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A B S T R A C T

The cost of germline maintenance gives rise to a trade-off between lowering the deleterious mutation rate and
investing in life history functions. Therefore, life history and the mutation rate coevolve, but this coevolution is
not well understood. We develop a mathematical model to analyse the evolution of resource allocation traits,
which simultaneously affect life history and the deleterious mutation rate. First, we show that the invasion
fitness of such resource allocation traits can be approximated by the basic reproductive number of the least-
loaded class; the expected lifetime production of offspring without deleterious mutations born to individuals
without deleterious mutations. Second, we apply the model to investigate (i) the coevolution of reproductive
effort and germline maintenance and (ii) the coevolution of age-at-maturity and germline maintenance. This
analysis provides two resource allocation predictions when exposure to environmental mutagens is higher.
First, selection favours higher allocation to germline maintenance, even if it comes at the expense of life history
functions, and leads to a shift in allocation towards reproduction rather than survival. Second, life histories
tend to be faster, characterised by individuals with shorter lifespans and smaller body sizes at maturity. Our
results suggest that mutation accumulation via the cost of germline maintenance can be a major force shaping
life-history traits.
1. Introduction

Maintaining and accurately transmitting genetically encoded infor-
mation is central for every living organism. Mutations induce errors in
the processing of genetic information and their effects on survival and
reproduction tend to be deleterious (e.g. Eyre-Walker and Keightley,
2007; Halligan and Keightley, 2009; Charmouh et al., 2023). Therefore,
it is likely that selection primarily favours a reduction of the mutation
rate of organisms (Sniegowski et al., 2000). Yet, investing resources
into germline maintenance is physiologically costly (Kirkwood, 1986;
Maklakov and Immler, 2016; Monaghan and Metcalfe, 2019; Chen
et al., 2020). Thus, the balance between selection against deleterious
mutations driving for lower mutation rates and selection for reduced
physiological cost increasing mutation rates is expected to lead to a
positive rate of mutation. This argument has been formalised in a
number of classical population genetic models assuming semelparous
reproduction (e.g. Kimura, 1967; Kondrashov, 1995; Dawson, 1998,
1999; Johnson, 1999b; André and Godelle, 2006; Gervais and Roze,
2017) and also under iteroparous reproduction (Lesaffre, 2021) to show
that evolution indeed favours an evolutionary stable non-zero mutation
rate. These studies emphasise the role of the physiological cost of
germline fidelity in explaining the patterns of mutation rates but do not
connect the cost of germline fidelity explicitly to life-history evolution,
which depends on underlying physiological trade-offs.
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Indeed, a central premise made in life-history theory is that life-
history trade-offs are mediated through the allocation of resources to
different life-history functions, such as growth, reproduction, and main-
tenance of soma, or information gathering and processing (Stearns,
1992; Roff, 2008). Since germline maintenance takes a toll on available
resources, mutation rate evolution and life-history evolution are tied
together through a resource allocation trade-off. This implies that the
rate of deleterious mutations should evolve jointly with life history
and affect various life-history traits, such as reproductive effort, age-at-
maturity, adult body size, and expected lifespan. Yet the bulk of models
about the evolution of mutation rates, which often go under the head-
ing of modifier models, consider physiologically neutral mutation rates
(e.g. Leigh, 1970; Gillespie, 1981; Holsinger and Feldman, 1983; Liber-
man and Feldman, 1986; Gerrish et al., 2007; Altenberg et al., 2017;
Baumdicker et al., 2020). And while the effect of fixed mutation rate on
life-history trade-offs has been studied before (e.g. Charlesworth, 1990;
Dańko et al., 2012), these models suggest that a relatively high level of
mutation rates is needed for mutation accumulation to alter life-history
trade-offs. This led to the conclusion that mutation accumulation is a
minor force in shaping life-history traits (Dańko et al., 2012). But these
studies view mutation rates as fixed traits acting only as a hindrance
to adaptive life-history evolution. Hence, no study has yet investigated
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the coevolution of both life-history traits and deleterious mutation rates
via allocation to germline maintenance.

The aim of this paper is to start to fill this gap by formally extend-
ing evolutionary invasion analysis–‘‘ESS’’ theory–(e.g., Maynard Smith,
1982; Eshel and Feldman, 1984; Metz et al., 1992; Charlesworth,
1994), which has been routinely applied to life-history evolution (e.g.,
León, 1976; Michod, 1979; Schaffer, 1982; Iwasa and Roughgarden,
1984; Stearns, 1992; Perrin, 1992; Perrin and Sibly, 1993; Cichon
and Kozlowski, 2000; Iwasa, 2000; Day and Taylor, 2000), to the
case where life-history trait(s) evolving by selection also control the
rate of deleterious mutations. This covers the situation where life-
history resource allocation schedules evolve on a background where
deleterious mutation accumulation can occur. Our formalisation thus
aims to integrate both the standard theories of life-history evolution
and deleterious mutation rate accumulation.

The rest of this paper is organised into two parts. First, we char-
acterise the invasion process of a mutant life-history trait affecting
the load of deleterious mutation accumulation in an age-structured
population. We show that ascertaining the joint evolutionary stability
of life-history schedules and mutation rates of deleterious mutations
is usually complicated, but under certain biologically feasible condi-
tions; in particular, when the zero mutation class (least-loaded class)
dominates the population in frequency, evolutionary stability can be
ascertained from the basic reproductive number of the least-loaded
class alone (expected lifetime production of offspring with no mu-
tations born to individuals with no mutations). Second, we analyse
and solve two concrete biological scenarios: (i) joint evolution be-
tween reproductive effort and germline maintenance, where individuals
face a trade-off between allocating resources to survival, reproduction
and germline maintenance and (ii) joint evolution between age-at-
maturity and germline maintenance, where individuals face a trade-off
between allocating resources to growth, reproduction and germline
maintenance. These scenarios allow us to illustrate how our model
can be applied to analyse questions in life history and mutation rate
evolution and provide predictions about how life history and mutation
rate coevolves. It also allows us to verify that the analysis based on
the basic reproductive number of the least-loaded class as an invasion
fitness proxy is a useful approximation, as analytical predictions match
closely with the results from individual-based stochastic simulations.

2. Model

2.1. Main biological assumptions

We consider a panmictic population of haploid individuals repro-
ducing asexually. The population size is assumed to be regulated by
density-dependent competition. Individuals in the population are struc-
tured into age classes and each individual undergoes birth, possi-
bly development, reproduction, and death. We allow for discrete and
continuous age classes with corresponding discrete and continuous
demographic processes. In the discrete case, an individual in the age
range [𝑎 − 1, 𝑎] for 𝑎 = 1, 2, 3,…, will, by convention, belong to the
th age class and so we begin counting discrete age classes with 1
one of the two possible conventions to count discrete age classes,
ig. 3.1 Case, 2000). An individual of age class 𝑎 is characterised

by a type 𝜃(𝑎) = (𝐮(𝑎), 𝑛m(𝑎)), which consists of two genetically de-
termined components (see Table 1 for a list of symbols and more
formalities on functions). The first component, 𝐮(𝑎), is the individual’s
life-history trait expressed in age class 𝑎; namely, a resource allocation
to different life-history functions (e.g. growth, reproduction, or somatic
maintenance, see e.g. Iwasa and Roughgarden, 1984; Kozlowski, 1992;
Perrin, 1992; Perrin and Sibly, 1993; Day and Taylor, 2000). We
denote by 𝐮 = {𝐮(𝑎)}𝑎∈T the whole life-history schedule or path of
resource allocation over all possible age classes T an individual can
be in (formally, 𝐮 ∈ U[T], where U[T] is the set of all admissible
life-history schedules with domain T, which for discrete age classes
2

t

Table 1
List of key symbols of the general model.

Key symbols of the model

𝑎 Individual age; age 𝑎 can take either discrete
𝑎 ∈ T = {1, 2, 3,…} or continuous 𝑎 ∈ T = [0,∞) values over
all possible age classes T under the scenario under
consideration.

𝐮(𝑎), 𝐯(𝑎) Life-history trait expressed at age 𝑎 by a mutant and resident
individual, respectively (e.g. proportional allocation
fecundity, survival, germline maintenance); formally,
𝐮 ∶ T → R𝑛 and 𝐯 ∶ T → R𝑛.

𝐮 = {𝐮(𝑎)}𝑎∈T ,
𝐯 = {𝐯(𝑎)}𝑎∈T

Full life-history schedule over all age classes expressed by a
mutant and resident indidivual, respectively (e.g.
proportional allocation of resources to fecundity from birth
to death); formally, 𝐮, 𝐯 ∈ U[T], where U[T] is a set of all
admissible life-history schedules; namely, a set of discrete or
continuous real-valued functions over domain T.

𝑛m(𝑎) Number of deleterious mutations at age 𝑎 in the locus where
deleterious mutations can accumulate; formally, 𝑛m ∶ T → N.
Since we assume asexual reproduction, the genetic details of
the locus for trait 𝑛m(𝑎) is irrelevant (i.e. it may consist of
many underlying loci).

𝑛m = {𝑛m(𝑎)}𝑎∈T Profile of deleterious mutations across all age classes;
formally, 𝑛m ∈ N[T] is an element of the space N[T] of all
possible discrete functions of range N over domain T.

𝐩(𝐯) Equilibrium probability distribution for the number of
deleterious mutations in the resident population carried by
individuals across the different age-classes, formally
𝐩(𝐯) ∈ 𝛥(N × T), where 𝛥(𝐴) is the set of probability measure
over set 𝐴. In the absence of age-dependence, 𝐩(𝐯) ∈ 𝛥(N),
see Eq. (B.5) for an example.

𝜌0(𝐮, 𝐯) Invasion fitness (per-capita growth ratio) of a zero-class
mutant allele 𝐮 (i.e. carriers of this mutant have zero
deleterious mutations) of a in a population monomorphic for
resident trait 𝐯.

�̃�0(𝐮, 𝐯) Basic reproductive number of a mutant 𝐮 of the least-loaded
class in a resident population 𝐯, i.e. the expected number of
offspring with zero deleterious mutations produced by a
mutant with zero deleterious mutations.

�̃�0(𝑎,𝐮, 𝐯) Effective number of newborns with zero mutations produced
by a zero-class mutant individual of age 𝑎 in a resident
population (discrete time model); effective birth rate of
newborns with zero mutations of zero-class mutant individual
of age 𝑎 in a resident population (continuous time model).

𝑑0(𝑎,𝐮, 𝐯) Death rate of a zero-class mutant of age 𝑎 in the resident
population.

𝑙0(𝑎,𝐮, 𝐯) Probability of survival to age 𝑎 of a zero-class mutant in a
resident population.

𝜇f (𝑎,𝐮, 𝐯) Rate at which germline mutations appear in an offspring
when a mutant gives birth at age 𝑎.

𝜇s(𝑎,𝐮, 𝐯) Rate at which germline mutations appear in a mutant at age
𝑎.

is T = {1, 2,… , 𝑇 } and for continuous age classes is T = [0, 𝑇 ] when
the maximum lifespan is 𝑇 ). The second component, 𝑛m(𝑎), represents
the number of deleterious germline mutations of an individual belong-
ing to the 𝑎th age class, which, by definition, negatively affects the
viability traits (e.g. physiology, reproduction). Hence, 𝑛m(𝑎) can be
hought of as the load of deleterious mutations as considered in classical
opulation genetic models of mutation accumulation (e.g., Kimura
nd Maruyama, 1966; Haigh, 1978; Dawson, 1999; Bürger, 2000),
ut here extended to an age-structured model (see also Steinsaltz
t al., 2005 for aged-structured mutation accumulation model). As such,
m = {𝑛m(𝑎)}𝑎∈T represents the number of deleterious mutations an
ndividual has acquired across its lifespan.

We envision that the genotype determining the type 𝜃 = {𝜃(𝑎)}𝑎∈T =
𝐮, 𝑛m) of an individual consists of two separate positions (or loci)
hat are necessarily linked under asexual reproduction, one locus de-

ermining 𝐮 and the other 𝑛m (see Fig. 1). The mutation rate at the
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Fig. 1. Key components of the life-history model with mutation accumulation. An individual is characterised by a life-history locus 𝐿𝐮 and a deleterious mutation locus (purple
rectangle) 𝐿𝑛m

. The mutation rate at the life-history locus 𝜇LH is considered to be fixed, while the mutation rate 𝜇 at the deleterious mutation locus depends on the life-history trait
𝐮 and is evolving. Individuals are characterised by the life-history allocation schedule 𝐮 = {𝐮(𝑎)}𝑎∈T (life-history trait) and the number 𝑛m = {𝑛m(𝑎)}𝑎∈T of deleterious mutations
accumulated in the germline throughout lifespan, where 𝑎 denotes the age of an individual. The resource allocation trait leads to two different types of trade-offs: (i) between
immutability vs. life-history and (ii) between different life-history functions themselves (‘‘classic’’ life history trade-offs, e.g. Stearns, 1992; Roff, 2008). Hence, the life-history locus
affects the vital rates and thus fitness directly via resource allocation to life-history functions and indirectly through allocation to germline maintenance since vital rates depend on
the number of deleterious mutations. For the invasion analysis, we use the basic reproductive number of the least-loaded class �̃�0 as a fitness proxy (Eqs. (1) and (4) as detailed
in Section 2.3.2).
life-history trait 𝐮 locus is assumed to be fixed and is thus exogenously
given. However, this trait is assumed to control allocation to germline
maintenance and other life-history functions, and thus to control the
mutation rate at the locus where the 𝑛m deleterious mutations ac-
cumulate whose number are thus endogenously determined (Fig. 1).
This separation between genes coding for the life-history trait 𝐮 and
those coding for mutation accumulation 𝑛m (see Fig. 1) is conceptually
equivalent to the separation between modifier locus and loci affecting
vital rates of modifier theory, where the modifier locus affects the
pattern of transmission of other traits (e.g., Leigh, 1970; Altenberg,
2009). Since the life-history trait 𝐮 is the evolving trait controlling trait
𝑛m, it can be regarded as the modifier trait.

Let us now first focus on a continuous time process and introduce
the birth 𝑏(𝑎), death 𝑑(𝑎), and deleterious mutations 𝜇(𝑎) rates of an
individual of age 𝑎. We assume that the birth 𝑏(𝑎) and death 𝑑(𝑎)
rates can depend on both the number of deleterious mutations 𝑛m(𝑎)
at age 𝑎 and the life-history schedule 𝐮, while the mutation rate 𝜇(𝑎)
depends only the life-history schedule 𝐮 (see also Fig. 1). The vital
rates may further depend on properties of the population, such as age
class densities and allele frequencies, but we leave this dependence
implicit. We note that when measured on an exponential scale, the
death and mutation rates define a survival probability exp(−𝑑(𝑎)) and
an immutability probability exp(−𝜇(𝑎)) (probability that no mutations
occur in an individual of age 𝑎), which allows us to handle the discrete-
time process with the same basic quantities. Further, for a discrete-time
process, the birth function 𝑏(𝑎) gives the expected number of offspring
produced by an individual of age 𝑎, while for a continuous time process,
𝑏(𝑎) is defined as the rate at which an individual produces a single
offspring. Finally, we make the following assumptions that are central
to our analysis.

1. Mutations at the locus determining 𝑛m can only be deleteri-
ous, with no specific assumption on the effect size that can
range thus from neutral to lethal. The effective birth rate 𝑏𝑖(𝑎),
survival probability exp(−𝑑 (𝑎)), and immutability probability
3

𝑖

exp(−𝜇𝑖(𝑎)) of an individual at age 𝑎 with 𝑛m(𝑎) = 𝑖 mutations are
non-increasing functions of the number of mutations. Formally,
𝑏𝑖(𝑎) ≥ 𝑏𝑖+1(𝑎), 𝑑𝑖(𝑎) ≤ 𝑑𝑖+1(𝑎), and 𝜇𝑖(𝑎) ≤ 𝜇𝑖+1(𝑎).

2. Deleterious mutations can only accumulate within an individual.
There are no back mutations and an individual with 𝑖 deleterious
mutations can only mutate towards having 𝑖+1 such mutations.

These assumptions are standard in population genetics (e.g. Kimura,
1967; Leigh, 1970; Haigh, 1978; Dawson, 1998; Johnson, 1999a; Gille-
spie, 2004) and we are here endorsing these assumptions in formalising
selection at the life-history locus. Namely, the objective of our analysis
is to develop a tractable evolutionary invasion analysis to evaluate
candidate evolutionary stable life-history trait 𝑢∗ ∈ U[T] that will be
favoured by long-term evolution.

2.2. Invasion analysis

For a moment, let us ignore the effect of deleterious mutations.
Then, evolutionary invasion analysis (e.g., Eshel and Feldman, 1984;
Parker and Maynard Smith, 1990; Metz et al., 1992; Charlesworth,
1994; Ferrière and Gatto, 1995; Eshel, 1996; Otto and Day, 2007;
Lehmann et al., 2016; Avila and Mullon, 2023; Van Cleve, 2023) can be
applied straightforwardly to our model as follows. First, the population
is postulated to be large enough and the mutations at the life-history
trait rare enough so that one can focus on the invasion fitness 𝜌(𝐮, 𝐯) of a
mutant trait 𝐮 introduced as a single copy in a population monomorphic
for some resident life-history trait 𝐯 (i.e., the geometric growth ratio of
the mutant) in order to characterise evolutionary stable trait values.
The invasion fitness can be interpreted as the per capita number of
mutant copies produced per unit of time by the mutant lineage de-
scending from the single initial mutation when the mutant reproductive
process has reached a stationary state distribution (over ages) in a
resident population at its demographic attractor while the mutant
remains overall rare in the population. To invade the population, the
invasion fitness must exceed unity 𝜌(𝐮, 𝐯) > 1; otherwise, it follows
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from the theory of branching processes that the mutant will go extinct
with probability one in an (infinitely) large population (Harris, 1963;
Mode, 1971 and see also Appendix A). A trait value 𝐮∗ will be called
uninvadable if it is resistant to invasion by all trait values in the trait
space: 𝜌(𝐮,𝐮∗) ≤ 1 for all 𝐮 ∈ U[T]. Hence, an uninvadable trait 𝐮∗
maximises the invasion fitness of the mutant holding the resident at
the uninvadable population state; namely, 𝐮∗ solves the maximisation
problem: max𝐮∈U[T] 𝜌(𝐮,𝐮∗), whereby 𝐮∗ defines a candidate endpoint
of evolution.

To be a meaningful endpoint of evolution, an uninvadable trait
needs to be an attractor of the evolutionary dynamics and thus be
convergence stable (Eshel and Motro, 1988; Geritz et al., 1998; Leimar,
2009a). When mutant and resident traits are sufficiently close to each
other so that selection is weak, mutants increasing invasion fitness will
not only invade the resident population but also become fixed in it (Es-
hel et al., 1997, a result applying to the present and more complicated
demographic scenarios, Rousset, 2004; Priklopil and Lehmann, 2021).
Therefore, invasion fitness alone under weak phenotypic deviations
allows to determine whether gradual evolution under the constant
influx of mutations will drive a population towards the uninvadable
population state, regardless of patterns of frequency-dependence. An
evolutionary invasion analysis thus generally consists of both using
invasion fitness to (i) characterise uninvadable trait values and (ii)
determine whether these are attractors of the evolutionary dynamics,
thus allowing to make definite statements about joint evolutionary
dynamics. Useful summaries of these concepts can be found in Geritz
et al. (1998) and Leimar (2009b) and individual-based stochastic sim-
ulations have repeatedly validated the conclusions of this approach
in genetic explicit contexts (e.g., Mullon et al., 2018; Mullon and
Lehmann, 2019, see also Otto and Day, 2007; Dercole and Rinaldi,
2008 for textbook discussions). This approach to characterise stable and
attainable life histories has indeed been in use more or less explicitly
and completely in standard life-history theory for decades (e.g., León,
1976; Michod, 1979; Schaffer, 1982; Iwasa and Roughgarden, 1984;
Perrin, 1992; Perrin and Sibly, 1993; Kawecki, 1993; Charlesworth,
1994; McNamara, 1997; Charnov, 1997; Cichon and Kozlowski, 2000;
Iwasa, 2000; Irie and Iwasa, 2005; Rueffler et al., 2013; Avila et al.,
2019). We next push forward this approach into the realm where life-
history evolution interacts with mutation accumulation and thus relax
the standard life-history theory assumption that the rate of deleterious
mutations is zero.

2.3. Invasion analysis with mutation accumulation

2.3.1. Mutation-selection balance in the resident population
Let us now consider that deleterious mutations can accumulate. We

still assume that mutations at the life-history locus are rare enough so
that whenever a mutant trait 𝐮 arises, it does so in a resident population
monomorphic for some resident life-history trait 𝐯. But owing to the
occurrence of deleterious mutations, the resident population will be
polymorphic for the number of deleterious mutations in the 𝑛m locus,
and this polymorphism will depend on 𝐯. The resident population
is then assumed to have reached a mutation-selection equilibrium
for deleterious mutations, and the resident trait 𝐯 thus determines
a resident probability distribution 𝐩(𝐯) over the different number of
deleterious mutations carried by individuals across the different age-
classes. This assumption is nothing else than the usual assumption
of the internal stability of the resident population used in invasion
analysis (see e.g. Altenberg et al., 2017; Eshel and Feldman, 1984; Metz
et al., 1992). Here, it entails that the resident population has reached
an equilibrium for both demographic and genetic processes.

In the absence of age classes, 𝐩(𝐯) is the equilibrium probabil-
ity distribution for the number of deleterious mutations in standard
selection-mutation balance models (see Bürger, 2000 for a general
treatment). For instance, when the number of novel (deleterious) mu-
4

tations follows a Poisson distribution with the mean rate 𝜇 and each p
additional mutation decreases baseline fecundity by a constant mul-
tiplicative factor 𝜎 in a semelparous population, then 𝐩(𝐯) is Poisson
distributed with mean 𝜇∕𝜎 (Haigh, 1978, Bürger, 2000, p. 300, and
see also Eq. (B.5) of the Appendix). This holds in an age-structured
population across age classes under a certain but limited number of
conditions (Steinsaltz et al., 2005). More generally, 𝐩(𝐯) will depend
on the details of the model.

The key feature determining the invasion process of a mutant 𝐮 in a
resident population 𝐯 is the mutational background on which it arises.
This means that the invasion fitness depends on how many deleterious
mutations the mutant individual carries (i.e. mutational class of an
individual) and thus on the distribution 𝐩(𝐯) in the resident population.

his invasion process is derived from stochastic process considerations
n Appendix A and shown to be a reducible process whereby an invasion
itness can be associated to each mutational class (see Appendix A.1 for
etails). However, it follows from our assumptions about deleterious
utations (Section 2.1) that the invasion fitness for a mutant life his-

ory trait arising on any mutational background cannot be higher than
he invasion fitness for this trait that arises in an individual belonging
o the least-loaded class (see Appendix A.1 for details). Thus, as a
irst step, it is reasonable to consider a situation where the mutation-
election process is such that the least-loaded class – individuals with
ero mutations – dominates the population in frequency (i.e. the fre-
uency of the zero-class individuals is close to one) so that this class
efines invasion fitness.

Indeed, if selection is stronger than mutation, then deleterious alle-
es will tend to be purged and the mutation-selection balance will be far
way from the error threshold of mutation accumulation or meltdown
f asexual populations (e.g., Eigen, 1971; Lynch et al., 1993; Szathmary
nd Maynard Smith, 1997). For instance, in the aforementioned classi-
al mutation-selection equilibrium model (Haigh, 1978, Bürger, 2000)
nd its generalisation to overlapping generations (see Eq. (B.5)), the
requency of the zero mutation class is 𝑒−𝜇∕𝜎 . So when 𝜇 ≪ 𝜎, say for
efiniteness, the selection coefficient is one order of magnitude larger
han the mutation rate (e.g. for 𝜇 = 0.01 and 𝜎 = 0.1, 𝜇∕𝜎 = 0.1),
hen the least-loaded class dominates in frequency (𝑒−𝜇∕𝜎 ≈ 0.9). Under

these conditions, the click rate of Muller’s ratchet, which is the rate at
which individuals with the least amount of deleterious mutations in the
population become extinct in a finite population (i.e. in the presence of
genetic drift), is small for finite but sufficiently large population sizes.
For instance, in a population of size 𝑁 = 1000 under a Moran process
of overlapping generations, the click rate is 8.4 × 10−34 (obtained from
1∕𝜏 where 𝜏 = 𝜎

√

2𝜋𝑁∕𝜇 × exp
(

𝑁
(

𝜎 − 𝜇
(

1 − log
(

𝜇
𝜎

))))

∕(𝜎 − 𝜇)2 is

the inverse of the click rate, see eq. 23 Metzger and Eule, 2013, where
𝜎 = 𝑠 and 𝜇 = 𝑢). Hence, the click rate of Muller’s ratchet can be
considered negligible compared to the scale of mutation rates. Genetic
drift is thus unlikely to fully eliminate the least-loaded class from
the population, even for small populations. Therefore, if the selection
coefficient against a deleterious mutation is one order of magnitude
larger than the mutation rate in a population resident for life-history
trait 𝐯, then a new mutant life-history trait 𝐮 is likely to surface in a
member of the least-loaded class (i.e. zero mutation background).

2.3.2. Invasion analysis for dominating least-loaded class
We now fully endorse the assumption that the least-loaded class

dominates in frequency the resident population. It allows us to char-
acterise uninvadability and convergence stability directly from the
basic reproductive number of the least-loaded class �̃�0(𝐮, 𝐯), which
s the expected number of offspring without mutations produced by
n individual without mutations over its lifespan. This is a fitness
roxy for invasion fitness whereby an uninvadable strategy 𝐮∗ solves
he maximisation problem max𝐮∈U[T] �̃�0(𝐮,𝐮∗) (see Appendix A.1 for a
roof). In a discrete age-structured population, the basic reproductive
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number of the least-loaded class is given explicitly in terms of vital rates
as

�̃�0(𝐮, 𝐯) =
𝑇
∑

𝑎=1
�̃�0(𝑎,𝐮, 𝐯)𝑙0(𝑎,𝐮, 𝐯), (1)

where

�̃�0(𝑎,𝐮, 𝐯) = 𝑏0(𝑎,𝐮, 𝐯) × exp
(

−𝜇f (𝑎,𝐮, 𝐯)
)

(2)

and

𝑙0(𝑎,𝐮, 𝐯) = 𝑙0(𝑎,𝐮, 𝐯) × exp

(

−
𝑎
∑

𝑡=1
𝜇s(𝑡,𝐮, 𝐯)

)

with 𝑙0(𝑎,𝐮, 𝐯) =
𝑎
∏

𝑡=1
𝑠0(𝑡,𝐮, 𝐯). (3)

In Eq. (2), 𝑏0(𝑎,𝐮, 𝐯) is the effective fecundity of an individual in the
𝑎th age class with trait 𝐮 and exp

(

−𝜇f (𝑎,𝐮, 𝐯)
)

is the probability that
such an individual does not produce a mutated offspring with 𝜇f (𝑎,𝐮, 𝐯)
being the mutation rate during reproduction in the 𝑎th age class (recall
that 𝑎 ∈ {1, 2,… , 𝑇 }). In Eq. (3), 𝑙0(𝑎,𝐮, 𝐯) is the probability that an
individual with trait 𝐮 survives to age 𝑎, which depends on its prob-
ability 𝑠0(𝑎,𝐮, 𝐯) = exp

(

−𝑑0(𝑎,𝐮, 𝐯)
)

of survival over the age interval
[𝑎−1, 𝑎], where 𝑑0(𝑎,𝐮, 𝐯) is its death rate. Finally, exp

(

−
∑𝑎

𝑡=1 𝜇s(𝑡,𝐮, 𝐯)
)

is the probability that an individual with trait 𝐮 does not acquire
any germline mutation until age 𝑎 with 𝜇s(𝑎,𝐮, 𝐯) being the germline
mutation rate when being in the 𝑎th age class. In Eqs. (2)–(3), we have
thus distinguished between the germline mutation rate 𝜇f (𝑎,𝐮, 𝐯) when
an offspring is produced and that rate 𝜇s(𝑎,𝐮, 𝐯) in the parent in the
𝑎th age class. When 𝜇f (𝑎,𝐮, 𝐯) = 𝜇s(𝑎,𝐮, 𝐯) = 0 for all 𝑎 ∈ {1, 2,… , 𝑇 },
Eq. (1) reduces to the standard basic reproductive number for age-
structured populations (e.g. Charlesworth, 1994). We emphasise that
we allowed for fecundity, survival and mutation rate to be dependent
on the whole life history schedule because the evolving traits may
affect physiological state variables (e.g. body size). As long as there
is a direct correspondence between age and physiological state (see
e.g. the discussion in de Roos, 1997), then the extension of current
formalisation to physiologically-structured populations is direct (see
also Section 3.2 for an example). Further, since all rates in Eqs. (2)–(3)
depend on the resident trait 𝐯, individuals can be affected by the trait
of others and our model thus covers frequency- and density-dependent
interactions.

For a continuous set of age classes T = [0, 𝑇 ], the basic reproductive
number of the least-loaded class is

�̃�0(𝐮, 𝐯) = ∫

𝑇

0
�̃�0(𝑎,𝐮, 𝐯)𝑙0(𝑎,𝐮, 𝐯)d𝑎, (4)

(see Appendix A.1 for a proof) where �̃�0(𝑎,𝐮, 𝐯) takes the same func-
tional form as in Eq. (2) but is now interpreted as the effective birth
rate (of offspring with no mutations) at age 𝑎, and 𝑙0(𝑎,𝐮, 𝐯) satisfies the
differential equation:

d𝑙0(𝑎,𝐮, 𝐯)
d𝑎

= −
[

𝑑0(𝑡,𝐮, 𝐯) + 𝜇s(𝑡,𝐮, 𝐯)
]

𝑙0(𝑎,𝐮, 𝐯)

subject to 𝑙0(0,𝐮, 𝐯) = 1. (5)

We now make four observations on the use of �̃�0(𝐮, 𝐯) to charac-
terise long-term coevolution for life-history traits and mutation rates.
(1) Because �̃�0(𝐮, 𝐯) depends on the number of deleterious mutations
in the population solely via 𝐯, the distribution 𝐩(𝐯) is needed only
under frequency-dependent selection. This makes life-history evolution
in the presence of deleterious mutations tractable even if the underlying
evolutionary process of mutation is not (see section Eq. 3.2 for an
example). The characterisation of uninvadability using �̃�0(𝐮, 𝐯) (and
thus applying Eqs. (1)–(5)) generalises the results of Leigh (1970)
and Dawson (1998, p. 148) to overlapping generations and an explicit
life-history context. (2) Because �̃�0(𝐮, 𝐯) takes the standard form of
the basic reproductive number, optimal control and dynamic game
5

theory results can be applied to characterise uninvadability. This is
particularly useful for reaction norm and developmental evolution and
formalising different modes of trait expressions (e.g., Perrin and Sibly,
1993; Avila et al., 2021). (3) While low mutation rates relative to
selection are presumed to be able to use �̃�0(𝐮, 𝐯) as a proxy for invasion
fitness, these mutation rates are endogenously determined by the un-
invadable strategy. It is thus plausible that the uninvadable mutation
rate generally entails a low mutation rate. So the assumption of a low
mutation rate may not appear so drastic, and the extent to which this
assumption is limiting depends on investigating explicit evolutionary
scenarios. (4) If deleterious mutations act in such a way that the
invasion fitness of a life-history mutant appearing in any background
is proportional to that of the least-loaded class (see Appendix A.1),
then the invasion process is fully characterised by the invasion fitness
of the least-loaded class �̃�0. This is the case for the standard muta-
tion accumulation models with multiplicative effects of (deleterious)
mutations under semelparous life-history (e.g., Kimura, 1967; Dawson,
1998; Johnson, 1999b; Gervais and Roze, 2017). Then using �̃�0 does
not rely on making any assumption of low (deleterious) mutation rates
relative to selection.

All this gives good reasons to use �̃�0(𝐮, 𝐯) as a proxy of invasion
fitness to understand life-history evolution in the context of muta-
tion accumulation and as such, in the rest of this paper we consider
two scenarios of the joint evolution of life history and mutation rate
which we analyse by using �̃�0(𝐮, 𝐯). This allows us to illustrate the
different concepts, demonstrate the usefulness of focusing on �̃�0(𝐮, 𝐯)
to get insights about how life-history evolution interacts with muta-
tion accumulation, and check how closely our analysis matches with
individual-based stochastic simulations.

3. Examples of life-history and mutation rate coevolution

3.1. Coevolution of reproductive effort and germline maintenance

3.1.1. Biological scenario
Our first scenario considers the evolution of reproductive effort

when resources can be allocated to (germline) maintenance in an
iteroparous population. To that end, we assume a population with
a large but fixed number 𝑁 of individuals undergoing the following
discrete-time life-cycle (see Table 2 for a summary of key symbols
for this example). (1) Each of the 𝑁 adult individuals produces a
large number of juveniles and either survives or dies independently
of other individuals. Juveniles and surviving adults acquire mutations
at the deleterious allele locus at the same rate. (2) Density-dependent
competition occurs among juveniles for the vacated breeding spots (left
by the dead adults) and the population is regulated back to size 𝑁 .

We postulate that an individual has a life-history trait consisting of
two components 𝐮 = (𝑢g, 𝑢s) (𝐮 ∈ U[T] = [0, 1]2), which determines how
a fixed amount of resources available to each individual is allocated
between three physiological functions: (i) a proportion (1 − 𝑢g)(1 − 𝑢s)
of resources is allocated to reproduction, (ii) a proportion (1 − 𝑢g)𝑢s of
resources is allocated to survival, and (iii) a proportion 𝑢g of resources
is allocated to germline maintenance.

We assume that an individual with trait 𝐮 and 𝑖 > 0 deleterious
mutations has the following fecundity 𝑓𝑖(𝐮), survival probability 𝑠𝑖(𝐮),
and mutation rate 𝜇(𝐮) [at giving birth and when surviving to the next
generation, i.e., 𝜇(𝐮) = 𝜇f (𝐮) = 𝜇s(𝐮)]:

𝑓𝑖(𝐮) = 𝑓0(𝐮) × (1 − 𝜎f)𝑖

𝑠𝑖(𝐮) = 𝑠0(𝐮) × (1 − 𝜎s)𝑖

𝜇(𝐮) = 𝜇b
(

1 − 𝑢g
)𝛼𝜇 ,

(6)

where 0 ≤ 𝜎f ≤ 1 and 0 ≤ 𝜎s ≤ 1 are, respectively, the reductions in
fecundity and survival from carrying an additional deleterious mutation
(that are assumed to act multiplicatively), 𝜇b is the baseline mutation

rate (mutation rate when allocation to germline maintenance is at its
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Table 2
List of key symbols of ‘‘Coevolution of reproductive effort and the mutation rate
model’’.

Symbols for ‘‘Coevolution of reproductive effort and the mutation rate’’.

𝑢g, 𝑣g Proportional allocation of resources to germline maintenance
of mutant and resident individuals, respectively.

𝑢s, 𝑣s Proportional allocation of resources to the survival of mutant
and resident individual, respectively.

𝑁 Total population size; exogenously fixed (𝑁 = 7500 in
simulations).

𝑓b, 𝑠b Baseline (maximal) fecundity and probability of survival,
respectively (𝑓b = 5, 𝑠b = 0.5).

𝜇(𝐮) = 𝜇s(𝐮) = 𝜇f (𝐮) Rate at which germline mutations appear in an offspring
when giving birth and when surviving from generation to
the next.

𝜇b Baseline mutation rate at which germline mutations appear;
mutation rate, when no resources are allocated into germline
maintenance.

𝛼f, 𝛼s Efficiency parameters (or scaling factors) of investing
resources into fecundity and survival, respectively; lower
values of 𝛼f, 𝛼s corresponds to a higher efficiency of
investment; analytical results obtained for 𝛼f = 𝛼s = 𝛼
(𝛼 = 0.02, 𝛼 = 0.1, 𝛼 = 0.2 in simulations).

𝛼𝜇 Efficiency parameter (or scaling factor) of investing resources
into germline maintenance; the higher value of 𝛼𝜇
corresponds to a higher efficiency of investment; (𝛼𝜇 = 2).

minimum, 𝑢g = 0), and 𝛼𝜇 is the maintenance scaling factor (a param-
eter tuning how investing a unit resource into maintenance translates
into reducing the mutation rate). We assume that 𝛼𝜇 > 1, such that 𝜇(𝐮)
has decreasing negative slopes in 𝑢g and hence exhibits diminishing
returns from investment into germline maintenance. The parameter 𝛼𝜇
an thus be interpreted as the ‘‘efficiency’’ of converting resources to
owering the mutation rates (since higher values of 𝛼𝜇 correspond to
ower mutation rates). The quantities 𝑓0(𝐮) and 𝑠0(𝐮) are, respectively

the fecundity and survival of the least-loaded class and they are written
as

𝑓0(𝐮) = 𝑓b

(

(1 − 𝑢s)(1 − 𝑢g)
)𝛼f

𝑠0(𝐮) = 𝑠b

(

𝑢s(1 − 𝑢g)
)𝛼s

.
(7)

ere, 𝑓b and 𝑠b are, respectively, the baseline fecundity and baseline
probability of survival; 𝛼f and 𝛼s are, respectively, the fecundity and
survival scaling factors (parameters tuning how a unit resource trans-
lates into fecundity and survival). We assume that 𝛼f, 𝛼s ≤ 1, whereby
both survival and fecundity have decreasing positive slopes in the net
amount of resources allocated to them and thus exhibit diminishing
returns. Smaller values of 𝛼f and 𝛼s correspond to more efficient returns
of investing resources into reproduction and survival, respectively.

In the absence of allocation to germline maintenance and deleteri-
ous mutations, the model defined by Eqs. (6)–(7) reduces to the stan-
dard model of reproductive effort of life-history theory with a trade-off
between reproduction and survival (Charnov, 1993; Pen, 2000; Case,
2000). Conversely, with no overlapping generations and no life-history
evolution, the model reduces to the classical model of mutation ac-
cumulation (Haigh, 1978; Bürger, 2000), and with zero survival and
resource allocation evolution, it is equivalent to the asexual model
of Dawson (1998). The model thus contains a trade-off between life-
history traits (survival and reproduction) and immutability (germline
maintenance) whose evolutionary consequences are unexplored.

3.1.2. Uninvadable and convergence stable strategies
We now carry out the invasion analysis. To that end, we use

Eqs. (6)–(7) to first evaluate the basic reproductive number �̃�0(𝐮, 𝐯) for
this model (see Appendix B.1 where we also show that the equilibrium
distribution 𝐩(𝐯) of individuals with different numbers of mutations
6

ollows a Poisson distribution with mean 𝜆(𝐯) = 𝜇(𝐯)∕𝜎, where 𝜎 =
f = 𝜎s and 𝐯 = (𝑣g, 𝑣s)). From Eq. (B.4) we obtain that the selection
ressure (e.g., Parker and Maynard Smith, 1990; Frank, 2008; Geritz
t al., 1998; Rousset, 2004) on resource allocation to maintenance can
e written as

𝜕�̃�0(𝐮, 𝐯)
𝜕𝑢g

|

|

|

|

|

𝑢g=𝑣g
𝑢s=𝑣s

= 1
(1 − �̄�(𝐯)) (1 − 𝑣g)

(

𝛼𝜇𝜇(𝐯) −
[

𝛼s�̄�(𝐯) + 𝛼f (1 − �̄�(𝐯))
])

,

(8)

hich displays a trade-off between allocating resources to maintenance
s. into the two vital rates and where �̄�(𝐯) is the mean survival in the
esident population (see Eq. (B.6) in Appendix B). All our mathematical
omputations can be followed and confirmed via an accompanying
upplementary Information, S.I. consisting of a Mathematica (Wolfram,
991) notebook. The first term in Eq. (8) is the marginal benefit of
nvestment into repair, which is an increasing function of 𝜇b and 𝛼𝜇 .
he second term is the marginal cost of investment into maintenance,
hich depends on the weighted sum over average survival and open
reeding spots. Thus we find that an increase in the baseline mutation
ate and more efficient returns from investment into germline mainte-
ance and vital rates promote allocation to maintenance (increasing
𝜇 and decreasing 𝛼s and 𝛼f). Meanwhile, the selection pressure on
esource allocation to survival can be written as
𝜕�̃�0(𝐮, 𝐯)

𝜕𝑢s

|

|

|

|

|

𝑢g=𝑣g
𝑢s=𝑣s

= 1
1 − �̄�(𝐯)

(

𝛼s�̄�(𝐯)
𝑣s

−
𝛼f(1 − �̄�(𝐯))
(1 − 𝑣s)

)

, (9)

where the terms in the parenthesis display the trade-off between allo-
cating resources into survival vs. fecundity (i.e. the classical reproduc-
tive effort trade-off, e.g. Pen, 2000, eq. 4) with the difference that it is
here affected by the mutation rate via �̄�(𝐯). The first term in Eq. (9) is
the marginal benefit of investment into survival, which is a decreasing
function of 𝑣g. In contrast, the second term is the marginal benefit
of investment into fecundity, and it is an increasing function of 𝑣g.
Thus, all else being equal, higher allocation to germline maintenance
promotes fecundity over survival. We also find that an increase in the
baseline mutation rate 𝜇b(𝑣g) favours higher allocation to survival (by
ncreasing �̄�(𝐯)).

A necessary condition for (𝑢∗g , 𝑢
∗
s ) = 𝐮∗ to be an evolutionary

quilibrium is that the selection pressures vanish at this point (for
n interior equilibrium, i.e. 0 < 𝑢∗g , 𝑢

∗
s < 1, 𝜕�̃�0(𝐮, 𝐯)∕𝜕𝑢s = 0 and

�̃�0(𝐮, 𝐯)∕𝜕𝑢g = 0 at 𝐯 = 𝐮 = 𝐮∗). Without further assumptions on
qs. (8)–(9), we were unable to find such analytical solutions. However,
hen assuming that the efficiency of investing resources into fecundity
nd survival is the same (i.e. setting 𝛼s = 𝛼f = 𝛼), we find that the
olution takes two forms, depending on the parameter values. First,
hen 𝜇b ≤ 𝛼∕𝛼𝜇 , then 𝑢∗g = 0 and 𝑢∗s = (exp(𝜇b)∕𝑠b)1∕(𝛼−1). This means

hat when the baseline mutation rate 𝜇b is lower than the threshold
∕𝛼𝜇 given by the efficiency parameters, germline maintenance does
ot evolve. In this situation, the equilibrium mutation rate is equal
o the baseline mutation rate 𝜇(𝐮∗) = 𝜇b and the mean number of
utations at equilibrium is 𝜆(𝐮∗) = 𝜇b∕𝜎, as expected when there is
o germline maintenance. When the threshold 𝛼∕𝛼𝜇 is low, it indicates
hat the efficiency of investing in vital rates and germline maintenance
s high. This is because smaller values of 𝛼 and larger values of 𝛼𝜇 signal
ore efficient investment into vital rates and germline maintenance,

espectively. So, when the efficiency of investing into vital rates and
ermline maintenance is sufficiently high (or, in other words, the
hreshold 𝛼∕𝛼𝜇 is sufficiently low) relative to the baseline mutation rate
when 𝜇b > 𝛼∕𝛼𝜇), then there is a unique interior equilibrium:

∗
g = 1 −

(

𝛼
𝛼𝜇𝜇b

)
1
𝛼𝜇

𝑢∗s =

⎛

⎜

⎜

⎜

⎜

exp( 𝛼
𝛼𝜇
)
(

𝛼
𝛼𝜇𝜇b

)− 𝛼
𝛼𝜇

𝑠b

⎞

⎟

⎟

⎟

⎟

1
𝛼−1

(10)
⎝ ⎠
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Fig. 2. Predictions from the analytical model (solid lines) and from individual-based simulations of a finite population (circles) for the uninvadable life-history strategies 𝐮∗ = (𝑢∗g , 𝑢
∗
s )

(panel a and b) and the mean number of mutations 𝜆(𝐮∗) at equilibrium (panel c) as functions of baseline mutation rate 𝜇b. The solution for the individual-based simulations is a
time-averaged mean values, measured over 7500 generations while starting the simulation at the analytically predicted equilibrium (see Appendix C for details about the simulations
and Table C.4 for the time-average standard deviations from the mean; see S.I. for the simulation code). The different colours represent different values of the efficiency 𝛼 of
reproduction and survival (smaller values of 𝛼 correspond to more efficient returns from investment into vital rates). Parameter values: 𝑓b = 5, 𝛼𝜇 = 2, 𝑠b = 0.5, 𝜎 = 𝜎f = 𝜎s = 0.2;
for simulations: 𝑁 = 7500, 𝑓b = 5, 𝑠b = 0.5, the mutations in the life-history locus follow a Normal distribution with zero mean and a standard deviation of 0.1.
𝑠

with corresponding expressions for the mutation rate 𝜇(𝐮∗) and the
equilibrium mean number of (deleterious) mutations 𝜆(𝐮∗) taking the
following form

𝜇(𝐮∗) = 𝛼∕𝛼𝜇 𝜆(𝐮∗) = 𝛼∕(𝛼𝜇𝜎). (11)

Fig. 2 illustrates these equilibrium strategies 𝐮∗ = (𝑢∗g , 𝑢
∗
s ) (panels a

and b), the corresponding mutation rate 𝜇(𝐮∗) (panel c) and the mean
number of mutations 𝜆(𝐮∗) (panel d) as a function of the baseline
mutation rate 𝜇b for different values of the scaling parameter 𝛼 of vital
rates. Fig. 2 shows that investment into maintenance is higher when
the baseline mutation rate 𝜇b increases and when investment into vital
is more efficient (𝛼 ≪ 1).

Three main conclusions can be drawn from this analysis. First,
selection favours physiologically costly germline maintenance at the
expense of lowering investment into vital rates (survival and repro-
duction) when the baseline mutation rate is high enough (whenever
𝜇b > 𝛼∕𝛼𝜇). Second, when germline maintenance evolves, the mutation
rate, 𝜇(𝐮∗), depends only on the efficiency parameters (𝛼 and 𝛼𝜇) and
is independent of the baseline mutation rate 𝜇b (see Fig. 2(c), Eq. (11),
and additional figures in section 1.5.5. of S.I.). This is so in this model
because the effect of 𝜇b on the cost of germline maintenance via
the expected survival �̄�(𝐮∗) cancels out due to the nature of density-
dependence (decrease in expected survival is cancelled out by the
increase in the expectation of acquiring a breeding spot; see Eq. (8)
7

when taking 𝛼s = 𝛼f = 𝛼). Third, higher allocation to reproduction at
the expense of survival occurs as 𝜇b increases (Fig. 2(b)). This is so
because the effect of the mutation rate on fitness is similar to that of
external mortality and thus decreases the value of allocating resources
to survival. As a result, reproduction is prioritised when 𝜇b is large.
This effect is more pronounced when investment into vital rates and
maintenance is less efficient (𝛼 is larger or 𝛼𝜇 is smaller; see also section
1.5.5. in the S.I.). We also find that immortality (complete survival,
̄(𝐮∗) = 𝑠0(𝐮∗) = 1) can evolve in our model only in the absence of
external mortality (𝑠b = 1) and zero baseline mutation rate (𝜇b = 0,
see Eq. (10)). In section 1.1.4. of S.I., we numerically checked that
our results are qualitatively robust when relaxing the assumption that
the scaling factors of investment into reproduction and survival are not
equal 𝛼f ≠ 𝛼s.

Using standard local analysis (e.g., Eshel, 1983; Taylor, 1989; Geritz
et al., 1998; Mullon et al., 2016 and see section 1.5.3. of the S.I.),
we checked that the strategy 𝐮∗ defined by Eq. (10) is also locally
uninvadable for biologically realistic parameter values (e.g. for the
parameter values in Fig. 2) and in which case 𝐮∗ is also necessarily
locally convergence stable (see argument after Eq. (B.4)). Since there is
a unique solution, a locally uninvadable 𝐮∗ is also globally uninvadable
(e.g., Sydsaeter et al., 2008) and thus globally convergence stable.
The results from individual-based stochastic simulations, Fig. 3 con-
firm that the co-evolutionary dynamics indeed converge towards the
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Fig. 3. Evolutionary convergence towards the uninvadable life-history strategy 𝐮∗ = (𝑢∗g , 𝑢
∗
s ) ≈ (0.50, 0.40) (grey circle). The arrows give the analytic direction of selection at any

population state (Eqs. (8) and (9)) and the colourful jagged lines represent the evolution of population average trait values over evolutionary time in simulations (from initial time,
up to 3000 generations). Simulation were started from four different initial conditions: (i) 𝑣g = 0.1, 𝑣s = 0.1, (ii) 𝑣g = 0.1, 𝑣s = 0.7, (iii) 𝑣g = 0.7, 𝑣s = 0.1, and (iv) 𝑣g = 0.7, 𝑣s = 0.7.
The colour of jagged lines indicates the number of generations since the start of the simulation (the colour bar on the right-hand-side indicates the number of generations). The
simulations indicate that the population converges close to the uninvadable strategy within 3000 generations. Parameter values: 𝑓b = 5, 𝛼𝜇 = 2, 𝑠b = 0.5, 𝜎 = 𝜎f = 𝜎s = 0.2; for
simulations: 𝑁 = 6000, 𝑓b = 5, 𝑠b = 0.5, the mutations in the life-history locus follow a Normal distribution with zero mean and a standard deviation of 0.05.
uninvadable strategy 𝐮∗ (Eq. (10)) predicted by the analytical model.
We can observe from Fig. 2 that the analytically predicted trait values
(Eqs. (10)–(11)) correspond closely to the mean trait values observed
in the simulations of the full evolutionary process with reasonably
small population sizes, and which implement the assumptions of the
biological scenarios (Section 3.1.1) but allows for mutation at the life-
history locus (e.g. Fig. 1 and see Appendix C.1 for the description
of the simulations, Table C.4 for the standard deviations around the
mean traits, and the S.I. for the Mathematica code of the simulations).
We observed that simulation results generally matched well with the
analytical predictions when the selection coefficient is one order of
magnitude larger than the baseline mutation rate (e.g., recall the first
paragraph of Section 2.3.2).

3.2. Coevolution of age at maturity and germline maintenance

3.2.1. Biological scenario
Our second scenario considers the evolution of age-at-maturity

when mutation accumulation can occur during growth and repro-
duction. To that end, we consider that age is continuous, and each
individual undergoes the following events. (1) An individual is born
and grows in size until it reaches maturity (growth phase). (2) At
maturity, an individual starts to reproduce at a constant rate, and
fecundity is assumed to be density- and size-dependent (reproductive
phase). (3) Throughout their lives, individuals can die at some constant
rate and acquire germline mutations. We postulate that individuals
have again a life-history trait consisting of two components 𝐮 = (𝑢g, 𝑢m),
where 𝑢 is the allocation to germline maintenance (lowering the
8

g

mutation rate) and 𝑢m is the age-at-maturity (see Table 3 for a summary
of key symbols for this example). The life-history trait 𝐮 determines
how resources are allocated between three physiological functions: (i)
a proportion 𝑢g of resources is allocated to the maintenance of the
germline at any age 𝑎, (ii) a proportion (1−𝑢g) of resources are allocated
to growth when an individual is of age 𝑎 < 𝑢m, (iii) a proportion (1−𝑢g)
of resources is allocated to reproduction when an individual is at age
𝑎 ≥ 𝑢m, (hence 𝐮 ∈ U[T] = [0, 1] × R+).

We assume that the effective fecundity, death, and mutation rate of
an individual with trait 𝐮 and 𝑖 deleterious mutations in a population
with resident trait 𝐯 = (𝑣g, 𝑣m) is given by

�̃�𝑖(𝐮, 𝐯) = �̃�0(𝐮, 𝐯) − 𝑖𝜎b if age 𝑎 ≥ 𝑢m, zero otherwise
𝑑𝑖 = 𝑑b + 𝑖𝜎d

𝜇s(𝑢g) = 𝜇b(1 − 𝑢g)
𝛼𝜇 ,

(12)

where 0 ≤ 𝜎b and 0 ≤ 𝜎d are, respectively, the additive effects on fe-
cundity and death rate from carrying deleterious mutations. The death
rate of an individual of the least-loaded class is given by the baseline
death rate 𝑑b and the effective birth rate of zero-class individuals of the
least-loaded class is given by

�̃�0(𝐮, 𝐯) = 𝐵(𝑥m(𝐮))(1 − 𝑢𝛼bg )(1 − 𝛾𝑁(𝐯))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑏0(𝐮,𝐯)

exp(−𝜇f ), (13)

where 𝐵(𝑥m(𝐮)) = 𝑎𝑥m(𝐮)𝑐 is the surplus energy rate at maturity, i.e., the
rate of energy available to be invested into life-history functions and
germline maintenance, where 𝑥m(𝐮) is size-at-maturity and 𝑎 > 0 and
0 < 𝑐 < 1 are parameters. Here, (1 − 𝑢𝛼b ) represents how reproduction
g
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Table 3
List of key symbols of ‘‘Coevolution of age at maturity and germline maintenance
model’’.

Symbols for ‘‘Coevolution of age at maturity and germline maintenance model’’.

𝑢g, 𝑣g Proportional allocation of resources to germline maintenance
of mutant and resident individual, respectively.

𝑢m, 𝑣m Proportional allocation of resources to germline maintenance
of mutant and resident individual, respectively.

𝑁(𝐯) Total population size; endogenously determined and thus
depends on the resident trait 𝐯.

𝑥(𝑡) Body size of a mutant individual at age 𝑡.

𝑥m(𝐮) Body size of a mutant individual at maturity.

𝐵(𝑥m(𝐮)) Surplus energy rate, i.e., rate of energy available to be
allocated to life-history functions; we assume that the surplus
energy scales as the power with size, i.e. energy available to
mature individuals is 𝐵(𝑥m(𝐮)) = 𝑎𝑥m(𝐮)𝑐 .

𝜇f Rate at which germline mutations appear in an offspring
when giving birth (fixed parameter, 𝜇f = 0 in simulations).

𝜇s(𝑢g) Rate at which germline mutations appear in a mutant
individual over time (independent of age).

𝜇b Baseline mutation rate at which germline mutations appear;
mutation rate, when no resources are allocated into germline
maintenance.

𝑑b Baseline death rate.

depends on the allocation strategy, and 𝑢𝛼bg represents the cost of
reproduction when allocating a proportion 𝑢g of resources to germline
maintenance. The parameter 𝛼b is a scaling factor (𝛼b > 1 corresponds
to diminishing returns of investing resources into reproduction), and
𝛼b can be interpreted as the efficiency parameter. The term (1 − 𝛾𝑁(𝐯))
accounts for density-dependent regulation of reproduction, where 𝑁(𝐯)
s the total population size of the resident population, which can be
olved analytically regardless of the way deleterious mutations affect
urvival and reproduction (see Eq. (B.8) of Appendix B.2), and 𝛾 tunes
he intensity of density dependence. Finally, exp(−𝜇f ) is the probability
hat the offspring do not acquire new mutations during reproduction
here the mutation rate at giving birth 𝜇f is assumed constant. In order

o close the expression for the birth rate, we need an explicit expression
or size at maturity 𝑥m(𝐮). During the growth phase, we postulate that
ize follows the differential equation
d𝑥(𝑡)
d𝑡

= 𝛽𝐵(𝑥(𝑡))(1 − 𝑢𝛼bg ) with i.c. 𝑥(0) = 𝑥0, (14)

where 𝐵(𝑥(𝑡)) is the surplus energy rate at age 𝑡 and (1−𝑢𝛼bg ) represents
he proportional allocation of resources devoted towards growth (in-
tead of repair). For tractability, we assume that (1 − 𝑢𝛼bg ) has the same
unctional form as the proportional allocation towards reproduction
Eq. (13)) and 𝛽 allows to tune how much resources are needed to
row one unit, compared to the resources needed to produce one
ffspring. We further assume that the surplus energy rate is given by the
ower law 𝐵(𝑥(𝑡)) = 𝑎𝑥(𝑡)𝑐 , which is considered to be appropriate for
odelling size/age-at-maturity under determinate growth (see Day and
aylor (1996) for a justification). It follows from integrating Eq. (14)
hat the size at maturity takes the form

m(𝐮) =
(

𝛽𝑎(1 − 𝑐)(1 − 𝑢𝛼bg )𝑢m + 𝑥1−𝑐0

)
1

1−𝑐 . (15)

In the absence of mutation rate, the model reduces to the standard
model of age-at-maturity (Kozlowski, 1992; Day and Taylor, 1997;
Stearns, 1992; Roff, 2008). The model thus contains a trade-off be-
tween life-history traits (growth and reproduction) and immutability
(germline maintenance and repair) whose evolutionary consequences
have not been explored.

3.2.2. Uninvadable and convergence stable strategies
Let us now carry out the invasion analysis for which we first eval-

uate the basic reproductive number for this model (see Appendix B.2).
9

e

Then using Eq. (B.8) along with Eq. (15), we find that the selection
pressure on resource allocation to germline maintenance can be written
as
𝜕�̃�0(𝐮, 𝐯)

𝜕𝑢g

|

|

|

|

|

𝑢m=𝑣m
𝑢g=𝑣g

=
𝛼𝜇𝜇s(𝑣g)
(1 − 𝑣g)

(

𝑣m + 1
𝜇s(𝑣g) + 𝑑b

)

− 𝛼b𝑣
𝛼b−1
g

(

𝛽
𝑐𝑣m𝐵(𝑥m(𝐯))

𝑥m(𝐯)
+ 1

(1 − 𝑣𝛼bg )

)

,

(16)

where the two terms display the trade-off between allocating resources
into maintenance vs. growth and reproduction. The first term is the
marginal benefit of investing into germline maintenance and it in-
creases with the age-of-maturity and the expected lifespan. The second
term is the marginal cost of investing into maintenance, which is a
weighted sum of the expected loss in growth and reproduction. The
marginal cost of maintenance is smaller when size-at-maturity 𝑥m(𝐯)
is larger (since 𝐵(𝑥m(𝐯))∕𝑥m(𝐯) decreases with 𝑥m(𝐯) for 0 < 𝑐 < 1).

his implies that all else being equal, organisms that grow larger should
nvest more into germline maintenance. Note that the selection gradient
s independent of the mutation rate 𝜇f at giving birth. We find that the
election pressure on the age-at-maturity can be written as

𝜕�̃�0(𝐮, 𝐯)
𝜕𝑢m

|

|

|

|

|

𝑢m=𝑣m
𝑢g=𝑣g

= 𝑐 ×
𝛽
(

1 − 𝑣𝛼bg
)

𝐵(𝑥m(𝐯))

𝑥m(𝐯)
− (𝜇(𝑣g) + 𝑑b). (17)

he first term is the marginal benefit of investment into growth and
hus the benefit for maturing later, while the second term is the
arginal cost of investment into growth and thus the benefit for
aturing earlier. We can see that the increase in mutation rate will

elect for earlier age-at-maturity. This implies that organisms with
ower germline mutation rate can grow larger.

By first solving 𝜕�̃�0(𝐮, 𝐯)∕𝜕𝑢m = 0 for 𝑢∗m when evaluated at 𝐯 = 𝐮 =
∗, we obtain

∗
m(𝑢

∗
g) =

1
1 − 𝑐

×

(

𝑐
𝑑b + 𝜇s(𝑢∗g)

−
𝑥0

𝛽[1 − (𝑢∗g)𝛼b ]𝐵(𝑥0)

)

, (18)

hich is a function 𝑢∗g. Eq. (18) says that individuals tend to mature
ater, when individuals growth rate at birth �̇�(0) (= 𝛽[1 − (𝑢∗g)

𝛼b ]𝐵(𝑥0))
s higher and/or when death rate 𝑑b, mutation rate 𝜇s(𝑢∗g), and birth
ize 𝑥0 are smaller (holding everything else constant). When 𝜇b → 0
nd 𝑢∗g → 0, age-at-maturity reduces to 𝑢∗m = (1− 𝑐)−1[𝑐∕𝑑b −𝑥0∕[𝛽𝑎𝑥𝑐0]],
hich is consistent with standard results about the optimal age/size at
aturity (see e.g. Day and Taylor, 1996) and it is useful to compare
ow an allocation to germline maintenance affects the age-at-maturity.
n order to determine the joint equilibrium 𝐮∗ = (𝑢∗m, 𝑢

∗
g), we need to

ubstitute Eq. (18) into Eq. (17) and solve for 𝑢∗m and 𝑢∗g at 𝐯 = 𝐮∗.
e were unable to obtain an analytical solution for the general case.

ut restricting attention to 𝛼𝜇 = 𝛼b = 2 (i.e. assuming diminishing
eturns of investment into germline maintenance and reproduction) and
iologically feasible set of solutions (such that 0 < 𝑢∗g < 1 and 𝑢∗m > 1;
ee section 2.1.3 of S.I. for calculations), we find that there is a unique
nterior equilibrium

∗
g =

2𝜇b + 𝑑b −
√

𝑑b(𝑑b + 4𝜇b)
2𝜇b

∗
m = 1

(1 − 𝑐)
×

[

𝑐
(

√

𝑑 +
√

𝑑b + 4𝜇b
2𝑑b

√

𝑑b + 4𝜇b

)

−
𝑥0

𝛽𝐵(𝑥0)

×
(𝑑b + 2𝜇b +

√

𝑑b(𝑑b + 4𝜇b)

2
√

𝑑b(𝑑b + 4𝜇b)

)

]

(19)

ith the corresponding mutation rate given by

(𝑢∗g) =
(𝑑b −

√

𝑑b
√

𝑑b + 4𝜇b)2

4𝜇b
, (20)

hile the corresponding population size 𝑁(𝐮∗) can also be explicitly
xpressed in terms of model parameters (see Eq. (B.8)). Fig. 4 provides
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Fig. 4. Predictions from the analytical model (solid lines) and from individual-based simulations (circles obtained as averages) for uninvadable life-history strategies 𝐮∗ = (𝑢∗m , 𝑢
∗
g)

(panel a and b), population size 𝑁(𝐮∗) (panel c) and mutation rate 𝜇s(𝑢∗g) as functions of baseline mutation rate 𝜇b for different values of baseline mortality 𝑑b (𝑑b = 0.1250 -
black, 𝑑b = 0.1625 - red, 𝑑b = 0.2 - orange). The dashed lines represent the ‘‘classical life-history’’ prediction (i.e. when 𝜇(𝑢∗g) → 0 and 𝑢∗g → 0), where the colours of the dashed
represent the different values for baseline death rate 𝑑b parameter and match the values of solid lines (𝑑b = 0.1250 - black, 𝑑b = 0.1625 - red, 𝑑b = 0.2 - orange). The solution for
the individual-based simulations are obtained as time-averaged mean values measured over 3000 ‘‘generations’’ while starting the simulation at analytically predicted equilibrium
for the trait values and population size (Table C.5 for the time-average standard deviations from the mean; see S.I. section 2.3 for the code and for more details). The different
colours represent different values of baseline mortality rate 𝑑b. Parameter values: 𝜎 = 𝜎b = 𝜎d = 0.2, 𝑥0 = 1, 𝑎 = 0.9, 𝑐 = 0.75, 𝛾 = 0.00035, 𝛽 = 1, 𝜇f = 0, the mutations in the
life-history locus follows a Normal distribution with zero mean and a standard deviation of 0.07.
a graphical depiction of the equilibrium strategy 𝐮∗ as a function of
the baseline mutation rate (panels (a) and (b)) and the corresponding
equilibrium population size and mutation rate (panels (c) and (d)).
Fig. 2 shows that investment into maintenance is higher when the
baseline mutation rate is high and when external mortality is low.

Three main results can be drawn from this analysis. First, as in
the previous example, selection favours physiologically costly germline
maintenance at the expense of lowering the investment into life-history
functions (here, into growth and reproduction, see Fig. 4(a)). Here,
the uninvadable mutation rate (𝜇(𝐮∗)) monotonically increases with the
baseline mutation rate (Fig. 4(d)). Second, we predict earlier age-at-
maturity when the baseline mutation rate is high (Fig. 4(b)). In fact, the
baseline mutation rate and external mortality have qualitatively similar
effects on fitness as they increase the marginal cost of investment into
growth (see the last term in Eq. (17)). Thus, we find that the shift in
growth-reproduction trade-off towards reproduction is higher under: (i)
high external mortality rates and (ii) high baseline mutation rates. Since
maturing earlier causes the growth period to be shorter, the body size
at maturity 𝑥m(𝐮∗) will also be smaller with a higher baseline mutation
rate 𝜇b (Fig. 6(a)). Smaller body size at maturity, in turn, causes the
birth rate 𝑏0(𝐮∗,𝐮∗) to be smaller (Fig. 6(b)). Third, a higher baseline
mutation rate causes a smaller equilibrium population size (Fig. 4(c)).
10
The equilibrium strategy 𝐮∗ = (𝑢∗g , 𝑢
∗
m) determined by Eq. (19) is

convergence stable and locally uninvadable (see section 2.5.4. and
2.5.5. in the S.I. for derivation for the parameter values in Fig. 4). Since
Eq. (19) is a unique equilibrium for the feasible trait space (see section
2.1.3 of S.I.), then local uninvadability implies global uninvadability.
Using individual-based stochastic simulations, we were able to confirm
that 𝐮∗ = (𝑢∗g , 𝑢

∗
m) given in Eq. (19) is indeed a stable attractor of the

evolutionary dynamics (see Fig. 5 for a graphical depiction of con-
vergence in the individual-based simulations for four different initial
population states). Fig. 4 also illustrates the equilibrium population
size 𝑁(𝐮∗) (panel c), and the uninvadable mutation rate 𝜇(𝑢∗g) (panel
d) as a function of the baseline mutation rate 𝜇b. Fig. 6 illustrates
the body size at maturity 𝑥m(𝐮∗) (panel a) and the effective birth rate
�̃�0(𝐮∗,𝐮∗) at the uninvadable population state as a function of baseline
mutation rate. Overall, Fig. 4 reaffirms that the analytically predicted
trait values (here using Eqs. (19)–(20)) correspond very closely to the
mean trait values observed through individual-based simulations of the
full evolutionary process (see Appendix C.2 for the description of the
simulations, Table C.5 for the standard deviations around the mean
traits, and section 2.3. of the S.I. file for the Mathematica code for the
simulations).
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Fig. 5. Evolutionary convergence to the uninvadable life-history strategy 𝐮∗ = (𝑢∗g , 𝑢
∗
m) ≈ (0.41, 11.6) (grey circle). The arrows give the direction of selection at any resident population

state (Eqs. (16) and (17)) and the colourful jagged lines represent the evolution of the population average trait values over evolutionary time in simulations (from initial time,
up to 3500 ‘‘generations’’). Simulations were started from four different initial conditions: (i) 𝑣g = 0.1, 𝑣m = 9, (ii) 𝑣g = 0.1, 𝑣m = 14, (iii) 𝑣g = 0.8, 𝑣m = 9, and (iv) 𝑣g = 0.8,
𝑣s = 14. The colour of jagged lines indicates the number of generations since the start of the simulation (the colour bar on the right-hand-side indicates the number of generations).
The simulations indicate that the population converges close to the uninvadable strategy within 3500 generations. Parameter values: 𝜎 = 𝜎b = 𝜎d = 0.2, 𝑥0 = 1, 𝑎 = 0.9, 𝑐 = 0.75,
𝛾 = 0.00035, 𝛽 = 1, 𝜇f = 0, 𝑑b = 0.1250, the mutations in the life-history locus follow a Normal distribution with zero mean and a standard deviation of 0.07.
Fig. 6. Predictions from the analytical model for the body size at maturity 𝑥m(𝐮∗) and the effective birth rate 𝑏0(𝐮∗ ,𝐮∗) at the uninvadable population state as a function of
baseline mutation rate for different values of mortality rate 𝑑b (𝑑b = 0.1250 - black, 𝑑b = 0.1625 - red, 𝑑b = 0.2 - black). The dashed lines represent the ‘‘classical life-history’’
prediction (i.e. when 𝜇(𝑢∗g) → 0 and 𝑢∗g → 0), where the colours of the dashed represent the different values for 𝑑b parameter and match the values of solid lines (𝑑b = 0.1250 -
black, 𝑑b = 0.1625 - red, 𝑑b = 0.2 - black). Parameter values: 𝜎 = 𝜎b = 𝜎d = 0.2, 𝑥0 = 1, 𝑎 = 0.9, 𝑐 = 0.75, 𝛾 = 0.00035, 𝛽 = 1, 𝜇f = 0.
4. Discussion

We formalised selection on resource allocation traits affecting life
history and the deleterious mutation rate under asexual reproduction.
When selection against deleterious mutations is high compared to the
11
deleterious mutation rate, the class of individuals having the fewest
such mutations (the least-loaded class) dominates in frequency the
population and thus determines the fate of any mutant modifier al-
lele affecting the deleterious mutation rate and life history. Then, we
showed that the basic reproductive number of the least-loaded class
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(Eqs. (1) and (4)) allows to characterise the joint evolutionary stable
life-history and deleterious mutation rate. We analysed two specific
applications to illustrate this approach: (1) joint evolution between
reproductive effort and the mutation rate and (2) joint evolution be-
tween the age-at-maturity and the mutation rate. These two models
confirmed the validity of using the least-loaded class as a fitness proxy
by comparing results to those obtained by individual-based stochastic
simulations (Figs. 2–5) and provide several insights about the joint
evolution of life-history and deleterious mutation rate.

The first model shows that a positive deleterious mutation rate
evolves when selection against increasing the mutation rate is bal-
anced by the cost of germline maintenance. This extends established
results (Kimura, 1967; Kondrashov, 1995; Dawson, 1998, 1999) to an
explicit life history context. We find that the trade-off between repro-
duction and survival shifts towards higher allocation into reproduction
under a high baseline mutation rate. This confirms the numerical
observation of Charlesworth (1990) that a higher level of a fixed
mutation rate (no germline maintenance) causes higher allocation to
reproduction over survival. We further predict that the shift in survival-
reproduction trade-off towards reproduction is stronger: (i) when the
conversion of resources into vital and germline maintenance is less
efficient (e.g. in environments where organisms have high mainte-
nance costs, e.g., colder climates), (ii) high external mortality rates
(e.g., high predation environment), and (iii) high baseline mutation
rates (e.g., induced by environmental stressors). We also find that
immortality (complete survival) cannot evolve even in an environ-
ment with no external mortality because the mutation rate cannot be
brought down to zero. This highlights a potentially overlooked role
of mutation accumulation, which, alongside extrinsic environmental
hazards (Medawar, 1952; Hamilton, 1966; Charlesworth, 1994), can
prevent the evolution towards immortality. This means that the forces
of direct selection on survival and reproduction, which are decreasing
as a function of the death rate (Hamilton, 1966; Ronce and Promislow,
2010) will also be declining as a function of the mutation rate. Overall,
this example reveals that endogenous and/or exogenous factors that in-
crease the baseline mutation rate cause lower lifespans through higher
allocation to fecundity.

The model examining the combined evolution of age-at-maturity
and mutation rate also indicates that a stable positive mutation rate
evolves. However, in this scenario, it emerges because of a balance be-
tween germline maintenance and investing in growth and reproduction.
We predict that a higher baseline mutation rate favours smaller size-
at-maturity marked by an earlier onset of the reproductive stage. This
complements the results of Dańko et al. (2012), where a higher fixed
mutation rate causes earlier maturity, although they report the effect
of mutation accumulation as minor. In contrast, we show that muta-
tion accumulation can significantly affect life-history trade-offs since
allocation to germline maintenance co-evolves with life history. Us-
ing individual-based simulations, the joint evolution between somatic
maintenance, germline maintenance, size-at-maturity, and population
size has also been explored by Rozhok and DeGregori (2019) who found
that selection for larger body size (by imposing size-dependent mortal-
ity) can lead to higher germline mutation rate because more resources
need to be invested into somatic maintenance. Thus, they found that a
higher germline mutation rate and size-at-maturity are expected to be
positively correlated, which is an opposite prediction from our result.
Further studies clarifying the selection pressures involved in the trade-
off between growth and investment into the maintenance of germline
and soma could thus shed light on how patterns of body size, longevity
and mutation rate are expected to be correlated.

Our second model also predicts that higher mutation rates cor-
relate with smaller equilibrium population sizes, supporting previous
findings (e.g. Gabriel et al., 1993). An increased baseline mutation
rate can thus amplify the effect of genetic drift, especially in small
populations. This could intensify genetic drift’s influence on mutation
12

accumulation (Lynch et al., 2016), and potentially even trigger the
mutational meltdown of the (asexual) population (Gabriel et al., 1993).
As discussed in Section 2.3.1, if selection against deleterious mutations
is significantly larger than the mutation rate in models ignoring age-
specific effects, the impact of this should be negligible. Thus, the
deterministic approximation for the resident mutation-selection bal-
ance should then fare well, even under relatively strong genetic drift.
This is the case in our stochastic individual-based simulations that
further and more importantly show that the mean of the allocation
traits align with the analytical predictions of the evolutionary stable
trait values (e.g., Fig. 4 where the population size is about 2000
individuals at the evolutionary equilibrium). This is a robust feature of
quantitative trait evolution models (see references Section 2.2), where
even in small populations, the mean observed trait value in individual-
based simulations can be well predicted by analytical approximations
(e.g. even in populations with less than 10 individuals Wakano and
Lehmann, 2012, Fig. 1 but where the variance in trait values can
become large). This ultimately stems from the fact that the selection
pressures obtained from invasion fitness are proportional to those
obtained from fixation probabilities in the absence of social interactions
and so population size does not qualitatively affect the direction of
selection (e.g., Rousset, 2004). In summary, we thus expect that the
resource allocation predictions from our two concrete applications
are robust to the effect of genetic drift as long as selection against
deleterious mutations is at least one order of magnitude larger than
the mutation rate.

Two main findings about how life history coevolves with deleteri-
ous mutation rate emerge from these applications. First, the trade-off
between lowering the rate of mutations vs. investing in life-history
functions affects the evolutionary outcome of life-history trade-offs
(e.g. survival–vs.–reproduction or growth–vs.–reproduction). Hence,
mutation accumulation can have a significant effect on life-history
evolution through the process of joint evolution that previous models
focusing on the effect of fixed mutation rates on life-history evolution
have not revealed (Charlesworth, 1990; Dańko et al., 2012). Looking
at the effect of fixed mutation rates on life history evolution underes-
timates the effect of deleterious mutation accumulation on life history
evolution, as it does not consider the physiological cost of immutability
on life history evolution. Second, factors that contribute to higher
baseline mutation rate select for faster life histories: higher investment
into current reproduction at the expense of survival and earlier age–at–
maturity. Factors that could increase the baseline mutation rate include
factors that increase DNA replication errors (number of germ-line cell
divisions) or environmental mutagens (oxygen level, nutrition quality,
see e.g. Ferenci, 2019 for a review).

Our analysis using the basic reproductive number of the least-loaded
class to locate evolutionary stable resource allocation strategies under
deleterious mutation accumulation relies on a number of simplifying
assumptions. Most notably (i) a separation between life-history traits
(e.g., the timing of reproduction, age and size at maturity, longevity)
and traits that could be referred to as viability traits, such as mor-
phology and physiology, (ii) that mutations are only deleterious at the
viability traits, and (iii) that reproduction is asexual. The separation
between life-history traits and viability traits allows us to focus on
the life-history resource allocation trade-off and avoids modelling the
viability traits mechanistically. This separation makes biological sense
for organisms that have similar viability traits but differ in their life
history. For instance, both annual and perennial plants can have similar
cellular pathways for photosynthesis and oxidative phosphorylation,
where deleterious mutations can affect the functionality of these path-
ways that are under strong selection. For such organisms, our model
thus consists of characterising the optimal life history and how the
mutation rate at the cellular machinery evolves. While other formula-
tions are possible and could be explored in future work, our approach
has analytical traction and is conceptually equivalent to the separation
between modifier locus and loci affecting vital rates from modifier

theory, where modifier alleles affect the pattern of transmission of
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other traits (e.g., Leigh, 1970; Altenberg, 2009). In our model, modifier
alleles are also under direct selection owing to their effect on life
history. From modifier theory, we know that regardless of the details
of transmission; namely, regardless of whether reproduction is asexual
or sexual or the exact pattern of mutation rates (whether they are
reducible or not), a decrease in the mutation rate is always favoured in
the absence of trade-off with reproduction (Altenberg, 2009; Altenberg
et al., 2017). Thus, in the presence of a trade-off in any genetic system,
the evolutionary stable mutation rate will be determined by the balance
between the benefit of lowering the mutation rate and the benefit of
increasing the mutation rate and thus reducing the physiological cost
of germline maintenance (e.g. André and Godelle, 2006; Kondrashov,
1995; Dawson, 1998). Under sexual reproduction, however, fewer re-
sources will be allocated to germline maintenance (Kondrashov, 1995;
Dawson, 1998; André and Godelle, 2006; Altenberg, 2009) because
deleterious mutations are linked under asexual reproduction, and this
linkage is broken down by recombination under sexual reproduction
whereby the benefit of lowering the mutation is smaller (Dawson,
1998; Gervais and Roze, 2017). However, any direct effect that the
modifier has would be experienced in the same way regardless of
the reproductive system. In summary, while genetic details might be
important to compare the quantitative effect of the reproductive system
on the joint evolution of mutation rate and life history, they are
unlikely to qualitatively affect our main prediction that the cost of
germline maintenance can be a significant force affecting the evolution
of life-history traits.

Our model can be further extended to study several open ques-
tions in life-history theory and mutation accumulation theory. First,
our model can be applied to understand how allocation to germline
maintenance affects the evolution of ageing. This can be done by ex-
plicitly applying our model in the scenario where deleterious mutations
can have age-specific effects and/or allow for allocation to somatic
repair. Current theories of ageing either rely on accumulation of late-
acting deleterious mutations in the germline (e.g. Medawar, 1952;
Lehtonen, 2020) or are based on a trade-off between reproduction
and survival (disposable soma and antagonistic pleiotropy theories of
ageing; Williams, 1957; Kirkwood, 1977; Cichon and Kozlowski, 2000),
but no theoretical study has explored how these processes evolve jointly
when germline maintenance is costly. Second, our model can also be
extended to study the Lansing effect, a widely reported negative effect
of parental age on offspring fitness (e.g. Monaghan et al., 2020). Third,
extending our model for sexual reproduction would allow studying
how sex-specific differences in germline maintenance can induce sex
differences in life-history trade-offs (Maklakov and Lummaa, 2013).
Our hope is that the formalisation proposed in this paper can be
fruitfully used to these ends.
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Appendix A. Invasion process with mutation accumulation

In this appendix, we prove that the basic reproductive number
̃0(𝐮, 𝐯) defined by Eq. (1) (in discrete-time) and Eq. (4) (in continuous-
ime) is an appropriate invasion fitness proxy when the least-loaded
lass dominates in frequency the resident population. To that end,
ollowing the assumptions of the main text Section 2.1, we first charac-
erise the mutant invasion process and use renewal equations for both
iscrete and continuous-time to show that �̃�0(𝐮, 𝐯) is an appropriate
nvasion fitness proxy (Appendix A.1). These renewal equations are
erived from full stochastic considerations on birth and death by using
ge-dependent branching process theory (Appendix A.2).

.1. Reducible mutant invasion process

Since the resident population is assumed to have reached a
utation-selection balance and is thus at a genetic-demographic equi-

ibrium, i.e. the standard internal stability assumptions of invasion
nalysis (Eshel and Feldman, 1984; Altenberg et al., 2017; Metz, 2011),
he mutant allele for trait 𝐮 can arise in individuals carrying different
umbers of deleterious mutations. Hence, the invasion process of 𝐮
s contingent on the genetic background in which it arises. We refer
o the initial carrier of the 𝐮 trait as the progenitor (or ancestor) of
. The invasion fitness of mutant 𝐮 is then determined by the size of
he lineage of the progenitor, which consists of all of its descendants
arrying 𝐮 far into the future. Namely, the immediate descendants of
he progenitor, including the surviving self, the immediate descen-
ants of the immediate descendants, etc., covering the whole family
istory tree ad infinitum. Noteworthy, descendants may accumulate
eleterious mutations during the initial growth or extinction phase
f the mutant lineage when this lineage is rare, which we refer
hroughout as the ‘‘invasion process’’. As such, the mutant invasion
rocess, whether in continuous or discrete time, can be regarded as a
ultitype age-dependent branching process (Mode, 1968, 1971) since
uring the growth or extinction of the mutant lineage, novel genotypes
re produced by mutation.

To analyse this invasion process, it is useful to organise individuals
nto equivalence classes. The defining feature of an equivalence class is
hat it is a collection of states of a process among which transitions
ventually occur, so the states are said to communicate (Karlin and
aylor, 1975, p. 60). The equivalence class C𝑖 will stand for all mu-
ant individuals carrying 𝑖 deleterious mutations and thus consist of
ndividuals of all ages. This is an equivalence class because, through
urvival and reproduction, an individual of any age with 𝑖 mutations
ay eventually transition to become an individual of any other age

in the absence of menopause). This follows from the fact that the
rocess of survival and reproduction in an age-structured population
n the absence of mutations (and menopause) is irreducible (Karlin and

Taylor, 1975, p. 60), since starting in any age-class, eventually, every
age class can be reached by the members of a lineage of individuals.
Owing to our assumptions that mutations are deleterious and can
only accumulate, however, starting in a given mutational class, it is
possible to enter another class, but not transition back from that class
(otherwise the two classes would form a single class). Thereby the
mutation process is reducible, since a lineage of individuals cannot
go from any mutational class to any other mutation class. Equivalence
class C𝑖+1 is then said to follow class C𝑖 since individuals in equivalence
class 𝑖 can only transition to class 𝑖 + 1 by acquiring mutations. This

eans that the invasion process is reducible and can be regarded
s a reducible multitype age-dependent branching process (Nair and
ode, 1971; Mode, 1971). Reducibility typically arises in population

enetics models without back-mutations but sometimes also occurs in
odels in ecology and demography, e.g. when some class of individuals
o not contribute to reproduction, as is, for instance, the case under
enopause (e.g. Caswell, 2000; Altenberg, 2009; Bode et al., 2006;
tott et al., 2010; McDonald, 2015).



Journal of Theoretical Biology 573 (2023) 111598P. Avila and L. Lehmann

𝑛
f
A

𝑛

t

h
m
s

p
T
1

i
d

m
l
c
t
i
f
o
i
i
i
I
c
a
r
o
o
𝑅
l
d
t
a
a
s
t
o
a
i
t

A

i
p
s
t
a
a
b
1

m
w
𝑍
t
i
s
c
b

𝜃

b
c
N
(
e
a
i
r
p

To see why the notion of an equivalence class is useful to understand
the mutant invasion process, let us first focus on a discrete-time process
with 𝑇 discrete age classes and denote by 𝑛𝑖(𝑡) the expected number
of individuals at time 𝑡 = 0, 1, 2,…, in class C𝑖 that descend from a
single class C𝑖 newborn progenitor born at 𝑡 = 0 (i.e. 𝑛𝑖(0) = 1). Thus,
𝑖(𝑡) is the expected lineage size of class C𝑖 individuals descending
rom a newborn progenitor of class C𝑖 (including the surviving self).
ccounting entails that 𝑛𝑖(𝑡) satisfies the renewal equation

𝑖(𝑡) = 𝑙𝑖(𝑡) +
𝑡

∑

𝑎=1
𝑛𝑖(𝑡 − 𝑎)�̃�𝑖(𝑎)𝑙𝑖(𝑎), (A.1)

where 𝑙𝑖(𝑎) is the probability that a C𝑖 class newborn survives to the
𝑎th age class and has not acquired any new mutation, and �̃�𝑖(𝑎) is the
expected number of (newborn) offspring without mutations produced
by an individual belonging to the 𝑎th age class and being of mutation
class C𝑖. Eq. (A.1) is derived in Appendix A.2.1 from branching process
considerations and its left-hand side can be understood as follows. First,
𝑙𝑖(𝑡) accounts for the survival and immutability of the progenitor itself
until age 𝑡. Second, �̃�𝑖(𝑎)𝑙𝑖(𝑎) is the progenitor’s expected number of
offspring of class C𝑖 born during the time interval corresponding to
the 𝑎th age class and each of these newborns contribute an expected
number 𝑛𝑖(𝑡− 𝑎) of class C𝑖 individuals to the progenitor’s total lineage
size at 𝑡. This is so because as long as the mutant is rare, each newborn
starts a new independent lineage and adding all terms together, the
right-hand side of Eq. (A.1) thus gives the expected lineage size of class
C𝑖 individuals descending from the progenitor (see Appendix A.2.1 for
more details).

A key feature of Eq. (A.1) is that it depends only on the vital rates
and states of individuals of class C𝑖. As such, Eq. (A.1) is functionally
equivalent to the standard renewal equation of population dynamics
in discrete age-structured populations (Charlesworth, 1994, eq. 1.34),
but recall that 𝑛𝑖(𝑡) counts total lineage size in class C𝑖 and not zy-
gote size as in the classical theory of age-structured populations. It
then follows from the classical theory of age-structured populations
(e.g., Charlesworth, 1994, p. 25–26) or the branching process formu-
lation (Mode, 1974) that asymptotically, as 𝑡 → ∞, the number 𝑛𝑖(𝑡)
grows geometrically as

𝑛𝑖(𝑡) ∼ 𝜌𝑡𝑖 𝐾𝑖, (A.2)

where 𝐾𝑖 is a constant depending on the process and 𝜌𝑖 is the unique
root satisfying the characteristic (or Euler–Lotka) equation ∑𝑇

𝑎=1
𝜌−𝑎𝑖 �̃�𝑖(𝑎)𝑙𝑖(𝑎) = 1.

Since individuals of class 𝑖 contribute to individuals of class 𝑖 + 1
through mutations, the equivalence class C𝑖+1 follows class C𝑖, then
𝑛𝑖(𝑡) does not describe the total expected lineage size of the progenitor.
However, owing to the assumptions that mutations are deleterious and
can only accumulate, the growth ratio 𝜌𝑖 is at least as large as 𝜌𝑖+1,
i.e., 𝜌𝑖 ≥ 𝜌𝑖+1 for all 𝑖. This implies that when the ancestor is of
ype 𝑖, the expected lineage size is determined by the growth ratio 𝜌𝑖,

since it dominates that of any other following equivalence class. Hence,
asymptotically, the total expected lineage of an C𝑖 class progenitor
as a geometric growth ratio 𝜌𝑖. It further follows from the theory of
ultitype age-dependent branching processes that the realised lineage

ize of a single progenitor (a random variable) has growth ratio 𝜌𝑖 if 𝜌𝑖 >
1 and otherwise if 𝜌𝑖 ≤ 1, the lineage goes extinct with probability one
(Mode, 1971, Theorem 7.2 p. 245, Corollary 6.1 p. 280, see also Mode,
1974 for the single type case). Further, 𝜌𝑖 ≤ 1 if and only if �̃�𝑖 ≤ 1,
where �̃�𝑖 =

∑𝑇
𝑎=1 �̃�𝑖(𝑎)𝑙𝑖(𝑎) is the expected number of offspring of a

rogenitor of type 𝑖 produced throughout its lifespan (i.e. Mode, 1971,
heorem 7.2 p. 245, Corollary 6.1 p. 280, see also Karlin and Taylor,
981, p. 424, Caswell, 2000). Hence, 𝜌𝑖 is an appropriate measure of

invasion fitness and �̃�𝑖 is an appropriate proxy of it for a type 𝑖 mutant
𝐮 arising in a resident 𝐯 background. The same argument can be made
for continuous-time processes, in which case, the invasion fitness of a

( )
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mutant arising in a progenitor in class C𝑖 is 𝜌𝑖 = exp 𝑟𝑖 , where 𝑟𝑖 is e
the rate of natural increase of the lineage size of a progenitor of type
𝑖, i.e., the Malthusian growth rate and for which �̃�𝑖 = ∫ 𝑇

0 �̃�𝑖(𝑎)𝑙𝑖(𝑎)d𝑎
s an appropriate invasion fitness proxy (see Appendix A.2.2 for a
erivation).

The key feature of the invasion process in a population with distinct
utational equivalence classes is that the invasion fitness of a mutant

ife history trait thus depends on the class in which it appears (𝜌𝑖 for
lass 𝑖), which in turn depends on the distribution 𝐩(𝐯). This means
hat there are as many growth rates as equivalence classes, since the
nvasion process is reducible (see also Altenberg, 2009, p. 1278). There-
ore characterising long-term evolution using a single representation
f invasion fitness (or proxy thereof) is at first glance unattainable as
t requires to make the process irreducible, which can be achieved by
ntroducing back mutations or recombination. Reaching irreducibility
n this way, however, would make the model much more complicated.
t also follows from these considerations that when the least-loaded
lass dominates in frequency the population, the face of mutant 𝐮
ppearing in a resident 𝐯 population is determined from the growth
atio 𝜌0(𝐮, 𝐯) of the least-loaded class only, since any mutant will appear
n the C0 background and so this is an appropriate overall measure
f invasion fitness (𝜌(𝐮, 𝐯) = 𝜌0(𝐮, 𝐯)). Further, since 𝜌0(𝐮, 𝐯) ≤ 1 ⟺

̃0(𝐮, 𝐯) ≤ 1, where �̃�0(𝐮, 𝐯) is the basic reproductive number of the
east-loaded class, i.e. the expected number of class C0 offspring pro-
uced by a class individual C0 individual over its lifespan, is sufficient
o characterise the fate of the mutant. This then justifies using �̃�0(𝐮, 𝐯)
s an invasion fitness proxy defined by Eqs. (1) and (4) for discrete
nd continuous time, respectively. Further, if deleterious mutations are
uch that all the 𝜌𝑖’s are proportional to 𝜌0’s, which is the case for
he standard mutation accumulation models with a multiplicative effect
f (deleterious) mutations, then using �̃�0 does no rely on making the
ssumption of low mutation rates relative to selection, since regardless
n which background the mutation appears, it will grow proportionally
o 𝜌0.

.2. Renewal equations from age-dependent branching process

We here derive the renewal Eq. (A.1) for a discrete-time process and
ts continuous-time analogue from underlying age-dependent branching
rocess assumptions (Crump and Mode, 1968; Mode, 1968, 1971). As
uch, we consider a full stochastic model of survival and reproduction
o describe the fate, invasion or extinction, of a mutation introduced
s a single copy in a resident population. The defining assumption of
branching process is that a new and independent copy of the process
egins each time a new individual is born (Harris, 1963; Mode, 1968,
971).

To describe the branching process under our assumptions of the
ain text Section 2.1, let us introduce the following notations, which
ill apply to both the discrete and continuous time processes. First, let
𝑖(𝑡) stand for the random number of individuals in class C𝑖 at time 𝑡

hat descend from a single newborn (age class zero) mutant progenitor
n class C𝑖 at 𝑡 = 0, whereby 𝑍𝑖(0) = 1. Second, denote by 𝐿𝑖 the random
ojourn time of a progenitor of class C𝑖 in that class; the progenitor exits
lass C𝑖 either because of death (in which case 𝐿𝑖 is the lifespan) and/or
ecause a germline mutation occurred. Third, let

(𝑡 − 𝐿𝑖) =
{

1 if 𝑡 − 𝐿𝑖 ≥ 0
0 if 𝑡 − 𝐿𝑖 < 0 ,

(A.3)

y the indicator random variable describing whether a progenitor of
lass C𝑖 has exited class C𝑖 by time 𝑡 (either by death and/or mutation).
amely, if 𝜃(𝑡 − 𝐿𝑖) = 0, then the progenitor is still in class C𝑖 at 𝑡

alive without having mutated). Finally, let 𝑛𝑖(𝑡) = E[𝑍𝑖(𝑡)] denote the
xpected number of individuals at time 𝑡 in class C𝑖 that descend from
single class C𝑖 newborn progenitor at 𝑡 = 0, where the expectation

s overall stochastic events affecting survival and reproduction (we
efer to Crump and Mode, 1968; Mode, 1971 for a construction of the
robability spaces for branching processes, here we simply assume they

xist).
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A.2.1. Discrete time
Let us now focus on the discrete-time process where 𝑡 = 0, 1, 2,…

nd further introduce the random number 𝑊𝑖(𝑎) of offspring without
new mutations born to the progenitor of class C𝑖 during the time
interval corresponding to the 𝑎th age group where 𝑎 = 1, 2,… so
that, recall, we begin counting discrete age classes with 1 (one of the
two possible conventions to count discrete age classes, Fig. 3.1 Case,
2000). Because a branching process starts afresh with the birth of any
offspring, the random variable 𝑍𝑖(𝑡) satisfies the discrete time stochastic
renewal equation

𝑍𝑖(𝑡) = 1 − 𝜃(𝑡 − 𝐿𝑖) +
𝑡

∑

𝑎=1
𝑍𝑖(𝑡 − 𝑎)𝑊𝑖(𝑎), (A.4)

which can be understood as follows. First, if 𝜃(𝑡 − 𝐿𝑖) = 0, then the
progenitor is still in class C𝑖 at 𝑡 and thus contributes one individual to
its lineage. Second, each offspring produced without mutation during
the time interval corresponding to the 𝑎th age class starts a new
independent branching process and thus contributes 𝑍𝑖(𝑡−𝑎) individuals
of class C𝑖 to the progenitor’s lineage at 𝑡. Summing over all offspring
and all age groups the progenitors can be in, we obtain the second
term in Eq. (A.4). In other words, the sum ∑𝑡

𝑎=1 𝑍𝑖(𝑡 − 𝑎)𝑊𝑖(𝑎) is the
total random number of class C𝑖 individuals at 𝑡 that descendent from
each of the offspring of the progenitor including the surviving selves
(i.e., offspring, offspring from offspring, offspring from offspring from
offspring, etc.). Thus, the right-hand side of Eq. (A.4) is the progenitor’s
random lineage size of class C𝑖 individuals at 𝑡. Bearing differences of
notations and context, Eq. (A.4) is conceptually equivalent to eq. (5.6)
of Mode (1974).

Taking the expectation over realisations of the stochastic process
over both sides of Eq. (A.4) yields

E[𝑍𝑖(𝑡)] =1 − E[𝜃𝑖(𝑡 − 𝐿)] +
𝑡

∑

𝑎=1
E[𝑍𝑖(𝑡 − 𝑎)𝑊𝑖(𝑎)] (A.5)

=1 − E[𝜃𝑖(𝑡 − 𝐿)] +
𝑡

∑

𝑎=1
E[𝑍𝑖(𝑡 − 𝑎)]E[𝑊𝑖(𝑎)]

where the first equality follows from the linearity of the expectation
operator and the second equality follows from the assumption of the in-
dependence of each new branching process. In order to further simplify
this expression, we first note that the probability that the progenitor
is still of class C𝑖 at 𝑡 is 𝑙𝑖(𝑡) = 1 − P(𝐿𝑖 ≤ 𝑡), and that by standard
probability arguments, P(𝐿𝑖 ≤ 𝑡) is the expectation of the indicator
random variable of the event that the progenitor exits class C𝑖 at 𝑡:
E[𝜃(𝑡 − 𝐿𝑖)] = P(𝐿𝑖 ≤ 𝑡) (Grimmett and Stirzaker, 2001). Second, we
assume stochastic independence between survival and reproduction,
whereby the expected number of offspring without mutations born to
a progenitor of class C𝑖 during the time interval corresponding to the
𝑎th age class is E[𝑊𝑖(𝑎)] = �̃�𝑖(𝑎)𝑙𝑖(𝑎), which is the probability 𝑙𝑖(𝑎) that
the progenitor has survived until age class 𝑎 without mutating times
the expected number �̃�𝑖(𝑎) of its offspring without mutations produced
when residing in the 𝑎th age class. Substituting these quantities into
Eq. (A.5) and noting that, by definition, 𝑛𝑖(𝑡−𝑎) = E[𝑍𝑖(𝑡−𝑎)], Eq. (A.5)
can be written 𝑛𝑖(𝑡) = 𝑙𝑖(𝑡) +

∑𝑡
𝑎=1 𝑛𝑖(𝑡 − 𝑎)�̃�𝑖(𝑎)𝑙𝑖(𝑎), which is Eq. (A.1).

Bearing differences of notations and context, Eq. (A.5) is conceptually
equivalent to eq. (5.11) of Mode (1974).

A.2.2. Continuous time
Let us now focus on the continuous time process where 𝑡 ∈ [0,∞)

and for this case, let 𝑁𝑖(𝑡) denote the random number of offspring
without mutations produced until time 𝑡 by a progenitor of class C𝑖,
where these offspring are produced at the random times 𝑇1(𝑖) ≤ 𝑇2(𝑖) ≤
⋯ ≤ 𝑇𝑁𝑖(𝑡) with 𝑇𝑗(𝑖) being the random time until production of the 𝑗th
offspring. Thus, 𝑁𝑖(𝑡) is a renewal counting (or point) process (Karlin
and Taylor, 1975, p. 31) with rate function �̃�𝑖(𝑡)𝑙𝑖(𝑡), where 𝑙𝑖(𝑡) is the
probability that a progenitor of class C𝑖 is still in that class at time 𝑡
(same as in the discrete-time case), and �̃� (𝑡) is the birth rate of offspring
15

𝑖

without mutations at 𝑡. Because a branching process starts again with
the birth of each offspring, the random variable 𝑍𝑖(𝑡) satisfies under the
continuous time process the stochastic renewal equation

𝑍𝑖(𝑡) = 1 − 𝜃(𝑡 − 𝐿𝑖) +
𝑁𝑖(𝑡)
∑

𝑗=1
𝑍𝑖(𝑡 − 𝑇𝑗(𝑖)), (A.6)

where, as in the discrete case, 1−𝜃(𝑡−𝐿𝑖) counts the surviving progen-
itor without mutation and the sum counts the total random number
of class C𝑖 individuals at 𝑡 that descend from each of the offspring
of the progenitor, where the progenitor’s offspring are produced at
random times. Bearing differences of notations and context, Eq. (A.6)
is conceptually equivalent to eq. (3.1) of Crump and Mode (1968).

Taking the expectation over realisations of the stochastic process
over both sides of Eq. (A.6) yields

E[𝑍𝑖(𝑡)] =1 − E[𝜃𝑖(𝑡 − 𝐿)] + E
[

𝑁𝑖(𝑡)
∑

𝑗=1
𝑍𝑖(𝑡 − 𝑇𝑗(𝑖))

]

(A.7)

=1 − E[𝜃𝑖(𝑡 − 𝐿)] + E
[

𝑁𝑖(𝑡)
∑

𝑗=1
E[𝑍𝑖(𝑡 − 𝑇𝑗(𝑖))]

]

=𝑙𝑖(𝑡) + E
[

𝑁𝑖(𝑡)
∑

𝑗=1
𝑛𝑖
(

𝑡 − 𝑇𝑗(𝑖)
)

]

,

where the second line follows from the independence of each new
branching process and the third from the definitions introduced above.
Now, owing to Campbell’s theorem relating the rate of a renewal
counting process, here �̃�𝑖(𝑎)𝑙𝑖(𝑎), and the expectation of a random sum
of a function over the process (e.g., Kingman, 1992, p. 28), we have
E
[

∑𝑁𝑖(𝑡)
𝑗=1 𝑛𝑖

(

𝑡 − 𝑇𝑗(𝑖)
)

]

= ∫ 𝑡
0 𝑛𝑖(𝑡 − 𝑎)�̃�𝑖(𝑎)𝑙𝑖(𝑎)d𝑎 and therefore Eq. (A.7)

becomes

𝑛𝑖(𝑡) = 𝑙𝑖(𝑡) + ∫

𝑡

0
𝑛𝑖(𝑡 − 𝑎)�̃�𝑖(𝑎)𝑙𝑖(𝑎)d𝑎. (A.8)

Bearing differences of notations and context, Eq. (A.8) is conceptually
equivalent to eq. (6.1) of Crump and Mode (1968) once the assumptions
of their example 8.2 is endorsed, i.e., stochastic independence between
survival and reproduction.

Eq. (A.8) is also functionally equivalent to the standard renewal
equation of population dynamics for continuous age-structured popu-
lations (Charlesworth, 1994, eq. 1.41). As such, and as for the discrete-
time case, it then follows from the standard results of population
dynamic processes in age-structured populations (Charlesworth, 1994,
p. 27) or from the continuous time branching process formulation
(Crump and Mode, 1968) that asymptotically, as 𝑡 → ∞, the number
𝑛𝑖(𝑡) grows geometrically as

𝑛𝑖(𝑡) ∼ 𝜌𝑡𝑖 𝐾𝑖, (A.9)

where 𝐾𝑖 is some constant depending on the process and 𝜌𝑖 = exp(𝑟𝑖),
where 𝑟𝑖 is the mutant growth rate (or Malthusian parameter), which
is the unique root of the Euler–Lotka equation

∫

∞

0
exp(−𝑎𝑟𝑖)�̃�𝑖(𝑎)𝑙𝑖(𝑎)d𝑎 = 1. (A.10)

Thereby 𝑟𝑖 ≤ 0 ⟺ �̃�𝑖 ≤ 1 with �̃�𝑖 = ∫ ∞
0 �̃�𝑖(𝑎)𝑙𝑖(𝑎) being the basic

reproductive number of a class 𝑖 individual (Karlin and Taylor, 1981,
p. 424, Mode, 1971, Theorem 7.2 p. 245, Corollary 6.1 p. 280).

Appendix B. Basic reproductive numbers

In this appendix, we present the explicit expressions for �̃�0(𝐮, 𝐯) for
our two biological scenarios
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B.1. Coevolution of reproductive effort and germline maintenance

From the model assumptions given in main text Section 3.1.1, we
have that a juvenile surviving density-dependent competition, has a
survival probability of one to the adult stage and that each adult of the
least-loaded class survives to the next generation with probability 𝑠0(𝐮).
n the meantime, the probability that each type of individual has not
cquired a germline mutation is exp (−𝜇(𝐮)). Therefore, for this model,

Eq. (3) becomes

𝑙0(𝑎,𝐮, 𝐯) =
{

exp (−𝜇(𝐮)) if 𝑎 = 1
𝑠0(𝐮)𝑎−1 exp (−𝜇(𝐮)𝑎) if 𝑎 > 1 ,

(B.1)

while the effective fecundity of the least-loaded class (Eq. (2)) is

�̃�0(𝑎,𝐮, 𝐯) = �̃�0(𝐮, 𝐯) = (1 − �̄�(𝐯))
𝑓0(𝐮)
𝑓 (𝐯)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏0(𝐮,𝐯)

(B.2)

since no mutation occurs specifically during reproduction (in addition
of the germline mutation mentioned above). The effective fecundity
depends on the mean survival and fecundity in the population, respec-
tively, �̄�(𝐯) = ∑∞

𝑘=0 𝑠𝑘(𝐯)𝑝𝑘(𝐯) and 𝑓 (𝐯) =
∑∞

𝑘=0 𝑓𝑘(𝐯)𝑝𝑘(𝐯). Here, 𝑝𝑘(𝐯) is
the probability that an individual randomly sampled from the resident
population carries 𝑘 deleterious mutations (and so 𝐩(𝐯) = {𝑝𝑘(𝐯)}𝑘∈N
for this model). This can be understood by noting that (1 − �̄�(𝐯)) is
the fraction of open breeding spots available to a juvenile and the
probability that the offspring of a given adult acquires a breeding spot
depends on the fecundity of the adult relative to the population average
fecundity (as each juvenile is equally likely to acquire a breeding spot).

Since there is no fixed end to lifespan under the above life-cycle
assumptions (so 𝑇 → ∞), the basic reproductive number of the least-
loaded class, Eq. (1), is

�̃�0(𝐮, 𝐯) =
∞
∑

𝑎=1
𝑏0(𝐮, 𝐯)𝑠0(𝐮)𝑎−1 exp (−𝜇(𝐮)𝑎) , (B.3)

which yields

�̃�0(𝐮, 𝐯) =
𝑏0(𝐮, 𝐯)

exp(𝜇(𝐮)) − 𝑠0(𝐮)
, (B.4)

(see also the accompanying Mathematica notebook S.I.). Since 𝑏0(𝐮, 𝐯) is
multiplicatively separable with respect to its arguments, then it follows
from Eq. (B.4) that the model satisfies the condition of an optimisation
principle (e.g., Metz et al., 2008). Namely, �̃�0(𝐮, 𝐯) = 𝐹1(𝐮)𝐹2(𝐯) for
the functions 𝐹1(𝐮) = 𝑓0(𝐮)∕[exp(𝜇(𝐮)) − 𝑠0(𝐮)] depending only on the
mutant and 𝐹2(𝐯) = [1 − �̄�(𝐯)]∕𝑓 (𝐯) depending only on the resident.
It follows that maximising 𝐹1(𝐮) is sufficient to ascertain uninvad-
ability (Metz et al., 2008). An optimisation principle further entails
that uninvadability implies (absolute) convergence stability, since the
selection gradient ∇�̃�0(𝐮, 𝐯) points in the same direction as the gradient
∇𝐹1(𝐮) (Leimar, 2009b, p. 199). Finally, the explicit expressions for �̄�(𝐯)
and 𝑓 (𝐯), and thus the distribution 𝐩(𝐯) are not needed to carry out the
invasion analysis. This allows us to markedly simplify the evolutionary
analysis. But we will nevertheless work out the resident distribution
𝐩(𝐯) = {𝑝𝑘(𝐯)}𝑘∈N so as to have a fully worked example that allows for
consistency checks and illustrating the concepts.

Since we consider a deterministic resident population process, the
frequency 𝑝𝑘(𝐯) satisfies at equilibrium the equation

𝑝𝑘(𝐯) =
𝑘
∑

𝑖=0
𝜙𝑘−𝑖(𝐯)𝑤𝑖(𝐯)𝑝𝑖(𝐯), (B.5)

where 𝑤𝑖(𝐯) = 𝑠𝑖(𝐯) + (1 − �̄�(𝐯)) 𝑓𝑖(𝐯)∕𝑓 (𝐯) is the individual fitness –
survival plus effective fecundity – of an individual with 𝑖 deleterious
mutations, and 𝜙𝑘(𝐯) is the probability that 𝑘 deleterious mutations
are produced upon reproduction. Assuming that the mutation distri-
bution is Poisson with mean 𝜇(𝐯) and 𝜎s = 𝜎f = 𝜎, then Eq. (B.5)
becomes structurally equivalent to eq. (1) of Haigh (1978) and eq. (5.3)

̄
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of Bürger (2000, p. 300) (with mean fitness 𝑤 = 1 since population size
is constant) and as such the equilibrium distribution 𝐩(𝐯) is Poisson with
mean 𝜆(𝐯) = 𝜇(𝐯)∕𝜎 (see also the section 1.1.1. in SM). This completely
characterises the genetic state of the resident population and implies
that

�̄�(𝐯) = 𝑠0(𝐯)𝑒−𝜇(𝐯) and 𝑓 (𝐯) = 𝑓0(𝐯)𝑒−𝜇(𝐯). (B.6)

Substituting the explicit expression for the survival and effective fecun-
dity (Eq. (B.6)) into Eq. (B.2) and (B.4) shows that in a monomorphic
𝐯 population �̃�0(𝐯, 𝐯) = 1, as required for a consistent model for-
mulation. Eq. (B.6) generalises the standard mutation-accumulation
model of population genetics to overlapping generations with survival
probability depending on the number of deleterious mutations (see
e.g. eq. 3.3 Kimura and Maruyama, 1966).

B.2. Coevolution of age at maturity and germline maintenance

From the model assumptions given in the main text Section 3.2.1
and using Eq. (4) (under 𝑇 → ∞ since there is also no definite end
to lifespan), the basic reproductive number of the least-loaded class
reduces to

�̃�0(𝐮, 𝐯) = �̃�0(𝐮, 𝐯)∫
∞

𝑢m
𝑙0(𝑎,𝐮, 𝐯)d𝑎, (B.7)

where 𝑙0(𝑎,𝐮, 𝐯) = exp
(

−(𝜇(𝑢g) + 𝑑b)𝑎
)

. Substituting the expression for
Eq. (13) into Eq. (B.7) and integrating yields

�̃�0(𝐮, 𝐯) = 𝐵(𝑥m(𝐮))
(

1 − 𝑢𝛼bg
)

exp(−𝜇f ) ×
exp

(

−(𝜇(𝑢g) + 𝑑b)𝑢m
)

𝜇(𝑢g) + 𝑑b
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹1(𝐮)

× (1 − 𝛾𝑁(𝐯))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐹2(𝐯)

.

(B.8)

This shows that one can again express the basic reproductive number
as a product of the form �̃�0(𝐮, 𝐯) = 𝐹1(𝐮)𝐹2(𝐯) and thus this model
as also an optimisation principle. This means that evaluating 𝑁(𝐯)
xplicitly is not needed to ascertain uninvadability since 𝑁(𝐯) only
ffects 𝐹2(𝐯) (and uninvadability will again imply convergence stability
or this model). We will nevertheless work the explicit expression for
(𝐯) out as it is useful to understand how model parameters affect

quilibrium population size. For this, it suffices to note that in a
onomorphic resident population at a joint demographic and genetic

quilibrium, each individual belonging to the least-loaded class must
eave on average one descendant with zero new mutations. Hence
̃0(𝐯, 𝐯) = 1 implies that the population size at the demographic steady
tate is

(𝐯) =
𝐵(𝑥m(𝐯))(1 − 𝑣𝛼bg ) − (𝑑b + 𝜇(𝑣g)) exp

(

𝜇f + (𝜇(𝑣g) + 𝑑b)𝑣m
)

𝛾𝐵(𝑥m(𝐯))(1 − 𝑣𝛼bg )
, (B.9)

which holds regardless of the effects of deleterious mutations on the
vital rates. This is a demographic representation and generalisation
of the surprising simple result noted for unstructured semelparous
populations of constant size that the nature of epistasis of deleterious
mutations has no effect on the genetic load (Kimura and Maruyama,
1966; Gillespie, 2004). Eq. (B.9) also allows to evaluate the equilibrium
population size 𝑁(𝐮∗) at the evolutionary equilibrium in terms of model
parameters by setting 𝑣 = 𝐮∗ and substituting Eqs. (19)–(20). The
resulting expression is complicated and given in section 2.1.4. of the
S.I.

Appendix C. Individual-based simulations

We here describe how we carried out the individual-based (stochas-
tic) simulations used for the two model examples in the main text. The
simulation algorithms scrupulously implement the life-cycle assump-

tion of these models with the only difference that the mutation rate
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Table C.4
List of standard deviations from the mean (measured over 7500 generations), for the
same parameter values as in Fig. 2.

Standard deviations from the mean

𝛼 = 0.02, black dots in Fig. 2

𝑢∗g 0.000777063, 0.000249208, 0.0000854773, 0.0000947966, 0.000101641,
0.0000581778, 0.0000428978, 0.0000407067, 0.0000428447,
0.000030804, 0.0000336098

𝑢∗s 0.000391751, 0.0005146, 0.000661941, 0.000727254, 0.000479774,
0.000537005, 0.000484383, 0.000848656, 0.00056459, 0.000804211,
0.000868807

𝛼 = 0.1, black dots in Fig. 2

𝑢∗g 0.0000302984, 0.0000981018, 0.000179639, 0.0000996037, 0.000115564,
0.0000812885, 0.000067068, 0.000065316, 0.0000504356, 0.0000463299,
0.0000454094

𝑢∗s 0.000179931, 0.000183683, 0.000207313, 0.000220466, 0.000222421,
0.000228642, 0.000146617, 0.000105734, 0.000203143, 0.000130473,
0.000201466

𝛼 = 0.2, black dots in Fig. 2

𝑢∗g 0.0000054602, 0.0000182402, 0.0000575673, 0.000186935, 0.000116924,
0.000142281, 0.0000772622, 0.0000947318, 0.0000501496,
0.0000505749, 0.0000701535

𝑢∗s 0.000127794, 0.000136637, 0.000128277, 0.000117642, 0.000154658,
0.0000981669, 0.0000895615, 0.000126695, 0.000160533, 0.000109858,
0.0000800033

at the life-history locus is positive 𝜇𝐿𝐻 > 0 (but kept small) in the
simulations. This makes the evolutionary process in the simulations
irreducible (see also discussion Section 2.3.2) and subject to genetic
drift along with mutation and natural selection.

C.1. Coevolution of reproductive effort and germline maintenance

The simulation algorithm for this scenario (see section 1.3. of the
S.I for the Mathematica code) follows a population composed of a finite
and fixed number N (=7500 in the simulations) of individuals, where
each individual is described by its genetic state (vector of traits consist-
ing of allocation to maintenance, allocation to survival and number of
deleterious mutations the individual has). One life-cycle iteration then
proceeds as follows. We start by computing the fecundity of each adult
individual, which is determined by its trait values (Eq. (6)). Then, we
evaluate the survival probability of each adult individual according to
its trait values (the survival of an individual is given by a Bernoulli
random variable with mean given by its survival probability Eq. (6)).
After eliminating the dead individuals, we fill the ‘‘vacated breeding
spots’’ by randomly sampling offspring from the relative fecundity of
all adult individuals before survival, thus effectively implementing a
Wright–Fisher process for reproduction (Mode and Gallop, 2008). Once
a newborn is chosen to fill the breeding spot, each of its traits mutates
independently with probability (𝜇LH = 0.01 in our actual simulations).
The effect size of a mutation follows a Normal distribution with zero
mean and a standard deviation (=0.1 in our simulations). Finally, we
allow deleterious mutations to accumulate at the deleterious mutation
locus according to a Poisson distribution with a mean that depends on
the life-history locus (as specified by Eq. (6)). To obtain the results
shown in Fig. 2, we initialised the simulation with a monomorphic
population, with no deleterious mutations and life-history trait values
given by the analytically predicted equilibrium. In Table C.4, we have
depicted the time-averaged standard deviations from the main trait for
parameter values in Fig. 4. In Fig. 3 we demonstrate the convergence
stability of our simulations and we started the simulations away from
the equilibrium for four different initial values of the traits.
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Table C.5
List of standard deviations from the mean (measured over 1500 ‘‘generations’’), for the
same parameter values as in Fig. 4.

Standard deviations from the mean

𝑑b = 0.1250 (black dots in Fig. 4 panels (a) and (b))

𝑢∗g 0.000125415, 0.000103887, 0.0000660474, 0.000065451, 0.0000702922,
0.0000786035, 0.000147816, 0.0000738585, 0.0000553008, 0.0001155,
0.0000481214

𝑢∗m 0.00256546, 0.000744261, 0.0135737, 0.00215342, 0.0011091,
0.00201475, 0.000621817, 0.00197732, 0.0116396, 0.0176991, 0.0105113

𝑑b = 0.1625 (red dots in Fig. 4 panels (a) and (b))

𝑢∗g 0.000103311, 0.0000832005, 0.000120597, 0.0000964527, 0.00010082,
0.0000995489, 0.0000850969, 0.0000694514, 0.0000542216,
0.000100299, 0.0000734388

𝑢∗m 0.000491412, 0.0050249, 0.00440557, 0.00522081, 0.0133449,
0.000882752, 0.00231452, 0.00266059, 0.00252432, 0.0030314,
0.00192048

𝑑b = 0.2000 (orange dots in Fig. 4 panels (a) and (b))

𝑢∗g 0.000153254, 0.000118768, 0.0000812339, 0.00022346, 0.0000685336,
0.000188124, 0.0000844065, 0.0000943718, 0.000145967, 0.000132834,
0.0000880514

𝑢∗m 0.00237881, 0.000748884, 0.00358715, 0.00309034, 0.00149716,
0.00786109, 0.00192429, 0.0187296, 0.0126454, 0.0081957, 0.00739136

C.2. Coevolution of age at maturity and germline maintenance

The simulation algorithm for this scenario (see section 2.3. of the S.I
for the Mathematica code) follows a population whose size is endoge-
nously determined according to a continuous-time stochastic updating
process using the so-called ‘‘thinning’’ algorithm described in Section
3.1 of Ferriere and Tran (2009), which allows to exactly implement our
life-cycle assumptions. A thinning algorithm is essentially an algorithm
to simulate the points in an inhomogeneous Poisson process (inhomoge-
neous Poisson processes can be simulated by ‘‘thinning’’ the points from
the homogeneous Poisson process), where the points or events take
place sequentially (see e.g. Chen, 2016 for a conceptual description).
Hence, under this algorithm, each individual is described by a vector
specifying its age, allocation to repair, the age at maturity, and the
number of deleterious mutations the individual has. The events in the
thinning algorithm then follow a Poisson point process whose mean is
determined by the vital rates (Eq. (12)) and where the occurrence of the
events depends on the relative weights set by birth, death, and mutation
rates of an individual. We defined as a ‘‘generation’’ 𝑁(𝐮∗) iterations
of the thinning algorithm, where 𝑁(𝐮∗) is the analytical prediction
of the carrying capacity of the model at the uninvadable trait value
𝐮∗. This is so because during one iteration of the thinning algorithm,
a maximum of one event can occur (birth, death, or mutation of an
individual) to one randomly chosen individual and so after having
iterated the process 𝑁(𝐮∗) times, on average the total population has
been sampled. Thus, in order to produce a single data point in Fig. 4,
we ran the six million (=𝑁(𝐮∗) × 𝑁generations ≈ 2000 × 3000) iterations
of the thinning algorithm. The mutation rate in the life-history locus
is set to 𝜇𝐿𝐻 = 0.1 and the effect size of the mutation follows a
Normal distribution with zero mean and a standard deviation (=0.07 in
our simulations). Simulating the results shown in Fig. 4, we initialised
the simulation with a monomorphic population, where individual age
is given by 𝑎 = 1∕𝑑b (recall, that 𝑑b is the baseline mortality, with
no deleterious mutations and life-history trait values given by the
analytically predicted equilibrium). To obtain the results shown in
Fig. 4, we initialised the simulation with a monomorphic population,
with no deleterious mutations and life-history trait values given by the
analytically predicted equilibrium. In Table C.5, we have depicted the
time-averaged standard deviations from the main trait for parameter
values in Fig. 4. In Fig. 5 we demonstrate the convergence stability of
our simulations and we started the simulations away from equilibrium

for four different initial values of the traits.
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Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jtbi.2023.111598.
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