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ABSTRACT

BACKGROUND: Schizophrenia and bipolar disorder are characterized by social cognitive impairments, and recent
research has identified alterations of the social brain. However, it is unknown whether familial high risk (FHR) of these
disorders is associated with neurobiological alterations already present in childhood.

METHODS: As part of the Danish High Risk and Resilience Study-VIA 11, we examined children at FHR of schizophrenia
(n =121, 50% female) or bipolar disorder (n = 75, 47% female) and population-based control children (PBCs) (n = 128,
48% female). Using functional magnetic resonance imaging and dynamic causal modeling, we investigated brain
activation and effective connectivity during the social cognition paradigm from the Human Connectome Project.
RESULTS: We found similar activation of the mentalizing network across groups, including visual area V5, the
dorsomedial prefrontal cortex, and the posterior superior temporal sulcus (pSTS). Nonetheless, both FHR groups
showed aberrant brain connectivity in the form of increased feedforward connectivity from left V5 to pSTS compared
with PBCs. Children at FHR of schizophrenia had reduced intrinsic connectivity in bilateral V5 compared with PBCs,
whereas children at FHR of bipolar disorder showed increased reciprocal connectivity between the left dorsomedial
prefrontal cortex and the pSTS, increased intrinsic connectivity in the right pSTS, and reduced feedforward con-
nectivity from the right pSTS to the dorsomedial prefrontal cortex compared with PBCs.

CONCLUSIONS: Our results provide first-time evidence of aberrant brain connectivity in the mentalizing network of
children at FHR of schizophrenia or FHR of bipolar disorder. Longitudinal research is warranted to clarify whether
aberrant brain connectivity during mentalizing constitutes an endophenotype associated with the development of
a mental disorder later in life.

https://doi.org/10.1016/j.bpsc.2024.08.004

Social cognitive impairments, in particular theory of mind
(ToM) deficits, have been suggested as an endophenotype for
schizophrenia and bipolar disorder (1-4). ToM is the ability to
infer and predict other peoples’ mental states, knowing that
these may differ from one’s own (5,6). The simplest aspects of
ToM develop during infancy and the preschool years, whereas
more complex mentalizing abilities develop in middle child-
hood and adolescence (7,8). Functional neuroimaging studies
of adults have identified a network of brain regions activated
when reasoning about mental states, including the medial
prefrontal cortex (mPFC) and the posterior superior temporal
sulcus (pSTS) at the temporoparietal junction (9-13). The same
regions have been identified in middle childhood (14-17), with

stronger functional network integration with age (18-20).
Hence, the social brain undergoes continuous development
from infancy to adulthood, with adolescence being a critical
developmental period of synaptic reorganization and changes
in functional integration within the mentalizing network (21-23).

Recent meta-analyses have confirmed the presence of ab-
normalities in the mentalizing network of individuals with
schizophrenia, with results showing both decreased and
increased activation compared with control children (24-28).
Similarly, abnormal activation of the mentalizing network has
also been identified in bipolar disorder (29-33). Schizophrenia,
and to some extent bipolar disorder, are conceptualized as
neurodevelopmental disorders, which suggests that
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neurobiological abnormalities emerge before iliness onset due
to abnormal brain development (34-37). Consistent with this, a
developmental dysfunction of synaptic efficacy has been
proposed as a likely disorder mechanism in schizophrenia
(38,39). Studies of brain connectivity in schizophrenia and bi-
polar disorder suggest that abnormalities in the mentalizing
network do not merely result from abnormal activation of
particular brain regions but rather from synaptic dysfunction
across the brain. This abnormality in synaptic integration may
underlie social cognitive deficits (33,40-42) and may contribute
to the emergence and maintenance of psychotic and mood
symptoms, due to abnormal perception and interpretation of
social stimuli. Computational theories that describe brain con-
nectivity as a process of predictive coding are becoming
increasingly useful for understanding psychotic symptoms and
false beliefs (43). Predictive coding offers a natural framework for
understanding ToM as inferring the hidden states of another
agent’s intentions. This inference rests on an internal model of
the mental states that causes an observed social behavior. In
psychopathology, this social inference can go awry and
generate false beliefs and delusions (40,44).

Schizophrenia and bipolar disorder have high heritability
estimates, and offspring of parents diagnosed with either
disorder have a significantly increased risk of developing a
mental disorder themselves (45-47). We have previously
shown that children at familial high risk of schizophrenia (FHR-
SZ) or bipolar disorder (FHR-BP) exhibit intact ToM abilities
(48,49). Nonetheless, typical behavioral performance does not
preclude neurobiological abnormalities (50). Using functional
magnetic resonance imaging (fMRI) and dynamic causal
modeling (DCM), a recent study found aberrant brain con-
nectivity within the mentalizing network in individuals with first-
episode schizophrenia compared with control children, even
though the groups did not differ behaviorally (40). Additionally,
previous fMRI studies of adult first-degree relatives of in-
dividuals with schizophrenia found decreased activation in the
mPFC and abnormal activation of right hemisphere regions of
the mentalizing network (51,52), whereas another study did not
identify any differences (53). Similarly, abnormal activation and
functional connectivity within the mentalizing network have
been identified in adult first-degree relatives of individuals with
bipolar disorder (33). This suggests that abnormalities in the
mentalizing network could constitute an endophenotype.
However, it is unknown whether abnormal brain activation or
brain connectivity is already present during childhood, years
before illness onset.

To answer these questions, we used fMRI and DCM of brain
connectivity to identify differences within the mentalizing
network of preadolescent children at FHR-SZ or FHR-BP
compared with population-based control children (PBCs). We
hypothesized that children at FHR-SZ or FHR-BP would show
deviant brain activation and aberrant effective connectivity in
the mentalizing network compared with PBCs.

METHODS AND MATERIALS

This fMRI study is part of the first follow-up of The Danish High
Risk and Resilience Study-VIA, a population-based, repre-
sentative cohort study examining 522 children, including those
born to parents diagnosed with schizophrenia (n = 202) or
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bipolar disorder (n = 120) and PBCs (n = 200). To date, the
children have been examined twice: at age 7 (54) and at age
11, at which time brain imaging was added to the assessment
(55). Of the initial cohort, a total of 453 children participated at
follow-up (FHR-SZ, n = 179; FHR-BP, n = 105; PBC, n = 181),
equaling a retention rate of 89%. Data acquisition for the
follow-up study was conducted from March 1, 2017, to June
30, 2020. The study was approved by the Danish Data Pro-
tection Agency and the National Committee on Health
Research Ethics (Study No. H16043682). All children received
written and verbal information about the study, and written
informed consent was obtained from the children’s legal
guardians.

Participants

Participants were identified through the Danish Civil Regis-
tration System and the Danish Psychiatric Central Research
Register (56,57). The PBC children were matched on a one-to-
one basis to the FHR-SZ children based on age, sex, and
municipality. The FHR-BP children were a nonmatched sample
but were comparable to the 2 other groups on age and sex.

Descriptive and Clinical Measures

Level of functioning was measured with the Children’s Global
Assessment Scale (58). Emotional and behavioral problems
were assessed with the Child Behavior Checklist, School-age
version, which was completed by the primary caregiver (59).
IQ was estimated using the Reynolds Intellectual Screening
Test (60). Handedness was assessed using The Edinburgh
Handedness Inventory 10-item version (61). Dropout analyses
were performed on descriptive and clinical measures for chil-
dren who participated versus children who did not participate
in this fMRI study. Analyses of descriptive and clinical mea-
sures were conducted using Stata IC software, version 16.1
(62). We ascertained one-way analysis of variance or 2 tests
followed by pairwise comparisons in case of a significant main
effect of group. The alpha level was set to p < .05.

fMRI Acquisition

We used the social cognition paradigm from the Human
Connectome Project (HCP) (50), which is a well-validated fMRI
task that has previously been shown to generate robust acti-
vation in the mentalizing network (50,63). Additionally, it was
recently used to investigate brain connectivity in healthy in-
dividuals (13) and people with first-episode schizophrenia (40).
The HCP social cognition paradigm was presented using E-
prime 2.0 (Psychology Software Tools, Inc.) (see the
Supplement and Figure S2 for a detailed description). fMRI
data were acquired at 2 distinct sites in Denmark using a
multiband, gradient echo, echo-planar imaging (EPI) sequence
obtained via a C2P agreement with the Center for Magnetic
Resonance Research in Minneapolis, Minnesota (64). At the
Center of Functionally Integrative Neuroscience at Aarhus
University Hospital, we used a Siemens MAGNETOM Skyra 3T
scanner with a 32-channel head coil to acquire EPI with an in-
plane acceleration factor of 2, a multiband factor of 3, and a
total readout time per slice of 21 ms, volume repetition time
of 1081 ms, echo time of 30 ms, flip angle of 65°, field of
view of 192 X 187 mm, and in-plane resolution of 78 X 76.
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We acquired 472 whole-brain volumes consisting of 54
transverse slices with voxel size of 2.46 X 2.46 X 2.5 mm. At
the Danish Research Center for Magnetic Resonance at
Copenhagen University Hospital Hvidovre, we used a Siemens
MAGNETOM Prisma 3T scanner with a 64-channel head coil to
acquire EPI with an in-plane acceleration factor of 2, a multi-
band factor of 3, and a total readout time per slice of 21 ms,
repetition time of 1052 ms, echo time of 30 ms, flip angle of
65°, field of view of 192 X 187 mm, and in-plane resolution of
78 X 76. We acquired 520 whole-brain volumes consisting of
54 transverse slices with voxel size of 2.46 X 2.46 X 2.5 mm.

Analysis of Behavioral Measures From the HCP
Social Cognition Paradigm

We tested for differences in task accuracy, task sensitivity, and
response time within each group between social and nonsocial
conditions using paired t tests and differences between groups
within each condition using two-sample t tests. Task sensitivity
was analyzed with d-prime (65), which is a measure from signal
detection theory of how well participants discriminate between
stimulus conditions by penalizing hits by false alarms. All
between-group analyses were corrected for age, sex, and test
site. All tests were thresholded at p < .05 and corrected for
multiple comparisons using the Benjamini-Hochberg proced-
ure with the false discovery rate set to 5% (66).

fMRI Analysis

fMRI data were analyzed using SPM12 (revision 7771). The
images were realigned within participants using rigid-body
transformation, resampled to 2-mm?® voxels, and spatially
normalized to Montreal Neurological Institute space using the
ICBM template of European brains (SPM EPI template). The
time-series were high-pass filtered at 1/128 seconds, and
temporal correlations were modeled with a first-order autore-
gressive model. Social and nonsocial conditions were modeled
as a block design convolved with a canonical hemodynamic
response function and fitted to the time series using a general
linear model. To account for effects of head movement, we
included a 24-parameter set consisting of immediate head
movement and movement during the previous volume (67). For
quality control, we calculated the framewise displacement (68).
We excluded participants with head movement above 2 mm
(voxel size) in more than 10% of the volumes. In the final
sample, movement did not differ across groups (Fo321 =
0.1753, p = .8303). We created contrast images to test for vi-
sual stimulation and the difference in activation between social
and nonsocial conditions. Contrast images were smoothed
with an 8-mm full width at half maximum Gaussian kernel.
Using a one-sample t test, we first tested for brain activation
in PBCs to identify regions involved in mentalizing. Then, we
tested between-group differences in brain activation using
analysis of variance and adjusted for age, sex, and test site. All
tests were thresholded at p < .05 and familywise error whole-
brain corrected for multiple comparisons using Gaussian
random field theory (69).

DCM of Effective Brain Connectivity

We used a two-state DCM for fMRI (DCM12; revision 7479) to
estimate the effective (synaptic) connectivity within and

The Mentalizing Network in High-Risk Children

between brain areas. This DCM models extrinsic connections
between brain areas as excitatory feedforward and feedback
connections and the intrinsic connectivity within an area in
terms of the synaptic influence of inhibitory interneurons on
excitatory cells. This allows modeling of each cortical area as an
increase or decrease in cortical inhibition (70). DCM uses a
biophysical model of brain connections that cause neuronal
dynamics, as opposed to metrics of functional connectivity that
operate at the (phenomenological) level of the observed fMRI
signal (see the Supplement for further description of DCM for
fMRI). We analyzed the connectivity within the mentalizing
network under 2 alternative hypotheses. The first hypothesis
was formulated as a full DCM in which both extrinsic (excitatory)
connections and intrinsic (inhibitory) connections encode social
stimuli compared with nonsocial stimuli. The second hypothesis
was a reduced model in which only extrinsic connections
encode social stimuli. Finally, we included a null DCM to test the
belief that no connections encode any differences between
experimental conditions (Figure S3).

We estimated the full DCM using variational Bayesian
inference (71). This provides both the posterior distribution of
the connection strengths and the free-energy approximation to
the marginal likelihood of the model itself, known as the model
evidence. A reduced model and a null model were then esti-
mated using Bayesian model reduction (72). We then
compared alternative hypotheses using both random-effects
Bayesian model selection (73,74) of DCMs at the single-
participant level and fixed-effects Bayesian model compari-
son of parametrical empirical Bayes (PEB)-DCMs at the group
level. Finally, we used PEB to identify increases or decreases in
connection strengths at the group level and test for group
differences using Bayesian inference. All group effects were
adjusted for age, sex, and test site. All DCM results were
thresholded at a posterior probability >0.95.

RESULTS

Sample Characteristics

We included data from 324 children (FHR-SZ, n = 121; FHR-
BP, n = 75; PBC, n = 128) (Figure S1). The number of chil-
dren who participated at each test site was balanced, and the
groups did not differ in age, sex, IQ, or handedness. Children at
FHR-SZ or FHR-BP had lower levels of functioning and
exhibited more emotional and behavioral problems than PBCs
(Table 1). Comparisons of the participating children (n = 324)
and nonparticipating children (n = 121) revealed no differences
in sex (p = .163), emotional and behavioral problems (p = .187),
or distribution across FHR groups (p = .737). However, the
participating children had higher levels of functioning (p = .012)
and a higher 1Q (p = .017) (Table S1A). Dropout analyses based
on FHR status revealed that these differences were driven by
differences between the participating versus nonparticipating
children at FHR-SZ (Table S1B).

Behavioral Measures

We found no differences between groups in task accuracy or
task sensitivity. However, we observed a difference in
response time between groups, both for social conditions and
for nonsocial conditions. Children at FHR-SZ were slower at
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Table 1. Demographic and Clinical Characteristics of the Participating Preadolescent Children

Pairwise Comparisons, p Value

FHR-SZ vs. FHR-BP vs. FHR-SZ vs.
FHR-SZ, n = 121 FHR-BP, n = 75 PBCs, n = 128 p Value PBCs PBCs FHR-BP

Sex, Female 60 (49.59%) 35 (46.67%) 61 (47.66%) 9157 - - -
Age, Years 12.10 (0.30) 12.08 (0.29) 12.12 (0.27) .592° - - -
C-GAS°® 67.34 (15.03) 69.05 (15.03) 74.85 (14.08) <.0017¢ <.001¢ .007¢ 439
CBCL® 22.23 (20.13) 20.59 (20.55) 12.95 (12.96) <.001>¢ <.001¢ .0027 587
Q" 96.12 (10.82) 97.72 (9.90) 98.47 (10.29) .200° - - -
Handedness?

Left-handed 10 (8.26%) 9 (12.00%) 9 (7.03%) .263% - - -

Right-handed 99 (81.82%) 63 (84.00%) 113 (88.28%)

Ambidextrous 12 (9.92%) 3 (4.00%) 6 (4.69%)
Test Site

CFIN 60 (35.50%) 35 (20.71%) 74 (43.79%) .238% - - -

DRCMR 61 (39.35%) 40 (25.81%) 54 (34.84%)

Values are presented as mean (SD) or n (%).

CBCL, Child Behavior Checklist, School-age version; CFIN, Center of Functionally Integrative Neuroscience, Aarhus University Hospital; C-GAS, Children’s Global

Assessment Scale; DRCMR, Danish Research Center for Magnetic Resonance, Hvidovre Hospital; FHR-BP, familial high risk of bipolar disorder; FHR-SZ, familial high

risk of schizophrenia; PBCs, population-based control children.
ay? test.
bOne-way analysis of variance.

°Ranging from 0 to 100, where a lower score reflects poorer global functioning. C-GAS scores in this sample range from 34 to 98 (FHRSZ, n = 121; FHR-BP, n = 75;

PBC, n = 126).
9Istatistically significant result at significance level p < .05.

°Ranging from 0 to 266, with higher scores reflecting more problem behavior. CBCL scores in this sample range from 0 to 126 (FHR-SZ, n = 114; FHR-BP, n = 75; PBC,

n = 124).

’Estimated using the Reynolds Intellectual Screening Test (55), where a higher score reflects a higher level of general intelligence. Reynolds Intellectual Screening Test

index scores in this sample range from 24 to 126.

9Handedness was assessed with the Edinburgh Handedness Inventory (54), and data are presented according to the laterality quotient score.

responding than PBCs both in social conditions (to4q = 2.3,
p = .02, Cohen’s d = 0.30) and in nonsocial conditions (to44 =
2.5, p = .01, Cohen’s d = 0.40). Children at FHR-BP were also
slower at responding than PBCs both in the social conditions
(t108 = 2.8, p = .006, Cohen’s d = 0.40) and in the nonsocial
conditions (t19s = 3.5, p = .0006, Cohen’s d = 0.50). Children at
FHR-SZ or FHR-BP did not differ in response time in either
condition (Table S2).

We found no differences in task accuracy within each group
between social and nonsocial conditions. However, we
observed a difference in task sensitivity between social and
nonsocial conditions in children at FHR-SZ (t1o0 = 7.3,
p < .000001, Cohen’s d = 0.67), children at FHR-BP (t;4 = 5.9,
p < .000001, Cohen’s d = 0.68), and PBCs (t127 = 8.4, p <
.000001, Cohen’s d = 0.75). This shows that the children were
more sensitive overall to social than nonsocial conditions. We
also found a difference in response time between social and
nonsocial conditions in PBCs (t1,7 = 2.8, p = .006, Cohen’s d =
0.32) but not in children at FHR-SZ or FHR-BP, indicating that
PBCs were slower at responding to social than nonsocial
conditions (Figure 1A-C and Table S2).

Brain Activation

When the PBC children perceived visual stimuli (both social
and nonsocial conditions), we observed increased bilateral
activation of extrastriate area V5. When the PBCs perceived
social compared to nonsocial conditions, we observed
increased activation in visual area V4, the fusiform gyrus,

bilateral pSTS, bilateral inferior frontal gyrus, bilateral pre-
cuneus, cerebellum, and right thalamus (Table 2 and
Figure 2). We found no differences in regional brain activation
between groups during social compared to nonsocial
conditions.

Effective Brain Connectivity

We analyzed the effective connectivity within a cortical
network comprising bilateral visual area V5, bilateral pSTS, and
the dorsomedial prefrontal cortex (dmPFC) in the right hemi-
sphere. This cortical network was based on the peak activa-
tions in PBCs (Table 2) and results from previous studies that
showed activation in these regions during the same (13,40,75)
or similar mentalizing tasks (12,22,63).

Bayesian model comparison of the PEB-DCMs at the group
level revealed that a cortical network with changes in both
between-area (excitatory) and within-area (inhibitory) connec-
tions had the highest Bayesian model evidence in PBCs
(posterior model probability >0.99). This was confirmed by a
random-effects Bayesian model comparison (posterior model
probability > 0.95 and protected exceedance probability > 0.99)
(Figure 3A). PBCs had a bilateral increase in feedforward
connectivity from V5 to the pSTS and an increase in feedfor-
ward connectivity from the right pSTS to the dmPFC. In the
right hemisphere, there was an increase in feedback connec-
tivity from the pSTS to V5. Simultaneously, there was a
decrease in intrinsic connections within the left and right pSTS
and the left V5 (Figure 3B, C).
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Aberrant Brain Connectivity in Children at FHR-SZ

When comparing children at FHR-SZ with PBCs, Bayesian
model comparison of the PEB-DCMs at the group level
revealed that a cortical network with changes in both between-
area and within-area connections had the highest Bayesian
model evidence (posterior model probability > 0.96). This was
confirmed by a random-effects Bayesian model comparison
(posterior model probability > 0.96 and protected exceedance
probability > 0.99) (Figure 4A). Children at FHR-SZ had

Non-social condition

The Mentalizing Network in High-Risk Children

Figure 1. (A-C) Behavioral results from the social
cognition task from the Human Connectome Project.
Results are presented with mean and 95% confi-
dence intervals. FHR-BP, familial high risk of bipolar
disorder; FHR-SZ, familial high risk of schizophrenia;
PBC, population-based control children.

FHR-SZ FHR-BP PBC

Non-social condition

FHR-SZ FHR-BP PBC

Non-social condition

———————— p=001
——— p=0.0006

FHR-SZ FHR-BP PBC

stronger feedforward connectivity from V5 to the pSTS in the
left hemisphere and decreased intrinsic coupling within the left
and right V5 compared with PBCs (Figure 4B, C).

Aberrant Brain Connectivity in Children at FHR-BP

When comparing children at FHR-BP with PBCs, Bayesian
model comparison of the PEB-DCMs at the group level
revealed that a cortical network with changes in both between-
area and within-area connections had the highest Bayesian
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Table 2. Peak-Level Brain Activations in Preadolescent Population-Based Control Children

MNI Coordinates

X y z t Statistic (df) Anatomical Region Probabilistic Atlas®
46 —66 —4 9.92 (127) Right middle temporal gyrus hOc5 (V5)
—42 —68 6 9.20 (127) Left middle temporal gyrus hOc5 (V5)
26 —94 —4 16.82 (127) Lateral occipital cortex hOc4lp (V4)
—42 —48 -16 13.99 (127) Fusiform gyrus Area FG4
52 —44 10 13.50 (127) Right pSTS Supramarginal
—56 -50 10 9.61 (127) Left pSTS Supramarginal
12 12 66 8.11 (127) Dorsomedial prefrontal cortex Superior frontal gyrus
52 28 12 11.87 (127) Right inferior frontal gyrus Area 45
—38 10 24 6.96 (127) Left inferior frontal gyrus Area 44
18 -52 20 10.33 (127) Right precuneus Precuneus
-16 -58 20 9.35 (127) Left precuneus Precuneus
—22 -80 -32 8.87 (127) Left cerebellum Crus |
10 -12 8 7.57 (127) Right thalamus Thalamus

MNI, Montreal Neurological Institute; pSTS, posterior superior temporal sulcus.

“Anatomical classification using the SPM anatomy toolbox (5,6).

model evidence (posterior model probability > 0.99). This was
confirmed by a random-effects Bayesian model comparison
(posterior model probability > 0.97 and protected exceedance
probability > 0.99) (Figure 5A). Children at FHR-BP had
stronger feedforward and feedback connectivity between V5
and the pSTS in the left hemisphere than PBCs. In the right
hemisphere, children at FHR-BP had reduced feedforward
connectivity from the pSTS to the dmPFC compared with
PBCs. Simultaneously, children at FHR-BP had increased
intrinsic coupling within the right pSTS (Figure 5B, C).

Differences in Effective Brain Connectivity
Between the FHR-SZ and FHR-BP Groups

When comparing the 2 FHR groups, Bayesian model com-
parison of the PEB-DCMs at the group level revealed that a
cortical network with changes in both between-area and
within-area connections had the highest Bayesian model evi-
dence (posterior model probability > 0.99). This was confirmed
by a random-effects Bayesian model comparison (posterior
model probability > 0.98 and protected exceedance proba-
bility > 0.99) (Figure 6A). Children at FHR-SZ had reduced

feedforward connectivity from V5 to the pSTS in the left
hemisphere compared with children at FHR-BP. In contrast,
children at FHR-SZ had stronger feedforward connectivity
from the pSTS to the dmPFC in the right hemisphere than
children at FHR-BP. Finally, children at FHR-SZ exhibited
reduced levels of intrinsic connectivity in bilateral V5 and the
right pSTS (Figure 6B, C).

DISCUSSION

We identified no differences between groups in brain activation
in the mentalizing network. However, using DCM, we found
that children at FHR-SZ or FHR-BP exhibited aberrant brain
connectivity within the mentalizing network compared with
PBCs. Behaviorally, children at FHR-SZ or FHR-BP were
slower at responding than PBCs, and all groups were more
sensitive to social than nonsocial stimuli.

We did not observe any group differences in task accuracy
or task sensitivity, indicating that the groups did not differ in
categorizing social and nonsocial conditions. This corre-
sponds to the results from our behavioral study of the same
cohort where the groups displayed comparable ToM abilities

Brain activation in population-based controls (PBC)

Visual stimuli (social and non-social)

t-statistic

Social > non-social stimuli

t-statistic

Figure 2. Brain activation during the social cognition task from the Human Connectome Project.
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Figure 3. (A-C) Dynamic causal modeling (DCM) of effective brain connectivity in population-based control children (PBCs). +ve indicates positive (an
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(49). Furthermore, our results revealed that the FHR groups
were slower at responding to both types of conditions than
PBCs, indicating that children at FHR-SZ or FHR-BP may be
more uncertain before reaching a decision. Another possible
explanation relates to the widespread neurocognitive impair-
ments that have been identified within the same cohort, including
deficits in processing speed and visuospatial memory (76). All
children were more sensitive to social than nonsocial stimuli,
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which suggests an overattribution of mental states (hyper-
mentalizing) (77-79). Speculatively, this tendency may indicate
that their ToM abilities are not yet fully developed (7,8,49).

Our fMRI results replicate previous findings of brain acti-
vation during mentalizing tasks (9-12), and the HCP social
cognition paradigm in particular (13,40,50,75), with consistent
activation of the dmPFC and pSTS. Moreover, the pathway
from motion-sensitive area V5 to the pSTS has been proposed
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as a third visual stream that is functionally specialized for social
representations (80). This visual pathway has feedforward and
feedback projections to the dorsal PFC via the superior lon-
gitudinal fasciculus, which supports our findings of feedfor-
ward and feedback connections between the pSTS and the
dmPFC (81). However, consistent with our behavioral results,
we found no differences in brain activation between groups.
This is in contrast to studies of adult first-degree relatives of
individuals with schizophrenia or bipolar disorder (33,51,52).
However, a key difference is that the children in our study were

at a developmental stage at which the brain circuitry underlying
mentalizing is still not fully developed (7,8,22,23,49), which
could make detection of groupwise differences challenging.
Additionally, results from our dropout analyses revealed that
the participating children at FHR-SZ were higher functioning
than the nonparticipating children at FHR-SZ.

We identified both shared and unique profiles of aberrant
brain connectivity in the mentalizing network in children at
FHR-SZ or FHR-BP compared with PBCs. We found a shared
profile of abnormally high levels of feedforward connectivity
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from V5 to the pSTS in both FHR groups, which is consistent
with previous findings in first-episode schizophrenia (40). We
found a unique profile of reduced connectivity between the
pSTS and the dmPFC in children at FHR-BP. We also identified
unique profiles of within-area coupling in different areas of the
mentalizing network, with disinhibition in bilateral V5 in children
at FHR-SZ and increased inhibition of the right pSTS in chil-
dren at FHR-BP.

In predictive coding, feedback connections from higher to
lower regions of the cortical hierarchy are thought to encode
the brain’s internal predictions about the external world, such
as one’s belief about other agents’ mental states (82). In
contrast, feedforward connections from lower to higher re-
gions mediate the ensuing prediction errors inconsistent with
the brain’s prior predictions. When exposed to social stimuli,
the influence of prediction errors on posterior beliefs is
controlled by their precision or certainty, which is presumably
encoded by cortical gain mechanisms via inhibition of excit-
atory principal cells. The role of prediction errors is then to
resolve the uncertainty with which the brain represents the
external world. Children at FHR-SZ had increased feedforward
connectivity from V5 to the pSTS, which may reflect a state
where prediction errors are weighted by an abnormally high
level of precision during social stimuli. This replicates previous
findings in first-episode schizophrenia (40), where this was
interpreted as a failure to integrate information carried by
prediction errors into the patient’s model of another agent’s
mental states. Children at FHR-BP also exhibited stronger
feedforward connectivity from V5 to the pSTS, accompanied
by feedback connectivity. This shared profile of stronger
feedforward connectivity may reflect a state in which children
at FHR-SZ or FHR-BP are more uncertain about visual infor-
mation before they reach a decision and must resolve this
uncertainty via an increase in prediction errors. Behaviorally,
this is reflected in their slower response times. In FHR-BP, the
increase in recurrent connectivity may be interpreted as a
failure of both prediction errors and the subsequent updating
of visual representations via feedback connections. At higher
levels of the mentalizing network, children at FHR-BP showed
reduced feedforward connectivity from the pSTS to the mPFC
accompanied by increased intrinsic coupling within the pSTS.
This may reflect a decoupling of prediction errors from the
temporal cortex to the PFC via increased inhibition in the pSTS
and a subsequent reduction in feedforward connections to the
dmPFC. Similarly, studies have identified abnormal activation
in the pSTS and reduced functional connectivity with the PFC
in schizophrenia (42,83-86). However, we did not observe any
alterations in the circuit between the temporal cortex and the
PFC in children at FHR-SZ.

The current study has several strengths. To our knowledge,
it is the first to investigate brain activation and brain connec-
tivity in young offspring of parents with schizophrenia or bi-
polar disorder. We included a large sample of same-aged
children, thereby diminishing the effect of age-related differ-
ences, and we used a well-validated fMRI paradigm. However,
our study also has limitations. The cross-sectional design does
not allow interferences about neurodevelopmental alterations.
Currently, our follow-up study of the same cohort at age 15 is
ongoing (87), which will allow investigation of developmental
changes. Moreover, in this study, the effects of other relevant

The Mentalizing Network in High-Risk Children

factors such as psychopathology, environmental factors, and
genetics have not been taken into account. However, we have
planned a series of studies to examine the putative effect of
these factors on pathophysiology in the same cohort. Finally,
there are limitations to the specificity of brain connections in
DCM for fMRI. While DCM for electroencephalography and
magnetoencephalography allows for a richer neurophysiolog-
ical complexity by virtue of the electrophysiological signal,
DCM for fMRlI is limited to a simple model of putative excitatory
and inhibitory connections to explain the observed fMRI signal.

Conclusions

While impairments are not evident on a behavioral level or in
brain activation, we identified both shared and unique profiles
of aberrant brain connectivity within the mentalizing network in
preadolescent children at FHR-SZ or FHR-BP. This may reflect
a shared neurobiological endophenotype as well as unique
biomarkers related to schizophrenia and bipolar disorder.
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