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Abstract Despite effective treatment, HIV is not completely
eliminated from the infected organism because of the exis-
tence of viral reservoirs. A major reservoir consists of infected
resting CD4+ T cells, mostly of memory type, that persist over
time due to the stable proviral insertion and a long cellular
lifespan. Resting cells do not produce viral particles and are
protected from viral-induced cytotoxicity or immune killing.
However, these latently infected cells can be reactivated by
stochastic events or by external stimuli. The present review
focuses on novel genome-wide technologies applied to the
study of integration, transcriptome, and proteome characteris-
tics and their recent contribution to the understanding of HIV
latency.
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Introduction

The study of biological processes, including viral infections,
benefits from novel technologies for exploration and discov-
ery. In the past decade, new developments have focused on
genome-wide analyses, including high-throughput sequenc-
ing technologies for genome and transcriptome analyses, as
well as mass spectrometry-based technologies for proteomic
studies. These technologies aim at providing the most com-
prehensive snapshot picture of a specific cellular content,
thereby generating large amounts of data. In turn, large-scale
datasets require the development of tools and methods to
handle and analyze these data adequately. This review focuses
on experimental and bioinformatic methodologies applied to
the topic of HIV latency.

HIV Latency

HIV infection is considered today a chronic disease, thanks to
the efficacy of antiretroviral therapy (ART) [1, 2¢, 3-7]. ART
aims at blocking multiple viral replication steps and enzymatic
activities, i.e., entry, reverse transcriptase, integrase, and pro-
tease, thereby limiting virus escape through selection of var-
iants. ART results in undetectable viremia in the plasma of
HIV+ individuals but fails to achieve complete virus eradica-
tion, hence requiring life-long treatment [1, 2¢, 3-7]. HIV
persistence is explained by the existence of reservoirs that
are established early upon HIV exposure [8es, 9-11]. Two
types of reservoirs have been described that are not mutually
exclusive and that are likely to co-exist in some individuals.
The first reservoir consists in anatomical sanctuaries, such as
the central nervous system, gut, or lungs, where ART drug
concentration may be suboptimal due to incomplete penetra-
tion [12—14]. Infection may persist in these sites due to either
partial inhibition of viral replication or to cell-to-cell spread of
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the virus [12, 13, 15]. The second reservoir relies on the
persistence of HIV in long-lived cells in a latent and thus
“hidden” state. This relies on HIV’s ability to stably insert
its genome in the host cell chromosome, thereby ensuring its
life-long association with the infected host cell. This latent cell
reservoir consists mostly of resting memory CD4+ T cells, but
other cells have been shown to contribute as well, including
naive CD4+ T cells, macrophages, dendritic cells, and hema-
topoietic progenitor cells [16-22]. Latently infected CD4+ T
cells can be induced, i.e., reactivated, and are thus able to
produce particles through stochastic transcription or through
immune activation, thereby leading to intermittent detectable
viremia or viremia rebound after ART cessation [2¢, 3, 23e°].

The reservoir of latently infected CD4+ T cells is currently
considered to be the major obstacle to HIV cure. Global
scientific efforts have focused on infected CD4+ T cells in
order to understand the nature of latency, i.e., nature of post-
integration blocks hampering viral particle production, as well
as designing new strategies to stimulate cells to exit latency.
For this purpose, multiple models have been developed to
characterize various mechanisms that can contribute to HIV
latency [24, 25]. Models have also been useful to test reacti-
vation compounds inducing viral particle production from the
latently infected CD4+ T cells [26e, 27-29]. The present
review focuses on recent genome-wide analyses performed
on the models of HIV latency (Table 1).

The Inducible Reservoir

Available methods overestimate or underestimate the size of
the latent viral reservoir. This is mainly due to (i) the use of
blood samples as the source of the latent reservoir, (ii) the
major presence of cells carrying defective viral genomes
which obscures the proportion of latently infected cells, and
(iii) the incomplete success of current methods used to reac-
tivate latently infected cells in vitro. Indeed, it has been
estimated that out of one million blood-purified resting
CD4+ T cells from ART-treated individuals, on average,
~1000 cells (ranging approximately between 100 and 2000
cells) were infected by HIV and thus contained proviral DNA
[30e¢]. However, only a small proportion of these HIV+ cells
(11.7 %) carry replication-competent viral genome sequences
and are thus inducible [31¢+]. Using phytohemagglutinin,
interleukin-2, and irradiated peripheral blood mononuclear
cells to stimulate CD4+ T cells in a viral outgrowth assay,
only 1 % of HIV+ cells were successfully induced, thereby
illustrating that current reactivation protocols and methods
stimulate only a fraction of the total inducible reservoir
[30ee, 31e¢]. Other methods of stimulation using anti-CD3/
CD28 and interleukin-7 for 7 days were able to induce particle
production from 1.5 % of HIV+ cells (ranging from 0.6 to
2.4 % in the 13 patients tested) [23¢]. Finally, reactivation of
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latently infected cells may occur stochastically and spontane-
ously at a frequency of 0.041 % (0.03—0.15 %) [23¢e].

These studies indicate that the latency is complex as stim-
ulation does not lead to 100 % reactivation of latently infected
cells [26¢e, 31e°]. Cillo et al. also show that, under their
stimulation conditions, 7.5 % of infected cells were expressing
cell-associated RNA, an almost 40% increase in HIV transcrip-
tion compared to unstimulated resting CD4+ T cells. The gap
between the successful viral particle production and viral
transcription suggests that transcriptional latency cannot reca-
pitulate all aspects of the viral reservoir and that other post-
integration blocks exist, consistent with multiple recent stud-
ies using latency-reactivating agents and multiple models of
HIV latency [23ee, 26°e, 320¢].

Integration Site Location and HIV Latency

Reverse transcription of the viral RNA genome and its inte-
gration in the host cell chromosome are two hallmarks of
retroviruses. In the past decade, thanks to the availability of
the human genome sequence, many efforts have been focused
on the understanding of the preferential site of HIV integra-
tion, as well as its consequences on the host cell, mostly
regarding insertional mutagenesis [33—-35]. HIV has been
shown to integrate preferentially into active transcription
units, with no preference for exons or introns, neither for
orientation [34, 36, 37]. The site of integration may have
consequences for both HIV transcription and host gene tran-
scription because of chromatin arrangement and RNA inter-
ference [35, 38]. Therefore, the site of integration can affect
the balance between viral transcriptional success and latency,
as well as establish a balance between cell death and clonal
expansion.

Analysis of integration site distribution commonly uses a
three-step experimental approach: (i) DNA fragmentation
(sonication, restriction enzymes), (ii) linker ligation, and (iii)
PCR amplifications using primer annealing in the long termi-
nal repeat (LTR) and primer annealing in the ligated linker
[39—41]. The amplicons are sequenced using next-generation
sequencing technologies, generating millions of short reads
(ranging usually from ~20 bp to a few hundreds of bp). Virus
sequences are removed and trimmed sequences are aligned to
the human genome to locate the integration site. This method
allows the efficient capture of the preferential pattern of inte-
gration site distribution according to the human reference
genome annotations. However, it fails to quantify the frequen-
cy of integration sites occurring at the exact same location due
to the bias caused by the PCR amplification step [42¢]. This
limitation was recently addressed using random shearing of
the DNA or through the usage of random decamer primers
tailed with a U5 sequence that allowed discriminating between
two identical integration site locations originating from an
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Table 1 ~ Genome-wide analyses on HIV latency models
HIV latency models Analysis type Experimental approach Computational tools/approaches Reference
T cell lines Integration DNA digestion (Avrll/Xbal/Spel Trimming: custom Perl scripts Lewinski et al. [51]
or Msel) Genome alignment: BLAT (Sherrill-Mix et al. [42¢])
Linker ligation Integration site inclusion criteria:
First PCR (LTR-linker) starting at junction with HIV
Nested PCR LTR, mapping to the human
TOPO cloning and transformation genome reference sequence
Sanger sequencing with >98 % identity
Annotation databases: RefSeq
(Acembly, GenScan, Unigene)
Proteome Two-dimensional gel Protein identification: ProFound, Berro et al. [95]
electrophoresis matrix-assisted Prospector, and Mascot software
laser desorption/ionization-time-
of-flight (MALDI-TOF)
Proteome Solid-phase extraction of Raw data quality evaluation: Yang et al. [96]
glycopeptides (SPEG) Trans-Proteomic Pipeline (TPP)
High-performance liquid Peptide evaluation: INTERACT
chromatography-tandem mass and Peptide Prophet
spectrometry (HPLC-MS/MS) Label-free quantitation with
MaxQuant identification of
differentially expressed
glycoproteins using a twofold
cutoff ratio and a Student’s 7 test
with p value <0.05
Bcl-2-modified CD4+ T Integration DNA digestion (PstI) Sequence alignment using the Shan et al. [54]
cell model Dilution and circularization UCSC Bioinformatics Human Sherrill-Mix et al. [42¢¢]
by ligation Genome database
Inverse PCR amplification Integration site inclusion criteria:
Sequencing HIV LTR sequence
CD4+ T cell co-culture Transcriptome  Total RNA extraction Trimming: Cutadapt Mohammadi et al. [32e¢]
with H80 feeder Spike-in addition (ERCC Exfold) (Illumina adapter removal)
model mRNA-Seq library preparation Quality filtering: prinseq
(TruSeq) (low quality and PHRED
mRNA sequencing (Illumina score reads filtering)
HiSeq 2000) Genome and transcriptome
alignment: Tophat
Differential expression analysis:
DESeq
Enrichment tests: Fisher’s exact test
Online visualization tool: LITCHi'
(GuavaH?)
Direct infection of resting ~ Integration DNA digestion (TspS091 or Msel) Integration analysis done by Pace et al. [52]
CD4+ T cells Linker ligation web-based tool InSiPiD’ Sherrill-Mix et al. [42¢¢]
First PCR (LTR-linker) Trimming
Nested PCR with barcoded primers Genome alignment: BLAT, hg18
containing sequencing adapters Integration site inclusion criteria:
454 sequencing LTR sequence, mapping to the
human genome reference
sequence within the first
3 base pairs (bp) and a unique
alignment with >98 % identity
Annotation database: RefSeq
Statistical analysis: one-tailed
Student’s ¢ test, one-way
ANOVA, logistic regression
Integration DNA digestion (Msel) Integration analysis done by Sherrill-Mix et al. [42¢¢]
Linker ligation web-based tool InSiPiD’

First PCR (LTR-linker)

Nested PCR with barcoded primers
containing sequencing adapters

Ion Torrent sequencing (Ion PGM
200 sequencing, Ion 316 chip)

Trimming: hiReadsProcessor
R package

Genome alignment: BLAT, hg19

Integration site inclusion criteria:
LTR and primer sequences,
mapping to the human genome
reference sequence within the
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Table 1 (continued)

HIV latency models Analysis type Experimental approach Computational tools/approaches Reference
first 3 bp and with 98 %
identity, quality score >15 for
sequences shorter than 24 bases
Annotation databases: UCSC,
Encode, RNA-Seq. ChIP-Seq
Statistical analysis: R
Transcriptome ~ RNA extraction Raw data processing and filtering Evans et al. [78]
RNA amplification using Bioconductor (R),
Hybridization to Illumina Benjamini and Hochberg p
Human-Ref8 (v3) BeadChip value correction with a 0.05
(microarray) false discovery rate
Chip scanning with [llumina Analysis: Limma package (R)
BeadStation 500GX scanner Pathway enrichment analysis:
using Illumina BeadStudio Ingenuity Pathway Analysis
(version 3) software (IPA) software
Patient-derived ex vivo Integration DNA shearing (Covaris Adaptive Trimming: custom Perl scripts Maldarelli et al. [44¢]
model Focused Acoustics) into Genome alignment: BLAT, hg19
300-500-bp fragments Integration site inclusion criteria
End repair (Epicentre End-it DNA for read 1: LTR primer
End Repair) sequence, 5 last bp of the LTR
dA addition (NEB dA-tailing kit) sequence followed with >20-bp
Linker ligation DNA sequence with an average
First PCR (LTR-linker) quality score >20, mapping to
Nested PCR with N6-barcoded the human genome reference
primers containing sequencing sequence within the first 3 bp
adapters and with >95 % identity
Illumina sequencing: 2 x 150-bp Integration site inclusion criteria
paired-end (MiSeq) or for read 2: alignment to the
2x105-bp paired-end (HiSeq) human genome reference
sequence on the opposite strand
compared to read 1 and within
1 kb
Integration sites are considered
different if the breaking point
differs from >3 bp
Gene ontology analysis: GREAT
Statistical analysis: Fisher’s exact
test
Integration Linear amplification using forward Trimming: Sequencher Wagner et al. [45¢]

primer in HIV 3’ end (env or nef
region)

Second-strand synthesis using a
random decamer primer tailed
with HIV U5 sequence

End repair by trimming (NEB
exonuclease I first followed by
MyTagq fill-in)

Denaturation, annealing, and
extension to generate a
panhandle structure (LTR
sequence double-stranded and
loop single-stranded DNA as
host DNA)

PCR amplification with one
specific LTR primer (R region)
Nested PCR with inner LTR primer

(R or U5 region)

Sequencing using downstream U5

primer

Genome alignment: Bowtie2
(and BLAT), hg19

Annotation databases: RefSeq
genes, UCSC known genes

Gene ontology analysis: TopGO

Statistical analysis: Fisher’s
exact test, Holm-Bonferroni
correction, Cochran-Armitage
test

! LITCHi latent infection of T cells by HIV (http://litchi.labtelenti.org/)
% GuavaH genomic utility for association and viral analyses in HIV (http:/www.guavah.org/) [100]

3 InSiPiD integration site pipeline and database (http://www.bushmanlab.org/tools)
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amplicon sequenced twice or from two individual integration
events occurring at the same chromosomal position [43, 44s,
45¢].

Maldarelli et al. and Wagner et al. observed that the same
integration site was identified multiple times in latently infect-
ed cells, suggesting that a single infected cell was clonally
expanded over time [44e, 45¢]. The location of the proviral
insertion in these clonally expanded infected cells was
enriched in genes involved in cell division cycle or cancer,
supporting the notion that the site of viral integration may
promote homeostatic proliferation. It is important to note that,
despite this observation, cancer due to HIV insertional muta-
genesis is not a major issue in HIV-infected individuals [36,
46]. Alternative hypotheses explaining the observed cell clon-
al expansion include (i) the infection of stem cells [20, 21, 47,
48] and (ii) the possible survival advantage of cells carrying
defective viral genomes [31°¢, 46]. It would thus be interesting
to know if the expanded cell clones are part of the inducible or
defective viral reservoir. This would guide viral eradication
strategies to account for those cells and explore ways to
specifically inhibit their proliferation.

The link between the integration site and HIV latency is
considered to be at the transcriptional level, resulting in si-
lencing via epigenetic regulation of the chromatin environ-
ment or transcriptional interference [25, 49, 50]. Spatial fea-
tures of the integration site associated with transcriptional
latency have been shown to favor (i) heterochromatin (cen-
tromeric alphoid repeats) and intergenic regions [51, 52], (ii)
flanking cellular genes that are highly expressed [S1, 53], and
(iii) the same orientation as cellular genes [54]. In contrast,
Dahabieh et al. suggested that NF-kB activity and cell activa-
tion state correlate with viral gene expression efficiency rather
than genomic integration features [55].

The role of integration site location on HIV transcriptional
activity has been recently assessed in five primary cell models
of HIV latency, identifying features specific for each model
[42¢]. Viral silencing was stronger if the host gene expression
was high in the Jurkat latent model and in active CD4+ T cells,
while the contrary was observed in a central memory CD4+ T
cell model. The same orientation integration bias in the Bcl-2
latency model was confirmed but was not identified in the
other latency models [54]. Integration in intergenic regions
was favored in active or resting CD4+ cell models only. In
contrast, integration in alphoid repeats was preferentially iden-
tified in the Jurkat latency model, confirming a previous study,
and in resting and central memory cell models [51]. Finally,
only the H4K12ac acetylation epigenetic mark correlated with
latency in active, resting, and central memory CD4+ cell
models but not in the Bel-2 and Jurkat cell line models. This
study highlighted characteristics specific for each model but
failed to identify common features of integration site selection
specific of HIV latency across all latency models, leaving
open the debate about the contribution of integration site

location to transcriptional silencing [42¢¢]. Single-cell analysis
may facilitate understanding of the link existing between
integration site location and viral transcription.

Transcriptome and HIV Latency

Transcriptome analyses capture a snapshot of RNA molecules
within the cell at a specific time. The mRNA molecules will be
translated shaping the proteome content of the cell and there-
fore its functionality. Although the transcriptome only partial-
ly correlates with the proteome, it still provides a valuable
approximation of the cell condition at a specific time [56-58].
The amount of specific mRNA species results from a balance
between the production rate and decay rate. The former is
determined by an interplay of regulatory processes acting at
transcription initiation, elongation, and termination steps, and
the latter is influenced by proteins binding to the 3" untrans-
lated region (3" UTR) and the activity of regulatory RNAs
such as microRNAs and noncoding RNAs [59—68]. External
stimuli will affect this balance, tipping it towards one direction
or another [69, 70]. An additional layer of complexity resides
in alternative splicing, for both HIV and host cells [59, 71-73].

Transcriptional silencing of HIV has been considered as a
major cause of latency [25, 49, 50]. The majority of studies
investigating transcriptional silencing have focused on mech-
anisms acting on the viral LTR promoter, highlighting the role
of the viral Tat protein, cellular proteins, histone post-
translational modifications, and chromatin remodeling [25,
49, 50, 74-77]. However, only a few studies have focused
on the transcriptome analysis of latently infected cells. Evans
et al. developed a new primary model of HIV latency, which
consists in co-culturing resting CD4+ T cells with myeloid
dendritic cells (mDC) for 24 h, followed by CCRS5-tropic
HIV-GFP infection [78]. Latently infected cells were defined
as nonproliferating CD4+ T cells not expressing viral-encoded
GFP and were thus sorted by fluorescence-activated cell
sorting (FACS) as SNARF-1"¢" and GFP™ cells after 5 days
post-infection. This model provided evidence that CD4+ T
cell direct contact with mDC, but not plasmacytoid DC
(pDC), facilitates establishment of HIV latency. The study
used microarrays to compare latently infected CD4+ T cells
versus mock-infected CD4+ T cells co-cultured with mDC
and identified only a limited number of genes, mostly inter-
feron I-regulated genes (IFIT1, IFI27, and OAS1), as differ-
entially expressed. These genes may represent latency bio-
markers but may also originate from noninfected exposed
cells.

Gene arrays are being replaced by high-throughput se-
quencing technologies, as these do not require prior knowl-
edge about gene sequences and provide a higher accuracy.
Current methods differ in the library preparation and in the
targeted RNA species. For example, total RNA sequencing
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(including small RNAs) allows capturing a complete
picture of RNA within a cell, coding or noncoding
[79], but requires a high coverage and does not discrim-
inate between nuclear immature transcripts and cytoplas-
mic mature transcripts. Messenger RNA-Seq (mRNA-
Seq) is based on poly(A) capture, thereby requiring less
sequencing depth, and will reflect more faithfully the
coding transcriptome, although it will not account for
coding transcripts that are not poly-adenylated [80, 81].
Recent improvements in library preparation protocols
include determination of RNA strand specificity as well
as of splicing variants of the coding transcripts. The
analysis of these sequences requires computational tools
to align the transcripts to the genome and identify tran-
script isoforms.

The analysis by Evans et al. highlighted the importance of
analyzing purified populations of latently infected resting
CDA4+ T cells in order to identify specific latency biomarkers
[78]. Because of the difficulty to isolate and obtain an uncon-
taminated population of latently infected cells, only a limited
number of studies investigated the cellular transcriptome of
HIV latency in primary models. Mohammadi et al. used a
primary CD4+ T cell model infected with an attenuated viral
construct. Successfully infected cells were isolated and puri-
fied by FACS and allowed to revert to a resting, hence latent
state, by co-culture with H80 feeder cells [32¢¢]. They ana-
lyzed the transcriptome of the infected cells over time by
mRNA-Seq, thereby following establishment of latency. Cel-
lular activation or resting state was shown to be a major driver
of transcriptional differences between cells. Except for the
persistent detection of viral transcripts, only a very limited
number of host genes were found to be differentially
expressed between noninfected and latently infected cells,
suggesting that HIV had a very minor impact on the tran-
scriptome of the resting cell. Latently infected cells were also
exposed for 8 and 24 h to diverse stimuli to reactivate latency,
including SAHA (vorinostat), disulfiram, and IL-7. Although
some of these molecules were impacting viral transcription,
they failed to stimulate viral protein expression, underscoring
the possibility that post-transcriptional blocks would also
contribute to the latent phenotype. This study indicated that
HIV latency reflects transcriptional and post-transcriptional
blocks, including nuclear export and translation [26ee, 32e,
82]. The multiplicity of mechanisms leading to HIV latency
was also illustrated recently by the comparison of several
latency-reactivating agents and their different efficiencies
across latency models [26°].

Proteome and HIV Latency

The genetic flow of information in the cell attains a key
principal level with the translation of messenger RNA into
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functional protein. Each protein is modulated through
tissue-specific dynamic processes such as alternative splic-
ing, post-translational modifications, interactions with oth-
er molecules, and formation of proteomic complexes,
which delineate the multidimensional complex nature of
the proteome. A recently published blueprint of the human
proteome reported approximately 3x10° unique peptides
covering 84 % of the annotated coding genome [83]. An-
alyzing the proteins of a biological system gives the op-
portunity to understand and reveal the intricacies of many
cellular functional pathways, inaccessible through geno-
mic or transcriptomic studies.

During HIV infection, as in the case of any viral
infection, the proteome of the infected host cell consti-
tutes a key layer where a plethora of responses and
interactions with the viral components take place [84,
85]. HIV orchestrates various cellular processes by
interacting and manipulating the functional blocks on
the host cell in order to promote viral replication and
assure its survival [86]. On the host side, various studies
have identified changes in post-translational modifica-
tions, localization, and amount of proteins upon infection
by HIV [87, 88]. In addition to taking advantage of the
host cellular proteome, HIV brings along an arsenal of
15 viral proteins that interfere with the host cell, estab-
lish interactions, and carry diverse post-translational
modifications in order to assure key steps of the virus
life cycle.

Recent technological advances and the advent of mass
spectrometry (MS)-based proteomics have made a strong
positive impact on virology and have helped uncover and
characterize many proteomic responses triggered by viral
infection [89, 90]. A standard MS experiment consists of a
succession of steps: sample protein fractionation into smaller
peptides, separation, ion detection, and relative or absolute
protein quantitation. The general pipeline can be adapted to
address more specific questions such as studying alterations in
the phosphoproteome [91]. Online databases and search algo-
rithms are used to map the obtained peptides to putative
proteins. The resulting proteomic MS data has additional
complexity since, often, more than one candidate protein is
associated to the measurements from a set of peptides. A
necessary step in MS data pre-processing is to filter out
proteins with few, uncertain peptide measurements. MS ex-
periments allow obtaining relative or absolute protein mea-
surements between two different conditions (e.g., HIV-
infected and mock-infected cells) which need to be
normalized.

Jager et al. used affinity purification coupled with MS (AP-
MS) to construct a map of HIV-host interactions at the prote-
ome level. The authors devised a scoring system coined MiST
which incorporates the reproducibility, abundance, and spec-
ificity of a protein to filter out nonspecific interactions. They
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reported on 497 high-confidence interactions, mainly enriched
in transcription and regulation of viral protein post-
translational modifications [92]. Another study employed iso-
baric tags for relative and absolute quantitation (iTRAQ)
coupled with tandem MS to determine the host proteome
response to HIV infection in a time-dependent manner [93].
Differentially expressed proteins were identified between
HIV- and mock-infected samples at three different time points
post-infection. Interestingly, the groups of differentially
expressed proteins differed between early and late time points,
capturing an early response enriched for cell proliferation,
protein synthesis, DNA recombination, repair, and mainte-
nance versus a late reaction linked to T cell activation [93].
Stable isotope labeling by amino acids in cell culture (SiLAC)
profiling of phosphopeptides during HIV entry in the host cell
has revealed responses to HIV infection at the level of the host
phosphoproteome, notably suggesting that HIV affects the
phosphorylation of serine-rich host proteins to ease its repli-
cation and subsequent release [94].

A series of host transcription factors, such as NF-kB,
NFAT, or Spl, bind to the HIV promoter, thereby modulating
viral transcriptional activity in infected CD4+ T cells. Their
nuclear availability varies between active and resting, latently
infected cells [25, 95, 96]. Furthermore, reversible post-
translational modifications of histones, such as deacetylation,
have been found to play an important role in the establishment
and maintenance of latency by modeling the neighboring
chromatin organization at the viral LTR promoter [25, 27,
49, 50]. At the membrane level, 17 proteins involved in cell
survival pathways or in the regulation of cellular adherence
and transfer were found to be disrupted in latently infected
cells [97]. The same study also showed that targeted treatment
with inhibitors of several of these proteins, precisely XIAP
and BTK, influenced the viability of latently infected cells
[97]. Understanding the molecular pathways contributing to
HIV latency at the proteome level may help in designing novel
treatments to eliminate the quiescent virus.

Little is known about HIV-host interactions and the host
proteome response during latency and reactivation. To date, no
study has compared the whole proteomes of latent and activat-
ed HIV-infected cells. Glycoproteomic tandem MS has been
employed to profile the disruption in glycoprotein secretion
from latently HIV-infected T cells and to identify aberrantly
secreted proteins in plasma from infected patients. Six glyco-
proteins, L-selectin, neogenin, galectin-3-binding protein,
CECRI, ICOS, and the phospholipid transfer protein, were
found to be overly secreted by latently infected T cells and
elevated in patient plasma [98]. Although the mechanisms
through which these proteins contribute to HIV latency remain
elusive, this study represents a starting point to explore how
latency alters protein secretion of the host cell. Another recent
study focused on characterizing histone post-translational mod-
ifications in SupT1 cell lines infected with HIV, UV-inactivated

HIV, and mock-infected in order to find a link to the transcrip-
tional behavior of the cell. Using nano-LC-MS/MS, a set of
histone modifications was detected in HIV- versus mock-
infected cells, providing insight on how the virus modulates
chromatin accessibility to assure its transcription during infec-
tion [99]. This study illustrates the epigenetic mechanisms used
to manipulate chromatin to ensure transcriptional silencing
during latency. Improvements of measurement investigation
techniques and joint analyses of all post-translational modifica-
tions should help in assembling a complete view of the whole
cellular proteome, thereby informing on the identity and the
role of specific modified proteins in the process of latency.

Conclusions

Unraveling the different aspects of latency will be a major step
towards efficient HIV treatment and eradication. However,
HIV latency and its reactivation have proven to be complex
processes with many confounding factors. Genome-wide data
provide a snapshot of the latently infected cell, at different
molecular levels, i.e., integration site, transcriptome, and pro-
teome. However, several aspects may influence the analysis:
(i) The resting status of the cell limits the possibility of
identifying unique markers of latency, (ii) the presence of a
large number of infected cells carrying defective viral genome
sequences obscures the features of the latent viral reservoir
that can be reactivated with the goal of cure, and (iii) the
analysis of high-throughput genome-wide data is particularly
challenging due to the large amount of data as well as sys-
tematic technological and biological noise that may lead to
high false-positive rates. Adequate bioinformatic tools are
required to account for these effects in order to process and
analyze the data. In-depth and dynamic genome-wide studies
can provide essential contributions to the understanding of
establishment of latency during resting condition, mainte-
nance of latency, and the steps towards full reactivation.
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