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Abstract

We consider the problem of building an automated proof system for reasoning in contexts. Towards that 
goal, we first define a language of contextual implications, and give its operational semantics under the 
form of a natural deduction  system using explicit context assertions.  We show that this  proof system 
has an equivalent straightforward logic program, which  in turn can be reified, i.e. defined as an outer  
meta-level  context,  and thus applied to itself.  More powerful  reasoning models  (e.g.  those involving 
theory lifting) can be  then implemented  by applying the same logic program on extended meta-level 
contexts containing specialized axioms.
   As a theoretical application, we consider the task of concept learning. In order to achieve generality 
(i.e. abstracting solution classes from problem instances), we argue that concept learning goals should 
aim at the discovery of  meta-level operators representing  the sequence of inference steps leading to 
object-level moves or actions. We illustrate  this idea with the definition of a learning model based on 
partial deduction with respect to theory lifting.

Introduction

As argued by John McCarthy, the new logic agenda is to formalize contexts, make context a 
parameter,  build  context  hierarchies,  and  then  use  non-monotonic  reasoning  for  upward 
inheritance.  Following  recent  work  (Buvac,  Buvac,  and Mason 1995;  Buvac 1996),  formal 
axiomatized theories for both a propositional logic and a quantificational logic of contexts have 
been proposed. The second of these two proposals is of particular interest for AI applications, 
since,  as  opportunely  reminded  (Buvac  1996),  "  these  applications  require  the  expressive 
power of first  order  logics".  But without  an effective automated proof system, axiomatized 
theories are barely of any use when it comes to implement applications. Things start to look 
better  however  when both  the  non-logical  axioms of  a  theory  and  its  corresponding  proof 
system  (the later encompassing its logical axioms and inference rules) can be represented as a 
logic program, as one can take advantage of the powerful machinery which is available today 
to interpret and/or compile Prolog programs. 
   The first goal of the work reported here was therefore to identify the subset of the sound and 
complete 2-sorted predicate calculus with equality defined by Buvac  that could be used for 
that purpose. Towards that goal, we first define a language of contextual implications and give 
its operational semantics under the form of a natural deduction  system using explicit context 
assertions. We refrain from any attempt to define a model semantics, and do not hypothesize 
any  soundness  and/or  completness  properties.  In  contrast  to  previous  proposals,  the 
corresponding assumption free proof system is neither flat nor general, i.e enforces only the 
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backward  direction  of  the  usual  flatness  axiom schema.  This  derived  proof  system has  an 
equivalent straightforward logic program, which  in turn can be reified, i.e. defined as an outer 
meta-level  context,  and then applied to  itself.  More  powerful  reasoning  models  (e.g.  those 
involving  theory lifting) can be  thus implemented  by applying the same logic program on 
extended meta-level contexts  containing specialized axioms. Other, more specific models (e.g. 
those involving  private beliefs) will require both extended meta-level contexts and a modified 
logic program  relaxing further what was left from the flatness axiom schema.
   A second goal  was to  explore  theoretical  applications.  It  is  an easy matter,  in  any rule 
system, to keep track of successive rule applications into so-called deduction traces. Usually, 
these  deduction  traces  represent  sequences  of  object-level  rule  applications.  But  here,  in 
addition, the reflective properties just mentioned mean that generalized deduction traces can 
also represent inference steps (i.e. meta-level rule applications).  Taken in conjunction with the 
general  theory lifting mechanism  (McCarthy 1993) that can itself be reified and included into 
a  meta-level  context,   these  capabilities  open  the  door  to  a  new kind  of  learning  models. 
Instead  of  looking  for  the  definition  of  object-level  operators  or  concepts  (thus  facing  the 
difficult problem of abstracting solutions classes from problem instances), learning goals can 
aim at  the  discovery  of  meta-level  operators  representing   the  sequence  of  inference  steps 
leading to object-level moves or actions. These meta-level operators can be easily obtainable 
from generalized deduction traces. As a preliminary report on this ongoing work, we illustrate 
this idea with the definition of a learning model based on partial  deduction with respect  to 
theory lifting.  This particular system  can be used to both produce and later reuse partially 
instantiated  deduction  traces  corresponding   to  generic  meta-level  operators  applicable  in 
various contexts. 

A Restricted Logic

We shall rely on a few basic definitions, including those for terms and atomic formulas of first 
order logic. We  will also assume the usual definitions of a substitution θ, of an instance eθ or 
Eθ (of a single expression e or of a set of expressions E) and of a most general unifier (mgu) of 
a set of expressions.

Syntax

Let  us  first  define  a  language  L of  contextual  implications. Following  (Buvac  1996),  we 
consider a two-sorted  predicate calculus (without identity), and denote by C the set of  terms 
of the context sort, and  by A the set of atomic formulas of the discourse sort. Our language L 
is then defined as  the least set  satisfying  the equation L=A∪L→L∪ist(C, L). The subset F ⊂ 
L  whose formulas do not contain implications defines the language of contextual facts.

Definition (context assertion):  A context assertion  is a  formula  α:Φ  where  α is a term 
denoting a context and  Φ  is a  a set of contextual implications, i.e.  Φ ⊂ L,  with all variables 
appearing in either α or Φ universally quantified

e.g.  block(s0):[on(a,b), on(b,c)].
 block(S):[on(X,Y)->above(X,Y)].
 c0:[ist(C,P->Q)->ist(C,P)->ist(C,Q)].
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N.B We adopt  the PROLOG convention  of  using  capital  letters  to  represent  variables  and 
following  the results  of ambivalent logic (Kalsbeek and Jiang 1995) we do not distinguish 
between ordinary (e.g. X,Y,C) and meta variables (e.g. P,Q) representing arbitrary formulas.
   Given a context assertion α:Φ and a context C, we will say that assertion α:Φ relates to (or 
partially defines) context C if C can be unified with α . 

Definition (axiom instance): If C is a context and α:Φ is a context assertion related to C, with 
Cθ= αθ (i.e. θ is a mgu of C and α), then  any formula  P  wich can be unified with  a formula 
φθ ∈ Φθ is called an axiom instance for context C.

Proof Systems

We  shall  assume  a  basic  understanding  of  the  management  of  assumptions  in  natural 
deduction, see for instance (Lalement  1993).

Notation

instance(C,P)  ⇔ P  is  an  axiom  instance  for  C,  i.e  in  Prolog,  instance(C,P):- 
C:L,member(P,L).

C: ⇔ context C is assumed, i.e. C is an active assumption

[C:] ⇔ if ∃ at most one active assumption, namely C: ,  then it can be discharged; else  if  there 
is no active assumption, then C: can be assumed and simultaneously discharged (i.e. there is no 
actual discharge)

1.  Natural deduction of contextual facts

Applicable inference rules are defined as follows:

instance(C,P)
axiom 

     ist(C,P)

C:, ist(C,P)
entering context 

        P

 P→Q ,  P
implication elimination  
(modus ponens)        Q

   [C:]
     P

leaving context 
ist(C,P)
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Conspicuously absent from this set of inference rules is the converse of modus ponens, i.e. the 
rule 

       [P]
        Q

implication  introduction     
     P→Q

In full generality, this rule is required to ensure the completness of the system.  However, since 
we will restrict ourselves to the derivation of contextual facts, this  rule can be dispensed with 
altogether  (by  reductio  ad  absurdum:  such  a  rule  is  required   by  modus  ponens only; 
furthermore, as implications associate to the right,  it is required to establish its first premiss 
P→Q in order to derive Q which otherwise cannot be derived (1); as its premiss must hold, Q 
must  hold when  P is  assumed;  Q must  hold either  by  axiom,  which contradicts  (1),  or  by 
modus ponens, which in turn leads into an infinite regress).

Definition (deduction relation  ├):  A fact  P is said to be derivable in the (inner) context C, 
noted C├ P,  iff  ∃ a derivation (in the usual sense) of ist(C,P)  with no  active  assumptions. 
Since we restrict ourselves to the derivation of contextual facts,  our  deduction relation  ├  is 
defined over C×F. 

N.B. Extended derivation of formulas with arbitrary nesting depth will require the introduction 
of outer contexts reifying ├  (see below).

   Let us now consider the following assumption free proof system and logic program:

2.  Assumption free proof  system

instance(C,P)
axiom 

    ist(C,P)

ist(C, P→Q) ,  ist(C, P)
 modus ponens  

         ist(C,Q)

    ist(C1,P1)
 semi-flatness 

ist(C, ist(C1,P1))  

3.   Logic program

(3.1) ist(C,P) :- instance(C,P).
(3.2) ist(C,Q) :- ist(C,P->Q),ist(C,P).
(3.3) ist(C,ist(C1,P1)) :- ist(C1,P1).

Proposition  (equivalence): Proof systems 1.,  2.  and 3. are equivalent,  i.e.  if  a formula is 
derivable in one system, then it is also derivable in the other two systems.
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Proof  (by rule application cases).
a) 1. ⇒  2.
 - axiom   in both systems are literally equivalent
 - modus ponens in 1. either directly or indirectly requires entering  context (otherwise its first 

premise  P→Q leads  to  an  infinite  regress);  consider  these  two  steps  together  with  the 
subsequent step of  leaving context; these  combined  steps necessarily rely on a context 
assumption, say C:, with ist(C,P→Q) previously established; provided that there can be at 
most one active context assumption when leaving, the second premiss P  either relies on the 
same  assumption,  with  ist(C,P) previously  established,   or  does  not  depend  on  any 
assumption; in this last case, P must be previously established  and  P=ist(C1,P1); in any 
case,  discharging  C:  will establish  ist(C,Q) from  ist(C,P→Q)  previously established and 
either  ist(C,P)  or  P previously established; as  ist(C, P) follows by semi-flatness from  P 
whenever P=ist(C1,P1), these combined steps reduce  to modus ponens in  2.

 - entering context is required by modus ponens only, and this case is covered above
 - if P = ist(C1,P1) then  leaving  context reduces to semi-flatness; otherwise  leaving  context 

can only require  modus ponens, and this case is covered above
b) 2. ⇒ 1.
 - axiom  in both systems are literally equivalent
 - modus ponens in 2. expands in  1. into a sequence of entering context, modus ponens and 

leaving context
 - semi-flatness reduces to leaving context (without actual discharge).
c) 2. ⇔ 3. 

system 2. and logic program 3. are literally equivalent (i.e. syntactic variant)  .

    Relating 2. to the complete system of (Buvac 1996), by discarding  non applicable axioms 
and inference rules and taking into account  explicit context assertions, shows that in contrast 
to this system ours is neither flat nor general. Semi-flatness as defined in system 2.  retains only 
the backward direction of the  flatness axiom schema. If, as suggested in (McCarthy 1993), we 
regard ist(C,P) as analogous to  C→P, then semi-flatness   is  mirrored by the  valid  formula 
(C1→P1) →(C→C1→P1), whereas the converse formula is not valid.

N.B. Rejecting half of  flatness protects logic program 3. from harmful indirect left recursion. 
Yet, systems such as  Prolog which rely on a uniform depth first search strategy will still get 
into infinite  recursion.  As a way out,  one may implement an  iterative deepening search as 
follows:

search(ist(C,Q)\N):-ist(C,Q)\N;
 N1 is N+1,
 search(ist(C,Q)\N1).

with  
ist(C,Q)\N :- instance(C,Q);    

 N>0, N1 is N-1,
 ist(C,P->Q)\N1,
 ist(C,P)\N1.

ist(C0,ist(C,P))\N :- ist(C,P)\N.

and the  new top level call
ist(C,Q) :- search(ist(C,Q)\1).
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   As postulated in (McCarthy 1993),  our language L allows for relations among contexts to be 
expressed  as  sentences  in  the  language.  In  particular,  ist(C,P)  formulas  could  "always  be 
considered as themselves asserted within a context", leading thus to introduce outer contexts. 
In contrast to previous similar definitions (e.g. Weyhrauch 1980; Bowen and Kowalski 1982; 
Giunchiglia, Serafini and Simpson 1992; Attardi and Simi 1995) that are stated as inference 
rules  allowing  for  the  deduction  of  higher-order  (or  meta-level)  formulas,  the  following 
definitions  characterize a given outer context c0 with respect to the deduction relation.
   Let  c0 be a non empty context (i.e. such that there exists at least one assertion related to c0).

Definitions

(reflecting up): if ∀ C,P  (C ├ P ⇒ c0├ ist(C,P) )  then   c0 reflects up  relation ├ 

(reflecting down): if ∀ C,P (c0 ├ ist(C,P) ⇒ C├ P) then c0 reflects down relation ├

(reifying): if  c0 reflects relation  ├ both up and down, then  c0 is a reification of relation ├ 

Proposition (reification):  If  c0:[ist(C,  P→Q)  → ist(C,P)  → ist(C,Q)]   is  the only context 
assertion related to c0, then c0 is a reification of ├ .

Proof
a) reflecting up follows by semi-flatness in 2.
b) reflecting down follows by rule application cases in 2.: ist(c0,ist(C,Q)) derives from semi-
flatness or modus ponens; thus either ist(C,Q), or we have

 ist(c0,  P'→ ist(C,Q)) ,  ist(c0, P')
 (1)

ist(c0, ist(C,Q))

and in turn, ist(c0,  P'→ ist(C,Q))  in (1) necessarily derives from modus ponens, i.e. we have 

ist(c0, P"→P'→ ist(C,Q)) ,  ist(c0, P'')
 (2)

ist(c0, P'→ ist(C,Q))

The first premiss  in (2), i.e.  ist(c0,  P"→P'→ ist(C,Q)),  derives from  axiom   (if it were to 
derive from another modus modens, this would lead to an infinite regress), i.e. we have ist(c0, 
ist(C, P→Q) → ist(C,P) → ist(C,Q)) which leads to P'= ist(C,P) and P'' = ist(C, P→Q); finally, 
the second premiss in (1) and (2), i.e. ist(c0, P') and ist(c0, P''),  both derive from semi-flatness  
(it they were to derive from modus ponens, this would lead to an infinite regress); both  P' and 
P'' must thus be derivable, and ist(C,Q) follows by modus ponens on P' and P''  .

Theoretical Relevance and/or Applications

By definition,  if c0 is a reification of  ├   then it has the same deductive power (modulo a 
modality), i.e. the derivation  of any P in any inner context C can be replaced by the derivation 
of  ist(C,P) in the outer  context  c0.   The following is an example using  previously given 
context assertions and system 2.
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1  ist(c0, ist(C,P→Q) → ist(C,P) → ist(C,Q))
(by axiom)

2  ist(block(s0), on(X,Y) → above(X,Y))
(by axiom)

3  ist(c0, ist(block(s0), on(X,Y) → above(X,Y)))
(by semi-flatness on 2)

4  ist(c0, ist(block(s0), on(X,Y)) → ist(block(s0), above(X,Y)))
(by modus ponens on 1 and  3)

5  ist(block(s0), on(a,b))
(by axiom )

6  ist(c0, ist(block(s0), on(a,b)))
(by semi-flatness on 5)

7  ist(c0, ist(block(s0), above(a,b)))
(by modus ponens on 4 and 6)

   More interesting cases arise when c0 corresponds to non conservative extensions of  ├ , i.e 
embodies stronger principles (Giunchiglia and Serafini 1994), thus allowing for the derivation 
(modulo a modality) of formulas that would otherwise not be derivable.

Theory lifting 

As an example of a derivation that requires an extended outer context c0, let us consider the 
following assertions implementing theory lifting (McCarthy 1993) :

above_theory:[on(X,Y) -> above(X,Y)].

block(s0):[on(a,b)].

block(S) :[ist(above_theory,P) 
            -> ist(block(S),P)].

c0:[ist(C,P->Q)  -> ist(C,P) -> ist(C,Q),

    ist(C, ist(A,P) -> ist(C,P)) 
     ->ist(A,P)  
        -> ist(C,P)]. 
   According to the specific lifting axiom now asserted within  block(S), any rule P stated 
within  above_theory holds  within block(S). To  actually  enforce  this  (or  any  other) 
specific axiom, a new  lifting inference rule is asserted within outer context  c0. It must be 
noted that in contrast to (McCarthy 1993) and as postulated in (Attardi and Simi 1994), our 
implementation of  theory lifting relies on an explicit outer context. However, in contrast to 
Attardi  and Simi  (whose  lifting  axiom asserted  within  c0 is  bound to  the  above_theory 
context), our lifting inference rule is truly general.

Private beliefs

Semi-flat contexts cannot be models for private beliefs: if a modality  bel(X,P) is introduced 
to  mean  that   agent  X believes  P to  be  true,  then  bel(Y,bel(X,P)):- bel(X,P) is  a 
counterintuitive inference rule. Let us consider instead the restricted rule

ist(b0, bel(X,P)):- instance(X,P)      (1)

together with the extended outer context assertion
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b0: [bel(X,P->Q) -> bel(X,P) -> bel(X,Q),

     (bel(X,A) -> bel(X,B) -> bel(X,C))
       -> bel(Y,bel(X,A))
           -> bel(Y,bel(X,B))
               -> bel(Y,bel(X,C))].

in which  the second  inference rule enables the nested  application  (at any depth) of the first 
or any other similar rule. Substituting (1)   for the semi-flatness rule in logic program 3. will 
result in a new proof system allowing for the derivation, within outer context b0, of  bel 
modalities  (modulo outer  ist modalities),   i.e.  of  nested  formulas  of  the  form  ist(b0, 
bel(X,P)) , ist(b0, bel(Y,bel(X,P))),  and so on.

Reflective contexts

Reflective contexts, which keep track of derivations, involve a new modality reflect(V,W) 
meaning that W  holds because  of the sequence of inference steps V. A simple reflective context 
can be defined as

r0:[instance(C,P)->reflect(axiom(C),ist(C,P)),

    reflect(X,ist(C,P->Q))
     -> reflect(Y,ist(C,P))
         -> reflect(mp(X,Y),ist(C,Q))]. 

   Its first rule simply reflects an axiom instantiation. The second one reflects an application of 
modus ponens reified into the term mp(X,Y), where  X and Y are the reified inference steps 
needed to derive the antecedents  P->Q and P, respectively. As an example, the  call

ist(r0,reflect(D,ist(C,above(X,Y))))

will result in the following instantiation for D

D = mp(axiom(block(s0)),axiom(block(s0))) 

N.B. As instance(C,P) is actually a Prolog procedure (defined earlier), in order for such a 
call to appear in a context assertion,  semi-flatness in logic program 3. must be extended with

(3.4) ist(C,instance(C1,P1)):-instance(C1,P1).

   The inference steps taken during the above derivation have been turned into a fully  instantiated 
trace D. Conversely D can be forced back into r0, driving the derivation into the same inference 
steps. Constraining a derivation with a fully instantiated trace  leads to a reduced search space and 
thus makes D equivalent to a specific meta-level operator for deriving  above(X,Y) in context 
block(s0). Similarly, partially instantiated traces would lead to generic operators applicable 
in various contexts, e.g. in any context  block(S).
   Deriving traces,  e.g.  by hopping up first  to another  meta-level  context,  accounts for the 
learning of an operator. Hopping down again to force these traces is equivalent to applying  an 
operator.  To  illustrate  these  ideas,  we shall  consider  a  particular  learning  model  based  on 
theory lifting.  Partially instantiated traces will be constituted of embedded sequences of modus 
ponens  applications  whose  first  antecedent  only  will  be  specified.  Furthermore,  this  first 
antecedent  will  follow  from  the  lifting  inference  rule  introduced  earlier  (i.e.  a  process 
equivalent to partial deduction with respect to theory lifting). Our learning model can thus be 
defined in terms of the following  inputs:
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- a collection of  domain theories, e.g. block(S)

 - a  collection  of  liftable  theories together  with  specific  lifting  axioms  (e.g.  as   in 
above_theory)

 - a reflective context allowing to carry out partial deductions with respect to theory lifting.

Such a reflective context  r1 associates a reflective form of the lifting inference rule with a 
shortened form of modus ponens, i.e.
r1:[instance(C,ist(A,P) -> ist(C,P))
    ->instance(A,P)
      ->reflect(lift(axiom(C),axiom(A)),ist(C,P))

    reflect(X,ist(C,P->Q))
     ->reflect(mp(X,_),ist(C,Q))].

   The goal  of the system is then to discover  control rules given under the form of partially 
instantiated traces of applicable inference steps leading to specific facts which follow from the 
lifting of theories  into selected domains. While it is notoriously difficult to abstract solution 
classes or concepts from specific facts, applicable inference steps are not bound to specific data 
instances and thus directly achieve generality.
   As an example, the call
ist(r1,reflect(D,ist(C,above(X,Y))))

will lead to the following partial instantiation for D
D = mp(lift(axiom(block(_)),
            axiom(above_theory)),_) 

thus  defining  a  generic  meta-level  operator,  which  could  be  seen  as  an  application  of  the 
following control rule: 

in  order  to  get  specific  facts,  first  select  a  specific  lifting  axiom,  then  instantiate   the  
corresponding liftable theory,  and finally  conclude by applying some rule from the lifted  
theory.

While this control rule itself was not explicitely given, an appropriate instantiation was learned 
under the form of a partially instantiated trace D.

Related work

(McCarthy, J. 1993) and (Buvac, S. 1996) have been the primary source of inspiration for this 
research. Our work is also very much related to (Attardi and Simi 1994), who first formally 
linked reasoning in context with natural deduction. Yet the system they end up with is not an 
automated one. The theoretical results reported in (Massacci 1996) rely on a definition of a 
tableaux calculus which "satisfies the strong confluence property and therefore can be adapted 
to many search heuristics". This system, however, is restricted to the propositional case.
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Conclusions and future work

Through  possible  extensions  of  outer  contexts  mirroring   its  Prolog  proof  procedure,  our 
reflective proof system can be tailored to the needs of various inner contexts. As an exemple, 
common beliefs can be seen as a case of  theory lifting into private beliefs. On the other hand, 
the uniform depth first search strategy of Prolog results in its relative inefficiency. This could 
be alleviated  by a direct implementation of a deepening search of logic program 3.
   A semantic account of the language is needed in order to get an understanding of the semi-
flatness  hypothesis.  By  formalizing  the  analogy  ist(C,P)≅C→P  to  include 
ist(C,ist(C1,P1))≅C→C1→P1,  it  could  offer  C→C1  as  a  model  for  "C  subsumes C1", 
(C→C1)∧(C1→C) for "C is  equivalent to C1", and (C→C1)∨(C1→C) for "C is  compatible 
with C1".  Any pair  of  compatible  contexts  would then satisfy the formula mirroring semi-
flatness.
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