sections 3– 6), which gives
a necessary condition for optimality, and we confirm these results
numerically using GPOPS-II (Patterson and Rao 2014), which
gives support to the attainability of the uninvadable schedules
(see Supporting Information Section 11).

Results
MARGINAL VALUE, RELATEDNESS ASYMMETRY,

AND POTENTIAL FOR CONFLICT

Dynamic marginal value result
Consider a mutant allocation schedule u = {uf (t), uq(t)}t∈[0,T ]

that deviates slightly from a candidate uninvadable schedule v∗,
such that a trait uτ(t) (τ ∈ {f, q}) can be expressed as

uτ(t) = v∗
τ (t) + ϵτητ(t), (4)

where ητ(t) is a feasible phenotypic deviation from the resident
trait v∗

τ (t) and ϵτ ≪ 1 scales the magnitude of this variation. By a
feasible phenotypic deviation we mean any deviation ητ(t) such
that the mutant strategy uτ(t) satisfies the constraints of the model
(i.e., 0 ≤ uτ(t) ≤ 1 for all t ∈ [0, T ], e.g., see Sydsæter et al. 2008,
p. 129 and 308).

Let us now denote by yk(u) ≡ yk(T ) the number of type
k ∈ {q, iq} individuals at the end of the season, where the resident
allocation schedule v in equations (1) and (2) has been replaced by
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the mutant allocation schedule u. Then, the first-order condition
for a schedule v∗ to be uninvadable when party c ∈ {q, w} is in
control of the trait of type τ ∈ {f, q} can be written as

dyiq(u)
dϵτ

∣∣∣∣∣
ϵf=ϵq=0

+ Rc
dyq(u)

dϵτ

∣∣∣∣∣
ϵf=ϵq=0

≤ 0, (5)

which has to hold for all feasible phenotypic deviations ητ. For
mixed control, the inequality (5) must hold simultaneously for
each trait being under the control of the respective party (see
Supporting Information Sections 2.1– 2.2 for a proof). Here,
dyk(u)/ dϵτ is a Gâteaux derivative (a type of functional deriva-
tive, e.g., Troutman 2012, pp. 45–50, Luenberger 1997, pp. 171–
178, see also Supporting Information Section 2.1) measuring the
change in the number of individuals yk(u) of type k ∈ {q, iq}
produced by the end of the season in a mutant colony (and we
here emphasized that this number depends on the whole alloca-
tion schedule, recall equations 1 and 2) due to the infinitesimal
deviation ϵτητ(t) of the trait of type τ throughout the entire sea-
son t ∈ [0, T ]. Equation (5) is not a strict equality because the
(pointwise) selection gradient does not vanish when a popula-
tion evolves towards the boundary of the set of possible alloca-
tion strategies (e.g., when only workers are produced over some
time span, see Supporting Information Sections 2 and 3 for more
details, especially Sections 2.3 and 2.4 for pointwise selection
gradient and first-order condition).

The first-order condition (5) says that at the uninvadable state,
the marginal (gene) fitness return (“marginal return” for short)
from allocating more resources to male production (measured in
the currency of inseminated queens) cannot exceed the marginal
loss from allocating less resources to queen production weighted
by Rc, which is the so-called relatedness asymmetry (Boomsma
and Grafen 1991, p. 386) defined as

Rc =
α◦

qr◦
q,c

α◦
mr◦

m,c
, (6)

where α◦
s is the (neutral) reproductive value of all individuals of

class s ∈ {q, m}, that is, the probability that a gene taken in the
distant future descends from an individual in class s ∈ {q, m} and
r◦

s,c is the (neutral) coefficient of relatedness between an individual
of type s ∈ {q, m} and an average individual whose genes are in
control of the resource allocation trait. In Supporting Information
Section 2 (equations S30–S32), we detail that the relatedness
asymmetry can be interpreted as giving the ratio of sex-specific
(queen/male) contributions, of genes in party c, to the gene pool
in the distant future (under a neutral process). For haplodiploids
the relatedness asymmetry is Rq = 1 (queen control) and Rw =
(2 + M)/M (worker control).

Equation (5) is a generalized formulation of Fisher’s (1930)
theory of equal allocation (under queen control) and the standard
static marginal value result of sex-allocation theory (e.g., Taylor

and Frank 1996, equation 22). The novelty of equation (5) is that
it results from a dynamic model, where the marginal return of
producing an individual is time-dependent, and natural selection
favors an allocation schedule that produces males and queens in
such a way that the ratio of surviving inseminated queens and
produced queens is equal to the relatedness asymmetry. Note that
equation (5) does not directly give the ratio of total amount of
resources invested (“overall investment” ratio) in each sex, which
depends on the characteristics of the life cycle. Furthermore, we
show that the overall investment ratios can depart from classic
static results of sex-allocation theory under direct dispersal in
our model.

Proportional relatedness asymmetry
It follows from the first-order condition that the marginal value re-
sult is given by the relatedness asymmetry, that is, the ratio of sex-
specific asymptotic contributions to the gene pool (equation 5).
However, it will turn out to be useful to define the proportional
contribution of genes of party c through queens to the gene pool
in the distant future, that is,

Pc = Rc

1 + Rc
, (7)

which can be thought of as a proportional relatedness asym-
metry. This quantity evaluates to Pq = 1/2 (queen control) and
Pw = (2 + M)/(2(1 + M)) (worker control), and it is equal to
the (overall) uninvadable proportional allocation into females ac-
cording to the classical static models of sex-allocation theory
under single-party control (Trivers and Hare 1976; Boomsma and
Grafen 1991; Reuter and Keller 2001).

The conflict between workers and the queen is absent when
the proportional relatedness asymmetries for queens and males
are equal, that is, Pw/Pq = 1. However, when Pw/Pq > 1, then
future queens are more valuable to workers than to the queen in
contributing genes to the gene pool in the distant future. Hence,
the ratio

C = Pw

Pq
(8)

can be interpreted as the potential for conflict. In other words,
whenever C ̸= 1, then there is potential for conflict between the
queen and the workers over sex allocation. In haplodiploids, the
potential for conflict C = C(M) = (2 + M)/(1 + M) decreases
with the increase in polyandry M (Ratnieks and Boomsma 1995)
because Pw → Pq with the increase in queen mating frequency.
Hence, the potential conflict C(1) = 1.5 is maximal when the
queen mates once. It turns out that the proportional relatedness
asymmetry Pc and the potential for conflict C are key quantities
describing the properties of the uninvadable allocation schedule
u∗, to which we next turn.
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THE CANDIDATE UNINVADABLE RESOURCE

ALLOCATION SCHEDULE

To determine how selection shapes the colony growth sched-
ule, we need to determine the uninvadable allocation schedule
v∗ that satisfies the first-order condition (recall equation 5). We
now present this schedule assuming equal mortality in (juvenile)
queens and males (i.e., µq = µm = µr) and later discuss the re-
laxation of this assumption.

The colony growth schedule
The uninvadable allocation schedule v∗ consists of two phases:
(i) the ergonomic phase (t ∈ [0, t∗

c,1]) during which workers are
produced and (ii) the reproductive phase (t ∈ [t∗

c,1, T ]) during
which sexual offspring are produced (see Supporting Information
Sections 5 and 6 for derivations). Here, t∗

c,1 marks the switching
time from the ergonomic phase to the reproductive phase and the
subscript c ∈ {w, q, mx} emphasizes the scenario of genetic con-
trol. Resource allocation during the reproductive phase depends
on the scenario of dispersal of sexuals: (i) under delayed dis-
persal, resources should be allocated such that the sex-allocation
ratio at the end of the season is given by the relatedness asymme-
try Rc and (ii) under direct dispersal, males are produced before
queens. The switching time t∗

c,2 ∈ (t∗
c,1, T ) from male production

to queen production depends on the scenario of genetic control
c ∈ {w, q, mx} and the sex-allocation ratio is more male biased
than under delayed dispersal.

In Figures 1 and 2, we have depicted the analytically and
numerically determined uninvadable allocation schedules u∗ in
terms of proportional allocation to workers a∗

w(t) = v∗
f (t)(1 −

v∗
q (t)), queens a∗

q (t) = v∗
f (t)v∗

q (t), and males a∗
m(t) = (1 − v∗

f (t))
and in Figures 3 and 4 we have depicted the respective number of
(surviving) individuals (assuming queen monandry (M = 1)).

Production of workers in the ergonomic phase
The switching time t∗

c,1 from the ergonomic to the reproductive
phase determines the overall amount of resources allocated to
workers versus sexuals and it depends on the scenario of genetic
control over the resource allocation traits, namely,

t∗
c,1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T −
ln
(
1 + µr−µw

b

)

µr − µw
,

(single-party control, c ∈ {q, w})

T −
ln
(
1 + C µr−µw

b

)

µr − µw
,

(mixed control, c = mx)

(9)

(see Supporting Information Sections 5 and 6 for derivation, espe-
cially see equations S109– S117, S119–S122, S133–S150, S140–
S147). Under single-party control, this switching time is equal for
queen and worker control (i.e., t∗

q,1 = t∗
w,1). Furthermore, in this

case, it is identical to equation (6) of the clonal model of Macevicz

Figure 1. Uninvadable proportional allocation (under delayed
dispersal) to workers a∗

w(t) = v∗
f (t)(1 − v∗

q(t)) (black), queens a∗
q(t) =

v∗
f (t)v∗

q(t) (red), and males a∗
m(t) = (1 − v∗

f (t)) (blue). Solid lines are
analytically predicted results and the correspondingly colored sym-
bols represent the numerical results. Panel (a) queen control; panel
(b) worker control; panel (c) mixed control. Proportional allocation
to queens and males exactly match for queen and mixed control,
which is why red lines do not appear in the corresponding panels.
Note that the numerical results slightly deviate from the analyti-
cal results because any strategy that gives the sex ratio (queens
to males) at the end of the season, equal to relatedness asymme-
try Rc of the party in control of vf(t) has equal invasion fitness
(see Fig. 3). Parameter values: M = 1, that is, C = 1.5 (queen mo-
nandry), b = 0.07, µw = 0.015, µq = µm = 0.001, T = 100.

and Oster (1976), by setting b = bR, µw = µ, and µr = ν (see
Supporting Information Section 13 for an overview of how our
model relates to previous work).

It follows from equation (9) that the switch from the er-
gonomic to the reproductive phase under mixed control t∗

mx,1

depends on the potential for conflict C ≥ 1. Furthermore, this
switch happens earlier in the season under mixed control than un-
der single-party control (i.e., t∗

mx,1 < t∗
q,1 = t∗

w,1, see also Figure 1
for delayed dispersal and Figure 2 for direct dispersal, assuming
queen monandry, i.e., C = 1.5). The switching time t∗

mx,1 under
mixed control happens earlier and, hence, the ergonomic phase
is shorter if the potential for conflict C is larger. It turns out
that the switching time t∗

mx,1 under mixed control is determined
by the workers (see Supporting Information Section 8 for more
detailed explanation). Equation (9) also implies that the onset
of early reproduction under mixed control is more pronounced
in poor habitats where resource acquisition rate is low and thus
reproduction is slow (b is small), but colony per capita produc-
tivity still scales linearly as the colony grows (b is constant and
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Figure 2. Uninvadable proportional allocation (under direct dis-
persal) to workers a∗

w(t) = v∗
f (t)(1 − v∗

q(t)) (black), queens a∗
q(t) =

v∗
f (t)v∗

q(t) (red), and males a∗
m(t) = (1 − v∗

f (t)) (blue). Solid lines are
analytically predicted results and the correspondingly colored sym-
bols represent the numerical results. Panel (a) queen control; panel
(b) worker control; panel (c) mixed control. Parameter values:
M = 1, that is, C = 1.5 (queen monandry), b = 0.07, µw = 0.015,
µq = µm = 0.001, T = 100.

A

B

C

Figure 3. Number of individuals produced in a colony following
the uninvadable resource allocation schedule v∗ under delayed dis-
persal. Number of workers (black), queens (red), males (blue). Solid
lines are analytically predicted results and the correspondingly
colored symbols represent the numerical results. Panel (a) queen
control; panel (b) worker control; panel (c) mixed control. Param-
eter values: M = 1, that is, C = 1.5 (queen monandry), b = 0.07,
µw = 0.015, µq = µm = 0.001, T = 100.

A

C

B

Figure 4. Number of individuals produced in a colony following
the uninvadable resource allocation schedule v∗ under direct dis-
persal. Number of workers (black), queens (red), males (blue). Solid
lines are analytically predicted results and the correspondingly
colored symbols represent the numerical results. Panel (a) queen
control; panel (b) worker control; panel (c) mixed control. Param-
eter values: M = 1, that is, C = 1.5 (queen monandry), b = 0.07,
µw = 0.015, µq = µm = 0.001, T = 100.

does not depend on colony size). Increased mortality of workers
(µw) and decreased mortality of sexuals (µr) also cause the time
difference between optimal switching time and switching time
under mixed control to be larger (see equation 9).

Production of males and queens in the reproductive
phase
Under delayed dispersal, selection favors any allocation schedule
that produces an allocation ratio of females and males at the end of
the season, which is equal to the relatedness asymmetry. There are
several uninvadable strategies that can satisfy this condition, the
most simple one being the constant allocation, that is, proportional
allocation to queens (during the reproductive phase) is given by

a∗
q (t) = v∗

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pq = 1
2

(queen control and mixed control),

Pw = 2 + M
2(1 + M)

(worker control).

(10)

Under direct dispersal, selection favors the production of
males before queens (protandry). This is because the reproductive
success of males and queens depends asymmetrically on the time
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they are produced. The switching time t∗
c,2 from male production

to queen production happens for M = 1 when

Fc(t∗
c,2)

lq(t∗
c,2)

=

⎧
⎪⎪⎨

⎪⎪⎩

Rq = 1
(queen control and mixed control),

Rw = 2 + M
M

(worker control),

(11)

where the left-hand side is the ratio of the cost to the benefit
to (gene) fitness of producing a queen instead of a male at t∗

c,2

and the right-hand side is the exchange rate between inseminated
females and queens, which is given by the relatedness asymmetry
(see Supporting Information Section 9 for proof). The cost of
producing a queen instead of a male (at t∗

c,2) is equal to the potential
mating success of a male (born at t∗

c,2), measured in the “currency”
of expected number Fc(t∗

c,2) of inseminated queens who survive
until the end of the season. The benefit of producing a queen
(at t∗

c,2) is equal to the probability lq(t∗
c,2) that she survives until

the end of the season. Note that in a population where the queens
mate M times, the expected number M Fc(t∗

c,2) of surviving queens
inseminated by males born at time t∗

c,2, has to be divided by the
queen mating frequency M (because the focal male is expected to
father only 1/M of the diploid offspring). Hence, equation (11)
holds under any queen mating frequency M .

The queen is in control of the switch from male production
to queen production under mixed control because under both
queen and mixed control the switch happens at the time when
producing a male instead of a surviving queen yields one surviving
inseminated queen (recall equation 11). However, this does not
imply that the switching time under queen control t∗

q,2 and mixed
control t∗

mx,2 are equal and it follows from equation (11) that the
switching time is

t∗
c,2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T − 1
µr − µw

ln
(

b + µr − µw

b + (1 − Pq)(µr − µw)

)

(queen control, c = q),

T − 1
µr − µw

ln
(

b + µr − µw

b + (1 − Pw)(µr − µw)

)

(worker control, c = w),

T − 1
µr − µw

ln

(

2 − b

b + 1
2 C(µr − µw)

)

(mixed control, c = mx).

(12)

This shows that the switch to production of queens happens later
under queen control than under worker control (t∗

q,2 > t∗
w,2) be-

cause Pq < Pw and it implies that more resources are expected to
be allocated to queens under worker control than under queen con-
trol (since the length of the reproductive phase is the same under
single-party control, i.e., t∗

q,1 = t∗
w,1). The switch to production of

queens happens later under mixed control for higher values of the
potential conflict C . Furthermore, the switch to queen production
happens later when per worker productivity b is small, worker

mortality rate µw is large, and the mortality rate µr of sexuals
is large.

Switching times when the mortality rate of workers
and sexuals is equal
In our model (1/b) can be loosely interpreted as the time it
takes for one worker to help produce one offspring. We show
in Supporting Information (see Sections 5.1.3, 5.1.4, and 6.2)
that if the mortality rate of sexuals is roughly equal to the
mortality rate of workers, then the switching time from the er-
gonomic to the reproductive phase t∗

c,1 under single-party con-
trol (c = {q, w}) approaches to the time (1/b) it takes for a
worker to help produce an offspring before the season end
(i.e., t∗

q,1 = t∗
w,1 = T − 1/b); only the individuals produced at the

end of the season are reproductive. However, under mixed con-
trol the switch happens C times earlier (i.e., t∗

mx,1 = T − C/b).
For example, when females mate only once (i.e., M = 1 and
C = 1.5) then the switch to reproductive phase happens at time
T − 3/(2b).

COLONY-LEVEL TRAITS

Colony size at maturity and colony productivity
During the ergonomic phase the number of workers in the colony
grows exponentially until it reaches size y∗

w(t∗
c,1) at maturity (i.e.,

maximum size, see Fig. 3 for delayed dispersal and Fig. 4 for
direct dispersal). During the ensuing reproductive phase, sexu-
als are produced at rate by∗

w(t). We define as colony productivity
the total number B(t∗

c,1) = y∗
m(T ) + y∗

q (T ) of (surviving) males
and queens produced from t∗

c,1 until the end of the season. This
can also be interpreted as the total sexual biomass produced in
a colony (because we have assumed that males and females are
equally costly to produce) and is a quantity often used as a fit-
ness proxy in social insects (Wills et al. 2018). We show that
under single-party control the switching time t∗

c,1 from the er-
gonomic to the reproductive phase happens exactly at the time
that maximizes colony productivity (see Supporting Information
Section 7.2 for proof). Under mixed control the switch from the
ergonomic to the reproductive phase happens earlier, especially
for higher values of potential conflict C . Therefore, we predict that
colony size at maturity and colony productivity would decrease
with the increase in potential conflict C (that can be caused by,
e.g., low queen mating frequency M). See also Figure 5 for illus-
tration, Table 1 for the summary of parameter dependence, and
Supporting Information Sections 7.1 and 7.2 for more technical
details.

Sex -allocation ratio
We define the overall sex-allocation ratio Sc at the evolutionary
equilibrium as the proportion of the colony resources allocated
to queens from the resources allocated to sexuals over the entire
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Figure 5. Colony productivity B(t∗c,1) (blue lines) and size at maturity x∗
w(t∗c,1) (black lines) under single party (SPC, solid lines) and

mixed control (MC, dashed lines) as a function of the potential for conflict C (panel a) and as a function of queen mating frequency M
(panel b) for the uninvadable resource allocation schedule u∗. Recall that C = (2 + M)/(1 + M). Parameter values: b = 0.07, µw = 0.0015,
µq = µm = 0.001, T = 100.

Table 1. Parameter dependence of colony resource allocation characteristics for biologically meaningful parameter values (µw > 0,
µr > 0, b > µw, and b > µr).

We predict positive relationship between the allocation characteristics and the parameters listed under “Positive” column and
negative dependence between the allocation characteristics and the parameters listed under “Negative” column. Here, “(MC)” and
“(WC)” that follow after the parameter, emphasizes that these relations only hold for mixed or worker control, respectively.
Parameter dependence of allocation characteristics

Allocation characteristics Positive Negative
Switching times, t∗

c,1 and t∗
c,2 M (MC), b, µr C (MC), µw

Colony size at maturity, y∗
w(t∗

c,1) M (MC), b C (MC), µw

Colony productivity, B(t∗
c,1) M (MC), b, µr C (MC), µw

Sex-allocation ratio for delayed dispersal, Sc (proportional
allocation to queens)

C (WC) M (WC)

Sex-allocation ratio for direct dispersal, Sc (proportional
allocation to queens)

C (WC), M (MC) M (WC), C (MC), µr, µw, b

season (irrespective of whether they survive to reproduce), where
the subscript c ∈ {q, w, mx} emphasizes the dependence on the
scenario of genetic control (see Supporting Information Section
7.3 for a formal definition). Sc can be interpreted as the overall pro-
portion of queens among sexuals produced in the colony because
we assume that males and queens are equally costly to produce.

Under delayed dispersal, the overall sex-allocation ratio is
given by (Supporting Information Section 7.3, equations S172–
S175)

Sc =
{

Pq (queen control and mixed control),
Pw (worker control).

(13)

Hence, under delayed dispersal the overall sex-allocation ratio is
given by the proportional relatedness asymmetry (via equation 10
and recall equation 7). It follows from equation (13) that the
prediction for the uninvadable overall sex-allocation ratio under
single-party control is equal to the corresponding prediction from
the standard static models of sex-allocation theory (Trivers and
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Hare 1976; Boomsma and Grafen 1991; Reuter and Keller2001).
Under direct dispersal, the overall sex-allocation ratio is

given by (Supporting Information Section 7.3, equations S176–
S178)

Sc = e−µwt∗
c,2 − e−µwT

e−µwt∗
c,1 − e−µwT

. (14)

Note that the overall sex-allocation ratio under direct dispersal, in
contrast to delayed dispersal, depends also on other life-history
characteristics of the species and not only on the proportional re-
latedness asymmetry in the colony (which enters into the equation
via t∗

c,1 and t∗
c,2).

The overall sex-allocation ratio is more male-biased under
direct dispersal than under delayed dispersal and compared to
results from static models of sex-allocation theory (e.g., Trivers
and Hare 1976; Boomsma and Grafen 1991). Furthermore, the
male-bias is more pronounced under mixed control than under
single-party control. We illustrate in Figures 6 and 7 that this
male bias can be substantial for higher values of mortality rates of
sexuals and workers, for example, Smx ≈ 0.35 for mixed control
under monandry, compared to Smx = 0.5 under delayed dispersal
and Smx ≈ 0.56 according to the corresponding static allocation
model (see Table S3 in Supporting Information Section 12, see
also Table 1 for a summary of how Sc depends qualitatively on
the parameters of the model). Mortality of sexuals increases male-
biased allocation because it increases the mating success of males
produced before the emergence of queens (see Discussion for
more elaborate explanation).

This effect of mortality in inducing male-biased allocation
is stronger under mixed control, especially for higher values of
the potential for conflict C , because proportionally more sex-
uals die when the reproductive phase is longer (as it is under
mixed control for high values of C). Hence, under mixed con-
trol and direct dispersal, the overall proportional allocation to
queens is lower for higher values for the potential for conflict C
(i.e., for lower values of queen mating frequency M , see Figs. 6
and 7).

Regardless of the order in which sexuals are produced, the
primary sex-allocation ratio u∗

f (t) during the reproductive phase
determines the overall sex-allocation ratio. Hence, the queen is
in control of the overall sex-allocation ratio under mixed control
(see also Supporting Information Section 8 for more detailed
explanation).

UNEQUAL MORTALITY RATES OF SEXUALS

We now discuss how relaxing the assumption of equal mortality
(µq = µm = µr) used in the derivation of the above results qual-
itatively affects these results. From further analysis (Supporting
Information Section 5.2) and our numerical solutions, we find that
under delayed dispersal, if the mortality rate of queens and males

is not equal, then the sex with the lower mortality rate should be
produced earlier, such that by the end of the season the sex ratio of
queens to males would be given by Rc under single party control
and Rq under mixed control (assuming that males and queens are
equally costly to produce).

We also find that the main conclusions of our results under
direct dispersal hold qualitatively if Rcµq ≥ µm under single-
party control and Rqµq ≥ µm under mixed control. Under direct
dispersal, if Rcµq < µm then the overall sex-allocation under
single-party control can be more female-biased than the static
models of sex-allocation theory predict (e.g., Trivers and Hare
1976; Boomsma and Grafen 1991). Similarly, if Rqµq < µm then
the overall sex-allocation under mixed control and direct dis-
persal can be female-biased. Furthermore, we find that under
mixed control, if the mortality of queens is significantly lower
than that of males, then males and queens are produced simulta-
neously after the switch to the reproductive phase, until there is
a switch to producing only females (see Supporting Information
Section 6.3).

Discussion
Ontogenetic development of social insect colonies causes
behavioral trait expressions of individuals to be necessarily time-
dependent (Oster and Wilson 1979). In this article, we formulated
a mathematical model to analyze how sex-allocation conflict
affects the dynamic (time-dependent) allocation of resources
to workers, queens, and males in annual eusocial monogynous
species. We have considered three alternative scenarios of control
of colony trait expression (full queen, full worker, and mixed
control) and two alternative scenarios of dispersal of sexuals:
direct dispersal after eclosion (common among bees and wasps)
and delayed dispersal at the end of the season, which resembles
the life history of species, where nuptial flights are synchronized
(more commonly found in ants, e.g., see Heinze 2016, and
references therein). Our model extends static allocation models
with genetic conflict and dynamic allocation models without
conflict and it allows to shed light on a number of questions about
colony ontogeny, such as: how does sex-allocation conflict affect
colony growth? How does sexual selection affect the production
of sexuals? Which party wins the sex-allocation conflict?

Our results suggest that the marginal benefit of allocating
a unit resource to a queen rather than to a male is weighed by
the relatedness asymmetry, regardless of any details of colony
life-cycle or growth dynamics, thereby generalizing the stan-
dard static first-order condition of sex-allocation theory (e.g.,
Boomsma and Grafen 1991; Taylor and Frank 1996) to any pat-
tern of colony ontogeny. Solving the first-order condition under
our specific life-cycle assumptions using optimal control theory
(a nontrivial task, see Supporting Information Sections 5 and 6),
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Figure 6. Overall proportional sex-allocation ratio Sc (proportional investment into queens) as a function of mortality rate of the sexuals
µr for different values of potential for conflict C . Panel (a): delayed dispersal; queen and mixed control (QC and MC, red lines), worker
control (WC, blue lines). Panel (b): direct dispersal; queen control (QC, red lines), worker control (WC, blue lines), mixed control (MC, black
lines). Other parameter values: b = 0.07, µw = 0.015, T = 100. Note that classical results from static models (e.g., Reuter and Keller 2001)
only coincide with these results under delayed dispersal and single-party control.
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Figure 7. Overall proportional sex-allocation ratio Sc (proportional investment into queens) under direct dispersal as a function of the
potential for conflict C (panel a) and queen mating frequency M (panel b) for different values of mortality of workers µw. Queen control
(QC, red lines); worker control (WC, blue lines); mixed control (MC, black lines). Parameter values: b = 0.07, µr = 0.06, T = 100.
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we find that selection tends to favor a colony resource alloca-
tion schedule that consists of two qualitative phases. First, an
ergonomic phase with production of only workers, which deter-
mines the colony size at maturity. Second, a reproductive phase
with resource allocation to queens and males, which determines
the colony productivity and overall sex-allocation ratio. Sexu-
als can be produced according to various schedules, possibly in-
cluding switching between producing only males or females (or
vice versa), depending on life-cycle assumptions. Colony traits
such as the switching times between different phases of colony
growth, maximum colony size, colony productivity, and overall
sex-allocation ratio are influenced by the assumptions about the
genetic control of resource allocation traits and individual disper-
sal behavior.

HOW DOES SEX-ALLOCATION CONFLICT AFFECT

COLONY GROWTH?

Our results confirm earlier predictions derived from dynamic re-
source allocation models (Macevicz and Oster 1976; Ohtsuki and
Tsuji 2009) that colony resource allocation should consist of an
ergonomic phase and a reproductive phrase. During the ergonomic
phase, the marginal return of workers is higher than the return of
investment into sexuals. Workers have a higher early marginal re-
turn because colony productivity rate (byw) increases linearly with
colony size (hence exponentially during the ergonomic phase),
allowing for the production of more sexuals later in the season.
Sexuals have a lower early marginal return because they need to
survive (queens need to survive until the end of the season and
males need to survive until they can reproduce with the surviving
queens). The colony switches from the ergonomic to the reproduc-
tive phase when producing workers no longer yields the highest
marginal return.

We find that under mixed control, colonies switch earlier to
the reproductive phase than under single-party control. This early
switch evolves because under mixed control the queen controls the
sex-allocation ratio (for why this is so, see section “Which party
wins the sex allocation conflict?” below), meaning that work-
ers cannot increase allocation to queens during the reproductive
phase, even though producing more queens would increase the
fitness of genes residing in workers. Hence, workers start rear-
ing female eggs (destined to become workers under single-party
control) into queens earlier, to increase the allocation to queens.
Hence, asymmetric control over the sex-allocation ratio causes
the switching time to the reproductive phase to be controlled by
the workers (see also Supporting Information Section 8 for more
technical explanation).

Colony size at maturity and colony productivity are expected
to be smaller under mixed control than under single party control.
Under single-party control the colony productivity is maximized,
but not under mixed control (see Supporting Information Section

7.2 for proof and Fig. 5). This is so because in the latter case the
switch to the reproductive phase occurs earlier, causing colony
size at maturity to be smaller (there is less time for worker numbers
to increase exponentially during the ergonomic phase). Therefore,
there are fewer workers to produce sexuals in the reproductive
phase, which results with a decline in colony productivity (colony-
level cost of sex-allocation conflict).

A loss in colony productivity due to sex-allocation conflict
was already predicted using a static (Reuter and Keller 2001) and
a dynamic allocation model assuming delayed dispersal (Bulmer
1981). But for the latter model, the outcome of the resource al-
location conflict is different from ours. Indeed, Bulmer (1981)
concluded that colonies die one generation before the end of the
season if the sex allocation at the population level is biased to-
ward queens because the queens are producing only males in
the penultimate generation. His conclusion relied on the assump-
tion that colony growth is divided into discrete generations, such
that worker generations within a season do not overlap and in
his model he only considered two generations before the end of
the season. Our analysis not only extends the results of Bulmer
(1981) to less restrictive life-cycle assumptions and to direct dis-
persal of sexuals, but it also provides quantitative predictions for
the switching time from the ergonomic to the reproductive phase.
Indeed, we predict that the premature switch from the ergonomic
to the reproductive phase is earlier in species where the resource
acquisition rate is low, the mortality rate of workers is high and
that of sexuals low. We also show that the switching times from
the ergonomic to the reproductive phase under mixed control are
equal for both delayed dispersal and direct dispersal. This implies
that sexual selection and the evolution of protandry do not have
an effect on the cost of sex-allocation conflict that manifests itself
through loss of colony productivity.

The switching time to the reproductive phase under mixed
control depends on the potential for conflict C , which is the ra-
tio of party-specific proportional contribution of genes through
queens to the gene pool in the distant future (equation 8), and
a decreasing function of the mating number M of a queen. Our
results imply that colonies with lower potential for conflict C
are expected to grow larger and have higher colony produc-
tivity. Similar effects can be expected to hold for other fac-
tors that reduce the queen-worker conflict over sex allocation,
for example, polygyny of related queens or worker production
of male eggs (Reuter and Keller 2001; Ratnieks et al. 2006).
We have assumed monogyny, but allowing for multiple queens
per colony should be a relatively straightforward extension to
our model. Our analysis implies that polyandry is expected to
evolve under mixed control, given that the workers are able
to assess the mating frequency of the queen (Pamilo 1991b).
However, empirical evidence suggests that polyandry is generally
less common in annual eusocial insects but has been found, for
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example, in Polistes (Seppä et al. 2011) and Vespula (Johnson et al.
2009).

The so-called “bang-bang” schedule of colony growth, such
that allocation to workers and sexuals never occurs simultane-
ously, represents a general life-history principle of growth and re-
production in annual organisms for which productivity rate scales
linearly with size and environmental fluctuations that can cause
variations in the length of the season or food availability are
small (Cohen 1971; King and Roughgarden 1982). A key result
of our analysis is that the sex-allocation conflict does not affect
the overall shape of the colony growth curve, but only the time of
the switch between growth and reproduction. This is not an ob-
vious result because trade-offs between producing different types
of individuals are not linear. It has been shown before (assum-
ing clonal reproduction) that selection favors a singular control
(sometimes called a graded control; i.e., workers and sexuals are
produced simultaneously) if the productivity rate (i.e., byw) scales
nonlinearly with colony size, such that b ≡ b(yw) (Beekman et al.
1998; Poitrineau et al. 2009), but not for environmental fluctua-
tions acting alone (Mitesser et al. 2007b). The properties of the
relationship between productivity rate and colony size affect the
way the marginal value of producing a worker changes over time,
but not the marginal value of producing queens and males. In
principle, this could affect the outcome of the sex-allocation con-
flict and it would be interesting to see if the results of our model
change when the productivity rate would scale nonlinearly with
colony size.

Inherently, our model assumes that individuals in the colony
possess some physiological mechanism that enables them to es-
timate the timing of the switch from the ergonomic phase to the
reproductive phase. Currently, the underlying mechanism behind
the timing of the switch from the ergonomic to the reproductive
phase is not known (but it has been shown that Bombus terrestris
queens are able to control the switching time endogenously,
Holland et al. 2013). Nevertheless, the framework of our model
can be used to also study the evolution of eusociality, when we
allow for the brood to have control over their own developmen-
tal fate. Current models that study the emergence of eusociality
that explicitly track colony growth usually fix the switch from
ergonomic to reproductive phase to happen at arbitrary size of the
colony (e.g., Avila and Fromhage 2015). Hence, extending our
model to study evolution of eusociality could explain how life-
history interacts with other mechanisms that are known to drive
the evolution of eusociality.

HOW DOES SEXUAL SELECTION AFFECT THE

PRODUCTION OF SEXUALS?

Our model predicts simultaneous production of queens and males
under delayed dispersal and protandry (males produced before
females) under direct dispersal. Under delayed dispersal, both

males and queens have to survive until the end of the season to
mate and their reproductive success depends symmetrically on the
time that they are produced. Under direct dispersal, males have to
survive until there are females available to mate, whereas queens
have to survive until the end of the season. This asymmetry leads
to protandry.

Our prediction about the evolution of protandry relies
on the assumption that the females mate immediately and
indiscriminately after dispersal with the males currently in
the mating pool. However, there is some evidence of fe-
male choice in some social insects (Baer 2003, and references
therein). Nevertheless, there is also evidence that earlier emer-
gence of males can give them an advantage in mating suc-
cess through precopulatory sexual behaviors or through the use
of mating plugs (Foster 1992; Baer et al. 2000; Baer 2003,
2014).

WHICH PARTY WINS THE SEX-ALLOCATION

CONFLICT?

We show that the queen wins (more accurately, the genes in
queens win) the sex-allocation conflict because the evolution of
distinct phases of colony growth constrains the ability of work-
ers to manipulate the overall sex-allocation ratio. Indeed, during
the reproductive phase, the ratio at which the queen lays the
female versus male eggs determines the overall sex-allocation
ratio because workers can only influence the developmental
fate of the female eggs. Therefore, the only option for work-
ers to increase the allocation to queens is to switch to the re-
productive phase earlier at the expense of reduced colony pro-
ductivity, whereas queens, regardless of the early switch, can
always further affect the sex ratio without disturbing colony
productivity.

The evolution of different phases of colony growth is thus
crucial as it decouples the trade-offs experienced by the queens.
During the ergonomic phase, there is a latent trade-off between
producing males versus workers (because workers rear all the fe-
male eggs into workers), whereas during the reproductive phase
there is a trade-off between producing queens versus males (be-
cause workers rear all the female eggs into queens). The distinct
phases of colony growth also decouple how queens and work-
ers can affect the allocation decisions in the colony, impeding
the ability of workers to influence the overall sex allocation dur-
ing the reproductive phase and the ability of queens to influence
the proportional allocation to workers versus sexuals (see also
Supporting Information Section 8 for more detailed explanation).
Our results thus suggest that the queen is always expected to
win the sex-allocation conflict, as long as workers and sexu-
als are produced during separate phases of colony growth and
workers can only influence the developmental fate of the female
eggs.
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THE OVERALL SEX-ALLOCATION RATIO

In our model, the overall sex-allocation ratio depends on the sce-
nario of dispersal of sexuals. Under mixed control, the overall
sex-allocation ratio is expected to be even under delayed disper-
sal and male-biased under direct dispersal (given that the mortality
rate of males and queens is equal). Under single-party control and
delayed dispersal, the overall sex-allocation ratios predicted by
our model are in accordance with the classical static models (e.g.,
Trivers and Hare 1976; Boomsma and Grafen 1991) and do not
depend on the life-history characteristics of the species (e.g., mor-
tality rate of sexuals or workers). However, under direct dispersal,
we observe more male-biased overall sex-allocation ratios than
occur in the static models of sex-allocation theory (e.g., Trivers
and Hare 1976; Boomsma and Grafen 1991), especially for higher
mortality rates of sexuals (see Fig. 6) and lower mortality rates of
workers (see Fig. 7).

More male-biased sex-allocation ratios evolve under direct
dispersal because mortality affects the co-evolution of protandry
(that evolves due to sexual selection on males) and sex-allocation
ratio. The sex-allocation ratio is determined by the switching time
from male production to queen production. This happens when
producing a male yields Rc (surviving) inseminated queens, in-
stead of producing a (surviving) queen. Hence, the relative mating
success of males compared to the survival probability of queens
determines the switching time from male production to queen pro-
duction. When mortality of sexuals is high, males produced later
in the season (just before the emergence of queens) have higher
mating success because there are fewer surviving males to com-
pete with. Hence, higher mortality of sexuals delays the switch
to queen production because it increases the mating success of
males (see Supporting Information Section 9 for a more detailed
analysis and explanation). Our result that mortality affects the
sex-allocation ratio appears to be at variance with Fisher’s (1930)
result that mortality after parental investment (either differential
between the sexes or not) should not affect the uninvadable sex-
allocation ratio (see, e.g., West 2009, pp. 19–20). The reason for
this apparent discrepancy is that, in our model, mortality causes re-
sources that are invested into sexuals earlier to yield lower fitness
returns (because early-produced sexuals have a lower chance to
contribute to the next generation). So, mortality causes males to be
produced more cheaply (at a time when allocating resources yield
smaller returns). Hence overproduction of males under higher
mortality is in fact consistent with Fisher’s prediction that more
offspring should be produced of the cheaper sex.

Under direct dispersal, the overall sex-allocation ratio is more
male-biased for mixed control than for queen control, even though
for both queen and worker control, the switch from male produc-
tion to queen production happens when producing a male instead
of a surviving queen yields one surviving inseminated queen. This
is because, for mixed control, the reproductive phase is longer dur-

ing which proportionally more males die before they can mate,
which increases the mating success of males produced later. This
is why the overall allocation is more male-biased under mixed
control for higher values of mortality of sexuals (see Fig. 6) and
for other life-history characteristics that cause the reproductive
phase to be longer, such as higher values of the mortality rate
of workers µw (see Fig. 7). Hence, we find that in protandrous
species, proportionally more resources are expected to be allo-
cated into producing males.

Surprisingly, under direct dispersal and mixed control the
overall sex-allocation ratio Smx becomes more male-biased as
the workers become more related to the female brood (their sis-
ters) (i.e., if the potential for conflict C increases or the queen
mating frequency M decreases, see Fig. 7). This prediction fol-
lows from the combined effect of protandry under direct dispersal
and a longer duration of the reproductive phase for higher val-
ues of the potential for conflict under mixed control. If workers
are more related to the female brood (e.g., for higher values of
the potential conflict C), then the mating success of males pro-
duced later is higher because proportionally more males have
died due to early switch to the reproductive phase. For these rea-
sons, worker relatedness to female brood is expected to correlate
negatively with the proportional investment into queens when
resource allocation is under mixed control. This prediction con-
tradicts standard results from the static models of sex-allocation
theory (Trivers and Hare 1976; Boomsma and Grafen 1991) that
predict the opposite correlation. We expect that other factors
that reduce the queen-worker conflict over sex-allocation have
qualitatively similar effects on overall proportional allocation to
queens.

Most comparative studies about population-wide sex alloca-
tion of eusocial Hymenoptera come from ants, where sex allo-
cation is mostly female-biased (Bourke and Franks 1995; Sund-
ström et al. 1996; Ratnieks et al. 2006), although it is not universal
(Helms 1999; Helms et al. 2000; Passera et al. 2001; Fjerdingstad
et al. 2002). However, most ant species are perennial and their
life cycles diverge in many respects from the assumptions of our
model. In bumble bees, who are annual and mostly monogy-
nous species, the population-wide sex allocation tends to be over-
whelmingly male-biased (Bourke 1997). Indeed, Bourke (1997)
found that the median proportional allocation to queens is only
0.32 (range 0.07–0.64) among 11 populations of seven bumble
bee species. Interestingly, Johnson et al. (2009) found that in a
social wasp (V. maculifrons) nestmate relatedness is negatively
associated with overall investment into queens, which would be
in accordance with our model for mixed control under direct
dispersal with male protandry (see Fig. 6). However, these re-
sults arise from a dataset where the queens have a relatively high
mating frequency and the variation between mating frequencies
is not very large (hence, the effect size is not very large) and
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male protandry in that species is not entirely clear (Johnson et al.
2009).

STATIC AND DYNAMIC APPROACHES TO RESOURCE

ALLOCATION CONFLICTS

Corresponding static and dynamic models can make different pre-
dictions for the outcome of the conflict. This can be seen when
comparing the predictions of our model under delayed dispersal
with the predictions of a corresponding static model by Reuter
and Keller (2001). See Supporting Information Section 12, for a
proof that our model is indeed comparable to that of Reuter and
Keller (2001), even though there is a slight deviation in the as-
sumption about how productivity scales with colony size (because
this assumption does not affect qualitatively their results). We fol-
lowed their approach on modeling conflict by way of using mixed
control of colony allocation traits, but our result that the queen
wins the sex-allocation conflict contradicts with theirs. Indeed,
they predicted that the sex-allocation ratio under mixed control
is intermediate between sex-allocation ratios predicted for queen
and worker control (the exact values depending on the assumption
about how productivity scales with colony size). This contradic-
tion arises because in our dynamic model the sex-allocation ratio
is determined during the reproductive phase by the queen, while
in the model of Reuter and Keller (2001) behavioral decisions
cannot vary over time, meaning that the two parties make their
decisions simultaneously for the whole season T. Hence, this way
of modeling links all the allocation decisions together to happen
simultaneously, which leads to the result that workers can influ-
ence the sex-allocation ratio by rearing some worker–destined
female brood into queens.

It has been shown by Pen and Taylor (2005) that if the two
parties make their allocation decisions sequentially (the so-called
Stackelberg equilibrium, such that the queen acts first and work-
ers respond), then the queen is expected to win the sex-allocation
conflict even assuming static resource allocation decisions. Pen
and Taylor (2005) studied a static resource allocation model sim-
ilar to the model of Reuter and Keller 2001), but they also looked
at the effect of information exchange between the two parties.
Although they arrived at a conclusion similar to ours about the
overall sex-allocation ratio, our result implies that the workers
do not have to have the information about the ratio at which the
queen lays the male to female eggs.

Reuter and Keller (2001) also generally argue that complete
control by a single party is not evolutionarily stable because the
conflict over sex-allocation strongly selects for the other party
to manipulate the sex allocation, leading to a stable evolutionary
equilibrium where the sex allocation is intermediate between the
predicted evolutionary outcomes for full control of the two par-
ties. However, under the dynamic model, we show that under the

assumptions of mixed control, an intermediate sex allocation will
not evolve.

CONCLUSION

We showed that when dynamic properties of resource alloca-
tion are considered, sex-allocation conflict can substantially affect
colony ontogeny, and thus the overall patterns of growth and pro-
ductivity. Helanterä (2016) has argued that life-history trade-offs
may be easier traits to conceptualize as organismal traits (i.e., traits
evolving like group-selected adaptations), as opposed to traits
more heavily contingent on conflicts among genes in different
individuals, such as traits involving sex allocation and dispersal
behavior. In contrast, our model suggests that colony life-history
traits can generally not be viewed in isolation from traits that are
influenced by genetic conflicts, and hence both “morphology”
and “physiology” of a colony are likely to be affected by them,
leading to a general breakdown of the “organismic” perspective
of eusocial insect colonies.
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Figure S1. Uninvadable proportional allocation (under delayed dispersal) to workers a∗
w(t) = u∗

f (t)(1 − u∗
q(t)) (black asterisks), queens a∗

q (t) = u∗
f (t)u∗

q(t)
(red circles), and males a∗

m(t) = (1 − u∗
f (t)) (blue circles).

Figure S2. Number of individuals produced in a colony following the uninvadable resource allocation schedule u∗ under delayed dispersal.
Figure S3. Uninvadable proportional allocation (under direct dispersal) to workers a∗

w(t) = u∗
f (t)(1 − u∗

q(t)) (black), queens a∗
q (t) = u∗

f (t)u∗
q(t) (red), and

males a∗
m(t) = (1 − u∗

f (t)) (blue).
Figure S4. Number of individuals produced in a colony following the uninvadable resource allocation schedule u∗ under direct dispersal.
Table S1. Candidate optimal controls and conditions for the signs of switching functions for all possible regimes of colony growth.
Table S2. Uninvadable allocation into queen, males, and workers and the overall sex-allocation ratio Sc (proportional allocation to queens from resources
allocated to sexuals) predicted by Reuter and Keller (2001).
Table S3. Uninvadable allocation into queen, males, and workers and the overall sex-allocation ratio Sc (proportional allocation to queens from resources
allocated to sexuals) predicted by a static model similar to Reuter and Keller (2001), assuming that colony productivity scales linearly with colony size.
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1 Evolutionary analysis

1.1 Mutant-resident system

We analyze the evolution of allocation schedules by performing an evolutionary invasion analysis (e.g., Caswell,
2001; Charlesworth, 1994; Eshel and Feldman, 1984; Ferrière and Gatto, 1995; Fisher, 1930; Lehmann et al.,
2016; McNamara et al., 2001; Metz, 2011; Otto and Day, 2007) whereby we consider the fate (invasion or
extinction) of a single mutant allele introduced into a population of resident individuals, where the mutant allele
determines an allocation schedule that is different from the resident allocation schedule throughout the entire
season. We assume that the traits are determined at separate single loci with two segregating alleles (resident
and mutant).

Let v
⌧

(t) and u
⌧

(t) denote the resident and mutant resource allocation phenotypes for a trait of type ⌧ 2
{f, q}, respectively. It will turn out to be useful to define the mutant phenotype u

⌧

(t) as a trait expressed by a
(hypothetical) colony where all the genes in control of the trait are mutant alleles (i.e. individuals whose genes
are in control of the trait are homozygous for the mutant allele).

Since the fate (invasion or extinction) of a mutant allele is determined when it is rare in the population,
then only one of the colony “founding” individuals is carrying a single copy of the mutant allele (heterozygous
diploid female or a hemizygous haploid male). By writing that a mutant male “founds” a colony, we mean that
a mutant male has mated with a resident female that gives rise to a focal colony, where the mutant allele is
present in the genes of the workers. Furthermore, in haplodiploid systems, where females are diploid and males
are haploid, the phenotypes of colonies founded by mutant individuals of opposite sexes will be different. The
distinction between the phenotypes expressed in these two types of colonies will also turn out to be useful when
describing these phenotypes under the various assumptions of genetic control that different parties have over the
traits.

Thus, we will denote by uq
f

(t) (and respectively, by um
f

(t)) the proportion of resources allocated at time t to
producing females in a colony founded by a focal mutant heterozygous female (hemizygous male) and by uq

q

(t)

(and respectively, by um
q

(t)) the proportion of resources allocated to producing queens from resources allocated
to females at time t in a colony founded by a focal mutant heterozygous female (hemizygous male). Let us

⌧

(t)

denote the resource allocation phenotype for a trait of type ⌧ 2 {f, q} of a colony founded by a heterozygous
(hemizygous) individual of type s 2 {q,m} and it can be expressed as (assuming additive genetic effects)

us
⌧

(t) = ps
c

u
⌧

(t) + (1� ps
c

)v
⌧

(t), (S1)

where ps
c

> 0 is the expected frequency of the mutant allele in party c 2 {q,w} in full control of the trait of type
⌧ in a colony founded by a mutant individual of type s (s 2 {q,m}). Hereinafter, the subscript c = q denotes
a scenario of full queen control and c = w denotes a scenario of full worker control, and c = mx denotes a
scenario of mixed control.

Under queen control of the trait, the expected colony phenotype us
⌧

(t) is determined from the frequency of
the mutant allele in the colony-founding queen. If the colony is founded by a heterozygous mutant female then
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the frequency of the mutant allele in the colony-founding queen is pq
q

= 1/2. Under queen control, mutant males
who have mated with a colony-founding queen have no genetic influence on the resource allocation traits and
thus pm

q

= 0. Hence, female mating frequency will also have no affect on the trait under queen control. Under
worker control of the trait, the expected colony phenotype us

⌧

(t) is determined from the expected frequency of
the mutant allele in workers. The expected frequency of the mutant allele in workers in a colony founded by a
heterozygous mutant female is pq

w

= 1/4 and it is not affected by the mating frequency of the queen because a
mutant female will only encounter resident males since the mutant allele is considered to be rare. The expected
frequency of the mutant allele in workers in a colony founded by a mutant male is pm

w

= 1/(2M), where M is
the number of times the female has mated (when the mutant allele is rare, only one of the males is carrying the
mutant allele).

Let v = {v
f

(t), v
q

(t)}
t2[0,T ]

denote the full allocation schedule of a colony founded by resident individuals,
i.e. it describes how colony resources are allocated throughout the entire season t 2 [0, T ]. Similarly, let
u = {u

f

(t), u
q

(t)}
t2[0,T ]

denote the full allocation schedule of a colony founded by individuals who carry only
mutant alleles for both of the evolving traits. Similarly, let us

= {us
f

(t), us
q

(t)}
t2[0,T ]

denote the full allocation
schedule of a colony founded by a heterozygous (hemizygous) individual of type s for each of the evolving
traits, hence u

s depends on u. This notation turns out to be useful for performing the invasion fitness analysis,
but it does not imply that we are assuming pleiotropic effects.

Let as
k,u

(t) be the proportion of resources allocated to producing type k 2 {w, q,m} individuals in a colony
founded by a heterozygous individual of type s 2 {q,m}, where the subscript “u” in as

s,u

(t) emphasizes that it
is the mutant allocation schedule, which, according to eq. (3) is

as
w,u

(t) = us
f

(t)(1� us
q

(t)), as
q,u

(t) = us
f

(t)us
q

(t), as
m,u

(t) = (1� us
f

(t)). (S2)

The rate of change in the number of type k 2 {w, q,m} individuals alive at time t, that have been produced in
a colony founded by a mutant individual of type s, is given by the equation

dxs
k

(t)

dt
= bas

k,u

(t)xs
w

(t)� µ
k

xs
k

(t), xs
k

(t
0

) = y
k0

, (S3)

where xs
k

(t) denotes the number of individuals of type k alive at time t that have been produced in a colony
founded by a mutant individual of type s. The rate of change of females xs

iq

(t) alive at time t, who have been
inseminated by the males produced in the focal colony (under a monandrous mating system) founded by a
mutant individual of type s, is given by the equation

dxs
iq

(t)

dt
=

8
<

:
0, for t < T, with xs

iq

(T ) = xs
m

(T )
y

q

(T )

y

m

(T )

(delayed dispersal),

xs
m

(t)
ba

q

(t)y

w

(t)

y

m

(t)

� µ
q

xs
iq

(t), xs
iq

(0) = 0 (direct dispersal).
(S4)

Note that the number of females alive at time t, who have been inseminated by the males produced in the focal
colony founded by a mutant individual of type s in a mating system where females mate M times is Mxs

iq

(t).
The rate of change of individuals of type k 2 {w, q,m} produced in a resident colony and females insemi-
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nated by males from the resident colony are given by eq. (1) and eq. (2), respectively.

1.2 Fitness functions of mutant individuals

We will express the invasion fitness of the mutant allele in terms of gene transmission frequencies and fitness
functions of mutant individual of type s (s 2 {q,m}), who have founded colonies in the current season. The
fitness is measured as the expected number of daughters and sons who become colony founders in the next
generation. Note that, since females mate with M males, a son can become a colony founder for multiple
colonies. Hence, the number of sons who become colony founders in the next generation can be measured in
the number of females inseminated by sons, who will become colony-founding queens in the next generation
(Bulmer, 1994, p. 213). Hence, one fitness measurement cycle lasts from the beginning of the current season to
the beginning of the following season and we keep track of the genes in mutant colony-founding individuals of
type s.

Let w
s

0
s

(u

s,v) denote the expected number of mutant colony-founding individuals of type s0 2 {q,m}
in the following season that descend from a current colony-founding mutant individual of type s 2 {q,m} in
a resident population. The fitness function w

s

0
s

(u

s,v) is a function of the allocation schedule u

s of a colony
founded by an individual of type s (by way of eqs. S2–S4). Note that the fitness function w

s

0
s

(u

s,v) is ulti-
mately a function of the mutant schedule u, the frequency ps

c

of the mutant allele in the average individual in
control of a resource allocation trait, and of the resident allocation schedule v (by way of eq. S1). However,
since the mutant allele is considered to be rare for the invasion analysis and the population size is large, then the
fitness function w

s

0
s

(u

s,v) is independent of the number (or frequency) of mutants in the population.
For calculating the fitness functions, we only need to specify the number of individuals alive at the end of

the season t = T . To that end it is useful to set

y
k

(T ) = y
k

(v) and xs
k

(T ) = x
k

(u

s

), (S5)

which gives the number of individuals of type k 2 {w, q,m, iq} at the end of the season t = T associated with
a resident colony and a colony founded by a mutant individual of type s, respectively (by way of eqs. 1–2 and
S3–S4). Note that type k 2 {w, q,m} individuals are individuals produced in a focal colony and type k = iq

individuals are females inseminated by sons produced in the focal colony. In eq. (S5) we have emphasized the
functional dependence of the number of individuals at the end of the season on the allocation schedules, us and
v (recall eqs. S2 and 3).

Next, we derive the fitness functions w
s

0
s

(u

s,v). A colony-founding female is expected to have x
q

(u

q

)

surviving daughters (juvenile queens) at the end of the breeding season and her sons are expected to have
inseminated Mx

q

(u

q

) surviving females at the end of the breeding season. The probability that a daughter or a
female inseminated by a son will gain any one of the n breeding spots is n/ny

q

(v), since there are total number
of ny

q

(v) juvenile queens competing for these spots. Hence, the number of mutant colony-founding individuals
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of type s0 in the next generation that descend from a mutant colony-founding female can be written as

w
qq

(u

q,v) =
x
q

(u

q

)

y
q

(v)

, w
mq

(u

q,v) =
Mx

iq

(u

q

)

y
q

(v)

. (S6)

Since females mate with M males, each colony-founding male is expected to only father 1/M of the offspring
(here we have not yet taken into account the transmission frequencies specific to different genetic systems).
Hence, a colony-founding male is expected to father x

q

(u

m

)/M surviving daughters at the end of the breeding
season and his sons are expected to have inseminated Mx

iq

(u

m

) surviving females at the end of the breeding
season. Here we formulate the fitness functions for any genetic system and by “sons” we mean males produced
by a queen that the male has mated with. Note that, in haplodiploids, males do not pass their genes to male
offspring. The probability that the daughters and the females inseminated by sons will gain any one of the n

breeding spots is n/ny
q

(v). Hence, the number of colony-founding individuals of type s0 in the next generation
that descend from a colony-founding male can be written as

w
qm

(u

m,v) =
1

M

x
q

(u

m

)

y
q

(v)

, w
mm

(u

m,v) =
1

M

Mx
iq

(u

m

)

y
q

(v)

. (S7)

The number of individuals at the end of the season y
q

(v), x
q

(u

s

) and x
iq

(u

s

) (s 2 {q,m}) in eqs. (S6)–(S7)
are determined from eq. (1) (with eq. 3) and eqs. (S3)–(S4) (with eqs. S1 and S2), respectively.

1.3 The invasion fitness

We now have all the elements to obtain an expression for the invasion fitness, which allows to ascertain the fate
of the mutant allele. Let us denote by n

q,u

(and respectively, by n
m,u

) the number of mutant allele copies in
females (males with whom the females have mated with), measured at time t = T in the population. The change
in the vector n

u

= (n
q,u

, n
m,u

)

| of number of gene copies from one generation to the next n0
u

= (n0
q,u

, n0
m,u

)

|,
when the mutant allele for a trait that is under genetic control of party c 2 {q,w} is still rare in the population,
is given by the matrix

A

c

(u

q

(u),um

(u),v) = A

c

(u,v) =

"
�
qq

w
qq

(u

q,v) �
qm

w
qm

(u

m,v)

�
mq

w
mq

(u

q,v) �
mm

w
mm

(u

m,v)

#
(S8)

where �
s

0
s

is the probability that a gene sampled in an individual of type s0 2 {q,m} was contributed by an
individual of type s 2 {q,m}, i.e. a transmission frequency of type s to type s0 (for haplodiploids �

qq

= 1/2,
�
qm

= 1/2, �
mq

= 1, �
mm

= 0). Hence, elements a
s

0
s

of matrix A

c

(u,v) give the expected number of mutant
gene copies in a type s0 2 {q,m} individual that descends from an individual of type s 2 {q,m} carrying the
mutant allele. Note that in eq. (S8), the dependence on the party c 2 {q,w} who has the genetic control enters
into the right-hand-side implicitly via the mutant schedules uq and u

m (recall eq. S1).
The invasion fitness W

c

(u,v) of the mutant allele is then given by the leading eigenvalue of the matrix
A

c

(u,v) (eq. S8), where the subscript c 2 {q,w} emphasizes the party in control of the focal trait. Hence, it
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satisfies
W

c

(u,v)q(u,v) = A

c

(u,v)q(u,v), (S9)

where q(u,v) = (q
q

(u,v), q
m

(u,v))| is the normalized right leading eigenvector of A
c

(u,v). Here, normal-
ization means that q

q

(u,v) + q
m

(u,v) = 1. Pre-multiplying eq. (S9) by the vector (1, 1) yields

W
c

(u,v) = [�
qq

w
qq

(u

q,v) + �
mq

w
mq

(u

q,v)] q
q

(u,v) + [�
qm

w
qm

(u

m,v) + �
mm

w
mm

(u

m,v)] q
m

(u,v),

(S10)
since q

q

(u,v) = (1� q
m

(u,v)) (see Lehmann et al., 2016, Appendices A-C for more details of how to express
invasion fitness in terms of leading left and right eigenvectors of the transition matrix). Note that in eq. (S10),
the dependence on the party c 2 {q,w} who has the genetic control, enters into the right-hand-side implicitly
via the mutant schedules uq and u

m (recall eq. S1).
The invasion fitness can be interpreted here as the geometric growth rate (generational growth rate) of the

mutant allele. This is the asymptotic per capita number of mutant copies produced by the mutant lineage
descending from the initial mutation, when overall still rare in the population (see Lehmann et al., 2016 for
more details and connections to different fitness measures used in evolutionary biology).

Direct calculation of the normalized right eigenvectors yields

q
q

(u,v) =
2�

qm

w
qm

(u

q,v)�X(u,v) +
q
(X(u,v))2 + 4�

qm

�
mq

w
qm

(u

m,v)w
mq

(u

q,v)

2 (�
qm

w
qm

(u

q,v)� �
mq

w
mq

(u

q,v)�X(u,v))
,

q
m

(u,v) =
2�

mq

w
mq

(u

q,v)

2�
mq

w
mq

(u

q,v) +X(u,v) +
q
(X(u,v))2 + 4�

qm

�
mq

w
qm

(u

m,v)w
mq

(u

q,v)
,

(S11)

where X(u,v) = �
qq

w
qq

(u

q,v)� �
mm

w
mm

(u

m,v).
The quantity q

s

(u,v) can be interpreted as the asymptotic probability that a mutant allele is sampled in a
class s individual. It follows that the maximization of the invasion fitness (S10) depends on both the fitnesses of
carriers of the mutant allele (the w

s

0
s

(u

s,v) functions) and how the mutant allele is distributed across classes
(the q

s

(u,v) functions which also depend on the evolving traits themselves).

1.4 Uninvadable allocation schedule

An uninvadable schedule u

⇤
= {u⇤

f

(t), u⇤
q

(t)}
t2[0,T ]

is a resident schedule that is resistant to invasion by any
mutant u 2 U = U

f

⇥ U
q

schedule. Here, U is a set of all possible allocation schedules, while U
f

and U
q

are
sets of full trajectories of the traits u

f

= {u
f

(t)}
t2[0,T ]

and u

q

= {u
q

(t)}
t2[0,T ]

under consideration. Notice
that in order to simplify notations in the main text we used v

⇤ ⌘ u

⇤, v⇤
f

(t) ⌘ u⇤
f

(t), and v⇤
q

(t) ⌘ u⇤
q

(t) for the
uninvadable schedule, but in this S.I. it is more convenient to use the letter u for that, basically throughout the
S.I. we always distinguish mutant and resident, both at the level of state variables (x vs. y) and at the level of
evolving traits (u vs. v).

If party c 2 {q,w} is in full control of the two traits (i.e. single-party control), then the uninvadable schedule
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u

⇤ satisfies the condition
u

⇤ 2 argmax

u2U
W

c

(u,u⇤
), (S12)

that is, a mutant that adopts the resident schedule u⇤ has the highest invasion fitness from all possible strategies
in a population, for a population expressing schedule u

⇤. Hence, an uninvadable schedule u

⇤ is a candidate
endpoint of the evolutionary process.

Under mixed control, where the queen is in control of the trait u
f

and the workers are in control of the trait
u
q

, the uninvadable schedule u

⇤ satisfies condition

u

⇤
f

2 arg max

u

f

2U
f

W
q

�
(u

f

,u⇤
q

),u⇤� and u

⇤
q

2 arg max

u

q

2U
q

W
w

((u

⇤
f

,u
q

),u⇤
) . (S13)

Hence, the uninvadable allocation schedules to individuals of type k (k 2 {w, q,m}) can be written as
follows

a⇤
w

(t) = u⇤
f

(t)(1� u⇤
q

(t)), a⇤
q

(t) = u⇤
f

(t)u⇤
q

(t), a⇤
m

(t) = (1� u⇤
f

(t)) (S14)

and we denote by x⇤
k

(t) the resulting number of individuals at time t.

2 First-order condition

In this section, we derive the first-order necessary condition for uninvadability (eq. 5 of the main text) and show
that it has a similar structure that first-order conditions in static allocation models (e.g. eq. (1)–(2) in Reuter
and Keller, 2001) and applies regardless of colony growth dynnamic. In the next section, we the show how to
formulate the necessary first-order condition in terms of pointwise marginal change using optimal control theory
and then solve explicitly for the (candidate) uninvadable schedule for our model.

2.1 Eigenvalue perturbation

2.1.1 Perturbations in terms of Gâteaux derivatives and relatedness assymetry

We consider a small variation ✏⌘
⌧

(⌘
⌧

= {⌘
⌧

(t)}T
t=0

) in the trait u⇤
⌧

(t) ⌧ 2 {f, q} of the uninvadable schedule,
such that the mutant trait can be written as

u
⌧

(t) = u⇤
⌧

(t) + ✏
⌧

⌘
⌧

(t) 8t 2 [0, T ], (S15)

for any feasible deviation ⌘
⌧

(t) (such that 0  u
⌧

(t)  1) from the resident schedule u⇤
⌧

(t), where ✏
⌧

⌧ 1 is a
small parameter measuring the intensity of the mutant deviation. Hence, we consider a change in the candidate
uninvadable allocation trait u⇤

⌧

(t) that remains very close to it for all t 2 [0, T ]. The direction of selection for
trait v

⌧

(t) = u⇤
⌧

(t) is indicated by the sign of perturbation in invasion fitness

dW
c

(u,u⇤
)

d✏
⌧

�����
✏

f

=0,✏

q

=0

for ⌧ = f and ⌧ = q, (S16)
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for any feasible deviation ⌘
⌧

(t) from the uninvadable schedule u

⇤. The derivative in eq. (S16) is a Gâteaux
derivative (a type of functional or variational derivative) of invasion fitness (e.g., Weber and Arfken, 2003,
p. 827–830, Troutman, 2012, p. 45–50, Luenberger, 1997, p. 171–178, Gelfand and Fomin, 1963, p. 54–63).
In other words, it gives the infinitesimal change in invasion fitness resulting from a change in the whole mu-
tant schedule into the direction of ⌘(t) (Gâteaux derivative can be thought of as a generalization of directional
derivative from differential calculus). Gâteaux derivatives are useful to generalize evolutionary stability condi-
tions (e.g., Eshel, 1983, eq. 3, Taylor, 1989, eq. 2.1) to function-valued traits.

Because the functional derivative, dW
c

(u,u⇤
)/ d✏

⌧

is an ordinary function in ✏
⌧

, it follows from standard
results of eigenvalue perturbation (Caswell, 2001, p. 209, eq. 9.10) that

dW
c

(u,u⇤
)

d✏
⌧

=

⌫⌫⌫� dAc(u,u
⇤
)

d✏⌧
(q

�
)

|

⌫⌫⌫�(q�
)

| , (S17)

where superscript | denotes transpose, ⌫⌫⌫� = (⌫�
q

, ⌫�
m

) is a vector of neutral reproductive values of colony-
founding individuals of type s 2 {q,m} and q

�
= (q�

q

, q�
m

) is a vector of the neutral frequencies of class
s 2 {q,m} individuals. Throughout, the superscript � will denote a quantity that is evaluated in the absence of
natural selection, i.e., by a process determined by the monomorphic resident population. Substituting eq. (S8)
into (S17) and given that ⌫⌫⌫�(q�

)

|
= 1 (total class reproductive values of all individuals add up to one) yields

dW
c

(u,u⇤
)

d✏
⌧

=

✓
⌫�
q

�
qq

dw
qq

(u

q,u⇤
)

d✏
⌧

+ ⌫�
m

�
mq

dw
mq

(u

q,u⇤
)

d✏
⌧

◆
q�
q

+

✓
⌫�
q

�
qm

dw
qm

(u

m,u⇤
)

d✏
⌧

+ ⌫�
m

�
mm

dw
mm

(u

m,u⇤
)

d✏
⌧

◆
q�
m

, (S18)

where all derivatives are evaluated at ✏
⌧

= 0.
In the absence of natural selection, the number of gene copies from one generation to the next can be

described by a matrix

A

c

(v,v) = A(v,v) =

"
�
qq

�
qm

1

M

�
mq

M �
mm

#
, (S19)

which does not depend on the mode of control and whose dominant eigenvalue is one (given that �
qq

= 1/2,
�
qm

= 1/2, �
mq

= 1, �
mm

= 0). The reproductive values ⌫⌫⌫� and class frequencies q

� are, respectively,
given by the left and right unit eigenvectors of A(v,v), and we normalize these vectors such that the total class
reproductive values defined by

↵�
s

= ⌫�
s

q�
s

(S20)

(e.g., Rousset, 2004; Taylor, 1990; Taylor and Frank, 1996) of all individuals add up to one: ↵�
q

+↵�
m

= 1. This
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normalization entails the use of the perturbation formula eq. (S18) (e.g., Caswell, 2001), with which we obtain

↵�
q

=

1� �
mm

2� �
qq

� �
mm

and ↵�
m

=

1� �
qq

2� �
qq

� �
mm

,

q�
q

=

1

1 +M
and q�

m

=

M

1 +M
.

(S21)

It follows from the class frequencies q�
s

, that under neutrality there are M times as much colony-founding males
than females, which is in accordance with the fact that females mate M times.

Substituting the transmission frequencies �
s

0
s

for haplodiploids [�
qq

= 1/2, �
mq

= 1, �
qm

= 1/2, �
mm

=

0] then we have the class reproductive values for haplodiploids

↵�
q

=

2

3

and ↵�
m

=

1

3

. (S22)

In eq. (S18), the derivative dw
s

0
s

(u

s,v)/ d✏
⌧

is the total variation of individual fitness with respect to mutant
values, which acts on u

s (by way of eq. S1). By substituting eq. (S15) into eq. (S1) (where we take v
⌧

= u⇤
⌧

),
we have for ⌧ 2 {f, q} that

us
⌧

(t) = u⇤
⌧

(t) + ✏
⌧

⌘
⌧

(t)ps
c

(S23)

and owing to eq. (S15) and the constant factor rule in differentiation, we can write

dw
s

0
s

(u

s,u⇤
)

d✏
⌧

�����
✏⌧=0

=

dw
s

0
s

(u,u⇤
)

d✏
⌧

�����
✏⌧=0

⇥ ps
c

. (S24)

Substituting eq. (S24) into eq. (S18), we have for control mode c 2 {q,w} that

dW
c

(u,u⇤
)

d✏
⌧

=

✓
⌫�
q

�
qq

dw
qq

(u,u⇤
)

d✏
⌧

+ ⌫�
m

�
mq

dw
mq

(u,u⇤
)

d✏
⌧

◆
pq
c

q�
q

+

✓
⌫�
q

�
qm

dw
qm

(u,u⇤
)

d✏
⌧

+ ⌫�
m

�
mm

dw
mm

(u,u⇤
)

d✏
⌧

◆
pm
c

q�
m

, (S25)

where all derivatives are evaluated at ✏
⌧

= 0 and thus all trait values (allocation schedules) are set to the resident
schedule v. Substituting eq. (S20) into eq. (S25) yields

dW
c

(u,u⇤
)

d✏
⌧

= ↵�
q

✓
�
qq

pq
c

dw
qq

(u,u⇤
)

d✏
⌧

+

⌫�
m

⌫�
q

�
qm

pm
c

dw
qm

(u,u⇤
)

d✏
⌧

◆

+ ↵�
m

✓
⌫�
q

⌫�
m

�
mq

pq
c

dw
mq

(u,u⇤
)

d✏
⌧

+ �
mm

pm
c

dw
mm

(u,u⇤
)

d✏
⌧

◆
. (S26)
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Substituting the fitness functions (S6)–(S7) into eq. (S26) yields

dW
c

(u,u⇤
)

d✏
⌧

= ↵�
q

✓
�
qq

pq
c

dx
q

(u)

d✏
⌧

+

⌫�
m

⌫�
q

�
qm

pm
c

1

M

dx
q

(u)

d✏
⌧

◆
+↵�

m

✓
⌫�
q

⌫�
m

�
mq

pq
c

M
dx

iq

(u)

d✏
⌧

+ �
mm

pm
c

dx
iq

(u)

d✏
⌧

◆
.

(S27)

By considering that eqs. (S20) and (S21) yield that ⌫�
m

/⌫�
q

= M and ⌫�
q

/⌫�
m

= 1/M , then eq. (S27) as

dW
c

(u,u⇤
)

d✏
⌧

= ↵�
q

dx
q

(u)

d✏
⌧

(�
qq

pq
c

+ �
qm

pm
c

) + ↵�
m

dx
iq

(u)

d✏
⌧

(�
mq

pq
c

+ �
mm

pm
c

) . (S28)

Rearranging, we can write eq. (S28) as

dW
c

(u,u⇤
)

d✏
⌧

= K


R

c

dx
q

(u)

d✏
⌧

+

dx
iq

(u)

d✏
⌧

�
. (S29)

where K = ↵�
m

(�
mq

pq
c

+ �
mm

pm
c

) > 0 is a positive constant and

R
c

=

↵�
q

↵�
m

⇥
✓

�
qq

pq
c

+ �
qm

pm
c

�
mq

pq
c

+ �
mm

pm
c

◆
(S30)

is the so-called relatedness asymmetry (see Boomsma and Grafen, 1991, p. 386 and section 2.1.2 for the bio-
logical interpretation).

2.1.2 Interpretation of relatedness asymmetry

The relatedness asymmetry R
c

gives the ratio of sex-specific potentials for the party c in control to contribute
genes into the distant future (Boomsma and Grafen, 1991, p. 386). In order to see this, we note that owing
to eq. (S21), the first ratio in eq. (S30) is the ratio ↵�

q

/↵�
m

of class reproductive values. Furthermore, notice
that (�

qq

pq
c

+ �
qm

pm
c

) = �

q,c

and (�
mq

pq
c

+ �
mm

pm
c

) = �

m,c

are the probabilities that a gene randomly
sampled in a recipient female and male, respectively, is identical-by-descent to a gene randomly sampled from
party p in control of resource allocation; that is, the coancestry (or consanguinity) between a female (male)
and the (average) individual whose genes are in control of the resource allocation trait. Hence, the relatedness
asymmetry is

R
c

=

v�
q

q�
q

�

q,c

v�
m

q�
m

�

m,c

. (S31)

Here, q�
s

�

s,c

is the asymptotic probability that a randomly sampled gene from a colony-founding individual
finds itself in an individual of type s and is a replica copy of a gene sampled from a party c. Then, since ⌫�

s

is the long-term contribution of genes in individual of type s to the gene pool, we can interpret the relatedness
asymmetry as giving the ratio of sex-specific potentials for party p in control to contribute (in a neutral process)
to the gene pool in the distant future.

Since the ratio of consanguinity is equivalent to the ratio of relatedness, we can write the second ratio in
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eq. (S30) as r�
q,c

/r�
m,c

, where r�
s,c

= �

s,c

/�
c

is the relatedness between an individual of type s and the average
individual whose genes are in control of the resource allocation trait, and this depends on the coefficient of
coancestry �

c

of the average individual in control of the resource allocation trait with itself (i.e. the probability
that two homologous genes, drawn randomly with replacement from party c, are identical by descent). With this
eq. (S31) is also

R
c

=

⌫�
q

q�
q

r�
q,c

⌫�
m

q�
m

r�
m,c

=

↵�
q

r�
q,c

↵�
m

r�
m,c

, (S32)

where the second equality displays the classical form of the relatedness asymmetry (Boomsma and Grafen,
1991, p. 386). For haplodiploids eq. (S32) simplifies to

R
c

= 2

r�
q,c

r�
m,c

. (S33)

Since relatedness if given by the ratio of the coefficient of coancestry of party c with an individual of type
s (�

s,c

, which is given by the transmission frequencies �
s

0
s

and the expected frequency ps
c

of mutant allele
residing in party c) to the coefficient of coancestry �

c

of party c with itself (�
q

=�
w

=1/2). Substituting the
frequencies for haplodiploids [�

qq

= 1/2, �
mq

= 1, �
qm

= 1/2, �
mm

= 0, pq
q

= 1/2, pm
q

= 0, pq
w

= 1/4, and
pm
w

= 1/(2M)] gives the relatedness coefficients for haplodiploids

r�
q,q

=

1

2

and r�
m,q

= 1 (u
⌧

, v
⌧

under queen control),

r�
q,w

=

2 +M

4M
and r�

m,w

=

1

2

(u
⌧

, v
⌧

under worker control)
(S34)

which are classical expressions (e.g., Frank, 1998, Fig. 10.4, p. 209). Substituting the relatedness coefficients
into eq. (S33) yields the relatedness asymmetry for haplodiploids

R
q

= 1 (u
⌧

, v
⌧

under queen control) R
w

=

2 +M

M
(u

⌧

, v
⌧

under worker control). (S35)

2.2 First-order condition for uninvadability

The necessary first-order condition for the candidate uninvdable schedule u

⇤
= (u

⇤
f

,u⇤
q

) is given by

dW
c

(u,u⇤
)

d✏
⌧

�����
✏

f

=0,✏

q

=0

 0 for ⌧ = f and ⌧ = q, (S36)

for any feasible deviation ⌘(t). Substituting eq. (S29) into (S36) yields that we can express the necessary
first-order condition for uninvadability under queen (c = q) or worker (c = w) control as

R
c

dx
q

(u)

d✏
⌧

�����
✏

f

=0,✏

q

=0

+

dx
iq

(u)

d✏
⌧

�����
✏

f

=0,✏

q

=0

 0 (S37)
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and under mixed control as

R
c

dx
q

(u)

d✏
f

�����
✏

f

=0,✏

q

=0

+

dx
iq

(u)

d✏
f

�����
✏

f

=0,✏

q

=0

 0 and

R
c

dx
q

(u)

d✏
q

�����
✏

f

=0,✏

q

=0

+

dx
iq

(u)

d✏
q

�����
✏

f

=0,✏

q

=0

 0.

(S38)

Hence, the first-order condition given by eqs. (S37) and (S38) can be expressed in terms of variational derivatives
dx

k

(u)/ d✏
⌧

and relatedness asymmetry R
c

. The variational derivative dx
k

(u)/ d✏
⌧

measures the change in the
number of individuals of type k 2 {q, iq} associated with a focal colony where phenotype u is expressed. In
the next section we give the interpretation for relatedness asymmetry. Note that the first-order condition given
by eqs. (S37) and (S38) is a dynamic version of first-order condition in a comparable static allocation model
(e.g. eq. (1)–(2) in Reuter and Keller, 2001). Note that we the first-order condition (given by eqs. S37 and S38)
in the main text (recall 5) using a different notation (to simplify the readability for the general audience), where
y
q

(u) ⌘ x
q

(u) and y
iq

(u) ⌘ x
iq

(u).

2.3 Pointwise eigenvalue perturbation

It is useful to also consider pointwise perturbations in invasion fitness, which would allow to describe the
direction of selection on trait v

⌧

(t) = u⇤
⌧

(t) for each t. That is, we consider for every t 2 [0, T ]

�W
c

(u,u⇤
)

�⌘
⌧

(t)
= lim

⌘⌧ (t)!�t(t
0
)

dW
c

(u,u⇤
)

d✏
⌧

�����
✏

f

=0,✏

q

=0

, (S39)

where the derivative on the left-hand-side is a pointwise functional derivative (the so-called Volterra derivative)
of invasion fitness at time t 2 [0, T ] (see e.g. Parr and Yang, 1989, p. 246-247 and eq. (3a) in Dieckmann et al.,
2006) and �

t

(t0) = �(t0 � t) is the Dirac delta function, which is 0, except at t0 = t, when it is 1 (here, t0 is just
a dummy variable for time t0 2 [0, T ]) Note that using the �-notation (not to be confused with the Dirac delta
function) to refer to the pointwise functional derivative is standard notation in the physical literature (see e.g.
Giaquinta and Hildebrandt, 1996, p. 18).

It follows from eq. (S29) that we can express the pointwise perturbations as follows

�W
c

(u,u⇤
)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

= lim

⌘⌧ (t)!�t(t
0
)

K

✓
R

c

dx
q

(u)

d✏
⌧

+

dx
iq

(u)

d✏
⌧

◆
= K

✓
R

c

�x
q

(u)

�⌘
⌧

(t)
+

�x
iq

(u)

�⌘
⌧

(t)

◆
. (S40)

2.4 Pointwise first-order condition for a singular arc and the marginal substitution rate

We call the uninvadable allocation trait u⇤
⌧

(t) a singular arcs, when it does not reside on the bounds of the
feasible set (i.e., when 0  u⇤

⌧

(t) = û⇤
⌧

(t)  1) over a finite period of time. Now we will show that the
pointwise first-order conditions for singular arcs can be expressed in terms of marginal substitution rates. We
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will show in section 3 (see eqs. S66 and S73) that at the singular arc

�W
c

(u,u⇤
)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

= 0. (S41)

Hence, we can express the necessary first-order condition for the singular arc û⇤
⌧

(t) to be uninvadable under
queen (c = q) or worker (c = w) as

R
c

�x
q

(u)

�⌘
⌧

(t)
+

�x
iq

(u)

�⌘
⌧

(t)
= 0 (S42)

and under mixed control as
R

q

�x
q

(u)

�⌘
f

(t)
+

�x
iq

(u)

�⌘
f

(t)
= 0 and

R
w

�x
q

(u)

�⌘
q

(t)
+

�x
iq

(u)

�⌘
q

(t)
= 0.

(S43)

Rearranging eqs. (S42) and (S43) yields for queen (c = q) and worker (c = w) control

��x
iq

(u)/�⌘
⌧

(t)

�x
q

(u)/�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

= R
c

for ⌧ 2 {f, q}, (S44)

and for mixed control

��x
iq

(u)/ d⌘
f

(t)

�x
q

(u)/�⌘
f

(t)

�����
✏

f

=0,✏

q

=0

= R
q

and � �x
iq

(u)/�⌘
q

(t)

�x
q

(u)/�⌘
q

(t)

�����
✏

f

=0,✏

q

=0

= R
w

, (S45)

The left-hand side in eqs. (S44) and (S45) gives the ratio of the marginal change in the number of inseminated
queens to the marginal change in the number of queens produced when the allocation schedule is varied. This
ratio is expressed in terms of a variational derivatives �x

k

(u)/�⌘
⌧

(t) measuring the change in the number of
individuals of type k 2 {q, iq} associated with a focal colony where phenotype u is expressed. Hence, we have
showed that when u⇤

f

(t) = û⇤
f

(t) is a singular arc, the marginal substitution rate of inseminated queens with
produced queens is given be the relatedness asymmetry R

c

.

2.4.1 The critical sex ratio under delayed dispersal

In this section, we derive the condition for the (critical) sex ratio at the end of the season (t = T ) under delayed
dispersal. Equation (S4) for delayed dispersal together with eq. (S5) yields that

x
iq

(u

s

) = x
m

(u

s

)

y
q

(v)

y
m

(v)

. (S46)
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Hence, it follows from eq. (S23) that under delayed dispersal

�x
iq

(u)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

=

x⇤
q

(u

⇤
)

x⇤
m

(u

⇤
)

�x
m

(u)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

. (S47)

We will show later in section 5 that under delayed dispersal û⇤
f

(t) is a singular arc during t 2 [t⇤
c,1

, T ], where t⇤
c,1

is the time, when u⇤
f

(t) becomes a singular arc under the control mode c 2 {q,w,mx}. Substituting eq. (S47)
into eqs. (S44)–(S45) yields for queen (c = q) and worker (c = w) control

x⇤
q

(u

⇤
)

x⇤
m

(u

⇤
)

= � �x
q

(u)/�⌘
f

(t)

�x
m

(u)/�⌘
f

(t)

�����
✏

f

=0,✏

q

=0

⇥R
c

, (S48)

and mixed control
x⇤
q

(u

⇤
)

x⇤
m

(u

⇤
)

= � �x
q

(u)/�⌘
f

(t)

�x
m

(u)/�⌘
f

(t)

�����
✏

f

=0,✏

q

=0

⇥R
q

(S49)

where the right-hand side depends on the ratio of the marginal values of males relative to queens (i.e., the
marginal rate of substitution of producing males instead of new queens). If males and juvenile queens are
equally costly to produce and they have the same mortality rate (µ

q

= µ
m

= µ
r

) and the same growth schedule,
then the marginal product is negative one. Hence, the (critical) sex ratio at the end of the season (t = T ) under
delayed dispersal for equal mortality rates of males and queens is equal to the relatedness asymmetry (recall
eq. S35), i.e.

x⇤
q

(u

⇤
)

x⇤
m

(u

⇤
)

= R
q

(queen and mixed control)

x⇤
q

(u

⇤
)

x⇤
m

(u

⇤
)

= R
w

(worker control).
(S50)

3 First-order condition expressed in terms of optimal control problem

In this section, we use optimal control theory in order to solve the marginal value equation (S44) for different
scenarios of our model by way of applying Pontryagin’s weak maximum principle (e.g., Bryson and Ho, 1975;
Sydsæter et al., 2008 for broad introductions and Day and Taylor, 2000; González-Forero et al., 2017; Iwasa and
Roughgarden, 1984; Macevicz and Oster, 1976; Perrin, 1992 for previous application to evolutionary biology).

3.1 Formulation of the optimal control problem

3.1.1 The basic problem

We start by formulating the dynamic resource allocation problem as a classical optimal control problem. Finding
the candidate uninvadable schedule entails establishing an optimal pair

(u

⇤,x⇤
) =

�
{u⇤

(t)}
t2[0,T ]

, {x⇤
(t)}

t2[0,T ]

�
, (S51)
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where u

⇤
(t) = (u⇤

f

(t), u⇤
q

(t)) and x

⇤
(t) = (x⇤

w

(t), x⇤
q

(t), x⇤
m

(t)) are vectors of uninvadable (optimal) control
and state variables, respectively. The optimal pair (u⇤,x⇤

) is a solution to eqs. (S12) and (S13) under single-
party control and mixed control, respectively. That is, it maximizes the invasion fitness W

c

(u,v) (as given by
eq. S10).

The so-called control variables for the maximization problems are the (resource allocation) phenotypes
expressed in colonies founded by individuals who are homozygous for the mutant allele (recall eq. S1)

u
f

(t) and u
q

(t) 8t 2 [0, T ] (S52)

where
0  u

⌧

(t)  1 8t 2 [0, T ], ⌧ 2 {f, q} . (S53)

For delayed dispersal, the vector of the so-called state variables for the optimal control problems can be
expressed as

x(t) =

(
(xq

w

(t), xq
q

(t), xq
m

(t)) (u
⌧

, v
⌧

under queen control),

(xq
w

(t), xq
q

(t), xq
m

(t), xm
w

(t), xm
q

(t), xm
m

(t)) (u
⌧

, v
⌧

under worker control).
(S54)

For direct dispersal, the vector of state variables for the optimal control problems can be expressed as

x(t) =

(
(xq

w

(t), xq
q

(t), xq
m

(t), xq
iq

(t)) (u
⌧

, v
⌧

under queen control),

(xq
w

(t), xq
q

(t), xq
m

(t), xq
iq

(t), xm
w

(t), xm
q

(t), xm
m

(t), xm
iq

(t)) (u
⌧

, v
⌧

under worker control).
(S55)

In addition, the vector of dynamical variables involved in the invasion fitness (eqs. S62–S62) for the optimal
control problems can be expressed as

y(t) = (y
w

(t), y
q

(t), y
m

(t)). (S56)

The rate of change in state variables appearing in eqs. (S54)–(S55) is described by the differential equations

ẋs
k

(t) = gs
k,u

(x(t),u(t)) = gs
k,u

(t), with xs
k

(0) = y
k,0

for k 2 {q,m,w, iq} and s 2 {q,m} , (S57)

where upper “·” denotes the time derivative, (y
w,0

, y
q,0

, y
m,0

, y
iq,0

) = (1, 0, 0, 0) (fixed) and xs
k

(T ) = x
k

(u

s

)

is free and the differential equations can be expressed as

gs
k,u

(t) = bas
k,u

(t)xs
k

(t)� µ
k

xs
k

(t) for k 2 {q,m,w} and s 2 {q,m} ,

gs
iq,u

(t) = xs
m

ba
q

(t)y
w

(t)

y
m

(t)
� µ

q

xs
iq

(t) for s 2 {q,m} ,
(S58)

where the mutant allocation schedules as
k,u

(t) and resident allocation schedules a
k

(t), are given by eqs. (S2)
and (3) of the main text, respectively.
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The rate of change in dynamic variables appearing in eq. (S56) is described by the differential equations

ẏ
k

= g
k

(y(t),v(t), t) = g
k

(t), with y
k

(0) = y
k,0

for k 2 {q,m,w} , (S59)

where (y
w,0

, y
q,0

, y
m,0

) = (1, 0, 0) (fixed) and y
k

(T ) = y
k

(v) is free and the differential equations can be
expressed as

g
k

(t) = ba
k

(v(t))y
w

(t)� µ
k

y
k

(t) for k 2 {q,m,w} and s 2 {q,m} , (S60)

where the resident allocation schedules, a
k

(v(t)), are given by and eq. (3) of the main text.

3.1.2 Explicit expression for invasion fitness function

Henceforth, we write the invasion fitness of a mutant allele as W
c

(u,v) ⌘ W
c,d

(u,v), where the additional
subscript d 2 {del, dir} emphasizes the scenario of dispersal of sexuals, delayed and direct dispersal, respec-
tively. Substituting the transmission frequencies for haplodiploids (�

qq

= 1/2, �
mq

= 1, �
qm

= 1/2, �
mm

= 0)
into eq. (S10) and using eq. (S11) we can simplify the expression for the invasion fitness (eq. S10) under delayed
dispersal to
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(S61)
and under direct dispersal to

W
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(u,v) =
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>>>><

>>>>:

1

4

x
q

(u

q

)

y
q

(v)

+

s
1

16


x
q

(u

q

)

y
q

(v)

�
2

+

1

2

x
iq

(u

q

)

y
q

(v)

(u
⌧

, v
⌧

under queen control),

1

4

x
q

(u

q

)

y
q

(v)

+

s
1

16


x
q

(u

q

)

y
q

(v)

�
2

+

1

2

x
q

(u

m

)

y
q

(v)

x
iq

(u

q

)

y
q

(v)

(u
⌧

, v
⌧

under worker control).

(S62)
Note that for mixed control we have the invasion fitness function under queen control W

q,d

(u,v) to determine
u⇤
f

(t) and the invasion fitness function under worker control W
w,d

(u,v) to determine u⇤
q

. These simplified
expressions of invasion fitness will turn out useful for solving numerically the optimal control problem (see
section 11) and also conceptually, because it makes it explicit how the invasion fitness depends on the state x(t)
and dynamic variables y(t).
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3.2 Pontryagin’s weak maximum principle and the Hamiltonian

The necessary first-order condition for uninvadability (given by eq. S36) can be expressed in terms of pointwise
functional derivatives (given by eq. S39, see e.g. Parr and Yang, 1989, p. 246); that is

dW
c,d

(u,v)

d✏
⌧

�����
✏

f

=0,✏

q

=0

=

Z
T

0

�W
c,d

(u,u⇤
)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

⌘
⌧

(t)dt. (S63)

This expression can be thought of as a functional analogue of the formula for the total derivative of a function
W (⌘

1

(t), ⌘
2

(t), ...): dW/ dt =
P

i

(@W/@⌘
i

)(@⌘
i

/@t) (see e.g. Parr and Yang, 1989, p. 246).
Hence, the first-order condition for uninvadability (eq. S36) can be expressed in terms of point-wise marginal

change, which can be expressed under single-party control as

Z
T

0

�W
c,d

(u,u⇤
)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

⌘
⌧

(t)dt  0 for ⌧ = f and ⌧ = q, (S64)

and for mixed party control as

Z
T

0

�W
c,d

(u,u⇤
)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

⌘
⌧
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Z

T

0

�W
c,d

(u,u⇤
)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

⌘
⌧

(t)dt  0. (S65)

for any feasible ⌘
⌧

(t).
Pontryagin’s weak maximum principle yields that the pointwise marginal change (as in eq. S63) can be

restated for both single-party (see e.g. Speyer and Jacobson, 2010, p. 61) and mixed control (see e.g. Mazalov,
2014, p. 372, Theorem 10.8) as follows

�W
c,d

(u,u⇤
)

�⌘
⌧

(t)

�����
✏

f

=0,✏

q

=0

=

@H
c,d

(u(t),x⇤
(t),�(t))

@u
⌧

(t)

�����
u=v=u

⇤

8t 2 [0, T ]. (S66)

Here, H
c,d

(u(t),x⇤
(t),�(t)) is the Hamiltonian function, which allows to transform a dynamic optimization

problem into a sequence of static optimization problems by providing a marginal condition that must be satisfied
over the whole time schedule (see section 3.3 for the full interpretation of the Hamiltonian), and which for our
problem can be expressed as

H
c,d

(u(t),x⇤
(t),�(t)) =

X

k2{w,q,m}

�q

k

(t)gq
k,u

(t)+

�
cw

X

k2{w,q,m}

�m

k

(t)gm
k,u

(t) + �
ddir

X

s2{q,m}

�s

iq

(t)gs
iq,u

(t), (S67)

where index c 2 {q,w,mx} emphasizes the mode of control and d 2 {del, dir} emphasizes the time of dispersal
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of sexuals. In eq. (S67), �
ij

is the Kronecker delta function, i.e.

�
ij

=

8
<

:
1 for i = j,

0 for i 6= j
(S68)

�s

k

(t) is a costate variable associated with the state variable xs
k

(t) and �(t) is a vector of costate variables and
for delayed dispersal it can be expressed as

�(t) =

(
(�q

w

(t),�q

q
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, v
⌧
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(S69)

and for direct dispersal it can be expressed as

�(t) =

(
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iq

(t)) (u
⌧
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(S70)

The differential equations for the costate variables appearing eqs. (S69)–(S70) are given by the derivatives
of the Hamiltonian with respect to the corresponding state variables, i.e.

˙�s

k

(t) = �
@H

c,d

(u

⇤
(t),x(t),�(t))

@xs
k

(t)

�����
x=y=x

⇤

(S71)

Since x(T ) is free, the transversality conditions for the co-state variables are given by

�s

k

(T ) =
@W

c,d

(u,v)

@xs
k

(T )

�����
x=y=x

⇤

(S72)

(e.g., Bryson and Ho, 1975; Sydsæter et al., 2008).

3.3 Interpretation of the Hamiltonian and costate variable

The quantity H
c,d

(u(t),x⇤
(t),�(t)) dt = H

c,d

(t) dt can be interpreted as the total contribution to the invasion
fitness W

c,d

(u,v) by an increase in the production of individuals of different types for a certain (constant)
allocation schedule u

⌧

(t) = ū
⌧

during the interval [t, t+ dt] (e.g. Dorfman, 1969, Sethi and Thompson, 2006,
p. 34). As a consequence, the control variables u

⌧

(t) for a given interval should be chosen such that to maximize
H

c,d

(t). This implies that the dynamic optimization problem of maximizing the invasion fitness W
c,d

(u,v) can
be transformed into a sequence of static problems of maximizing the corresponding Hamiltonian H

c,d

(t) at
instants t 2 [0, T ]. Hence, the Hamiltonian can be interpreted as a rate at which the invasion fitness (which is
defined at final time T ) increases at time t and @H

c,d

(t)/@u
⌧

(t) represents a variation in invasion fitness due
to a unit impulse (Dirac function) in u

⌧

(t) at time t, while satisfying the state equations (Bryson and Ho, 1975,
p. 49). More precisely, @H

c,d

(t)/@u
⌧

(t) measures the net effect on invasion fitness that the marginal change in
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the trait value u
⌧

(t) has through immediate change in the trait value u
⌧

(t) at time t and through the cascading
effects that this change has on the invasion fitness by changing the state variables (the numbers of individuals of
different types) from time t onward until time T .

A costate variable �s

k

(t) can be interpreted as the effect on invasion fitness for a marginal change in the
corresponding state variable xs

k

(t) when colony resources are allocated to production of type k individuals at
time t in a colony founded by a mutant individual of type s. Therefore, informally, a costate variable �s

k

(t)

gives the value (measured as the increase in invasion fitness) of each unit resource invested at time t into the
production of type k individuals at time t in a colony founded by a mutant individual of type s. Hence, the
costate variables are of extreme importance since only the individuals that yield the highest investment value in
invasion fitness should be produced at any given time.

3.4 Derivatives of the Hamiltonian

It follows from eqs. (S64), (S65), (S66) and (S53) (see e.g. Kamien and Schwartz, 2012, p. 185-186 for full
explanation) that for all t 2 [0, T ]

if
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(t),�(t))

@u
⌧

(t)
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⌧

(t) = 1,

(S73)

where û⇤
⌧

(t) denotes that the control u⇤
⌧

(t) is a singular arc (Sethi and Thompson, 2006, p. 407). An allocation
trait is a singular arc (u⇤

⌧

(t) = û⇤
⌧

(t)) when the Hamiltonian is linear (or more strictly, affine) in the control and
the derivative @H

c,d

(u(t),x⇤
(t),�(t))/@u

⌧

(t)|
u=u

⇤
= 0. Hence, the first-order condition (given by eq. S64 or

eq. S65) is satisfied, but the control variable u
⌧

(t) does not directly appear in the first-order condition. More
generally, an optimal control is a singular arc, if the value of variational Hamiltonian is unchanged to the second
order from a weak first-order variation of the control at each point of the arc (Robbins, 1967).

In order to ascertain the uninvadable allocation schedule u⇤ from eq. (S73), we need to determine the deriva-
tives of the Hamiltonian with respect to u

⌧

(t). Substituting eq. (S58) into eq. (S67) and taking the derivative
with respect to u

⌧

produces
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(S74)
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with partial derivatives
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(S75)

Hence, the derivatives of the Hamiltonian with respect to controls u
f

and u
q

can be written as
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(S76)

Expressions �c

1

(t) and �c

2

(t) and �c

1

(t)� �c
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(t) in eq. (S76) are functions of the costate variables �s
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(t) and the
expected frequencies ps
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(S77)

where pq
q

= 1/2, pm
q

= 0, pq
w

= 1/4, and pm
w

= 1/(2M). It follows from eq. (S76) and (S73) that u⇤
f

(t) is
determined from the sign of expression u⇤

q

(t)�c

1

(t)� �c

2

(t) and u⇤
q

(t) is determined from the sign of expression
u⇤
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(t)�c

1

(t), since b > 0 and x⇤
w

(t) > 0 for biological reasons. Since, the signs of functions �c

1

(t) and �c

2

(t) will
be instrumental in determining the signs of these expressions, we call them the switching functions, which are
analogous to the switching functions in linear optimal control problems (e.g., Bryson and Ho, 1975, p. 111).

Substituting the expected frequencies ps
c

of the mutant allele in the party c and eq. (S91) into eq. (S77) yields
that for queen control
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and for worker control
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Under delayed dispersal if the mortality rates of males and queens are equal (i.e. µ
q

= µ
m

= µ
r

), it follows
from the costate equations (S82) and from the transversality conditions (S86) that the switching functions for
worker control further simplify to
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4 Global qualitative properties of the uninvadable allocation schedule

Here we describe the scheme of deriving the uninvadable allocation schedule u⇤ under different assumptions of
the model. First we present the conditions that the candidate allocation schedule has to satisfy to be consistent
with the first-order condition for uninvadability, which gives rise to different phases of colony growth. Then we
describe the scheme of determining the uninvadable allocation schedule that consists of these possible phases.

4.1 Conditions for candidate uninvadable allocation schedules

We now have all the elements to characterize the first-order conditions given by eqs. (S64) and (S65). We have
from eqs. (S73) and (S76) that the conditions for the candidate optimal controls can be expressed as
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q

(t) and û⇤
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q

(t)�c

1

(t)  �c

1

(t) < �c

2

(t) and �c

2

(t) > 0

�

1 if
�
u⇤
q

(t) = 0 and �c

2

(t) < 0

�
or
�
u⇤
q

(t) = 1 and �c

1

(t) > �c

2

(t)
�

or
�
u⇤
q

(t) = û⇤
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q

(t) = 1 and �c

1

(t) = �c

2

(t)
�

or (�c

1

(t) = �c

2

(t) = 0) or
�
u⇤
q

(t) = û⇤
q

(t) and û⇤
q

(t)�c

1

(t) = �c

2

(t)
�
,

(S81)

where û⇤
⌧

(t) ⌧ 2 {f, q} denotes that the uninvadable control variable u⇤
⌧

(t) is a singular arc and ũ⇤
q

(t) denotes
that u⇤

q

(t) can not be determined and hence can take any value in the range [0, 1] (reflecting the fact that during
the phase when only males are produced the trait that affects how resources are allocated between different
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types of females does not have any effect on the allocation to individuals of different types). It follows from the
conditions for the candidate optimal controls, given by eq. (S81), that there are seven possible phases of colony
growth (see table S1). We will call phase W (exclusive worker production) the ergonomic phase of colony
growth, while phases F (production of only queens), M (production of only males) and FM (production of
queens and males simultaneously) are called the reproductive phases, since all the colony resources are directed
towards producing sexuals. During phases WF, WM, FM, WFM there is simultaneous production of individuals
of different types and in the context of our optimal control problem, it means that one or both of the control
variables are singular arcs. In the following sections, we determine from the candidate optimal controls given
by eq. (S81), the uninvadable allocation schedules for different assumptions of the time of dispersal of sexuals
and different scenarios of genetic control.

Regime Individuals produced (u⇤
f

(t), u⇤
q

(t)) sgn(�c

1

(t),�c

2

(t),�c

1

(t)� �c

2

(t))

W Workers (ū⇤
f

= 1, ū⇤
q

= 0) (�,�, ·)
F Females (new queens) (ū⇤

f

= 1, ū⇤
q

= 1) (+, ·,+)

M Males (ū⇤
f

= 0, ũ⇤
q

(t)) (·,+,�)

WF Workers and females (ū⇤
f

= 1, û⇤
q

(t)) (0,�,+)

WM Workers and males (û⇤
f

, ū⇤
q

= 0) (�, 0, ·)
FM Females and males (û⇤

f

(t), ū⇤
q

= 1) (+,+, 0)

WFM Workers, females and males (û⇤
f

(t), û⇤
q

(t)) (0, 0, 0)

Table S1: Candidate optimal controls and conditions for the signs of switching functions for all possible regimes
of colony growth. Note that “·” means any sign, ū⇤

⌧

denotes that u⇤
⌧

(t) is constant, û⇤
⌧

(t) denotes that u⇤
⌧

(t) is
a singular arc (if the singular arc is constant we write it as ˆū⇤

⌧

) and ũ⇤
q

(t) denotes that u⇤
q

(t) is undetermined
because no females are produced, since it does not appear in the Hamiltonian when u⇤

f

(t) = ū⇤
f

= 0.

4.2 Short description of the derivations of the analytical results

We describe the scheme of obtaining the uninvadable allocation schedule u

⇤ that consists of possible phases
outlined in the table S1. The uninvadable allocation schedule u⇤ can explicitly be determined from the table S1,
given that we know the switching functions �c

1

(t) and �c

2

(t) throughout the period t 2 [0, T ]. According to
eq. (S77) the switching functions depend on the costate variables �s

k

(t) and the expected frequencies ps
c

of the
mutant allele in party c. Hence, establishing the uninvadable allocation schedule u

⇤ reduces to determining
the costate variables throughout the period t 2 [0, T ]. The dynamical behaviour of the costate variables is
given backwards in time by the differential equations in eq. (S71) and the terminal conditions (transversality
conditions) in eq. (S72). During candidate phases W, F, and M of colony growth, the allocation variables
u⇤
f

(t) = ū⇤
f

and u⇤
q

(t) = ū⇤
q

are constant. Hence, it will turn out to be useful to derive the equations for costate
variables from eq. (S71), assuming that u⇤

f

(t) = ū⇤
f

and u⇤
q

(t) = ū⇤
q

are constant (see eqs. S90–S91). The
costate variables at time t = T are given by the transversality conditions (S83), (S86), and (S87), which deduce
from eq. (S72). In addition, we derive eqs. (S88) and (S89) that describe the dynamical behaviour of the state
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and dynamic variables, respectively, which are solutions to eqs. (S57), (S58), (S57), and (S58) assuming that
u⇤
f

(t) = ū⇤
f

and u⇤
q

(t) = ū⇤
q

are constant. These expressions together with table S1 give the necessary elements
to obtain the uninvadable allocation schedule u

⇤.
We then proceed by determining the switching functions �c

1

(t) and �c

2

(t) backwards in time. At time t = T ,
the switching functions can be directly determined by substituting the transversality conditions (S83), (S86),
and (S87) into eq. (S77). Considering that the costate variables are continuous, then it follows that we can
determine u

⇤
(t) for some time interval t 2 [t⇤

c,i

, T ] before the end of the season, where t = t⇤
c,i

is the time for
which one or more of the switching functions (S77) change their signs. Here, the subscript “c” emphasizes the
scenario of genetic control and “i” denotes the number of switches between different phases that make up the
uninvadable allocation schedule u

⇤. Hereby, we have established the uninvadable allocation strategy u

⇤
(t) for

the last phase t 2 [t⇤
c,i

, T ]. We proceed by using information about u⇤
(t) during the last phase and determining

the switching functions �c

1

(t) and �c

2

(t) for the penultimate phase t 2 [t⇤
c,i�1

, t⇤
c,i

]. We iterate this process, until
the switching functions will not change their signs any more. This scheme allows us to determined all the i+ 1

phases of the uninvadable allocation schedule u

⇤ and all the switching times (t⇤
c,1

,...,t⇤
c,i

) between the different
phases.

Since the properties of the uninvadable resource allocation strategies under delayed dispersal and direct
dispersal turn out to be substantially different, then we will present the derivations for these two cases separately.
For delayed dispersal, we were able to derive the uninvadable resource allocation schedule analytically only
assuming equal mortality of sexuals µ

q

= µ
m

= µ
r

. For direct dispersal, we were able to derive the full
uninvadable resource allocation schedule analytically under single party control only for when R

c

µ
q

� µ
m

and
under mixed control only for when µ

q

= µ
m

.
Our analytical results are in accordance with the numerical results derived with GPOPS that employs the

direct approach of finding the uninvadable allocation schedule instead of the indirect approach given by Pontrya-
gin’s maximum principle. Note that the derivation of some of our analytical results (for direct dispersal) entails
using the intuition from our numerical results about the general properties of the optimal allocation schedule
and then verifying that this solution satisfies the first-order conditions for uninvadability (eqs. S64–S65).

4.3 State and costate variables

We outlined in section 4.2 that in order to determine the univadable allocation schedule u

⇤ from the first-order
condition, we need to derive the costate equations, transversality conditions and the equations that describe the
dynamics of the costate and the state variables for a period of time [t

0

, t
1

] during which the resource allocation
is constant. We now present these expressions.
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4.3.1 Costate equations and transversality conditions

Substitution of eqs. (S58) and (S67) into eq. (S71) yields the following differential equations for the costate
variables

˙�s

w

(t) = �
⇥
�s

w

(t)(ba⇤
w

(t)� µ
w

(t)) + �s

q

(t)ba⇤
q

(t) + �s

m

(t)ba⇤
m

(t)
⇤
,

˙�s

q

(t) = µ
q

�s

q

(t),

˙�s

m

(t) =

8
<

:
µ
m

�s

m

(t) (under delayed dispersal),

µ
m

�s

m

(t)� ba

⇤
q

(t)x

⇤
w

(t)

x

⇤
m

(t)

�s

iq

(t) (under direct dispersal),

˙�s

iq

(t) = µ
q

�s

iq

(t),

(S82)

where a⇤
w

(t) = u⇤
f

(t)(1 � u⇤
q

(t)), a⇤
q

(t) = u⇤
f

(t)u⇤
q

(t), and a⇤
m

(t) = (1 � u⇤
f

(t)). The terminal conditions for
these differential equations (S82) are given by the transversality conditions (S72).

Because the number of workers does not appear in the expression of invasion fitness, we have, regardless of
the mode of control of traits, that

�s

w

(T ) = 0 for s 2 {q,m} . (S83)

Otherwise, we have from the perturbation formula for eigenvalues (eq. S18 and S72) that

�s

k

(T ) = ⌫�
k

�
ks

@w
ks

(u

s,v)

@xs
k

(T )

�����
x=y=x

⇤

q�
s

for k 2 {q,m} and s 2 {q,m} ,

�s

iq

(T ) = ⌫�
m

�
ms

@w
ms

(u

s,v)

@xs
iq

(T )

�����
x=y=x

⇤

q�
s

for s 2 {q,m} .
(S84)

Furthermore xs
k

affects only the component w
ks

(u

s,v) of invasion fitness for k 2 {q,m} and xs
iq

only affects
the component w

ms

(u

s,v). Hence, owing to eq. (S20) and the fitness functions (eqs. S6–S7), we have

�s

k

(T ) =
↵�
k

�
ks

x⇤
k

(u

⇤
)

(under delayed dispersal),

�s

q

(T ) =
↵�
q

�
qs

x⇤
q

(u

⇤
)

, �s

m

(T ) = 0 and �s

iq

(T ) =
↵�
m

�
ms

x⇤
q

(u

⇤
)

(under direct dispersal).
(S85)

For haplodiploids, �
qq

= 1/2, �
mq

= 1, �
qm

= 1/2 and �
mm

= 0 and consequently eq. (S21) yields that
↵
q

= 2/3 and ↵
m

= 1/3. Substituting these parameters into eq. (S85) yields the following transversality
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conditions for sexuals under delayed dispersal

�q

q

(T ) =
1

3x⇤
q

(u

⇤
)

, �q

m

(T ) =
1

3x⇤
m

(u

⇤
)

,

�m

q

(T ) = 0 , �m

m

(T ) = 0 (u
⌧

, v
⌧

under queen control);

�q

q

(T ) =
1

3x⇤
q

(u

⇤
)

, �q

m

(T ) =
1

3x⇤
m

(u

⇤
)

,

�m

q

(T ) =
1

3x⇤
q

(u

⇤
)

, �m

m

(T ) = 0 (u
⌧

, v
⌧

under worker control)

(S86)

and under direct dispersal the transversality conditions are given by

�q

q

(T ) =
1

3x⇤
q

(u

⇤
)

, �q

m

(T ) = 0 , �m

q

(T ) = 0 , �m

m

(T ) = 0 ,

�q

iq

(T ) =
1

3x⇤
q

(u

⇤
)

, �m

iq

(T ) = 0 (u
⌧

, v
⌧

under queen control);

�q

q

(T ) =
1

3x⇤
q

(u

⇤
)

, �q

m

(T ) = 0 , �m

q

(T ) =
1

3x⇤
q

(u

⇤
)

, �m

m

(T ) = 0 ,

�q

iq

(T ) =
1

3x⇤
q

(u

⇤
)

, �m

iq

(T ) = 0 (u
⌧

, v
⌧

under worker control).

(S87)

4.3.2 Solutions to the state and costate equations

Let the upper bar denote that the variable is constant. Hence, let ās
k,u

denote constant proportional allocation to
individuals of type k in a colony founded by a mutant individual of type s during a given time interval [t

0

, t
1

].
The solutions to the differential equations (S57)–(S58) that give the expressions for the state variables at time
t 2 [t

0

, t
1

] are

xs
w

(t) = xs
w

(t
0

)e(t�t

0

)

(

bā

s
w,u�µ

w
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xs
q
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q

� µ
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h
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w
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0
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bā

s
w,u+µ
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�µ

w
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⌘
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m

(t
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�
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w,u
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m

� µ
w

�i
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w,u

+ µ
m

� µ
w

,

xs
iq

(t) = xs
iq

(t
0

) +

Z
t

t

0

xs
m

(⌧)
bas

q

(⌧)y
w

(⌧)

y
m

(⌧)
e�µ

q

(t�⌧)d⌧,

(S88)

Let ā
k

denote the constant proportional allocation to individuals of type k in a resident colony during a given
time interval [t

0

, t
1

]. The solutions to differential equations (S59)–(S60) that give the expressions for the dy-
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namic variables at time t 2 [t
0

, t
1

] are

y
w

(t) = y
w

(t
0

)e(t�t

0

)(bā

w

�µ

w
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y
q
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� µ
w
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(S89)

Let ā⇤
k

denote a constant uninvadable proportional allocation to individuals of type k during a given time interval
[t
0

, t]. The solutions to differential equations eq. (S82) that give the expressions for the costate variables at time
t 2 [t

0

, t
1

] are

�s
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(S90)

Note that the solutions given by eq. (S90) to costate equations hold for �s

q

(t), �s

q

(t), �s

q

(t) even if the unin-
vadable allocation schedule u

⇤
(t) is not constant during [t

0

, t]. As opposed to state variables, the dynamics
of costate variables is described backwards in time, where �s

m

(t
1

) is the terminal condition.The transversality
conditions (S86)-(S87) together with eq. (S90) imply that

�m

m

(t) = 0, �q

q

(t) = �m

q

(t), 8 t 2 [0, T ], (delayed dispersal),

�m

m

(t) = �m

iq

(t) = 0, �q

q

(t) = �m

q

(t) = �q

iq

(t), 8 t 2 [0, T ], (direct dispersal).
(S91)

5 The candidate uninvadable allocation schedule under delayed dispersal

5.1 Equal male and female mortality (µ
q

= µ
m

)

Here we show analytically that the candidate uninvadable allocation schedule under delayed dispersal (assuming
equal mortality rates of sexuals, i.e. µ

q

= µ
m

= µ
r

) consists of only two growth regimes: (i) the ergonomic
phase (regime W) and (ii) the reproductive phase, where males and new queens are produced simultaneously
(regime FM). The uninvadable allocation schedule can be described by phases W and FM of table S1:

Phase W: (u⇤
f

(t), u⇤
q

(t)) = (ū⇤
f

= 1, ū⇤
q

= 0) for t 2
⇥
0, t⇤

c,1

⇤
;

Phase FM: (u⇤
f

(t), u⇤
q

(t)) = (

ˆū⇤
f

, ū⇤
q

= 1) for t 2
⇥
t⇤
c,1

, T
⇤
.

(S92)
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The uninvadable allocation schedule has this form regardless of the assumptions about the genetic control of the
resource allocation traits. However, the switching time t⇤

c,1

from the ergonomic phase to the reproductive phase
depends on the scenario c of the genetic control of the resource allocation traits. We will proceed according to
the scheme for deriving the uninvadable allocation schedule u

⇤ outlined in section 4.2.

5.1.1 Regime FM: �c

1

(t) > 0, �c

2

(t) > 0, and �c

1

(t)� �c

2

(t) = 0

We know from biological considerations that x⇤
q

(u

⇤
) > 0 and x⇤

m

(u

⇤
) > 0. Taking this into account and

substituting the transversality conditions (S83) and (S86) into the switching functions (S78) (for queen control)
and (S80) (for worker control), implies that �c

1

(T ) > 0 and �c

2

(T ) > 0. According to table S1, we need to also
determine the sign of �c

1

(T ) � �c

2

(T ). Assuming equal mortality rates of males and queens (µ
q

= µ
m

= µ
r

)
and substituting eq. (S86) into eqs. (S78) (for queen control) and (S80) (for worker control) yields
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� 1
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, v
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(S93)

We know from eq. (S35) that the first-order condition implies that x⇤
q

(u

⇤
)/x⇤

m

(u

⇤
) = R

c

, where R
c

= 1 for
queen control and R

c

= (2 +M)/M for worker control (recall S35), which, on substitution, implies that

�c

1

(T )� �c

2

(T ) = 0 (S94)

for both queen and worker control of the focal trait of type ⌧ .
Hence, we have shown that �c

1

(T ) > 0, �c

2

(T ) > 0, �c

1

(T ) � �c

2

(T ) = 0. This implies via table S1 that
u⇤
q

(t) = ū⇤
q

= 1 during the final growth regime. It also follows from eq. (S81) and �c
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(T ) � �c

2

(T ) = 0, that
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(t) might be a singular arc during the final growth regime. More precisely, for u⇤
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(t) to be a singular
arc,
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must hold for a finite interval of time (e.g., Bryson and Ho, 1975, p. 248). It follows, that also higher order time
derivatives have to vanish along the singular arc and this condition can be used to determine u⇤

f

(t) = û⇤
f

(t), i.e.
the constraints for the singular arc are given by the sequence

✓
d
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= 0 i = 0, 1, 2, ....

(S96)
Note that b > 0 for biological reasons and u⇤

q

(t) = ū⇤
q

= 1 during the last growth regime. It follows from
eq. (S88) (by taking ū⇤

q

= 1, t
0

= t⇤
c,1

, and t
1

= T ) that x⇤
w

(t) = x⇤
w

(t⇤
c,1

) exp(�µ
w

(t � t⇤
c,1

)) during the last
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growth regime. Since, x⇤
w

(t⇤
c,1

) > 0, then eq. (S96) simplifies to

✓
d

dt

◆
i

(�c

1

(t)� �c

2

(t)) = 0 i = 0, 1, 2, ... . (S97)

Substituting the switching functions eq. (S78) (for queen control) and (S80) (for worker control) into eq. (S97)
implies for i = 1 that on a singular arc

˙�q

q

(t) = ˙�q

m

(t) (u
⌧

, v
⌧

under queen control),
1

4

˙�q

q

(t) +
1

2M
˙�m

q

(t) =
1

4

˙�q

m

(t) +
1

2M
˙�m

m

(t) (u
⌧

, v
⌧

under worker control).
(S98)

must hold. Simplifying eq. (S98) by using eq. (S91); namely, ˙�q

q

(t) = ˙�m

q

(t) and ˙�m

m

(t) = 0, and further using
the expression for relatedness asymmetry R

c

given by eq. (S35), we obtain

˙�q

m

(t)
˙�q

q

(t)
= R

c

, (S99)

where R
c

is the relatedness asymmetry associated with the party c 2 {q,w} in control of the trait of type f .
Substituting the differential equations for costate variables (S82) into eq. (S99) gives

�q

m

(t)

�q

q

(t)
=

µ
q

µ
m

R
c

. (S100)

Note that the control variable u
f

(t) itself does not appear in eq. (S100). Furthermore, it follows from the simple
form of the costate equations (S82) that the i-th order time derivative of the coefficient (�c

1

(t)��c

2

(t)) produces

�q

m

(t)

�q

q

(t)
=

✓
µ
q

µ
m

◆
i

R
c

. (S101)

Since the control variable does u⇤
f

(t) not appear in any order time derivative of the coefficient (�c

1

(t)� �c

2

(t)),
we can use the constraints (S101) that the singular arc has to satisfy to indirectly obtain the expression for the
singular arc û⇤

f

(t). Substituting the costate equations (S90) (and setting t
1

= T ) into eq. (S101), using the
transversality conditions given by eq. (S86), and assuming that the mortality rates of queens and males are equal
(µ

q

= µ
m

) yields
x⇤
q

(u

⇤
)

x⇤
m

(u

⇤
)

= R
c

. (S102)

Here, we have recovered the critical sex ratio given by eq. (S50), which essentially implies that if males and
queens have equal mortality rates, there are no additional dynamic constraints besides the critical sex ratio at
the end of the season. Since, there are no additional dynamic constraints for the control variable, we assume
(for simplicity) that it is constant, i.e. û⇤

f

(t) = ū⇤
f

. This allows us to substitute the equations for state variables
for constant allocation strategy (ˆū⇤

f

,ū⇤
q

=1), given by eq. (S88) with eq. (3) into eq. (S102) for the time interval
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t 2 [t⇤
c,1

, T ] and assuming that µ
q

= µ
m

= µ
r

and x⇤
q

(t⇤
c,1

) = x⇤
m

(t⇤
c,1

) = 0 (at the start of the reproductive
phase, there are no males or juvenile queens), we obtain

x⇤
m

(u

⇤
)

x⇤
q

(u

⇤
)

=

b(1� ˆū⇤
f
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⇤
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h
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⇤
c,1)(µr

�µ
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i
(µ
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� µ
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)

bˆū⇤
f
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w

(t⇤
c,1

)e�µ

r

(

T�t

⇤
c,1)

h⇣
e(T�t

⇤
c,1)(µr

�µ

w

) � 1

⌘i
(µ

r

� µ
w

)

,

=

(1� ˆū⇤
f

)

ˆū⇤
f

= R
c

.

(S103)

Solving for ˆū⇤
f

yields

ˆū⇤
f

=

8
>><

>>:

R
q

1 +R
q

(u
f

, v
f

under queen control),

R
w

1 +R
w

(u
f

, v
f

under worker control)
(S104)

and for haplodiploids it simplifies to

ˆū⇤
f

=

8
><

>:

1

2

(u
f

, v
f

under queen control)),

2 +M

2(1 +M)

(u
f

, v
f

under worker control).
(S105)

Hence, we have determined the uninvadable allocation schedule u

⇤
(t) for the final growth regime FM (t 2

[t⇤
c,1

, T ]), assuming equal mortality rates of males and queens.

5.1.2 Regime W: �c

1

(t) < 0, �c

2

(t) < 0, and �c

1

(t)� �c

2

(t) = 0

In order to determine the preceding phase, we need to determine which switching function expression �c

1

(t) < 0,
�c

2

(t) < 0, and �c

1

(t)� �c

2

(t) = 0 changes their sign.
Lets first examine expression �c

1

(t) � �c

2

(t) = 0. Substituting the costate variables given by eq. (S90) (for
the time interval t 2 [0, T ]) into the expression �c

1

(t)��c

2

(t) given by eq. (S78) (for queen control) and eq. (S80)
(for worker control) yields for any t 2 [0, T ]

�q

1

(t)� �q

2

(t) = e�µ

r

(T�t)

1

2

�
�q

q

(T )� �q

m

(T )
�

(u
f
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f
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�w

1

(t)� �w

2

(t) = e�µ
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(T�t)
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4

✓
2 +M

M
�q

q

(T )� �q

m

(T )

◆
(u

f

, v
f

under worker control).
(S106)

Notice that from the expression �c

1

(t) � �c

2

(t) given by eqs. (S78) (for queen control) and (S80) (for worker
control) that eq. (S106) can also be expressed in terms of

�c

1

(t)� �c

2

(t) = e�µ

r

(T�t)

[�c

1

(T )� �c

2

(T )] . (S107)

It follows from eq. (S94) that �c

1

(t) � �c

2

(t) = 0 throughout the entire time interval t 2 [0, T ] for both queen
and worker control.
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Next, we will show that there is a switch from regime FM to regime W. If there exists at least one root of t
in equation �c

1

(t) = 0, given that the costate variables in �c

1

(t) are obtained through integrating eq. (S82) over
the final growth regime [t⇤

c,1

, T ], assuming that u⇤
(t) = (ū⇤

f

=

ˆū⇤
f

, ū⇤
q

= 1), then there is a switch in u
q

(t) and
u
f

(t) (since �c

2

(t) also changes its sign because �c

1

(t) = �c

2

(t) 8t 2 [0, T ]). The switching time t⇤
c,1

< T from
phase FM to phase W is given by the largest root of �c

1

(t) = 0 (assuming that u⇤
(t) = (ū⇤

f

=

ˆū⇤
f

, ū⇤
q

= 1) in
the last phase) and its existence is shown in sections 5.1.3 for single-party control and 5.1.4 for mixed control,
respectively. We can infer from our numerical solutions that u

q

is not a singular arc. Hence, �c

1

(t) = �c

2

(t) = 0

only at time t = t⇤
c,1

and �c

1

(t) = �c

2

(t) < 0 for t < t⇤
c,1

. Hence, we have determined that phase W (with
allocation schedule (ū⇤

f

= 1, ū⇤
q

= 0)) is the penultimate phase.
In order to determine if there are additional switches during time 0 < t < t⇤

c,1

, one can further look for roots
of the switching function �c

1

(t) = 0 that satisfy 0 < t < t⇤
c,1

. It follows from �c

1

(t) = 0 and eq. (S78) for queen
control and eq. (S80) for worker control that

�q

1

(t) =
1

2

�
�q

q

(t)� �q

w

(t)
�
= 0 (u

q

, v
q

under queen control),

�w

1

(t) =
2 +M

4M

�
�q

q

(t)� �q

w

(t)
�
= 0 (u

q

, v
q

under worker control),
(S108)

where costate variables at time t are evaluated by using eq. (S82) [t⇤
c,1

, T ], assuming that u⇤
(t) = (ū⇤

f

=

ˆū⇤
f

, ū⇤
q

= 1) during [t⇤
c,1

, T ] and u

⇤
(t) = (ū⇤

f

= 1ū⇤
q

= 0) during [t, T ]. Our numerical solutions indicate that
there are no additional growth regimes (see Figs. 1–2). This can be also shown analytically, by showing that
there are no additional switches in the switching functions for t < t⇤

c,1

. However, for conciseness, we do not
provide the proofs here.

In conclusion, we have determined that the optimal allocation schedule consists of two growth regimes:
starting with the ergonomic regime W followed by reproductive regime FM, where the switch from regime W
to regime FM happens at time t⇤

c,1

. We also verified that our analytical results are in line with our numerical
solutions (see Fig. 1, where µ

q

= µ
m

= µ
r

).

5.1.3 Switching time for single-party control

We have determined the candidate optimal controls for the ergonomic t 2 [0, t⇤
c,1

] and the reproductive t 2
[t⇤
c,1

, T ] phase (eq. S92 and S104), and we are now going to determine the switching time t⇤
c,1

for single-party
control (i.e. c 2 {q,w}) that marks the time when the growth schedule switches from one regime to another.

We showed in the previous section that the control variable u⇤
q

(t) switches its value from 1 to 0, when
�c

1

(t) = 0. Hence, solving the equation �c

1

(t) = 0 for t gives the switching time t⇤
c,1

. For queen control of u
q

and v

q

, eq. (S78) and �q

1

(t⇤
q,1

) = 0 this yields

�q

1

(t⇤
q,1

) =

1

2

�
�q

q

(t⇤
q,1

)� �q

w

(t⇤
q,1

)

�
= 0, (S109)

and using the solutions for costate equations (S90), transversality conditions (S83) and (S86), and assuming
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µ
q

= µ
m

= µ
r

it leads to the following transcendental equation for finding t⇤
q,1

�q

q

(T )e�µ(T�t

⇤
q,1) �

b
�
a⇤
q

(t)�q
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µ
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� µ
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= 0. (S110)

Similarly, for worker control of u
q

and v

q

, eq. (S80) and �w

1

(t⇤
w,1

) = 0 yields

�w
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(t⇤
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) =

2 +M

4M

�
�q

q
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)� �q
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)

�
= 0 (S111)

and using the solutions for costate equations (S90), transversality conditions (S83) and (S86), and assuming
µ
q

= µ
m

= µ
r

, it leads to the following transcendental equation for finding t⇤
w,1

�q

q
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⇤
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⌘
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(T ) + a⇤
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� µ
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e�µ

w

(
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⇤
w,1) � e�µ

r

(

T�t

⇤
w,1)

⌘
= 0. (S112)

By solving eq. (S110) for t⇤
q,1

and (S112) for t⇤
w,1

and taking u⇤
q

(t) = 1, we obtain

t⇤
c,1

= T �
ln

�
1 + ✓

c

µ

r

�µ

w

r

�

µ
r

� µ
w

, (S113)

where

1

✓
c

=

8
<

:
u⇤
f

(t) + (1� u⇤
f

(t))�
q

m

(T )

�

q

q

(T )

for c = q,

u⇤
f

(t) + (1� u⇤
f

(t)) �

q
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(T )

�

q

q

(T )+(2/M)�

m

q
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for c = w.
(S114)

Using eq. (S86) we obtain
1

✓
c

= u⇤
f

(t) + (1� u⇤
f

(t))
1

R
c

x⇤
q

(u

⇤
)

x⇤
m

(u

⇤
)

. (S115)

After substituting the control variable u⇤
f

(t) = ˆū⇤
f

from equation (S104) for the respective case of control and
using eq. (S102), we finally have

✓
c

=

1 +R
c

1 +R
c

= 1. (S116)

We have obtained that the switching time for single-party control is

t⇤
c,1

= T �
ln

�
1 +

µ

r

�µ

w

b

�

µ
r

� µ
w

for c 2 {q,w} . (S117)

In the limit where the mortality of sexuals becomes equal to the mortality of workers (µ
r

! µ
w

) the
switching time simplifies to

t⇤
c,1

= T � 1

b
for c 2 {q,w} . (S118)

Note that in our model (1/b) can be loosely interpreted as the time it takes for one worker to help produce
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one offspring, i.e. a generation time. Hence, when the mortality rate of sexuals is roughly equal to the mortality
rate of workers, then the switching time from the ergonomic to the reproductive phase t⇤

c,1

under single-party
control (c = {q,w}) approaches to one generation time (1/b) before the end of the season, i.e. only the last
generation of brood is reproductive.

5.1.4 Switching time for mixed control

It follows from eqs. (S65) and (S76) that under mixed control the trait u⇤
q

(t) is determined from the sign of
u⇤
f

(t)�w

1

(t) and the trait u⇤
f

(t) is determined from from the sign of (u⇤
q

(t)�q

1

(t)� �q

2

(t)). Hence, the switching
time t⇤

mx,1

(the switch in the trait u⇤
q

(t)) from ergonomic phase to reproductive phase under mixed control can
be found by solving �w

1

(t) = 0 for t = t⇤
mx,1

, which by way of eq. (S80) yields

�w

1

(t⇤
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) =

2 +M

4M

�
�q

q

(t⇤
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)� �q

w

(t⇤
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)

�
= 0 (S119)

and using the solutions for costate equations (S90), transversality conditions (S83) and (S86), and assuming
µ
q

= µ
m

= µ
r

, it leads to the following transcendental equation for finding t⇤
mx,1
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⌘
= 0. (S120)

Solving eq. (S120) for t⇤
mx,1

yields

t⇤
mx,1

= T �
ln

�
1 + ✓

mx

µ

r

�µ

w

b

�

µ
r

� µ
w

, (S121)

where
1

✓
mx

= u⇤
f

(t) + (1� u⇤
f

(t))
�q

m

(T )

�q

q

(T ) + (2/M)�m

q

(T )
.

Since according to eq. (S76) for mixed control, the trait u⇤
f

(t) is determined from equation �q

1

(t) � �q

2

(t) = 0.
We have shown earlier (see eqs. S98–S104 for queen control) that this leads to an equation for u⇤

f

(t) given
by eq. (S104) (for queen control). Substituting u⇤

f

(t) =

ˆū⇤
f

from eq. (S104) (for queen control) and with
transversality conditions (S86) and eq. (S102) (for queen control) and using eq. (8) of the main text, we obtain

✓
mx

=

2 +M

1 +M
. (S122)

It follows from eq. (S121) that t⇤
mx,1

< t⇤
q,1

= t⇤
w,1

and as M ! 1, t⇤
mx,1

! t⇤
q,1

= t⇤
w,1

(see eq. S117). We
should also mention that equations (S117) and (S121) hold if µ

w

< b/✓
c

+ µ
r

. This not biologically restrictive,
since the reproduction rate has to be significantly higher than worker mortality otherwise the population will go
extinct. Finally, in the limit where the mortality of sexuals approaches the mortality of workers (µ

r

! µ
w

) the
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switching time simplifies to

t⇤
mx,1

= T � ✓
mx

b
for c 2 {q,w} . (S123)

Hence, when the mortality rate of sexuals is roughly equal to the mortality rate of workers, then under mixed
control the switch happens ✓

mx

generations earlier. For example, when females mate only once (M = 1) the
switch to reproductive phase happens one and a half generations before the end of the season.

5.2 Unequal male and female mortality (µ
q

6= µ
m

)

The above analytical results hold for µ
q

= µ
m

. Our numerical solutions indicate that if the mortality rates of
queens and males are not equal (µ

q

6= µ
m

), then the sex that has the lower mortality rate is produced first.
Furthermore, the numerical solutions confirm that males and queens are produced such that by the end of the
season the ratio of queens to males is given by the relatedness asymmetry, i.e. eq. (S50) holds, regardless of the
mortality rates of males and queens. In Figs. S1–S2, we have depicted our numerical results for the uninvadable
proportional allocation a⇤

k

(t) to individuals of different types and the corresponding number of individuals x⇤
k

,
respectively, assuming that queen mortality is lower than male mortality.
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Figure S1: Uninvadable proportional allocation (under delayed dispersal) to workers a⇤
w

(t) = u⇤
f

(t)(1� u⇤
q

(t))

(black asterisks), queens a⇤
q

(t) = u⇤
f

(t)u⇤
q

(t) (red circles), and males a⇤
m

(t) = (1�u⇤
f

(t)) (blue circles). Results
here are only numerically derived. Panel (a): queen control. Panel (b): worker control. Panel (c): mixed control.
Parameter values: M = 1 (queen monandry), b = 0.07, µ

w

= 0.015, µ
q

= 0.001, µ
m

= 0.02, T = 100.
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Figure S2: Number of individuals produced in a colony following the uninvadable resource allocation schedule
u

⇤ under delayed dispersal. Number of workers (black asterisks), number of juvenile queens (red circles),
number of males (blue circles). Results here are only numerically derived. Panel (a): full queen control. Panel
(b): full worker control. Panel (c): mixed control. Parameter values: M = 1 (queen monandry), b = 0.07,
µ
w

= 0.015, µ
q

= 0.001, µ
m

= 0.02, T = 100.

6 The candidate uninvadable allocation schedule under direct dispersal

6.1 The cases R
c

µ
q

� µ
m

(single-party control) and R
q

µ
q

� µ
m

(mixed control)

Here, we determine analytically the candidate uninvadable allocation schedule under direct dispersal assuming
R

c

µ
q

� µ
m

(single-party control) and R
q

µ
q

� µ
m

(mixed control). We find that the optimal allocation schedule
consists of the following three growth regimes: (i) ergonomic phase (production of workers), (ii) reproductive
phase where only males are produced, (iii) reproductive phase where only new queens are produced. Under
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these conditions, the uninvadable allocation schedule has the following properties

Regime W: (u⇤
f

(t), u⇤
q

(t)) = (ū⇤
f

= 1, ū⇤
q

= 0) for t 2
⇥
0, t⇤

c,1

⇤
,

Regime M: (u⇤
f

(t), u⇤
q

(t)) = (ū⇤
f

= 0, ũ⇤
q

(t)) for t 2
⇥
t⇤
c,1

, t⇤
c,2

⇤
,

Regime F: (u⇤
f

(t), u⇤
q

(t)) = (ū⇤
f

= 1, ū⇤
q

= 1) for t 2
⇥
t⇤
c,2

, T
⇤
,

(S124)

where t⇤
c,1

and t⇤
c,2

in denote the switching times from ergonomic to reproductive phase and from male produc-
tion to queen production, respectively, and they depend on the mode of control c 2 {q,w,mx}. We now derive
this schedule by working backwards in time.

6.1.1 Regime F: �c

1

(t) > 0 and �c

1

(t)� �c

2

(t) > 0

The transversality conditions (S83) and (S87) yield that �q

w

(T ) = �m

w

(T ) = 0, �q

q

(T ) = �m

q

(T ) > 0, and
�q

m

(T ) = �m

m

(T ) = 0. Hence, it follows from eqs. (S78) and (S79) that �c

1

(T ) > 0, �c

2

(T ) = 0, and (�c

1

(T )�
�c

2

(T )) > 0. Therefore, from table S1 it follows that (ū⇤
f

= 1, ū⇤
q

= 1) during t 2 [t⇤
c,2

, T ], where t⇤
c,2

marks the
beginning of the last growth regime.

6.1.2 Regime M: �c

1

(t) > 0 and �c

1

(t)� �c

2

(t) > 0

If at least one of the switching functions (S77) changes its sign at time t⇤
c,2

, then one of the three alternative
conditions must hold: (i) �c

1

(t⇤
c,2

) = 0, which implies a change in the control variable u⇤
q

(t), (ii) (�c

1

(t⇤
c,2

) �
�c

2

(t⇤
c,2

)) = 0, which means that the control variable u⇤
f

(t) changes, or (iii) (�c

1

(t⇤
c,2

)��c

2

(t⇤
c,2

)) = �c

1

(t⇤
c,2

) = 0,
which means that both control variables change. The switching time t⇤

c,2

of an uninvadable allocation schedule
(S124) is given by the largest root t = t⇤

c,2

that satisfies one of the conditions given by these scenarios.
Next, we will solve eqs. �c

1

(t⇤
c,2

) = 0 and (�c

1

(t⇤
c,2

) � �c

2

(t⇤
c,2

)) = 0 for t⇤
c,2

, taking into account that that
(ū⇤

f

= 1, ū⇤
q

= 1) during t 2 [t⇤
c,2

, T ] and eq. (S91) that implies that �q

w

(t) = �m

w

(t). After which we will
compare the the roots t⇤

c,2

for these two equations in order to determine which of the three alternative above-
mentioned scenarios holds.

Firstly, we determine the root t⇤
c,2

of eq. �c

1

(t⇤
c,2

) = 0. Substituting the transversality conditions (S83)
and (S87) into eq. (S90), where we take t

1

= T and assume that (ū⇤
f

= 1, ū⇤
q

= 1) we obtain for t 2 [t⇤
c,2

, T ]

�s

w

(t) = �s

q

(t)
b

µ
q

� µ
w

⇣
e(�µ

w

)(T�t) � e�µ

q

(T�t)

⌘
. (S125)

Substituting eq. (S91) into eq. (S125) yields that �q

w

(t) = �m

w

(t). Taking this into account and substituting
eqs. (S78) and (S79) into �c

1

(t⇤
c,2

) = 0 yields

�q

1

(t⇤
c,2

) =

1

2

�
�q

q

(t⇤
c,2

)� �q

w

(t⇤
c,2

)

�
= 0 (u

q

, v
q

under queen control),

�w

1

(t⇤
c,2

) =

2 +M

4M

�
�q

q

(t⇤
c,2

)� �q

w

(t⇤
c,2

)

�
= 0 (u

q

, v
q

under worker control).
(S126)
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Substituting the solutions to the costate equations (S90) (assuming that t
1

= T and t = t⇤
c,2

), the transversality
conditions (S83), (S87) into eq. (S126) assuming that (ū⇤

f

= 1, ū⇤
q

= 1) during t 2 [t⇤
c,2

, T ] and solving for t⇤
c,2

yields

t⇤
c,2

= T �
ln

�
1 +

µ

r

�µ

w

b

�

µ
r

� µ
w

. (S127)

Note that the derivation of eq. (S127) from eq. (S126) is not shown here, since it is very similar to derivation of
eq. (S117) from eqs. (S109) and (S111).

Secondly, we need to determine the root t⇤
c,2

of eq. (�c

1

(t⇤
c,2

) � �c

2

(t⇤
c,2

)) = 0. Taking into account that
�q

w

(t) = �m

w

(t) for t 2 [t⇤
c,2

, T ] (recall the implications of eqs. S125 and S91) and substituting eqs. (S78)
and (S79) (assuming that t = t⇤

c,2

) into (�c

1

(t⇤
c,2

)� �c

2

(t⇤
c,2

)) = 0 yields for t = t⇤
c,2

that

�q

q

(t) = �q

m

(t) (u
f

, v
f

under queen control),
1

4

�q

q

(t) +
1

2M
�m

q

(t) =
1

4

�q

m

(t) +
1

2M
�m

m

(t) (u
f

, v
f

under worker control).
(S128)

We will show in sections 6.1.4 and 6.1.5 that substituting the solutions to the costate equations (S90) (assuming
that t

1

= T and t = t⇤
c,2

) and the transversality conditions (S83), (S87) into eq. (S128) yields a switching time
t⇤
c,2

given by eq. (S139) for single-party control (assuming R
c

µ
q

� µ
m

) and eqs. (S147) and (S146) for mixed
control (assuming µ

q

= µ
m

).
Finally, comparing the root t⇤

c,2

of eq. �c

1

(t⇤
c,2

) = 0 given by eq. (S127) with roots of eq. (�c

1

(t⇤
c,2

) �
�c

2

(t⇤
c,2

)) = 0, given by eq. (S139) (for single-party control) and eqs. (S147) and (S146) (for mixed control),
yields that for biologically realistic parameter values, the root t⇤

c,2

of eq. �c

1

(t⇤
c,2

) = 0 is smaller than the
roots of eq. (�c

1

(t⇤
c,2

) � �c

2

(t⇤
c,2

)) = 0. Hence, we have verified that the switch t⇤
c,2

is given by the root of
(�c

1

(t⇤
c,2

)� �c

2

(t⇤
c,2

)) = 0 and it follows that the control variable u⇤
f

(t) changes its sign at this time.
We have established that (�c

1

(t)��c

2

(t)) = 0 at time t = t⇤
c,2

. Next we have to determine if (�c

1

(t)��c

2

(t)) =

0 only at time t = t⇤
c,2

or if (�c

1

(t) � �c

2

(t)) = 0 during a finite period of time that ends at time t = t⇤
c,2

. It
follows from the definition of the singular arc that if (�c

1

(t) � �c

2

(t)) = 0 holds for a finite interval of time
then u

f

(t) = û⇤
f

(t) is a singular arc during that time (e.g., Bryson and Ho, 1975, p. 246–249). Furthermore, if
(�c

1

(t)��c

2

(t)) = 0 during a finite period of time then it also follows that (�̇
1

(t)� �̇
2

(t)) = 0 holds during that
time. Furthermore, it follows from the time derivative of eq. (S128) that a condition for a singular arc to exist is
given by

˙�q

q

(t) = ˙�q

m

(t) (u
f

, v
f

under queen control),
1

4

˙�q

q

(t) +
1

2M
˙�m

q

(t) =
1

4

˙�q

m

(t) +
1

2M
˙�m

m

(t) (u
f

, v
f

under worker control).
(S129)

Simplifying eq. (S129) by considering that ˙�q

q

(t) =

˙�m

q

(t) and ˙�m

m

(t) = 0 (by way of eq. S91) and using
eq. (S35) we obtain

˙�q

m

(t)
˙�q

q

(t)
= R

c

, (S130)

71



where c denotes the party in control of u
f

and v

f

. Substituting the costate equations (S82) into eq. (S130) yields

µ
m

�q

m

(t)� ba

⇤
q

(t)x

⇤
w

(t)�

q

iq

(t)

x

⇤
m

(t)

µ
q

�q

q

(t)
= R

c

. (S131)

Taking this account together with eq. (S91) and a⇤
q

(t) = u⇤
f

(t)u⇤
q

(t) implies that

ba⇤
q

(t)x⇤
w

(t)

x⇤
m

(t)
=

bu⇤
f

(t)u⇤
q

(t)x⇤
w

(t)

x⇤
m

(t)
= µ

m

�R
c

µ
q

. (S132)

Given that u⇤
q

= ū⇤
q

= 1 for t < t⇤
c,2

(since �c

1

(t) > 0 for t < t⇤
c,2

) then eq. (S131) implies that u⇤
f

(t) = û⇤
f

(t)

can only be positive if (µ
m

�R
c

µ
q

) > 0. Note that here c denotes the party in control of u
f

and v

f

. Hence, u⇤
f

can not be a singular arc before t⇤
c,2

if juvenile male mortality is lower or equal than that of R
c

times juvenile
queen mortality (i.e. µ

m

 R
c

µ
q

).
Hence we have determined that in the penultimate phase, which ends at time, t⇤

c,2

that �c

1

(t) > 0 and
�c

1

(t) � �c

2

(t) < 0 if R
c

µ
q

� µ
m

(under single-party control) or R
q

µ
q

� µ
m

(under mixed control). This
means that if R

c

µ
q

� µ
m

(under single-party control) or R
q

µ
q

� µ
m

(under mixed control) then regime
M (exclusive production of juvenile males) precedes the final regime F, where control variables are given by
(ū⇤

f

= 0, ū⇤
q

= 1). Later in this section we will revisit the case when R
c

µ
q

< µ
m

(under single-party control)
and R

q

µ
q

< µ
m

(under mixed control).

6.1.3 Regime W: �c

1

< 0 and �c

2

< 0

We use the intuition from our numerical solutions (see Fig. 2) that there exists only one additional switching
time t⇤

c,1

, when �c

1

(t) and �c

2

(t) become negative, which represent the first growth regime of the uninvadable
allocation schedule. Hence, regime W (worker production) is the first growth regime of the uninvadable alloca-
tion schedule, where u

⇤
(t) = (ū⇤

f

= 1, ū⇤
q

= 0). We can determine the switching time t⇤
c,1

from the condition
�c

1

(t) = 0, where the costate variables are obtained by integrating them over the last two growth regimes. It
turns out that we can explicitly calculate the switching times t⇤

c,1

and t⇤
c,2

only if R
c

µ
q

� µ
m

under single-party
control and only if µ

q

= µ
q

= µ
r

under mixed control.

6.1.4 Switching times under single-party control R
c

µ
q

� µ
m

If µ
m

 R
c

µ
q

then the condition for the switching time t⇤
c,2

which marks the transition from production of exclu-
sively males to the production of exclusively sexual females is given by (resulting from �c

1

(t⇤
c,2

)��c

2

(t⇤
c,2

) = 0)

�q

q

(t⇤
c,2

) = �q

m

(t⇤
c,2

) (u
f

, v
f

under queen control),
1

4

�q

q

(t⇤
c,2

) +

1

2M
�m

q

(t⇤
c,2

) =

1

4

�q

m

(t⇤
c,2

) +

1

2M
�m

m

(t⇤
c,2

) (u
f

, v
f

under worker control).
(S133)
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Using eq. (S90) for phase t 2
⇥
t⇤
c,2

, T
⇤
, where ū⇤

f

= 1 and ū⇤
q

= 1 and simplifying, we get

�s

q

(t⇤
c,2

) = �s

q

(T )e�µ

q

(T�t

⇤
c,2),

�q

m

(t⇤
c,2

) = �q

iq

(T )
e�µ

q

(T�t

⇤
c,2)

(µ
m

� µ
w

)

⇣
e(µq

�µ

w

)(T�t

⇤
c,2) � 1

⌘

(µ
q

� µ
w

)

⇣
1� e�(µ

m

�µ

w

)(t

⇤
c,2�t

⇤
c,1)
⌘ ,

�m

m

(t⇤
c,2

) = 0.

(S134)

Substituting of eq. (S134) into (S133) and using eq. (S87) implies

(µ
m

� µ
w

)e(µq

�µ

w

)(T�t

⇤
c,2)

+ (µ
q

� µ
w

)e�(µ

m

�µ

w

)(t

⇤
c,2�t

⇤
c,1)

=

(µ
q

� µ
w

) + (µ
m

� µ
w

) (u
f

, v
f

under queen control),
M

2 +M
(µ

m

� µ
w

)e(µq

�µ

w

)(T�t

⇤
c,2)

+ (µ
q

� µ
w

)e�(µ

m

�µ

w

)(t

⇤
c,2�t

⇤
c,1)

=

(µ
q

� µ
w

) +

M

2 +M
(µ

m

� µ
w

) (u
f

, v
f

under worker control).
(S135)

The switching time t⇤
c,1

which marks the transition from production of exclusively workers to the production
of exclusively males can be found by solving the eq. �c

2

(t⇤
c,1

) = 0 for t⇤
c,1

(see table S1)

�q

w

(t⇤
c,1

) = �q

m

(t⇤
c,1

) (u
f

, v
f

under queen control),
1

4

�q

w

(t⇤
c,1

) +

1

2M
�m

w

(t⇤
c,1

) =

1

4

�q

m

(t⇤
c,1

) +

1

2M
�m

m

(t⇤
c,1

) (u
f

, v
f

under worker control).
(S136)

Using eq. (S90) for phase t 2
⇥
t⇤
c,1

, t⇤
c,2

⇤
, for which ū⇤

f

= 0 and simplifying, we get

�s

w

(t⇤
c,1

) = �s

w

(t⇤
c,2

)e�µ

w

(t

⇤
c,2�t

⇤
c,1)

+

b�s

m

(t⇤
c,2

)

(µ
m

� µ
w

)

(e�µ

w

(t

⇤
c,2�t

⇤
c,1) � e�µ

m

(t

⇤
c,2�t

⇤
c,1)

),

�s

m

(t⇤
c,1

) = �s

m

(t⇤
c,2

)e�µ

m

(t

⇤
c,2�t

⇤
c,1).

(S137)

Substituting of eq. (S137) into (S136) and solving for t⇤
c,1

= t⇤
q,1

(under queen control) and t⇤
c,1

= t⇤
w,1

(under
worker control) implies

t⇤
q,1

= t⇤
q,2

� 1

(µ
m

� µ
w

)

ln

✓
2b+ (µ

m

� µ
w

)

2b

◆
(queen control),

t⇤
w,1

= t⇤
w,2

� 1

(µ
m

� µ
w

)

ln

 
2b+ M

1+M

(µ
m

� µ
w

)

2b

!
(worker control).

(S138)
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Substituting eq. (S138) into eq. (S135) and solving for t⇤
c,2

we obtain

t⇤
q,2

= T � 1

(µ
q

� µ
w

)

ln

✓
2b+ µ

m

+ µ
q

� 2µ
w

2b+ µ
m

� µ
w

◆
(queen control),

t⇤
w,2

= T � 1

(µ
q

� µ
w

)

ln

 
2b+ 1

1+M

(Mµ
m

+ (2 +M)µ
q

� 2(1 +M)µ
w

)

2b+ M

1+M

(µ
m

� µ
w

)

!
(worker control).

(S139)

6.1.5 Switching time under mixed control when µ
q

= µ
m

= µ
r

For mixed control, we will derive the switching times t⇤
mx,1

and t⇤
mx,2

assuming that juvenile queen and male
mortality is equal, i.e. µ

m

= µ
q

= µ
r

, since this represents the only case where we were able to derive analytical
expressions. Under mixed control, the workers control the trait u

q

and the queen controls the trait u
f

. Hence,
it follows from eqs. (S76) and (S124) that the switching time t⇤

mx,1

is determined from equation �w

1

(t⇤
mx,1

) = 0

and t⇤
mx,2

is determined from equation �q

1

(t⇤
mx,2

)� �q

2

(t⇤
mx,2

) = 0.
It follows from eq. (S77) that condition �w

1

(t⇤
mx,1

) = 0 yields

1

4

�q

w

(t⇤
mx,1

) +

1

2M
�m

w

(t⇤
mx,1

) =

1

4

�q

q

(t⇤
mx,1

) +

1

2M
�m

q

(t⇤
mx,1

). (S140)

Using eq. (S90) for phase t 2
⇥
t⇤
mx,2

, T
⇤
, where ū⇤

f

= 1 and ū⇤
q

= 1 and simplifying, we get

�s

w

(t⇤
mx,2

) =

b�s

q

(T )

(µ
q

� µ
w

)

(e�µ

w

(T�t

⇤
mx,2) � e�µ

q

(T�t

⇤
mx,2)

),

�s

q

(t⇤
mx,2

) = �s

q

(T )e�µ

q

(T�t

⇤
mx,2).

(S141)

Using eq. (S90) for phase t 2
⇥
t⇤
mx,1

, t⇤
mx,2

⇤
, where ū⇤

f

= 0 and simplifying, we get

�s

w

(t⇤
mx,1

) = �s

w

(t⇤
mx,2

)e�µ

w

(t

⇤
mx,2�t

⇤
mx,1)

+

b�s

m

(t⇤
mx,2

)

(µ
m

� µ
w

)

(e�µ

w

(t

⇤
mx,2�t

⇤
mx,1) � e�µ

m

(t

⇤
mx,2�t

⇤
mx,1)

),

�s

q

(t⇤
mx,1

) = �s

q

(t⇤
mx,2

)e�µ

q

(t

⇤
mx,2�t

⇤
mx,1).

(S142)

Substituting the the costate variables from eq. (S142) together with (S141) into eq. (S140) and solving for t⇤
mx,1

yields

t⇤
mx,1

=

µ
w

(T + t⇤
mx,2

)� ln

 
�

2(M+1)b

⇣
e

µ
q

T+µ
w

t⇤
mx,2�e

µ
w

T+t⇤
mx,2

⌘

(M+2)(µ

w

�µ

q

)

!

µ
w

� µ
q

. (S143)

It follows from eq. (S77) that condition �q

1

(t⇤
mx,2

)� �q

2

(t⇤
mx,2

) = 0 yields

�q

q

(t⇤
mx,2

) = �q

m

(t⇤
mx,2

). (S144)

Substituting the costate variables from eq. (S134) and the switching time t⇤
mx,1

given by eq. (S143) into
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eq. (S144) and solving for t⇤
mx,2

(assuming that µ
q

= µ
q

= µ
r

) yields

t⇤
mx,2

= T �
ln

⇣
2� b

b+

1

2

✓

mx

(µ

r

�µ

w

)

⌘

µ
r

� µ
w

, (S145)

where
✓
mx

=

2 +M

1 +M
. (S146)

Substituting t⇤
mx,2

given by eq. (S145) back into eq. (S143) and simplifying yields

t⇤
mx,1

= T �
ln

�
1 + ✓

mx

µ

r

�µ

w

b

�

µ
r

� µ
w

. (S147)

Hence, we have retrieved the same switching time from the ergonomic to the reproductive phase for mixed
control under direct dispersal and delayed dispersal (given by eq. S121).

6.2 Equal mortality rates of males and queens (µ
q

= µ
m

)

In this section, we present the results for the candidate uninvadable allocation schedule under direct dispersal
assuming that the mortality rates of queens and males are equal (µ

q

= µ
m

= µ
r

). It turns out these results can
be directly obtained section 6.1 by equating the mortality rates of queens and males are equal (µ

q

= µ
m

= µ
r

).
This is because the results in section 6.1 were derived assuming that R

c

µ
q

� µ
m

(under single-party control)
and R

q

µ
q

� µ
m

(under mixed control), where relatedness asymmetry R
c

� 1 (recall eq. (S35)).
The optimal allocation schedule consists of the following three growth regimes: (i) ergonomic phase (pro-

duction of workers), (ii) reproductive phase where only males are produced, (iii) reproductive phase where only
new queens are produced. The uninvadable allocation schedule has the following properties

Regime W: (u⇤
f

(t), u⇤
q

(t)) = (ū⇤
f

= 1, ū⇤
q

= 0) for t 2
⇥
0, t⇤

c,1

⇤
,

Regime M: (u⇤
f

(t), u⇤
q

(t)) = (ū⇤
f

= 0, ũ⇤
q

(t)) for t 2
⇥
t⇤
c,1

, t⇤
c,2

⇤
,

Regime F: (u⇤
f

(t), u⇤
q

(t)) = (ū⇤
f

= 1, ū⇤
q

= 1) for t 2
⇥
t⇤
c,2

, T
⇤
,

(S148)

where t⇤
c,1

and t⇤
c,2

in denote the switching times from ergonomic to reproductive phase and from male produc-
tion to queen production, respectively, and they depend on the mode of control c 2 {q,w,mx}.

Single-party control

If the mortality of juvenile queens and males is equal (i.e. µ
q

= µ
m

= µ
r

) then the switching time t⇤
c,1

simplifies
to

t⇤
c,1

= T �
ln

�
1 +

µ

r

�µ

w

b

�

µ
r

� µ
w

for c 2 {q,w} , (S149)
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which is equal to the switching time obtained for single-party control under delayed dispersal (eq. S117). For
equal juvenile queen and male mortality (i.e. µ

q

= µ
m

= µ
r

) the switching time t⇤
c,2

simplifies to

t⇤
q,2

= T � 1

(µ
r

� µ
w

)

ln

 
b+ µ

r

� µ
w

b+ 1

2

(µ
r

� µ
w

)

!
(queen control),

t⇤
w,2

= T � 1

(µ
r

� µ
w

)

ln

 
b+ µ

r

� µ
w

b+ M

2(1+M)

(µ
r

� µ
w

)

!
(worker control).

(S150)

In the limit where the mortality of sexuals becomes equal to the mortality of workers (µ
r

! µ
w

) the
switching times t⇤

c,1

and t⇤
c,2

simplify to

t⇤
c,1

= T � 1

b
(queen and worker control, c = {q,w}),

t⇤
c,2

=

8
><

>:

T � 1

2b
, (queen control, c = q),

T � 1

2b

2 +M

(1 +M)

, (worker control, c = w).

(S151)

Hence, when the mortality rate of sexuals is roughly equal to the mortality rate of workers, then the switching
time from the ergonomic to the reproductive phase t⇤

c,1

under single-party control (c = {q,w}) approaches to
one generation time (1/b) before the end of the season, i.e. only the last generation of brood is reproductive.

Mixed control

We showed previously that if the mortality rates of queens and males are equal (i.e. µ
q

= µ
m

= µ
r

) then the
switching time t⇤

mx,1

from the ergonomic to the reproductive phase can be expressed as

t⇤
mx,1

= T �
ln

�
1 + ✓

mx

µ

r

�µ

w

b

�

µ
r

� µ
w

, (S152)

where
✓
mx

=

2 +M

1 +M
. (S153)

and the he switching time t⇤
mx,2

from the male production to the queen production can be expressed as

t⇤
mx,2

= T �
ln

⇣
2� b

b+

1

2

✓

mx

(µ

r

�µ

w

)

⌘

µ
r

� µ
w

. (S154)

In the limit where the mortality of sexuals becomes equal to the mortality of workers (µ
r

! µ
w

) the
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switching times t⇤
mx,1

and t⇤
mx,2

simplify to

t⇤
mx,1

= T � ✓
mx

b
,

t⇤
mx,2

= T � ✓
mx

2b
.

(S155)

Hence, when the mortality rate of sexuals is roughly equal to the mortality rate of workers, under mixed
control the switch happens ✓

mx

generations earlier. For example, when females mate only once (M = 1) the
switch to reproductive phase happens one and a half generations before the end of the season.

6.3 The cases R
c

µ
q

< µ
m

(single-party control) and R
q

µ
q

< µ
m

(mixed control)

It follows from eq. (S132) that if R
c

µ
q

< µ
m

(single-party control) or R
q

µ
q

< µ
m

(mixed control), then u⇤
f

(t)

can possibly be a singular arc during some period before t⇤
c,2

, where R
c

is the relatedness asymmetry associated
with party c in control of the trait of type f . Lets denote this singular arc by û⇤

f

(t) = û
f,Bulmer

(t), since it
was originally derived under full queen control by Bulmer (1983). Furthermore, if the singular arc û

f,Bulmer

(t)

exists, it has to satisfy

✓
d

dt

◆
i @H

c,d

(u(t),x⇤
(t),�(t))

@u
f

�����
u=v=u

⇤

=

✓
d

dt

◆
i ⇥
bx⇤

w

(t)
�
u⇤
q

(t)�c

1

(t)� �c

2

(t)
�⇤

= 0 i = 0, 1, 2, ...

(S156)
(e.g., Bryson and Ho, 1975, p. 248). And since we have shown previously that ū⇤

q

= 1 during the penultimate
phase and hence x⇤

w

(t) > 0 it follows that û
f,Bulmer

(t) has to satisfy

✓
d

dt

◆
i

(�c

1

(t)� �c

2

(t)) = 0 i = 0, 1, 2, ... . (S157)

We have already shown that (�̇c

1

(t) � �̇c

2

(t)) = 0 leads to to eq. (S132). Furthermore, (�̈
1

(t) � �̈
2

(t)) = 0

together with eqs. (S78), (S79), (S91) and (S35) implies that

¨�q

m

(t)
¨�q

q

(t)
= R

c

, (S158)

Considering that a⇤
q

(t) = u⇤
f

(t)u⇤
q

(t) = û
f,Bulmer

(t)ū⇤
q

and ū⇤
q

= 1 during the penultimate phase and substitut-
ing the costate equations (S82) into (S158) yields

µ
m

˙�q

m

� d

dt

⇣
bû

f,Bulmer

(t)x

⇤
w

(t)

x

⇤
m

(t)

⌘
�q

iq

�
⇣
bû

f,Bulmer

(t)(t)x

⇤
w

(t)

x

⇤
m

(t)

⌘
˙�q

iq

µ
q

˙�q

q

= R
c

, (S159)
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Substituting eq. (S132) and considering eqs. (S90) and (S91) yields

d

dt

✓
bû

f,Bulmer

(t)x⇤
w

(t)

x⇤
m

(t)

◆
= 0, (S160)

It follows from eq. (S160) that û
f,Bulmer

(t⇤
c,1

) = 0, since x⇤
m

(t⇤
c,1

) = 0. Using the quotient rule of taking
derivatives yields

dû
f,Bulmer

(t)

dt
x⇤
w

(t)x⇤
m

(t) + û
f,Bulmer

(t)ẋ⇤
w

(t)x⇤
m

(t)� û
f,Bulmer

(t)x⇤
w

(t)ẋ⇤
m

(t) = 0. (S161)

Substituting eqs. (S57) and (S58) into (S161) implies the following differential equation

dû
f,Bulmer

(t)

dt
= (1� û

f,Bulmer

(t))(µ
m

�R
c

µ
q

)� û
f,Bulmer

(t)(µ
m

� µ
w

). (S162)

Solving the differential equation for û
f,Bulmer

(t) with initial condition û
f,Bulmer

(t⇤
c,1

) = 0 gives

û
f,Bulmer

(t) =
(µ

m

�R
c

µ
q

)

⇣
e(t�t

⇤
c,1)(µw

+Rµ

q

�2µ

m

) � 1

⌘

µ
w

+R
c

µ
q

� 2µ
m

. (S163)

Thus far we have derived the singular arc from the first and second time derivative of the coefficient (�c

1

(t) �
�c

2

(t)) = 0. However, it follows from eq. (S131) that the control variable û
f,Bulmer

first appears in the odd
member (i is odd) in the sequence given by eq. (S157) (i.e. the degree of singularity of the singular arc is odd).
It has been proven that if the degree of singularity of the singular arc is odd then it is necessarily non-optimal
(Robbins, 1967). This means that if the control variable first appears in the time derivative of the coefficient
(�c

1

(t)� �c

2

(t)) to an odd order, then this singular arc is non-optimal.
Hence, we will only rely on numerical solutions in order to approximate the uninvadable allocation schedule

u⇤
f

if R
c

µ
q

< µ
m

. Our numerical solutions indicate that under single-party control u⇤
f

(t) is close to 0 during the
penultimate phase t 2 [t⇤

c,1

, t⇤
c,2

] if R
c

µ
q

< µ
m

. In Fig. S3 we demonstrate for single-party control that even
if the mortality of queens is 20 times lower than that of males, approximately only males are produced in the
penultimate phase t 2 [t⇤

c,1

, t⇤
c,2

]. Hence, we find that under single-party control, for a large set of biologically
realistic parameter values, approximately only males are produced in the penultimate phase.

We also observe from Fig. S3 that under mixed control u⇤
f

(t) = û⇤
f

(t) > 0 during the penultimate phase
t 2 [t⇤

c,1

, t⇤
c,2

] if R
c

µ
q

< µ
m

. Hence under mixed control, we predict that males and queens are produced
simultaneously under mixed control during the penultimate phase t 2 [t⇤

c,1

, t⇤
c,2

] if R
c

µ
q

< µ
m

.
We find that even if the mortality rate of queens is significantly lower than that of males, the overall sex

allocation ratio S
c,dir

under single-party control is only slightly more female-biased than the uninvadable sex
allocation ratio predicted from the standard static models of sex allocation theory (Boomsma and Grafen, 1991;
Reuter and Keller, 2001; Trivers and Hare, 1976). We find that the overall sex allocation ratio S

mx,dir

under
mixed control is close to the overall sex allocation ratio S

q,dir

under full queen control (see Figs. S3–S4).
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Figure S3: Uninvadable proportional allocation (under direct dispersal) to workers a⇤
w

(t) = u⇤
f

(t)(1 � u⇤
q

(t))

(black), queens a⇤
q

(t) = u⇤
f

(t)u⇤
q

(t) (red), and males a⇤
m

(t) = (1�u⇤
f

(t)) (blue). Panel (a): queen control. Panel
(b): worker control. Panel (c): mixed control. Parameter values: M = 1 (queen monandry), b = 0.07, µ

w

=

0.015, µ
q

= 0.001, µ
m

= 0.02, T = 100. Results here are only numerically derived and the correspondingly
colored lines are analytically predicted results assuming that µ

q

= µ
m

= 0.001. Notice that these analytical
predictions approximate the numerically derived predictions quite well under single party control.
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Figure S4: Number of individuals produced in a colony following the uninvadable resource allocation schedule
u

⇤ under direct dispersal. Panel (a): queen control. Panel (b): worker control. Panel (c): mixed control.
Parameter values: M = 1 (queen monandry), b = 0.07, µ

w

= 0.015, µ
q

= 0.001, µ
m

= 0.02, T = 100.
The (numerical) overall sex allocation ratio S

q

⇡ 0.51, S
w

⇡ 0.78, S
mx

⇡ 0.53. The correspondingly colored
lines are analytically predicted results assuming that µ

q

= µ
m

= 0.001. Notice that these analytical predictions
approximate the numerically derived predictions quite well under single party control.

7 Macroscopic quantities describing resource allocation in colonies

7.1 Colony size at maturity

It follows from eq. (S58) assuming that the allocation schedule to individuals corresponds to the uninvadable
allocation schedule u

⇤, given by eq. (S92) (for delayed dispersal) and eq. (S124) (for delayed dispersal) that
during the ergonomic phase the number of workers grows exponentially at rate b�µ

w

. Furthermore, the number
of workers x⇤

w

(t⇤
c,1

) at the switching time t⇤
c,1

from the ergonomic phase to the reproductive phase determines
the colony size at maturity, which is given by

x⇤
w

(t⇤
c,1

) = y
w,0

e(b�µ

w

)t

⇤
c,1

= e(b�µ

w

)t

⇤
c,1 , (S164)
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and owing to mortality of workers it is also the maximal colony size.

7.2 Colony productivity

The switching time t⇤
c,1

also determines the colony productivity, which we define as the total number of males
and females produced that have survived until the end of the season

B(t⇤
c,1

) = x⇤
q

(u

⇤
) + x⇤

m

(u

⇤
). (S165)

Substituting eq. (S58) for state variables into eq. (S165) assuming that the allocation schedule to individu-
als corresponds to the uninvadable allocation schedule u

⇤ under delayed dispersal (given by eq. S92) and the
mortality rate of queens and males is equal (µ

q

= µ
m

= µ
r

)

B(t⇤
c,1

) =

Z
T

0

ba⇤
q

(t)x⇤
w

(t)e�µ

q

(T�t)

dt+

Z
T

0

ba⇤
m

(t)x⇤
w

(t)e�µ

q

(T�t)

dt

=

Z
T

t

⇤
c,1

bˆū⇤
f

x⇤
w

(t)e�µ

q

(T�t)

dt+

Z
T

t

⇤
c,1

b(1� ˆū⇤
f

)x⇤
w

(t)e�µ

q

(T�t)

dt

=

Z
T

t

⇤
c,1

bx⇤
w

(t)e�µ

q

(T�t)

dt

=

bebt
⇤
c,1

⇣
e�µ

w

T � e�µ

r

T+(µ

r

�µ

w

)t

⇤
c,1

⌘

µ
r

� µ
w

.

(S166)

Substituting eq. (S58) for state variables into eq. (S165) assuming that the allocation schedule to individ-
uals corresponds to the uninvadable allocation schedule u

⇤ under direct dispersal (given by eq. S124) and the
mortality rate of queens and males is equal (µ

q

= µ
m

= µ
r

)

B(t⇤
c,1

) =

Z
T

0

ba⇤
q

(t)x⇤
w

(t)e�µ

q

(T�t)

dt+

Z
T

0

ba⇤
m

(t)x⇤
w

(t)e�µ

q

(T�t)

dt

=

Z
T

t

⇤
c,2

bx⇤
w

(t)e�µ

q

(T�t)

dt+

Z
t

⇤
c,2

t

⇤
c,1

bx⇤
w

(t)e�µ

q

(T�t)

dt

=

Z
T

t

⇤
c,1

bx⇤
w

(t)e�µ

q

(T�t)

dt

=

bebt
⇤
c,1

⇣
e�µ

w

T � e�µ

r

T+(µ

r

�µ

w

)t

⇤
c,1

⌘

µ
r

� µ
w

.

(S167)

Hence, it follows from eqs. (S166) and (S167) that colony productivity (for delayed and direct dispersal)
can be expressed as

B(t⇤
c,1

) =

bebt
⇤
c,1

⇣
e�µ

w

T � e�µ

r

T+(µ

r

�µ

w

)t

⇤
c,1

⌘

µ
r

� µ
w

. (S168)
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We can determine the switching time t⇤
c,1

that maximizes colony productivity from

dB(t⇤
c,1

)

dt⇤
c,1

= 0. (S169)

Substituting eq. (S168) into eq. (S169) implies

dB(t⇤
c,1

)

dt⇤
c,1

= bebt
⇤
c,1

✓✓
b

µ
w

� µ
r

� 1

◆
e�µ

r

T+(µ

r

�µ

w

)t

⇤
c,1

+

be�µ

w

T

µ
r

� µ
w

◆
= 0. (S170)

Solving eq. (S170) for t⇤
c,1

yields

t⇤
c,1

= T �
ln

�
1 +

µ

r

�µ

w

b

�

µ
r

� µ
w

. (S171)

The switching time given by eq. (S171) that maximizes the colony productivity is equal to the switching time
t⇤
c,1

under single-party control (c 2 {q,w}) for both delayed (given by eq. S117) and direct dispersal (given by
eq. S149) assuming that the mortality rates of queens and males are equal (µ

q

= µ
m

= µ
r

).

7.3 Overall sex allocation ratio

We define the overall sex allocation ratio as the proportion of the colony resources allocated to queens from the
resources allocated to sexuals over the entire season (irrespective of whether they survive to reproduce), and it
is thus given by

S
c

=

R
T

0

ba⇤
q

(t)x⇤
w

(t) dt
R
T

0

ba⇤
q

(t)x⇤
w

(t) dt+
R
T

0

ba⇤
m

(t)x⇤
w

(t) dt
. (S172)

Sex allocation ratio under delayed dispersal

Substituting the uninvadable allocation schedule u

⇤ for delayed dispersal given by eq. (S92) with the solutions
to the state equations given by (S89) into eq. (S172) yields

S
c

=

R
T

t

⇤
c,1

bˆū⇤
f

x⇤
w

(t) dt
R
T

t

⇤
c,1

bˆū⇤
f

x⇤
w

(t) dt+
R
T

t

⇤
c,1

b(1� ˆū⇤
f

)x⇤
w

(t) dt
=

x⇤
w

(t⇤
c,1

)

R
T

t

⇤
c,1

ˆū⇤
f

e�µ

w

(t�t

⇤
c,1)

dt

x⇤
w

(t⇤
c,1

)

R
T

t

⇤
c,1

e�µ

w

(t�t

⇤
c,1)

dt
=

=

R
T

t

⇤
c,1

ˆū⇤
f

e�µ

w

(t�t

⇤
c,1)

dt
R
T

t

⇤
c,1

e�µ

w

(t�t

⇤
c,1)

dt
.

(S173)
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If males and queens are equally costly to produce, then u⇤
f

(t) is constant in the reproductive phase and is given
by eq. (S104). Hence, eq. (S173) simplifies to

S
c

=

ˆū⇤
f

=

R
c

1 +R
c

for c 2 {q,w} (single-party control)

S
mx

=

ˆū⇤
f

=

R
q

1 +R
q

(mixed control),
(S174)

where R
c

is the relatedness asymmetry given by eq. (S35) and for haplodiploids (S174) simplifies to

S
q

=

ˆū⇤
f

=

1

2

(queen control)

S
w

=

ˆū⇤
f

=

2 +M

2(1 +M)

(worker control)

S
mx

=

ˆū⇤
f

=

1

2

(mixed control).

(S175)

Sex allocation ratio under direct dispersal

Recall that the overall sex allocation ratio (the proportion of the colony resources allocated to queens from the
resources allocated to sexuals over the entire season) is

S
c

=

R
T

0

ba⇤
q

(t)x⇤
w

(t) dt
R
T

0

ba⇤
q

(t)x⇤
w

(t) dt+
R
T

0

ba⇤
m

(t)x⇤
w

(t) dt
. (S176)

Substituting the uninvadable resource allocation schedule u

⇤ for µ
m

 µ
q

under direct dispersal given by
eq. (S124) with the solutions to state equations given by (S89) into eq. (S176) yields

S
c

=

R
T

t

⇤
c,2

bx⇤
w

(t) dt

R
T

t

⇤
c,2

bx⇤
w

(t) dt+
R
t

⇤
c,2

t

⇤
c,1

bx⇤
w

(t) dt
=

R
T

t

⇤
c,2

bx⇤
w

(t) dt
R
T

t

⇤
c,1

bx⇤
w

(t) dt
=

x⇤
w

(t⇤
c,2

)

R
T

t

⇤
c,2

e�µ

w

(t�t

⇤
c,2)

dt

x⇤
w

(t⇤
c,1

)

R
T

t

⇤
c,1

e�µ

w

(t�t

⇤
c,1)

dt

=

x⇤
w

(t⇤
c,2

)eµw

t

⇤
c,2
R
T

t

⇤
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e�µ

w

t

dt

x⇤
w

(t⇤
c,1

)eµw

t

⇤
c,1
R
T

t

⇤
c,1

e�µ

w

t

dt
=

x⇤
w

(t⇤
c,1

)e�µ

w

(t
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c,2�t

⇤
c,1)eµw

t

⇤
c,2
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w

)[e�µ

w

T � e�µ
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w

(t⇤
c,1

)eµw
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⇤
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w

)[e�µ

w

T � e�µ

w
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e�µ

w
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c,2 � e�µ

w

T

e�µ

w
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⇤
c,1 � e�µ

w

T

(S177)

Hence, if R
c

µ
m

> µ
q

under single-party control and µ
m

> µ
q

under mixed control, then the overall sex
allocation ratio under direct dispersal is

S
c

=

e�µ

w

t

⇤
c,2 � e�µ

w

T

e�µ

w

t

⇤
c,1 � e�µ

w

T

. (S178)
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8 Marginal return of changing the allocation trait for the ergonomic and re-
productive phase under mixed control

The aim of this section is to show that under mixed control the queen determines the overall sex allocation
ratio and workers determine the switching time t⇤

mx,1

from the ergonomic to the reproductive phase (assum-
ing equal mortality of males and queens, i.e µ

q

= µ
m

= µ
r

). We do this by analyzing the marginal re-
turn @H

c,d

(u(t),x⇤
(t),�(t))/@u

⌧

(t) = @H
c,d

(t)/@u
⌧

(t) of changing the allocation trait during the ergonomic
(8t 2 [0, t⇤

mx,1

]) and the reproductive phase (8t 2 [t⇤
mx,1

, T ]) under mixed control.
It follows from the first-order condition for uninvadability under mixed control (recall eq. S65 and eq. S73)

for both delayed and direct dispersal (d 2 {del, dir}) that

@H
q,d

(t)

@u
f

(t)

�����
u=v=u

⇤

8
><

>:

< 0, =) u⇤
f

(t) = 0

= 0, =) 0 � u⇤
f

(t) = û⇤
f

(t) � 1

> 0, =) u⇤
f

(t) = 1

, 8t 2 [0, T ],

@H
w,d

(t)

@u
q

(t)

�����
u=v=u

⇤

8
><

>:

< 0, =) u⇤
q

(t) = 0

= 0, =) 0 � u⇤
q

(t) = û⇤
q

(t) � 1

> 0, =) u⇤
q

(t) = 1

, 8t 2 [0, T ].

(S179)

Hence, under mixed control the sign of @H
q,d

(t)/@u
f

(t), which is under queen control, determines u⇤
f

(t), while
the sign of @H

w,d

(t)/@u
q

(t), which is under worker control, determines u⇤
q

(t).
Let sgn(·) denote a sign function, i.e.

sgn(x) =

8
>><

>>:

�1, if x < 0,

0, if x = 0,

1, if x > 0.

(S180)

The signs of @H
c,d

(t)/@u
⌧

(t) (assuming equal mortality of males and queens, i.e µ
q

= µ
m

= µ
r

) can be
inferred by way of eq. (S179) from the uninvadable allocation schedule u

⇤ given by eq. (S92) for delayed
dispersal and eq. (S148) for direct dispersal. Further, using eq. (S76), the fact that b > 0 and x⇤

w

(t) > 0, and
the switching functions eq. (S77) (where pq

q

= 1/2, pm
q

= 0, pq
w

= 1/4, and pm
w

= 1/(2M)), then we have for
both delayed and direct dispersal (d 2 {del, dir}) that during the ergonomic phase 8t 2 [0, t⇤

c,1

]:

sgn
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(t)
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(t)
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q

(t)

�����
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!
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4

�q

q
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1

2M
�m

q
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◆
�
✓
1

4

�q

w

(t) +
1

2M
�m

w

(t)

◆
< 0 =) u⇤

q

(t) = 0.

(S181)
Eq. (S181) shows that during the ergonomic phase the marginal return of workers is higher than that of queens
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and males. More precisely, the sign of @H
q,d

(t)/@u
f

(t) implies that during the ergonomic phase only females
are produced (u⇤

f

(t) = 1), since the marginal return of producing workers �q

w

(t) is higher than that of males
�q

m

(t) in colonies founded by queens carrying the mutant allele. In other words, during the ergonomic phase
workers are more valuable than males to the genes residing in queens. Similarly, it follows from the the sign of
@H

w,d

(t)/@u
q

(t) that all females produced during the ergonomic phase become workers (u⇤
q

(t) = 0), because
the marginal return of queens �s

q

(t) is lower that that of workers �s

w

(t), where the marginal returns have been
weighed by the expected frequency of mutant alleles in workers in colonies founded by type s mutant individu-
als. In other words, workers are more valuable than queens to the genes residing in the workers. Hence, during
the ergonomic phase, there is a latent trade-off between producing workers versus males from the perspective of
the genes in the queens and a latent trade-off between producing workers versus queens from the perspective of
the genes in the workers. Only workers are produced during the ergonomic phase, since workers have a higher
marginal return for both parties.

During the reproductive phase 8t 2 [t⇤
mx,1

, T ], the signs of the marginal returns @H
c,del

(t)/@u
⌧

(t) are
different for delayed and direct dispersal. Under delayed dispersal, we have

sgn
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(t)

@u
f

(t)

�����
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!
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q
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f

(t) = û⇤
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@u
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4
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q
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1

2M
�m

q

(t)

◆
�
✓
1

4

�q

w

(t) +
1

2M
�m

w

(t)

◆
> 0 =) u⇤

q

(t) = 1.

(S182)
Under direct dispersal, we have during the time of male production 8t 2 [t⇤

mx,1

, t⇤
mx,2

] that
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(t)

�����
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!
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q

(t),

(S183)

while during the time of queen production 8t 2 [t⇤
mx,2

, T ]:

sgn
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�����
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f

(t) = 1

sgn

 
@H

w,dir

(t)

@u
q

(t)

�����
u=v=u

⇤

!
=

✓
1

4

�q

q

(t) +
1

2M
�m

q

(t)

◆
�
✓
1

4

�q

w

(t) +
1

2M
�m

w

(t)

◆
> 0 =) u⇤
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(S184)
The sign of @H

q,d

(t)/@u
f

(t) during the reproductive phase implies that females and males are produced si-
multaneously (u⇤

f

(t) = û⇤
f

) under delayed dispersal (eq. S182) since the marginal return of queens �q

q

(t) and
males �q

m

(t) is equal in colonies founded by queens carrying the mutant allele. However, under direct dispersal
(eqs. S183 and S184) males are produced first, since the marginal return of males �q

m

(t) is initially higher and
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then becomes lower than that of queens �q

q

(t) in colonies founded by queens carrying the mutant allele. The sign
of @H

w,d

(t)/@u
q

(t) during the reproductive phase (eqs. S182, S183 and S184) implies that if any females are
produced (u⇤

f

6= 0 like in eq. S183) then all females become queens during the reproductive phase (u⇤
q

(t) = 1),
because the marginal return of queens �s

q

(t) is higher that that of workers �s

w

(t), where the marginal returns
have been weighed by the expected frequency of mutant alleles in workers in colonies founded by type s mutant
individuals. In other words, queens are more valuable than workers to the genes residing in the workers. Under
direct dispersal, during the production of males (eq. S183) the sign of @H

w,dir

(t)/@u
q

(t) = 0 because u⇤
f

= 0.
Hence, there is no directional selection on u

q

(t) for this time period, since it has no effect on invasion fitness
(i.e. during the time only males are produced, the proportion at which workers rear female eggs into queens does
not affect invasion fitness). Hence, during the reproductive phase, there is a latent trade-off between producing
queens versus males from the perspective of the genes in the queens and a latent trade-off between producing
workers versus queens from the perspective of the genes in the workers.

In summary, the signs of marginal returns @H
c,d

(t)/@u
⌧

(t) (eqs. S182, S183 and S184) defined over the
entire season elucidate the main difference between the ergonomic and reproductive phase in terms of trade-
offs between producing different individuals experienced by the two parties. From the perspective of the genes
in the workers there is always a trade-off between producing queens versus workers, such that the balance
is tipped in favour of workers during the ergonomic phase and in favour of queens during the reproductive
phase. From the perspective of the genes in the queens, the trade-offs for the ergonomic and the reproductive
phase are different. During the ergonomic phase, there is a trade-off between producing workers versus males
and during the reproductive phase there is a trade-off between producing queens versus males. Intuitively,
this “decoupling” of the trade-offs from the perspective of the queens happens because queens and workers
are produced in separate phases. Hence, during the ergonomic phase the trade-off is only between producing
workers and males, since workers rear all female eggs into workers and during the reproductive phase the trade-
off is only between producing queens and males, since workers rear all female eggs into queens. We can now
turn to explaining how the trade-offs experienced by the two parties during different phases of colony growth
have shaped the evolutionary outcome of the sex allocation conflict.

The queen determines the overall sex allocation ratio S
mx

under mixed control. To see this, first note that the
primary sex allocation ratio u⇤

f

(t) during the reproductive determines the overall sex allocation ratio S
mx

, since
all females become queens (i.e. u⇤

q

(t) = 1) at the reproductive phase and sexuals are only produced during
the reproductive phase (recall eqs. S92 and S148). It follows from eqs. (S182), (S183), (S184) that u⇤

f

(t) is
determined by the difference between the marginal return of producing queens and males in a colony founded
by queens carrying the mutant allele, i.e. the genes in the queens determines the overall sex allocation ratio
S
mx

.
The workers determine the switching time t⇤

mx,1

between the ergonomic and the reproductive phase under
mixed control. Because the switching time t⇤

mx,1

determines the colony size at its maturity x⇤
w

(t⇤
mx,1

) and colony
productivity B(t⇤

mx,1

) (recall eqs. S164 and S168), then it follows that the workers control also these quantities
under mixed control. To see this, first recall that during the ergonomic phase there is a latent trade-off from the
perspective of the queens between producing workers versus males and a latent trade-off from the perspective
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of the workers between producing workers versus queens (eq. S181). The ergonomic phase ends when for (at
least) one of the parties, producing workers does not yield the highest marginal return anymore. For queens it
means that the marginal value of producing males becomes higher than that of workers and for workers it means
that the marginal value of producing queens becomes higher than that of workers. Hence, the switching time
t⇤
mx,1

is determined by the party who prefers to end the ergonomic phase earlier. The switching times from the
ergonomic to the reproductive phase are equal under full queen control and full worker control t⇤

q,1

= t⇤
w,1

(see
eq. 9). Hence, the marginal value of workers compared to sexuals is equal from the perspective of queens and
workers. Note that the marginal value of queens and males depends on the overall sex allocation ratio S

mx

(see
eq. S86, S87, as boundary conditions for differential equations for the marginal returns S82). Since the queens
control the overall sex allocation ratio S

mx

under mixed control, then it means that it is more male-biased than
preferred by the workers (S

w

> S
mx

, see Fig. 6). Hence, from the perspective of workers, the marginal return
of queens should be larger under mixed control than under full worker control, where the sex allocation ratio is
also controlled by workers. Therefore, it follows from our intuitive explanation that the switch is controlled by
the workers since the value of workers becomes equal to queens (from the perspective of workers) sooner than
it becomes equal to males (from the perspective of queens). Hence, we can conclude that the genes in workers
determine the switching time t⇤

mx,1

and therefore also the the colony size at its maturity x⇤
w

(t⇤
mx,1

) and colony
productivity B(t⇤

mx,1

).

9 Marginal return of producing a queen versus a male

The overall sex allocation ratio S
c

is determined by the allocation trait u⇤
f

(t) during the reproductive phase (see
sections 7.3 and 8). This means that allocation to queens versus males is determined by the sign of the marginal
return @H

c,d

(t)/@u
f

(t) during the reproductive phase, which is given by eq. (S76) assuming that u⇤
q

(t) = 1,
which yields

@H
c,d

(u(t),x⇤
(t),�(t))

@u
f

(t)

�����
u=v=u

⇤

= bx⇤
w

(t) (�c

1

(t)� �c

2

(t)) . (S185)

Substituting �c

1

(t) � �c

2

(t) from eq. (S78) for queen control and eqs. (S79) and (S80) for worker control and
using the expression for relatedness asymmetry R

c

(eq. S35), we obtain

@H
q,dir

(t)

@u
f

(t)

�����
u=v=u

⇤

=

bx⇤
w

(t)

2

�
R

q

�q

q

(t)� �q

m

(t)
�

(u
f

, v
f

under queen control),

@H
w,dir

(t)

@u
f

(t)

�����
u=v=u

⇤

=

bx⇤
w

(t)

4

�
R

w

�q

q

(t)� �q

m

(t)
�

(u
f

, v
f

under worker control).

(S186)

It follows from eq. (S90) that the marginal return of producing a male depends on the scenario of dispersal of
reproductive individuals.

87



9.1 Delayed dispersal

Assuming that µ
q

= µ
m

= µ
r

, it follows from eq. (S90) (by taking t
1

= T ) for delayed dispersal

�q

q

(t) = �q

q

(T )e�µ

r

(T�t) 8t 2 [t⇤
c,1

, T ],

�q

m

(t) = �q

m

(T )e�µ

r

(T�t) 8t 2 [t⇤
c,1

, T ].
(S187)

Substituting the transversality conditions (S86) and using eq. (S50), we obtain

�q

m

(t)

�q

q

(t)
= R

c

8t 2 [t⇤
c,1

, T ]. (S188)

Hence the ratio of the marginal return of a male to the marginal return of a queen is equal to the relatedness
asymmetry R

c

at any time during the reproductive phase.
For consistency, we can substitute eq. (S188) into eq. (S186), which yields that @H

c,d

(t)/@u
f

(t) = 0

throughout the reproductive phase (8t 2 [t⇤
c,1

, T ]).

9.2 Direct dispersal

It follows from eq. (S90), where t
1

= T and �q

m

(T ) = 0 (from eq. S87) for direct dispersal and re-arranging

�q

q

(t) = �q

q

(T )e�µ

q

(T�t),

�q

m

(t) = �q

iq

(T )
MF

c

(t)

M
,

(S189)

where

F
c

(t) =

Z
T

t

e�µ

m

(⌧�t)

ba⇤
q

(⌧)x⇤
w

(⌧)

x⇤
m

(⌧)
e�µ

q

(T�⌧)d⌧. (S190)

is the expected number of queens surviving until T that are inseminated by a male born at t (in a population,
where the queens mates only once, i.e. M = 1). Note that, in a population where females mate M times, the
expected number of surviving queens inseminated by a male born at t is equal to MF

c

(t). However, since the
males are only expected to father 1/M of the offspring of the queen, that he would have fathered if the the queen
would be singly mated, then the effect of multiple matings M by the queen cancels out. Lets denote by l(t) the
probability that a queen produced at time t survives until the end of the season, which is given by

l(t) = e�µ

q

(⌧�t). (S191)

Under direct dispersal, @H
c,dir

(t)/@u
f

(t) < 0 during t 2 [t⇤
c,1

, t⇤
c,2

] while only males are produced and
@H

c,dir

(t)/@u
f

(t) > 0 during t 2 [t⇤
c,2

, T ] while only queens are produced. Hence, at time t⇤
c,2

the marginal
value @H

c,dir

(t⇤
c,2

)/@u
f

(t⇤
c,2

) = 0. Assuming that the mortality of queens and males is equal (µ
q

= µ
m

= µ
r

),
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it follows then from eqs. (S186) and (S191) (S189)

F
c

(t⇤
c,2

)

l
q

(t⇤
c,2

)

=

8
<

:

R
q

= 1 (queen control & mixed control),

R
w

=

2 +M

M
(worker control).

(S192)

It follows from eq. (S192) that the switch from male production to queen production happens when producing
a male instead of a surviving queen yields R

c

(R
q

= 1 and R
w

= (2 +M)/M ) surviving inseminated queens.

9.3 Verifying the consistency of eq. (S192)

Here, we show that the F
c

(t⇤
c,2

)/l
q

(t⇤
c,2

) indeed satisfies eq. (S192) given the the explicit solutions for u⇤, x⇤,
t⇤
c,1

, and t⇤
c,2

that we have already established. For this we need to evaluate F (t) at time t⇤
c,2

(assuming that the
mortality of queens and males is equal, i.e. µ

q

= µ
m

= µ
r

) and the expression of x⇤
w

(t) and x⇤
m

(t) for the last
phase t 2 [t⇤

c,2

, T ].
In order to establish the initial conditions x⇤

m

(t⇤
c,1

) and x⇤
w

(t⇤
c,1

) for the last phase, we use eq. (S88) for the
penultimate phase (t 2 [t⇤

c,1

, t⇤
c,2

]) of the uninvadable state (ā
q

= 0, ā
m

= 1, ā
w

= 0, t
0

= t⇤
c,1

, t
1

= t⇤
c,2

,
x⇤
m

(t⇤
c,1

) = 0) and assume that µ
q

= µ
m

= µ
r

. This allows us to express x⇤
m

(t⇤
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) and x⇤
w

(t⇤
c,1

) as
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)e�µ
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(S193)

Next using eq. (S88) for the last phase ⌧ = t 2 [t⇤
c,2

, T ] (ā
q

= 1, ā
m

= 0, ā
w

= 0, t
0

= t⇤
c,2

, t
1

= T ), and
taking eq. (S193) as an initial condition we obtain
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w
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(S194)

Now we can evaluate F (t) at time t⇤
c,2

by substituting eq. (S194) into eq. (S190) (assuming µ
q

= µ
m

= µ
r

)
and taking into account that a⇤

q

(t) = 1 during the last phase t 2 [t⇤
c,2

, T ] yields

F
c

(t⇤
c,2

) = e�µ

r

(T�t

⇤
c,2)

Z
T

t

⇤
c,2

bx⇤
w

(⌧)

x⇤
m

(⌧)
d⌧ = e�µ

r

(T�t

⇤
c,2)

Z
T

t

⇤
c,2

(µ
r

� µ
w

)e(µr

�µ

w

)(⌧�t

⇤
c,1)

e(µr

�µ

w

)(t

⇤
c,2�t

⇤
c,1) � 1

d⌧

= e�µ

r

(T�t

⇤
c,2)

e(µr

�µ

w

)t

⇤
c,2 � e(µr

�µ

w

)T

e(µr

�µ

w

)t

⇤
c,1 � e(µr

�µ

w

)t

⇤
c,2

.

(S195)

Substituting the expressions for the switching times under direct dispersal (eqs. S149, S150, S152, and S154),
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and simplifying, we get

F
c

(t⇤
c,2

)l
q

(t⇤
c,2

) =

(
e�µ

r

(T�t

⇤
c,2)R

q

= l(t⇤
c,2

)R
q

(queen control & mixed control),

e�µ

r

(T�t

⇤
c,2)R

w

= l(t⇤
c,2

)R
w

(worker control).
(S196)

9.4 The overall sex allocation ratio and the ratio of expected surviving inseminated queens to
surviving queens

It is significant that the necessary condition for u⇤ to be uninvadable under direct dispersal, is given by the
condition that the ratio F

c

(t)/l(t) at time t⇤
c,2

would be equal to the relatedness asymmetry and not on the
condition on the overall sex allocation ratio S

c

. In this section we would like to make a connection between
these two terms.

First, lets define the overall sex allocation ratio Z
c

= S
c

/(1 � S
c

) (recall S172 for the formal definition of
S
c

) as the ratio of the proportion of colony resources allocated queens versus males throughout the entire season
(which would make it easier to compare overall allocation to queens versus males to the ratio F

c

(t⇤
c,2

)/l(t⇤
c,2

)).
Hence, we can write Z

c

as

Z
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=

R
T

0

ba⇤
q

(t)x⇤
w

(t) dt
R
T

0

ba⇤
m

(t)x⇤
w

(t) dt
. (S197)

Substituting the uninvadable resource allocation schedule u

⇤ for µ
m

= µ
q

= µ
r

under direct dispersal given by
eq. (S148) with the solutions to state equations given by (S89) into eq. (S197) yields
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⇤
c,2

t

⇤
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The overall allocation to queens versus males under direct dispersal is therefore given by

Z
c

=

e�µ

w

t

⇤
c,2 � e�µ

w

T

e�µ

w

t

⇤
c,1 � e�µ

w

t

⇤
c,2

. (S199)

It follows from eq. (S195) that the ratio F
c

(t⇤
c,2

)/l(t⇤
c,2

) can be expressed as

F
c

(t⇤
c,2

)

l(t⇤
c,2

)

=

e(µr

�µ

w

)t

⇤
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�µ

w

)T

e(µr

�µ

w

)t

⇤
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�µ

w

)t

⇤
c,2

. (S200)
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Hence, one can see from eqs. (S199) and (S200) that

Z
c

<
F
c

(t⇤
c,2

)

l(t⇤
c,2

)

8c 2 {q,w,mx} (S201)

whenever µ
r

> 0 and the difference F
c

(t⇤
c,2

)/l(t⇤
c,2

)�Z
c

is larger for higher values of µ
r

. Hence, the overall sex
allocation ratio is more male-biased under direct dispersal than expected from the classical results (e.g. Reuter
and Keller, 2001) for higher values of mortality of reproductive individuals.

In order to get a better intuition why the overall sex allocation ratio is more male-biased for higher values
of mortality µ

r

of reproductive individuals, lets examine how µ
r

influences F
c

(t)/l(t) during the reproductive
phase which we can express as (using eq. S190 and S191)

F
c

(t)

l(t)
=

Z
T

t

ba⇤
q

(⌧)x⇤
w

(⌧)

x⇤
m

(⌧)
d⌧. (S202)

Here, ba⇤
q

(t)x⇤
w

(⌧)/x⇤
m

(⌧) gives the mating success of a male (the number of queens available to mate per
male at time ⌧ ). Here, ba⇤

q

(t)x⇤
w

(⌧) is independent of the mortality of sexuals µ
r

, since (a⇤
q

(⌧) = 0, during
male production and a⇤

q

(⌧) = 1 during queen production) and number of workers x⇤
w

(⌧) does not depend on
the mortality of sexuals. In contrast, the number of males x⇤

m

(⌧) alive at time ⌧ during the last phase, when
only females are produced is smaller for higher values of µ

r

. Hence, it follows that F
c

(t)/l(t) is higher for
higher mortality rate of sexuals (for a given t in the reproductive phase), because higher mortality increases
the mating success of a male alive at a given time t. Since, the ratio F

c

(t)/l(t) gives the expected number
of surviving queens inseminated by a male produced instead of a queen, then the surviving probability of a
focal male together with the surviving probability of the queen(s) he inseminates cancels out with the surviving
probability of a queen that would have been otherwise produced (since we assumed that the mortality of queens
and males is equal). Because of this, the ratio F

c

(t)/l(t) increases with the increase in the mortality of sexuals
via the mating success of a focal male 1/x⇤

m

(⌧).

10 Continuous stability of the candidate uninvadable allocation schedule

In this section we address the issue of (continuous) stability of the candidate uninvadable allocation schedule
u

⇤ given by eq. (S92) for delayed dispersal and eq. (S148) for direct dispersal. We only discuss the continuous
stability of the candidate uninvadable allocation schedule u⇤ for equal mortality rate of queens and males (µ

q

=

µ
m

= µ
r

) because we have fully derived the analytical results only under this assumption. Continuous stability
is given by two separate properties of the of the candidate uninvadable allocation schedule u

⇤: (i) the local
uninvadablity and (ii) convergence stability (e.g. see Christiansen, 1991; Eshel, 1983; Taylor, 1989 and for
functioned-valued traits see Dieckmann et al., 2006). The candidate uninvadable allocation schedule u

⇤ is
locally uninvadable if a monomorphic population following the strategy u

⇤ can resist invasion by any mutant
whose strategy is close to the the strategy u

⇤. The candidate uninvadable allocation schedule u⇤ is convergence
stable if a population will converge to this schedule u

⇤ through recurrent substitutions, meaning that a mutant
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whose schedule is closer to u

⇤ will invade a monomorphic population that follows a schedule further away from
u

⇤.
Firstly, we would like to point out that the continuous stability of the candidate uninvadable allocation

schedule u

⇤ (assuming that µ
q

= µ
m

= µ
r

) is not directly given from the first-order condition only for t 22⇥
t⇤
c,1

, T
⇤

under delayed dispersal. Indeed, if @H
c,d

(u(t),x⇤
(t),�(t))/@u

⌧

(t)|
u=u

⇤ > 0 then a mutant allele
with u

⌧

(t) > v
⌧

(t) can always spread (recall eq. S73). Similarly, if @H
c,d

(u(t),x⇤
(t),�(t))/@u

⌧

(t)|
u=u

⇤ < 0

then a mutant allele with u
⌧

(t) < v
⌧

(t) can always spread. However, for a finite period of time, for which
@H

c,d

(u(t),x⇤
(t),�(t))/@u

⌧

(t)|
u=u

⇤
= 0 holds and the focal trait is a singular arc u⇤

⌧

(t), then there is no
directional selection. Hence, the two properties of continuous stability of u

⇤ has to be only addressed for
t 2

⇥
t⇤
c,1

, T
⇤

under delayed dispersal, where u⇤
f

(t) is a singular arc.
The conditions for local uninvadability and convergence stability are given in terms of second-order func-

tional derivatives of the invasion fitness (S10) (Dieckmann et al., 2006). Since the formal continuous stability
analysis for function-valued traits is out of the scope of this paper, we will not address the questions of con-
tinuous stability of u⇤ for t 2

⇥
t⇤
c,1

, T
⇤

under delayed dispersal any further in this paper. However, since we
recover the uninvadable allocation schedule numerically through iteration, which is analogous to the evolu-
tionary dynamics of the population, then we might regard this as giving support that the proper evolutionary
dynamics would also converge to this schedule. Under this heuristic approach, the iterative scheme of the best
response map also implies continuous stability of the candidate uninvadable schedule found by it (Houston and
McNamara, 1999).

11 Iterative scheme of the best response map

Here, we describe the computational technique for finding the locally uninvadable strategies for our optimal
control problems. This method is known as the iterative scheme of the best response map (see p. 187 in Houston
and McNamara, 1999).

A mutant schedule
⇣
�f

c,d

(v),�q

c,d

(v)

⌘
that yields the highest invasion fitness in a population, where resident

schedule is v, i.e.

�f

c,d

(v) = arg max

u

f

2U
f

W
c,d

[(u

f

,v
q

),v] and �q

c,d

(v) = arg max

u

q

2U
q

W
c,d

[(v

f

,u
q

),v] , (S203)

is said be the best response to the resident schedule v. Here, �⌧

c,d

: U ! U
⌧

, where ⌧ 2 f, q is the best-response
correspondence which maps a resident schedule v 2 U to a (unique) trajectory �⌧

c,d

(v) 2 U
⌧

for a trait type ⌧ ,
such that no other trajectory for a focal trait gives a higher invasion fitness to a mutant in a population, where
resident individuals follow the schedule v 2 U. Here, U = U

f

⇥U
q

is a set of all possible allocation strategies,
U
f

and U
q

are sets of all possible trajectories for the traits u

f

(v
f

) and u

q

(v
q

), respectively. In the notation
of the best-response correspondence �⌧

c,d

, the subscripts c 2 {q,w} and d 2 {del, dir} emphasize the party in
control and the time of dispersal of sexuals, respectively, and superscript ⌧ 2 {f, f} emphasizes the trait type.

Hence, under single-party control, where party c 2 {q,w} is in full control, the best response schedule
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�
c,d

(v) =

⇣
�f

c,d

(v),�q

c,d

(v)

⌘
can be written as

�
c,d

(v) = argmax

u2U
W

c,d

(u,v) (S204)

and under mixed control the best response schedule �
mx,d

(v) =

⇣
�f

mx,d

(v),�q

mx,d

(v)

⌘
can be written as

�f

mx,d
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f

,u
q

),v] , (S205)

where �
c

: U ! U under control mode c 2 {q,w,mx} is the best-response correspondence which maps to a
(resident) schedule v 2 U a schedule �

c

(v) 2 U, such that no other schedule gives a higher invasion fitness to
a mutant in a population, where resident individuals follow the schedule v 2 U.

It follows from the definition of the uninvadable schedule given by eq. (S12) for single-party control and by
eq. (S13) for mixed control that the uninvadable schedule is a best response to itself, i.e.

u

⇤
= �

c,d

(u

⇤
). (S206)

Note that, here we have assumed that the best response is always unique.
In order to approximate the uninvadable schedule numerically, we start out from some initial resource allo-

cation schedule for the resident population u

0 and using GPOPS (Patterson and Rao, 2014) we find the mutant
schedule that has the highest fitness u1

= �
c,d

(u

0

). The software GPOPS uses a direct approach to find the best
response �

c,d

(v) for a given environment v in contrast to the indirect approach of Pontryagin’s maximum prin-
ciple (see section 3.2), which gives a necessary condition for optimality. We then update the resident schedule
for the next iteration

u

i

= ��
c,d

(u

i�1

) + (1� �)ui�1 (S207)

and repeat the process. Here, 0 > � > 1 is called the replacement factor. We can interpret this new resident
schedule as a polymorphism - each individual adopting a schedule �

c,d

(u

i�1

) with probability ↵ and schedule
u

i�1 with probability (1 � �) (Houston and McNamara, 1999). To improve convergence after iterating from
some while we can decrease � with further iterations (Houston and McNamara, 1999; Krawczyk and Uryasev,
2000).

This iterative scheme forms a sequence of strategies (u

0

;u

1

;u

2

; ...) where each schedule is derived from
the best response to the previous schedule according to equation (S207). If the difference between the best
response and resident schedule approaches zero as the number of iterations increases, i.e.

��
u

i � u

i�1

��! 0 as i ! 1, (S208)

then we have arrived at the uninvadable schedule (Nash equilibrium).
For single-party control we use GPOPS to find the best response �

c,d

(v) that maximizes the objective
W

c,d

(u,v) given by eq. (S10) of the party c in control. For mixed control, the best response �f

c,d

(v) maximizes
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the the objective of the queen W
q,d

(u,v) and �q

c,d

(v) maximizes the objective of the workers W
w,d

(u,v).

12 Static resource allocation model with a linear relationship between colony
productivity and colony size

In this section we re-derive the main results of Reuter and Keller (2001) with a slight modification in the
assumption about how the overall colony productivity scales with colony size. Here we assume that the overall
colony productivity scales linearly with colony size and show that the main predictions of their model about
how sex allocation conflict affect allocation strategy in the colony are not affected by the assumption about how
overall colony productivity scales with colony size. In order to make a direct comparison easier for the reader,
we slightly modified the notation in Reuter and Keller (2001) to make it easier to compare our model with theirs,
however the modelling approach in this section is exactly identical to Reuter and Keller (2001). Here we present
the main features of the model assuming monogamy, for the full model and further details, see the original paper
by Reuter and Keller (2001).

Let 0  u
f

 1 (u
f

= f in their notation) be the proportion of colony resources allocated into producing
females in a focal colony and let 0  u

q

 1 (u
q

= 1 � w in their notation) be the proportion of resources
allocated into queens from the resources allocated into females. Let the the corresponding population average
traits be 0  v

f

 1 and 0  v
q

 1 (F and 1�W in their notation), respectively. Here the allocation strategies
u
f

, u
q

(v
f

, v
q

) give the allocation of all colony resources over the entire season.
Since this model is a static resource allocation model, colony size is given by the proportional investment

u
f

(1�u
q

) into workers. Reuter and Keller (2001) assume that per-worker productivity declines with the number
of workers in the colony, such that overall colony productivity b(u

f

, u
q

) (interpreted in their paper as the total
biomass of all individuals produced) in the focal colony follows a diminishing return function

b(u
f

, u
q

) = 1� (1� u
f

(1� u
q

))

2. (S209)

Next, they formulate an expression for the fitness function (V
X

in their notation)

W
c

= b(u
f

, u
q

)


r�
q,c

↵�
q

u
f

u
q

v
f

v
q

+ r�
m,c

↵�
q

(1� u
f

)

(1� v
f

)

�
, (S210)

where the subscript c 2 {q,w} emphasizes the party in control. See eq. 2 in Reuter and Keller, 2001 for further
details about the interpretation of this fitness function. Essentially, W

c

in (S210) is comparable to the invasion
fitness W

c

in (S9). However, we note that this way of defining an invasion fitness function is heuristic and
implicitly makes the assumption that only a first-order analysis will be carried out (e.g. otherwise relatedness
coefficients cannot be hold at neutrality), and so the eq. (S210) can not be used to check second order conditions
(further it should be normalized so that in a resident population fitness is one). Candidate uninvadable allocation
strategy u⇤

f

, u⇤
q

(called evolutionary stable strategy and noted as f⇤, w⇤ in Reuter and Keller, 2001) under single-
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party c control is given by
dW

c

du
f

= 0 and
dW

c

du
q

= 0 (S211)

and under mixed control is given by

dW
q

du
f

= 0 and
dW

w

du
q

= 0. (S212)

The results of Reuter and Keller (2001) assuming monogamy are outlined in table S2. The main results of Reuter
and Keller (2001) can be summarized as follows: less resources are allocated into worker production under
single-party control than under mixed control, the uninvadable sex allocation ratio is equal to the relatedness
asymmetry under single-party control (R

q

= 1 for queen control and R
w

= 3 under worker control, assuming
monogamy). Under mixed control the uninvadable sex allocation ratio has a value intermediate ⇡ 1.26 between
the relatedness asymmetries for queen and worker control.

Control mode Queens (u⇤
f

u⇤
q

) Males (1� u⇤
f

) Workers (u⇤
f

(1� u⇤
q

)) S
c

Queen control ⇡ 0.289 ⇡ 0.289 ⇡ 0.423 0.5

Worker control ⇡ 0.433 ⇡ 0.144 ⇡ 0.423 0.75

Mixed control ⇡ 0.353 ⇡ 0.281 ⇡ 0.365 ⇡ 0.56

Table S2: Uninvadable allocation into queen, males, and workers and the overall sex allocation ratio S
c

(pro-
portional allocation to queens from resources allocated to sexuals) predicted by Reuter and Keller (2001).

Lets now modify the overall colony productivity b(u
f

, u
q

), such that it increases linearly with the amount of
resources invested into workers u

f

(1� u
q

).

b
lin

(u
f

, u
q

) = u
f

(1� u
q

). (S213)

Substituting b
lin

(u
f

, u
q

) into the fitness function (S210) instead of b(u
f

, u
q

) and solving for the uninvadable
allocation strategy according to eqs. (S211)–(S212), we obtain the uninvadable allocation strategy (u⇤

f

, u⇤
q

)
assuming that colony productivity scales linearly with colony size. The results are outlined in table S3. The
main results of the static model, where colony productivity scaled linearly with colony size can be summarized
as follows: less resources are allocated into worker production under single-party control than under mixed
control, the uninvadable sex allocation ratio is equal to the relatedness asymmetry under single-party control
(R

q

= 1 for queen control and R
w

= 3 under worker control, assuming monogamy). Under mixed control the
uninvadable sex allocation ratio has a value intermediate ⇡ 1.28 between the relatedness asymmetries for queen
and worker control.

Hence, we can conclude, that the main results predicted by a static allocation model of Reuter and Keller
(2001) about how sex allocation conflict affects allocation strategies in the colony are not qualitatively affected
by the assumption about how colony productivity scales with colony size.
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Control mode Queens (u⇤
f

u⇤
q

) Males (1� u⇤
f

) Workers (u⇤
f

(1� u⇤
q

)) S
c

Queen control 0.25 0.25 0.5 0.5

Worker control 0.375 0.125 0.5 0.75

Mixed control ⇡ 0.321 ⇡ 0.25 ⇡ 0.429 ⇡ 0.56

Table S3: Uninvadable allocation into queen, males, and workers and the overall sex allocation ratio S
c

(pro-
portional allocation to queens from resources allocated to sexuals) predicted by a static model similar to Reuter
and Keller (2001), assuming that colony productivity scales linearly with colony size.

13 How our model connects to previous tightly related literature

In this section we provide brief overview of how our model (under different assumptions about the time of
dispersal and genetic control of the resource allocation traits) relates to a selection of previous models studying
resource allocation in social insects.

13.1 Delayed dispersal

Macevicz and Oster (1976) were the first to develop a dynamic resource allocation model for eusocial insects,
they assumed clonal reproduction, two classes of individuals (sexuals and workers) and delayed dispersal (sex-
uals have to survive until the end of the season to have reproduce). Our model first grew out of the idea to
combine the works of Macevicz and Oster (1976) and Reuter and Keller (2001). Our model under delayed
dispersal (for all three scenarios of genetic control) can be viewed as a dynamic extention of the static model
by Reuter and Keller (2001). The only fundamental difference between our model under delayed dispersal and
the model of Reuter and Keller (2001), besides that their model is static, is that they assumed that per-worker
productivity decreases when colony size increases. We assume that per-worker productivity is constant and does
not depend on the size of the colony. We show in section 12 that this assumption does qualitatively alter the
predictions their model. However, this does not mean that we do not think that the assumption about how per-
worker colony productivity scales with colony size can affect dynamic colony allocation strategies. Poitrineau
et al. (2009) developed a dynamic resource allocation model similar to Macevicz and Oster (1976), to study
how the non-linearity of colony productivity rate (i.e. by

w

) can affect the allocation strategy of the colony.
Poitrineau et al. (2009) show that if per-worker productivity decreases with colony size then, the sexuals are
workers are expected to be produced simultaneously through a significant period of time in the season, after
which the colony switched to producing only sexuals. However, it is not known how sex allocation conflict
interacts with non-linearity of colony productivity rate, since Poitrineau et al. (2009) assumed clonal reproduc-
tion. Bulmer (1981) was the first to study how sex allocation conflict can affect dynamic allocation strategies
within a colony. However, he assumed discrete non-overlapping generations of workers within a season and
he only studied how conflicts affects allocation strategies during the two generations at the end of the season.
Furthermore, his model was not able to make any analytical predictions (e.g. when should colony switch from
producing workers to producing sexuals, etc). Our prediction that the queen wins the sex allocation conflict
contradicts the predictions of a static model by Reuter and Keller (2001), but is in accordance to the prediction
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by Bulmer (1981). However, the conflict outcome of our model is different from Bulmer (1981). He predicted
that, due to the sex allocation conflict, the colony dies before the end of the season, which is a prediction linked
with the assumption about discrete non-overlapping generation of workers within a season (if the sex allocation
ratio at the population level is not even because workers rear worker-destined eggs into queens, then the queens
only produce males during the penultimate generation). Ohtsuki and Tsuji (2009) also considered a dynamic
resource allocation model assuming delayed dispersal under mixed control, but their model assumed a slightly
different biological scenario, with reproductive workers and worker policing, which is not considered here. In
addition, the results of Ohtsuki and Tsuji (2009) are only numerical.

13.2 Direct dispersal

Direct dispersal of sexuals is fundamentally a dynamic aspect, and hence can captured with a dynamic resource
allocation model. Only paper that we are aware that has studied colony resource allocation assuming direct
dispersal is that of Bulmer (1983). He studied the effect direct dispersal on resource allocation strategies assum-
ing queen control. The result of his paper have never been previously extended to worker control nor to mixed
control.
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14 Summary of notation

Symbol Meaning
a
k

(t) Proportion of resources allocated to producing type k 2 {w, q,m} individuals at
time t in a colony founded by resident individuals.

as
k,u

(t) Proportion of resources allocated to producing type k 2 {w, q,m} individuals at
time t in a colony founded by a mutant individual of type s 2 {q,m}.

A

c

(u,v) Matrix whose elements a
s

0
s

give the expected number of mutant gene copies in a
type s0 2 {q,m} individual that descend from an individual of type s 2 {q,m}
(A

c

(u,v) = A

c

(u

q

(u),um

(u),v) and so matrix elements depend on us
⌧

(t)).
b Individual productivity rate of a worker.
B(t⇤

c,1

) Colony productivity under the univadable allocation schedule u

⇤, number of sex-
uals produced in the focal colony, that survive until the end of the season.

C(M) = C Potential for conflict.
H

c,d

(u(t),x(t),�(t)) Hamiltonian function if the evolving trait is under the genetic control of a party
c 2 {w, q} for a scenario d 2 {del, dir} of dispersal of sexuals.

M Queen mating frequency.
n Number of colonies or breeding sites (large and constant).
ps
c

Expected frequency of the mutant allele in party c in a colony founded by a mutant
individual of type s 2 {q,m}.

q
s

(u,v) Asymptotic probability that a mutant allele is sampled in an individual of type
s 2 {q,m}.

R
c

Relatedness asymmetry, i.e, the ratio of sex-specific (females to males) contribu-
tions of genes of a party c 2 {w, q} (in a neutral process) to the gene pool in
distant future.

r�
s,c

Average relatedness between an individual of party c 2 {w, q} and a juvenile
individual of type s 2 {q,m}.

t Time of the season defined over a period [0, T ].
t⇤
c,1

Switching time from the ergonomic phase to the reproductive phase under the
scenario c 2 {q,w,mx} of genetic control of resource allocation traits.

t⇤
c,2

Switching time from the production of only males to the production of only queens
(for direct dispersal) under the scenario c 2 {q,w,mx} of genetic control of
resource allocation traits.

u
⌧

(t) Resource allocation trait of type ⌧ 2 {f, q} of a colony where all the genes in
control of the trait carry only mutant alleles.

us
⌧

(t) Resource allocation trait of type ⌧ 2 {f, q} of a colony founded by a mutant
individual of type s 2 {q,m}.

u⇤
⌧

(t) Uninvadable resource allocation trait of type ⌧ 2 {f, q}.
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u Full resource allocation schedule of a colony founded by an individual of
type s who carries a mutant allele for each of the evolving traits, i.e. u =

{u
f

(t), u
q

(t)}
t2[0,T ]

. Note that u(t) = (u
f

(t), u
q

(t)).
u

s A hypothetical resource allocation schedule of a colony founded by an individual
of type s 2 {q,m} who is homozygous for the mutant alleles for both of the
evolving traits, i.e. us

= {us
f

(t), us
q

(t)}
t2[0,T ]

. Note that us

(t) = (us
f

(t), us
q

(t)).
u

⇤ Full uninvadable allocation schedule defined over the entire season t 2 [0, T ],
u

⇤
= {u⇤

f

(t), u⇤
q

(t)}
t2[0,T ]

. Note that u⇤
(t) = (u⇤

f

(t), u⇤
q

(t)). Note that in the
main text we use a different notation, whereby v

⇤ ⌘ u

⇤.
v
⌧

(t) Resource allocation trait of type ⌧ 2 {f, q} of a colony founded by resident indi-
viduals.

v Full resource allocation schedule that describes how resources are allocated
throughout the season t 2 [0, T ] in a colony founded by resident individuals,
i.e. v = {v

f

(t), v
q

(t)}
t2[0,T ]

. Note that v(t) = (v
f

(t), v
q

(t)).
w
s

0
s

(u

s,v) Expected number of juveniles of type s0 2 {q,m} that descend from a mutant
colony-founding individual of type s 2 {q,m} carrying the mutant allele.

W
c

(u,v) or W
c,d

(u,v) Invasion fitness of the mutant allele for a trait that is under the genetic control
of a party c 2 {w, q}. The additional subscript in the latter notation further
emphasizes the scenario d 2 {del, dir} of dispersal of sexuals.

y
k

(t) Number of type k 2 {w, q,m} individuals alive at time t, who have been pro-
duced in a colony founded by resident individuals. Note that in the main text we
use a different notation, whereby x

k

⌘ y
k

.
xs
k

(t) Number of type k 2 {w, q,m} individuals alive at time t, who have been pro-
duced in a colony founded by a mutant individual of type s 2 {q,m}.

xs
iq

(t) Number of females inseminated by males produced in a colony founded by a
mutant individual of type s 2 {q,m}.

x⇤
k

(t) Number of type k 2 {w, q,m} individuals alive at time t, who have been pro-
duced in the colony following the uninvadable allocation schedule u

⇤.
x⇤
w

(t⇤
c,1

) Colony size at maturity under the univadable allocation schedule u

⇤, i.e. colony
size at t⇤

c,1

when colony switches from the ergonomic phase to the reproductive
phase.

↵�
s

Neutral class reproductive value of an individual of type s 2 {q,m}.
� Replacement factor in the iterative scheme of best response map.
�
s

0
s

Probability that a gene sampled in an individual of type s0 2 {q,m} was con-
tributed by an individual of type s 2 {q,m}; i.e. transmission frequency of type
s to type s0.

�s

k

(t) Costate variable associated with the state variable xs
k,u

(t).
✏
⌧

The intensity of deviation from the resident trait v
⌧

(t).
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⌘
⌧

(t) Deviation from the resident trait v
⌧

(t).
µ
k

Mortality rate of type k 2 {w, q,m} individuals. If mortality of males and queens
is equal (µ

q

= µ
q

) then we denote by µ
r

the mortality rate of sexuals.
⌧ (subscript) Denotes the type of the trait. If ⌧ = f then the trait is the proportion of re-

sources allocated to producing females (individuals destined to become workers
or queens), if ⌧ = q then the trait is the proportion of resources allocated to pro-
ducing queens from resources allocated to females.

⌫�
s

Neutral reproductive value of an individual of type s 2 {q,m}.
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