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SUMMARY1

Bayesian model selection enables comparison and ranking of conceptual subsurface models2

described by spatial prior models, according to the support provided by available geophys-3

ical data. Deep generative neural networks can efficiently encode such complex spatial pri-4

ors, thereby, allowing for a strong model dimensionality reduction that comes at the price of5

enhanced non-linearity. In this setting, we explore a recent adaptive sequential Monte Carlo6

(ASMC) approach that builds on Annealed Importance Sampling (AIS); a method that pro-7

vides both the posterior probability density function (PDF) and the evidence (a central quan-8

tity for Bayesian model selection) through a particle approximation. Both techniques are well9

suited to parallel computation and rely on importance sampling over a sequence of interme-10

diate distributions, linking the prior and the posterior PDF. Each subsequent distribution is11

approximated by updating the particle weights and states, compared with the previous approx-12

imation, using a small pre-defined number of Markov chain Monte Carlo (MCMC) proposal13

steps. Compared with AIS, the ASMC method adaptively tunes the tempering between neigh-14

boring distributions and performs resampling of particles when the variance of the particle15

weights becomes too large. We evaluate ASMC using two different conceptual models and as-16

sociated synthetic cross-hole ground penetrating radar (GPR) tomography data. For the most17

challenging test case, we find that the ASMC method is faster and more reliable in locating the18
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posterior PDF than state-of-the-art adaptive MCMC. The evidence estimates are found to be19

robust with respect to the choice of ASMC algorithmic variables and much less sensitive to the20

model proposal type than MCMC. The variance of the evidence estimates are best estimated21

by replication of ASMC runs, while approximations based on single runs provide comparable22

estimates when using a sufficient number of proposal steps in approximating each intermediate23

distribution.24

Key words: Inverse theory, Statistical methods, Neural networks, Tomography, Ground pen-25

etrating radar, Hydrogeophysics.26

1 INTRODUCTION27

Markov chain Monte Carlo (MCMC) methods are, for strongly non-linear inverse problems and a28

limited computational budget, not always able to locate the posterior probability density function29

(PDF) of interest or to explore it sufficiently. Parallel tempering (Earl & Deem, 2005) is a well-30

known approach to circumvent such issues and it was popularized in geophysics by Sambridge31

(2014). Parallel tempering runs multiple interacting chains targeting a sequence of power posteri-32

ors including faster moving chains at higher temperatures (i.e., corresponding to less weight being33

given to the likelihood function). Such chains help to locate significant modes of the posterior34

distribution that can, through a swapping mechanism, be explored by the chain targeting the pos-35

terior distribution of interest for which the temperature is 1. The resulting increase in the ability to36

bypass local minima and explore multimodal distributions is offset by the need for many parallel37

chains and a carefully-tailored temperature sequence to ensure efficient mixing among chains.38

Neal (2001) introduced the annealed importance sampling (AIS) method, which is also well39

suited to derive information about the posterior PDF of interest when confronted with highly non-40

linear or multi-modal inverse problems. AIS is a particle method in which many particles (the41

evolution of each particle is represented by an individual chain) are evolving in parallel. Particle42

methods rely on the states and weights of a collection of evolving particles to approximate distri-43

butions of interest. This is in contrast to MCMC methods in which all states have the same weight44

and the distribution of interest is approximated by proposal and acceptance mechanisms ensuring45
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that sampling is proportional to the posterior probability density. In developing AIS, Neal (2001)46

demonstrates how intermediate results obtained by simulated annealing (Kirkpatrick et al., 1983),47

typically used for global optimisation, can be re-interpreted as a sequence of importance sampling48

steps from approximations of intermediate posterior PDFs at gradually decreasing temperatures49

(i.e., annealing), thereby, creating a succession of approximations of intermediate distributions50

between the prior to the posterior distribution of interest. This method has several attractive prop-51

erties: (1) it inherits from simulated annealing the ability to bypass problems with local minima by52

initially allowing large steps and efficient exploration before focusing on a more detailed search53

in areas of high posterior probability; (2) it is well suited for parallelization; (3) the final states54

and their associated importance weights approximate the posterior distribution; and (4) it offers55

directly an approximation of the evidence, the central quantity in Bayesian model selection.56

Even if AIS is still widely used, it suffers from two main deficiencies: (1) it is very challeng-57

ing to pre-define an appropriate annealing sequence (i.e., the sequence of inverse temperatures to58

which the likelihood function is raised) and (2) the populations of importance weights have in-59

creasingly higher variances as the AIS run progresses, thereby, increasing the risk of obtaining60

poor estimates of the posterior PDF and the evidence. Sequential Monte Carlo (SMC) (Doucet61

& Johansen, 2011) represents a family of particle methods that are widely used in science and62

engineering, particularly for data assimilation tasks, but their use in geophysics has been limited63

to date (see review by Linde et al. (2017)). At the most basic level, SMC relies on importance64

sampling combined with resampling steps which ensures that the particle approximation of the65

high-dimensional posterior PDF is of sufficient quality. The resampling step tends to reinitialize66

particles of low probability by states of higher probability, thereby avoiding that computational67

time is wasted in regions of low posterior density. Zhou et al. (2016) proposed an adaptive SMC68

algorithm (referred to hereafter as ASMC) that addresses the limitations of AIS stated above by69

adaptively tuning the progression between intermediate distributions and by resampling when the70

variance of the particle weights becomes too large.71

The prior PDF has a strong impact on Bayesian geophysical inversion results (Hansen et al.,72

2012) and should reflect the existing geological knowledge at a site (see review by Linde et al.73
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(2015)). One effective way of encoding prior knowledge in a low-dimensional latent vector of74

uncorrelated parameters is offered by deep generative neural networks (Goodfellow et al., 2014).75

Laloy et al. (2017) and Laloy et al. (2018) demonstrated using variational autoencoders (Kingma76

& Welling, 2013) and generative adversarial networks (GAN) (Goodfellow et al., 2014), respec-77

tively, that the generated realizations of such networks are of high quality and that inversion can78

be successfully performed on this latent space. The challenge when working with deep generative79

neural networks is the highly non-linear transform linking the latent variables to the image repre-80

sentation (i.e., the typically gridded model of physical properties). This non-linearity often leads81

to poor and unreliable convergence when applying gradient-based optimization methods (Laloy82

et al., 2019) and inversion on such latent spaces may challenge state-of-the-art MCMC algorithms83

(Laloy et al., 2018).84

Here, we explore the performance of the ASMC method (Zhou et al., 2016) when used together85

with deep generative networks to approximate evidences and posterior distributions using geo-86

physical data. As examples, we consider crosshole geophysical ground-penetrating radar (GPR)87

data and GAN-based priors, which implies highly non-linear and challenging inverse problems. In88

ASMC, the approximations of intermediate posterior distributions is achieved by successively, at89

each temperature, performing a small number of Markov steps. As model proposals, we consider90

both an elaborate proposal scheme influenced by evolutionary algorithms and a basic uncorre-91

lated Gaussian proposal. Through these examples, we demonstrate that the ASMC method is: (1)92

easy to implement in existing MCMC algorithms; (2) well-suited for parallelization; (3) robust93

to parameter settings and model proposal schemes; (4) providing posterior approximations that94

can be superior to those offered by state-of-the-art MCMC; and (5) deriving accurate evidence95

estimations without strong distributional assumptions.96

2 METHOD97

In our method description below, we rely largely on the notation of Zhou et al. (2016) who intro-98

duced the ASMC algorithm.99
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2.1 Bayesian inference and model comparison100

Bayes’ theorem expresses the posterior PDF of a conceptual model Mk with parameters θ, given101

a set of observations y as:102

π(θ|y,Mk) =
π(θ|Mk)p(y|θ,Mk)

π(y|Mk)
. (1)

All the knowledge about the model parameters that is available before considering the data is103

encapsulated in the prior PDF π(θ|Mk). The likelihood function p(y|θ,Mk) quantifies how likely104

it is that a specific model realization gave rise to the observations when considering a prescribed105

error model. The normalizing constant π(y|Mk) is referred to as the evidence or the marginal106

likelihood, and it is a multidimensional integral over the parameter space:107

π(y|Mk) =

∫
π(θ|Mk)p(y|θ,Mk)dθ. (2)

The evidence quantifies the support provided by the data to the conceptual model under con-108

sideration, as formalized by the prior PDF, and can be used to rank different conceptual models.109

Schöniger et al. (2014) describe and compare different methods to estimate the evidence and found110

that numerical approaches generate more reliable estimates than mathematical approximations of111

equation 2 that yield analytical expressions. Recent studies comparing state-of-the-art approaches112

to evidence estimation in geophysical and hydrogeological contexts include Brunetti et al. (2017)113

and Brunetti et al. (2019).114

2.2 Adaptive sequential Monte Carlo (ASMC)115

2.2.1 Importance sampling116

Brute Force Monte Carlo (BFMC), also known as the arithmetic mean approach, evaluates many117

realizations drawn from the prior and the corresponding evidence estimate is their average like-118

lihood. Unfortunately, BFMC suffers from the curse of dimensionality (Curtis & Lomax, 2001)119

in that most draws from the prior, when considering a handful or more unknown model parame-120
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ters and high-quality data, have negligible likelihoods. Consequently, high likelihood regions con-121

tributing strongly to the mean are poorly sampled, leading to high-variance evidence estimates and122

frequent underestimation of evidence values as demonstrated by Brunetti et al. (2017). Throughout123

this manuscript, a high-variance estimate refers to that obtained by estimators of a mean quantity124

(e.g., the mean of the sampled likelihoods) for which repeated estimations lead to widely different125

estimates.126

Compared to BFMC, importance sampling offers lower-variance estimates, whereby Monte127

Carlo samples are drawn proportionally to a so-called importance distribution q(θ,Mk) (Hammer-128

sley & Handscomb, 1964). In order to sample regions with a high contribution to the mean, this129

distribution is chosen to be as close as possible to the target distribution; in this case the poste-130

rior PDF. To account for the biased sampling procedure, every sample θi drawn from q(θ,Mk) is131

associated with an importance weight defined as132

wi =
π(θi|Mk)p(y|θi,Mk)

q(θi,Mk)
, (3)

that determines the corresponding weight in the mean estimation. Assuming that q(θ,Mk) 6= 0133

whenever π(θ|Mk)p(y|θ,Mk) 6= 0, and if the number of draws N → ∞, then the following134

approximation holds (Neal, 2001):135

∑N
i=1w

i

N
≈
∫
π(θ|Mk)p(y|θ,Mk)dθ∫

q(θ,Mk)dθ
. (4)

In the particular case of using the prior as the importance distribution (equivalent to BFMC)136

and noting that its evidence is equal to one (the integral of the prior PDF is 1), the evidence of Mk137

is approximated by the mean of the N weights:138

π(y|Mk) =

∫
π(θ|Mk)p(y|θ,Mk)dθ∫

π(θ,Mk)dθ
≈
∑N

i=1w
i

N
=

∑N
i=1

π(θi
|Mk)p(y|θ

i
,Mk)

π(θi
|Mk)

N
=

∑N
i=1 p(y|θ

i,Mk)

N
,

(5)

which reduces to the average of the sampled likelihood as discussed above. The importance distri-139
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bution strongly influences the accuracy of importance sampling and unreliable high-variance esti-140

mates are obtained when the importance distribution is far from the target distribution. Therefore,141

if the prior PDF is markedly different from the posterior PDF, then the quality of the evidence esti-142

mate in equation 5 is low. Below, we explain how to obtain low-variance estimates of evidences by143

relying on a succession of importance sampling steps with importance distributions that are close144

to intermediate target distributions known as power posteriors.145

2.2.2 Annealed importance sampling (AIS)146

Simulated annealing (Kirkpatrick et al., 1983) is a well-known global optimizer that bypasses local147

minima by gradually reducing the parameter space exploration using a sequence of intermediate148

target distributions (i.e., power posteriors characterized by an annealing scheme of successively149

decreasing temperatures). In developing AIS, Neal (2001) took advantage of this sequence of150

transitional target distributions starting at the prior PDF (infinite temperature) and ending at the151

posterior PDF (temperature of 1). The algorithm runs in parallel with each chain being interpreted152

as a particle with an evolving weight and state. From the resulting sequence of intermediate im-153

portance weights and states, it is possible to estimate both the posterior PDF and the evidence.154

AIS shares all the exploratory advantages of simulated annealing and allows for, potentially, high-155

quality posterior PDF and evidence estimations by creating a smooth path between the prior and156

the posterior PDF. A schematic visualization of AIS is given in Figure 1a.157

In the following, we consider a given conceptual model Mk and suppress the corresponding158

subindex k for simplicity. The unnormalized power posterior PDFs {γt(θt|y)}Tt=0 are:159

γt(θt|y) ≡ π(θt)p(y|θt)αt , (6)

where π(θt) is the prior probability density function and p(y|θt) the likelihood. The annealing

schedule αt ∈ [0, 1] of inverse temperatures defines these power posteriors, where αt=0 = 0 gives

the prior and αt=T = 1 the posterior PDF. At small αt, the contribution of the likelihood is small

and the corresponding power posterior is close to the prior PDF. As αt grows, the influence of
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Figure 1. (a) Schematic representation of annealed importance sampling (AIS) using N = 4 particles
evolving in parallel. Except for the initialization step, each color represents K = 4 Markov steps in which
the particle system moves from approximating a previous unnormalized power-posterior to a new one. After
each K = 4 Markov steps, the sampled states are used in an importance sampling step to determine the
incremental weights wt associated with the change in the intermediate posterior PDF. (b) In adaptive se-
quential Monte Carlo (ASMC), one main difference compared with AIS is that the α-sequence determining
the intermediate posterior distributions is no longer fixed but determined adaptively. Furthermore, resam-
pling occurs when the variance of the weights are too large. Such a resampling step is here visualized with
dashed red lines.

the likelihood on the power posterior increases. We denote Zt as the normalizing constant of the

corresponding power posterior, implying that the normalized power PDF is:

πt(θt|y) =
γt(at|y)

Zt
. (7)
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By using γt−1(θt−1|y) as an importance distribution for γt(θt|y), we define the unnormalized160

incremental weights wt for particle i at state θit−1 as:161

wit =
γt(θ

i
t−1|y)

γt−1(θ
i
t−1|y)

. (8)

Except for the initialization step, the corresponding importance distributions γt−1(θt−1|y) are162

approximated by updating N particles using K Markov steps targeting γt−1(θt−1|y) starting at a163

previous estimation of γt−2(θt−2|y). Without these Markov steps, the AIS algorithm would reduce164

to BFMC. This process is schematized in Figure 1a for N = 4 and K = 4 .165

It is customary to work with normalized weights defined as:166

W i
t =

W i
t−1wt

i∑N
j=1W

j
t−1w

j
t

, (9)

where Wt−1 are the previously defined normalized weights, that is,
∑N

i=1W
i
t−1 = 1. The final167

normalized weights W i
T determine the relative probabilities of each of the final N states, thereby,168

approximating the posterior distribution through a particle approximation.169

2.2.3 Evidence estimation170

One major advantage of AIS and ASMC in the context of Bayesian model selection is that the ev-171

idence is readily obtained. The ratio of the normalizing constants of two consecutive intermediate172

distributions γt(θt|y) and γt−1(θt−1|y) is:173

Zt
Zt−1

=

∫
γt(θt|y)dθt∫

γt−1(θt−1|y)dθt−1
, t (10)

and it can be approximated as (Del Moral et al., 2006):174

Zt
Zt−1

≈
N∑
i=1

W i
t−1w

i
t. (11)

The posterior PDF of interest is the last distribution of the sequence (αt=T = 1), therefore,175
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its normalizing constant is the evidence, ZT = π(y). Since the normalizing constant of the prior176

PDF, Z0, is equal to one, the evidence can be estimated as the product of the intermediate ratios:177

π(y) = ZT =
ZT
Z0

=
T∏
t=1

Zt
Zt−1

≈
T∏
t=1

N∑
i=1

W i
t−1wt

i. (12)

2.2.4 Adaptive sequence of intermediate distributions178

Zhou et al. (2016) introduce several adaptations to AIS leading to the more robust ASMC algo-179

rithm that requires much less tuning. The choice of the annealing schedule in equation (6) has180

a strong impact on performance and it is generally difficult to assign a proper α-sequence in ad-181

vance. Zhou et al. (2016) solve this by introducing an adaptive procedure relying on the conditional182

effective sample size (CESS):183

CESS = N
(
∑N

i=1W
i
t−1wt

i)2∑N
j=1W

j
t−1(wt

j)2
. (13)

The CESS measures the quality of the current intermediate distribution as an importance distri-184

bution to calculate expectations of the following one. To define the next distribution in the sequence185

(Figure 1a), a binary search is performed for the α-increment for which the CESS is the closest186

to a pre-defined target value. The larger this target value is, the better the approximation, but the187

slower is the algorithm as the L number of intermediate distributions grows.188

2.2.5 Resampling189

The variance of the importance weights provides an indicator of the quality of the importance190

estimator. The importance weights invariably diverge over time leading to high variances, for ex-191

ample, because of poor convergence of some particles. To circumvent this, SMC methods rely on192

resampling (Del Moral et al., 2006; Doucet & Johansen, 2011). Resampling consists of reinitializ-193

ing the states of each particle by replicating them according to a probability that is proportional to194

their current normalized weights. After resampling, the new states are assigned equal weights of195

1/N . Figure 1b illustrates a resampling step. The purpose of this operation is to limit the variance196
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of the weights by excluding states with lower weights and replicating those with higher weights.197

Since high-dimensional posterior distributions are estimated using N particles only, it is essential198

that all samples contribute meaningfully to this approximation by avoiding regions of very low199

probability. We rely herein on systematic resampling, which is easy to implement and performs200

well with respect to alternative resampling schemes (Doucet & Johansen, 2011). The resampling201

step impacts the variance of estimates (Douc & Cappe, 2005) and it is often beneficial to only per-202

form resampling occasionally. To decide when to apply resampling, we follow standard practice203

by relying on a quantity that considers the history of the weight variance evolution, namely the204

effective sample size (ESS) (Kong et al., 1994):205

ESSt =
(
∑N

i=1W
i
t−1w

i
t)

2∑N
j=1(W

j
t−1)

2(wjt )
2
. (14)

The ESS can be interpreted as reflecting the number of effective samples in the particle ap-206

proximation and resampling is applied when the ESS is lower than a pre-defined threshold.207

2.2.6 Evidence uncertainty estimation208

The most reliable approach to assess uncertainty on evidence estimates is to perform multiple209

ASMC runs and calculate the resulting variance of the estimates. This is the approach used by Zhou210

et al. (2016) when introducing ASMC. Even if such Monte Carlo replication is easily parallelized,211

it implies a significant computational overhead as the total computational effort grows linearly with212

the number of replicates. In recent years, progress has been made in obtaining evidence variance213

estimates from single SMC runs. The first consistent estimator was proposed by Chan & Lai (2013)214

and a refined estimator was later introduced by Lee & Whiteley (2018). We consider a modified215

form of this latter estimator in Doucet & Lee (2018) that we adopted to account for occasional216
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resampling. The resulting expression should be interpreted as a relative variance contribution of217

the evidence estimate contribution since the last resampling time:218

V N
t

(ηNt )
2 =

1

(ηNt )
2

(
N

N − 1

)n
1

N(N − 1)

N∑
i=1

 ∑
j:Ej

t=i

(NW j
t−1w

j
t − ηNt )

2

, (15)

where ηNt =
∑N

i=1NW
i
t−1w

i
t and n is the cumulative number of resampling steps that has been219

performed until t. The index Ej
t is the so-called Eve index of particle j at time t, which traces220

the origin of the particles. If no resampling is done, the Eve indices stay constant and are equal221

to 1 : N . After resampling, the states of the particles are reorganized and the Eve indices change,222

denoting the original particle that moved to that position. A graphical illustration of this process is223

given by Lee & Whiteley (2018). The number of remaining unique Eve indices along the run can224

be interpreted as a conservative estimate of the number of independent particles.225

We compute the estimator in equation 15 before each resampling step and at the last step of226

the ASMC algorithm. We then sum the resulting contributions:227

σr =

√√√√ R∑
h=0

V N
h

(ηNh )
2 , (16)

where R is the total number of resampling times. This equation is valid under the assumption that228

the individual contributions in the sum are independent (Brown & Neal, 1991). Hence, we assume229

here that the particles decorrelate from each other between resampling steps.230

2.2.7 Markov proposals and acceptance criteria231

We implemented ASMC within the popular Differential Evolution Adaptive Metropolis ZS (DREAM(ZS))232

algorithm (Laloy & Vrugt, 2012). In this MCMC algorithm, model proposal updates with respect233

to the present state are drawn proportionally to random differences of past states, thus, helping to234

better explore the target distribution by automatically determining the scale and direction of the235

model proposals. If we consider J as a m×d dimensional matrix that contains m past states of the236
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chains, where d is the number of parameters, the jump vector for the i-th chain is given by (Vrugt,237

2016):238

dθiA = ζd∗ + (1d∗ + λd∗)ψ(δ, d∗)
δ∑
j=1

(J
aj
A − J

bj
A ). (17)

If the current state is θi, then the candidate point for particle i is θiprop = θi + dθi. The num-239

ber of pairs used to generate the jump is given by δ, and a and b are vectors of integers drawn240

without replacement from {1, ..,m}. The parameters ζ and λ are sampled independently from241

pre-defined uniform and normal distributions, respectively. This algorithm implements subspace242

sampling, which implies that only a random subset A of d∗-dimensions from the original param-243

eter space is updated at each proposal step. The difference between past states is multiplied by a244

fixed proposal scale referred to as jump rate ψ(δ, d∗) = 2.38√
2δd∗

ε, where ε is an user-defined factor245

that we introduce to further control the size of the jumps. In contrast to MCMC, ASMC allows246

straightforward adaptation of the ε−factor on-the-go without violating detailed balance condition.247

This tuning of ε is achieved by using the acceptance rate (AR) of the last K Markov steps to target248

an acceptance rate above ARmin. To implement this, ε is initialized to a comparatively large value249

and a percentage decrease of its value f is made when the acceptance rate falls below ARmin. For250

comparison purposes, we also consider standard model proposals given by uncorrelated Gaussian251

draws centered on the previous state. For this case, the jump vector for the i-th chain is given by:252

dθiA
i.i.d.∼ NA(0, ε2). (18)

Our considered model proposals are symmetric and the prior PDF is uniform. Consequently,253

with proper boundary handling, the proposed moves are accepted according to the likelihood ratio254

(Mosegaard & Tarantola, 1995). The probability to accept each candidate model during the K255

Markov steps used to approximate γt(θt|y) is:256

P = min

{
1,
p(y|θprop)αt

p(y|θ)αt

}
. (19)
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Algorithm 1: ASCM algorithm adopted from Zhou et al. (2016); their algorithm 4.
Assignment of user-defined variables:

Define number of particles (N ), optimal CESS (CESSop), ESS threshold (ESS∗),
number of MCMC iterations at each intermediate distribution (K), minimal acceptance rate (ARmin),
initial proposal scale factor (ε) and its percentage decrease (f ).

Initialization: Set t = 0
Set α = 0
Sample θ0 from the prior π(θt|Mk) N times
Set the N -dimensional vector of normalized weights W0 = [ 1

N ; 1
N ; ...; 1

N ]
Set evidence π(y|Mk) = 1

Iteration : Set t = t+ 1
Search for incremental distribution

Do binary search for the increment ∆α that gives the CESS (eq. 13) that is the closest to CESSop.
Update α = min(1, α+ ∆α) and define the intermediate distribution γt(θt|y) = π(θt|Mk)p(y|θt)α.
Compute the weight increments wit (eq. 8), update and save the normalized weights W i

t (eq. 9)
and the evidence π(y|Mk) = π(y|Mk)

∑N
i=1W

i
t−1w

i
t (eq.12).

Resampling
Calculate ESS (eq. 14), if ESS < ESS∗ do resampling: re-organize θt states and update Wt = [ 1

N ; 1
N ; ...; 1

N ]
Do K MCMC iterations for each of the N particles (chains):

Propose moves θprop (eq. 17 and 18) and accept or reject based on acceptance criterion (eq. 19)
using γt(θt|y).
Save the N θ and their likelihoods.
Set last state as θt+1

Tune proposal scale
If acceptance rate AR < ARmin then decrease proposal scale factor: ε = ε ∗ (1− f

100)
Repeat until α=1

2.2.8 Full ASMC algorithm257

The full algorithm is given in Algorithm 1, for which the total number of iterations per consid-258

ered particle (chain) is equal to L (number of intermediate distributions) × K (MCMC steps per259

distribution).260

This algorithm has several important strengths: (i) it requires a rather small number of user-261

defined parameters; (ii) the posterior PDF and the evidence are estimated; (iii) the variance of the262

weights are used to assess accuracy, (iv) the adaptation of classical MCMC algorithms into ASMC263

is straightforward, and (v) the acceptance rate is controlled throughout the inversion.264

2.3 The Laplace-Metropolis method265

MCMC algorithms provide an approximation of the posterior distribution, however, they need266

to be combined with an additional estimation procedure to provide evidence estimates. For later267

comparison purposes with ASMC, we mention here the Laplace-Metropolis estimator (Lewis &268

Raftery, 1997), a mathematical approximation of the evidence using a Taylor expansion around269
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the maximum a posteriori (MAP) estimate. Assuming that the posterior PDF is well approximated270

by a normal distribution, the resulting evidence estimate is:271

π(y|Mk) = (2π)
d
2 |H(θ∗)|

1
2π(θ∗|Mk)p(y|θ∗,Mk), (20)

where θ∗ is the MAP estimate, d is the number of parameters and |H(θ∗)| is the determinant of272

minus the inverse Hessian matrix evaluated at the MAP, which is approximated from the MCMC-273

based samples from the posterior.274

2.4 From implicit to prescribed geostatistical priors275

Multiple-point statistics (MPS) (Mariethoz & Caers, 2014) is a sub-field of geostatistics aiming at276

producing conditional geostatistical model realizations of high geological realism, thereby, cap-277

turing more meaningful connectivity patterns than those offered, for instance, by classical mul-278

tivariate Gaussian priors (Renard & Allard, 2013). MPS algorithms produce model realizations279

that are in agreement with the spatial patterns found in a so-called training image (TI). A TI is a280

gridded representation of the targeted spatial field obtained from geological information such as281

outcrops or process-based simulation methods (Koltermann & Gorelick, 1996). Performing inver-282

sion (Mariethoz et al., 2010; Hansen et al., 2012; Linde et al., 2015) and model selection (Brunetti283

et al., 2019) based on one or more TIs commonly requires inversion algorithms that work with284

so-called implicit priors. That is, the MPS algorithm provides model realizations that are drawn285

proportionally to the prior, but the prior density of a given realization is unknown. Two main issues286

arise with this approach: (1) the generation of conditional prior realizations may be computation-287

ally expensive in MCMC settings when a large number of model proposals are needed, and (2)288

the implicit prior model precludes the calculation of prior probability densities as needed in many289

state-of-the-art inversion and model selection methods.290

Deep learning (LeCun et al., 2015) applied to geoscientific problems has been growing rapidly291

in recent years (Bergen et al., 2019; Karpatne et al., 2018). In particular, deep generative neural292

networks offer an attractive approach to build an explicit prior PDF from training images (Laloy293
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et al., 2017, 2018; Mosser et al., 2017, 2020), that is, a prior for which the prior density of any294

realization is easily calculated. This is achieved by learning a non-linear transform between a low-295

dimensional latent space with a prescribed prior (typically an uncorrelated standard normal or296

bounded uniform prior) and the image space (on which the forward simulations are performed).297

To do this, the neural network is trained repeatedly with pieces of a large TI or MPS realiza-298

tions. Such tailor-made model parametrizations achieve significant dimensionality reduction by299

leveraging spatial patterns in the TI. Inversion is then performed on the latent space and the re-300

sulting posterior is mapped, using the trained transform, into a posterior on the original image301

space (a so-called push-forward operation). We rely on a spatial generative adversarial neural net-302

work (SGAN) (Jetchev et al., 2016), where each dimension of the latent space influences a given303

region of the generated image space. The network’s weights are learned by adversarial training304

(Goodfellow et al., 2014). The latter consists of a competition between a so-called discriminator305

and a generator: the discriminator aims to distinguish fake (i.e., realizations by the generator) and306

real (i.e., training samples) images, while the generator tries to fool it by generating realizations307

similar to the training samples. This is mathematically translated in a minimization-maximization308

problem (see the book by Goodfellow et al. (2016), for details). The main computational effort309

is related to training and once trained, the computational cost to draw model proposals in the la-310

tent space and to map them into the image space (for further forward computations) is very low.311

The motivation of evaluating ASMC using a deep-learning based parameterization is two-fold:312

(1) the SGAN parameterization implies strong non-linearity which makes it difficult for MCMC313

algorithms to converge when performing inversion on the SGAN latent space (Laloy et al., 2018),314

thus providing challenging test examples for which the added value of ASMC for posterior infer-315

ence can be demonstrated and (2) to build on recent work (Brunetti et al., 2019) on MPS-based316

Bayesian model selection to highlight the value of prescribed priors when performing model se-317

lection among MPS-based prior models.318
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3 RESULTS319

3.1 Test examples320

Two conceptual 2-D models represented by TIs were used to assess ASMC for inversion and321

model selection purposes. These TIs are used to train SGANs that generate realizations honoring322

the multiple-point statistics of the TIs (Laloy et al., 2018). The first conceptual model (Figure323

2a) is represented by a binary channelized training image (CM1) (Zahner et al., 2016) and the324

second one (Figure 2b) is represented by a tri-categorical training image characterizing braided-325

river aquifer deposits (CM2) (Pirot et al., 2015). The SGAN generators are assigned uniform priors326

on the latent space: the CM1-realizations and the more complex CM2-realizations have 15 and 45327

latent variables, respectively. All realizations correspond to an image dimension of 129× 65 cells328

that is cropped to 125× 60, with a discretization of 0.1 m × 0.1 m (Figure 3).329

Our synthetic data correspond to simulated crosshole ground-penetrating radar (GPR) first-330

arrival travel times with a geometry consisting of two boreholes that are 5.8 m apart. A total of331

24 sources and 24 receivers are placed equidistantly every 0.5 meters in depth. First-arrival times332

were calculated using the time2d algorithm by Podvin & Lecomte (1991). Following common333

practice, the data were filtered according to a maximum angle between sources and receivers of334

45 degrees (Peterson, 2001), resulting in 444 travel times. In order to assign velocities to each335

facies, the corresponding dielectric constants were approximated using the complex refractive336

index method (CRIM) (Roth et al., 1990). Representative porosities for CM2 were taken from337

Pirot et al. (2019) and adjusted to CM1 to have the same mean and variance. The two reference338

models used to produce the synthetic data are shown in Figure 3. They were obtained as a randomly339

chosen realization from the respective SGAN generators. Uncorrelated Gaussian random noise340

with standard deviation σ = 1 ns was added to the resulting travel times simulated from these341

models.342

3.2 ASMC performance343

We first present the parameter settings and the performance of the ASMC algorithm (section 2.2.8)344

using DREAM(ZS) proposals (ASMC-DREAM) withN = 40 particles. To tune the proposal scale,345
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Figure 2. Training images: (a) 2500× 2500 binary channelized training image (CM1) (Zahner et al., 2016)
and (b) 400 × 400 tri-categorical training image representing a braided aquifer (CM2) (Pirot et al., 2015).
The discretization of the cells is 0.1 m × 0.1 m.

we apply a 20% decrease (f = 0.2) with ARmin = 0.25. The starting large proposal scale ε is346

gradually decreased as the annealing progresses (i.e., the inverse temperature α increases towards347

1). We implemented adaptive selection of the α-sequence, using a binary search defined on a range348

Figure 3. Reference models with associated velocities. (a) CM1: channel velocity v=0.085 m/ns and matrix
velocity v=0.071 m/ns. (b) From Pirot et al. (2015) CM2: gray gravel (gray) v=0.083 m/ns, open frame-
work (black) v=0.065 m/ns and bimodal (white) v=0.086 m/ns. Red stars and blue triangles represent GPR
sources and receivers, respectively.
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of α-increments from 10−5 to 10−2, to find the increments with the CESS that is the closest to349

the target CESSop. The CESSop/N ratio is in practice chosen close to 1. The closer it is to 1, the350

higher the number of intermediate distributions and the larger is the quality of estimates. Resam-351

pling is applied whenever ESS/N falls below 0.5. Table 1 contains the user-defined parameters352

and the resulting sequence lengths. The total number of forward simulations of each ASMC run is353

N ×K × L.354

Figures 4(a-b) show the evolution of the likelihood raised to the power of the corresponding355

α in the natural log-scale for CM1 and CM2, respectively. This type of plotting is consistent356

with the target distribution γt(θt|y) at each step (equation 6). The black dashed line indicates the357

target log-likelihood calculated with the random noise realization used to noise-contaminate the358

forward response of the reference model, raised to the power of the corresponding α. Figures 4(c-d)359

present correspondingly the acceptance rate evolution. As α grows, the acceptance rate for a given360

jump rate decreases as the targeted posterior distribution gives larger weights to the likelihood.361

When the acceptance rate falls below ARmin = 0.25, the proposal scale is reduced causing a362

small increase, after which the acceptance rate starts decreasing again until another reduction of363

the proposal scale is required, thereby, keeping the acceptance rate in a range between 25% and364

40%. Figures 4e-f show the optimized sequence of α-values defining the intermediate posterior365

distributions, obtained through a binary search of the α-increments. In Figures 4g-h, the logarithm366

of the normalized weight of each particle is plotted against the α-index. Finally, Figures 4i-j shows367

the evolution of the natural logarithm of the evidence vs. α.368

To ensure convergence with the more complex test case CM2, we had to choose a higher369

CESSop and K than for CM1, which resulted in an approximately 4.7 times longer run. Despite370

these adaptations, more resampling steps were needed compared to CM1 (see Table 1), which371

reinforces the impression that it is a more challenging scenario. The increasing complexity of372

CM2 is also indicated by the fact that the intermediate target distributions are well-approximated373

for CM1 (Figure 4a) for which the sampled likelihoods fall close to the dashed line, while this is374

less the case for CM2 (Figure 4b). However, both test cases reached the target log-likelihood and375

the resampling fulfills its role of limiting the variance of the weights.376



20

Figure 4. Results of ASMC with DREAM(ZS) model proposals (ASMC-DREAM) for conceptual models
CM1 (left column) and CM2 (right column): (a) and (b) natural logarithm of the likelihood to the power of
α vs. iterations per particle. Each color represents a different particle and the black dashed line indicates
the logarithm of the likelihood to the power of α calculated using the random noise realization used to
noise-contaminate the forward-simulated true model; (c) and (d) acceptance rate vs. iterations per particle,
the dashed line indicates a 25% threshold; (e) and (f) α-sequence vs. α index; (h) and (i) natural log-
normalized weights vs. α index where each color represents a different particle; (j) and (k) natural log-
evidence evolution vs. α.

Algorithm 1 is applicable to other model proposals than DREAM(ZS). This is demonstrated377

using standard (vanilla) MCMC model proposals based on uncorrelated random Gaussian pertur-378

bations (ASMC-Gauss). In this case, the algorithm starts with a high standard deviation of the379
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centered Gaussian model proposal and it is subsequently decreased when the acceptance rate falls380

below 25%. The user-defined parameters were chosen to be the same as for the ASMC-DREAM381

tests detailed in Table 1, leading to a similar sequence length as for ASMC-DREAM. The cor-382

responding results are shown in Figure 5. For CM1, ASMC-Gauss needed one more resampling383

time (Fig. 5c) compared to ASMC-DREAM due to a faster increase in the variance of the weights.384

Otherwise, the performance of ASMC-DREAM (Figure 4) and ASMC-Gauss (Figure 5) are very385

similar.386

3.3 MCMC performance387

For comparative purposes, we also perform MCMC inversions (no ASMC) using 40 chains and388

a similar number of forward simulations. Again, we consider two tests: one using DREAM(ZS)389

(MCMC-DREAM) and one with random Gaussian perturbations (MCMC-Gauss). Extensive man-390

ual tuning of the inversion parameters was needed to achieve satisfactory results. Figure 6 shows391

the results obtained for conceptual models CM1 and CM2. The log-likelihood evolution is shown392

in Figures 6a-d and the acceptance rate in Figures 6e-h. In order to assess convergence, the po-393

tential scale reduction factor R̂ is calculated (Gelman & Rubin, 1992) and plotted in Figures 6i-l,394

with convergence declared when R̂ is below 1.2 for all model parameters.395

The only MCMC run reaching convergence is MCMC-DREAM for CM1 at around 10,000396

iterations. For this conceptual model, the results obtained with MCMC-Gauss are unsatisfactory397

with only a few of the chains approaching the target likelihood, while the others are trapped in lo-398

cal minima, thereby, demonstrating a vastly superior performance of MCMC-DREAM compared399

with MCMC-Gauss. For CM2, none of the MCMC inversions converge within the allotted com-400

putational time, as R̂ does not fall below 1.2. This is also reflected in the likelihood evolution: the401

majority of sampled likelihoods remains below the target likelihood along the run. To summarize,402

we find for a similar computational budget that the ASMC algorithm reaches the target likelihood403

for both conceptual models and model proposal types, while the MCMC runs only approximate404

the target likelihood for CM1 using MCMC-DREAM.405
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Figure 5. Results of ASMC with standard MCMC (ASMC-Gauss) for conceptual models CM1 (left col-
umn) and CM2 (right column): (a) and (b) natural logarithm of the likelihood to the power of α vs. iterations
per particle. Each color represents a different particle and the black dashed line indicates the logarithm of
the likelihood to the power of α calculated using the random noise realization used to noise-contaminate
the forward-simulated true model; (c) and (d) acceptance rate vs. iterations per particle, the dashed line
indicates a 25% threshold; (e) and (f) α-sequence vs. α index; (h) and (i) natural log-normalized weights
vs. α index, each color represents a different particle; (j) and (k) natural log-evidence evolution vs. α.

3.4 Posterior distributions406

We focus now on the posterior approximations obtained with ASMC-DREAM and MCMC-DREAM.407

For MCMC-DREAM, the posterior is obtained by first removing the so-called burn-in period, that408
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Figure 6. MCMC inversion results from DREAM(ZS) (MCMC-DREAM) and standard MCMC with Gaus-
sian model proposals (MCMC-Gauss) for conceptual models CM1 and CM2. (a)-(d) the natural logarithm
of the likelihood vs. iterations, where each color represents a different particle and the black dashed line
indicates the log-likelihood calculated using the random noise realization, (e)-(h) the acceptance rate evolu-
tion, and (i)-(l) the evolution of the potential scale reduction factor R̂with each color representing a different
parameter and the black dashed lines indicating the value below which convergence is declared (R̂ = 1.2).

is, the number of iterations needed to reach the target likelihood, from which it starts to sample409

from the posterior PDF. The remaining samples contribute equally to the posterior estimations.410

This is not the case for ASMC, for which the posterior PDF is approximated by the last states and411

weights of the particles (chains).412

For a smoother representation of the posterior PDF approximated by ASMC, we applied kernel413

Table 1. ASMC user-defined parameters and resulting sequence length for conceptual models CM1 and
CM2.

ASMC-DREAM ASMC-DREAM ASMC-Gauss ASMC-Gauss
CM1 CM2 CM1 CM2

Particles (N ) 40 40 40 40
CESSop/N 0.999993 0.999996 0.999993 0.999996
ESS∗/N 0.5 0.5 0.5 0.5
ARmin 25% 25% 25% 25%
K iterations 20 60 20 60
L intermediate distributions 4798 7775 4871 7673
Iterations per particle 95960 466500 97420 460380
Resampling times 1 5 2 3
Total numerical demand [×105] 38.384 186.600 38.968 184.152
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density estimation (KDE) (Scott, 2015). Figure 7 compares the estimated posteriors for CM1. The414

KDE bandwidth impacts on the level of smoothing, that we chose to kept fixed for the 15 parameter415

posteriors. Nevertheless, the estimated posteriors are overall very similar, which suggests that416

ASMC provides a good estimation of the posterior. No comparison is provided for CM2 as the417

MCMC-DREAM algorithm did not converge, neither in terms of reaching the target likelihood418

nor in terms of exploration of the posterior PDF.419

We now consider the posterior means and variances in the image space by translating the poste-420

rior realizations in the latent space using the SGAN generator. For ASMC-DREAM, the mean and421

standard deviation images correspond to the last states of the chains weighted by their weights.422

For MCMC-DREAM, the mean and standard deviation images are obtained using the equally423

weighted states in the second half of the chains. The means and standard deviations for CM1 are424

very similar for ASMC-DREAM (Figure 8b-c) and MCMC-DREAM (Figure 8d-e) that both ap-425

proximate the true model very well (Figure 8a). For CM2, we see a much better defined mean426

model and smaller standard deviations for ASMC-DREAM (Figure 8g-h). The poorer approxima-427

tions by MCMC-DREAM 8i-h) is a direct consequence of the fact that this run did not converge.428

Table 2 shows the log-likelihood range for the different inversions. For MCMC-DREAM, the sec-429

ond halves of the chains are considered for the range, while only the last states of the particles are430

considered for ASMC-DREAM.431

3.5 Evidence estimation432

Even if the theoretical basis of the ASMC method for evidence estimation is well-established433

(Zhou et al., 2016), we start this section by considering a simple example that allows for compar-434

ison with BFMC (see section 2.2.1). We consider CM1 in a high-noise setting using uncorrelated435

Gaussian random noise with standard deviation σ = 15 ns. This is certainly an unrealistically high436

noise level, but it allows us to obtain reliable evidence estimates through BFMC using 2 million437

prior samples. The resulting log-evidence obtained by BFMC is -1798.92, while the correspond-438

ing ASMC-DREAM run using K = 5 and CESSop/N = 0.9999 (resulting in 1100 iterations per439



25

Figure 7. Estimated marginal posterior distributions for CM1 using ASMC with DREAM(ZS)-proposal
(ASMC-DREAM) and regular DREAM(ZS) (MCMC-DREAM) with a comparable number of forward com-
putations. Results are shown for all latent model parameters that have bounded uniform priors between -1
and 1.

particle) led to a log-evidence estimate of -1798.86, which is practically identical to the BFMC440

estimate.441

After having established that our ASMC implementation provides accurate evidence estima-442

tion by comparison with BFMC, we now return to the original low-noise σ = 1 ns setting. For the443

test examples considered in the previous sections, the evidence estimates obtained with ASMC-444

DREAM and ASMC-Gauss given in Table 2 (i.e., the last computed values shown in Figures 4i-j445

and 5i-j) are very close to each other. For comparison purposes, we also calculate the Laplace-446

Metropolis evidence estimator (LM) using the MCMC-DREAM inversion results (equation 20).447

This is done for CM1 only as MCMC-DREAM did not converge for CM2. The Laplace-Metropolis448

estimate (Table 2) is only slightly lower than the ASMC-DREAM and ASMC-Gauss estimates.449

The close agreement between ASMC-DREAM and ASMC-Gauss, and the close agreement con-450
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Figure 8. Reference model for (a) CM1 and (f) CM2; mean of the weighted final states from ASMC-
DREAM for (b) CM1 and (g) CM2; standard deviations of the corresponding weighted final states for (c)
CM1 and (h) CM2; mean of the second half of the MCMC chains obtained with MCMC-DREAM for
(d) CM1 and (i) CM2 (not converged); corresponding standard deviations for (e) CM1 and (j) CM2 (not
converged).

sidering the simplifying assumptions of the Laplace-Metropolis method, suggest again that the451

results obtained with ASMC are accurate.452

Until now, we have considered that the right conceptual (prior) model was used in the inver-453

sions. That is, the noise-contaminated data were generated with a realization of the assumed prior454

PDF. We now consider how the evidence changes if we make the wrong assumption, that is, use455

the noise-contaminated data generated from a prior draw of another conceptual model. In Figure456

9 we display the evidence evolution for two such incorrect scenarios using ASMC-DREAM with457

combinations of CM1 and CM2 in the data generation and inversion process. The resulting log-458

evidence estimates (Table 2) are many hundreds of times smaller than the estimations obtained by459

making the right assumption, suggesting in these simple scenarios that the true conceptual model460

can easily be inferred if it is in the set of considered conceptual models.461

3.6 Evidence uncertainty quantification462

We first assess the uncertainty of the evidence estimations by performing Monte Carlo replication.463

For the low noise ASMC-DREAM tests shown in section 3.2, we performed ten separate runs of464
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Figure 9. ASMC-DREAM evidence evolution with respect to the α-sequence evolution when making in-
correct assumptions about the underlying conceptual model: (a) CM1-based prior in the inversion using data
generated from a prior realization from CM2, and (b) CM2-based prior in the inversion using data generated
from a prior realization from CM1.

ASMC-DREAM for CM1 and five for CM2. We varied K and kept all other parameters fixed.465

Figure 10 shows the corresponding evidence estimations for CM1 and their means in logarithmic466

units. Table 3 shows the relative standard deviation for both conceptual models. For CM1, it de-467

creases almost by a factor of 10 when moving from K = 1 to K = 20. For this case, even K = 1468

leads to rather high-quality estimates with a relative standard deviation of 1.72. The decrease is469

less abrupt for CM2 when increasing K = 5 to K = 60.470

From a computational standpoint, it is beneficial if high-quality uncertainty estimates of the471

evidences would be obtained from one ASMC run only. Hence, we assess how the predictions of472

equations 15 and 16 compare with the estimates based on Monte Carlo replications. For smallerK,473

resampling compensates for the faster increasing variance of the weights, but this is at the expense474

Table 2. Natural log-likelihood range, natural log-evidence estimation and number of resampling steps for
the different inversion cases. The log-likelihoods of the reference models are -642.34 (CM1) and −616.00
(CM2).

Log-likelihood Log-evidence Resampling
range estimation times

CM1 inv - CM1 data/ ASMC-DREAM [-652.03; -641.02] -679.48 1
CM1 inv - CM1 data/ MCMC-DREAM [-666.07; -636.71] -678.39(LM) -
CM1 inv - CM1 data/ ASMC-Gauss [-654.79; -640.65] -679.80 2
CM2 inv - CM2 data/ ASMC-DREAM [-628.60; -603.91] -671.18 5
CM2 inv - CM2 data/ MCMC-DREAM [-682.90; -612.23] - -
CM2 inv - CM2 data/ ASMC-Gauss [-638.64; -611.15] -671.49 3
CM1 inv - CM2 data/ ASMC-DREAM [-1086.42;-1063.34] -1115.76 5
CM2 inv - CM1 data/ ASMC-DREAM [-831.70; -795.19] -919.17 9
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Figure 10. Natural log-evidence estimations for ten replications of the ASMC-DREAM algorithm applied
to CM1 using K = 1, 3, 5, 10, 20 iterations per intermediate distribution, where each colored point denotes
a given replication. The gray dashed line represents the mean of the K = 20 replications and the black stars
the corresponding mean for each K.

of strong correlations between the particles. The impact of resampling on the variance estimation475

in equation 15 is primarily embodied in the sum involving the Eve indices. For smaller K, more476

resampling is needed and the number of remaining Eve indices are smaller. Figure 11 illustrates477

the evolution of the Eve indices Ei
t for K = 1 and K = 5 as the CM1 α-sequence progresses.478

Of the original 40 Eve indices, there are at the end only 3 and 8 Eve indices surviving for K = 1479

and K = 5, respectively. For K = 20, there are 15 surviving Eve indeces. The larger the number480

of surviving Eve indices, the less is the risk of mode collapse in which the ASMC algorithm only481

explore a small part of the posterior distribution. This basically implies that the higher-quality482

estimates are obtained by using larger K or CESSop, but this comes at the cost of an increasing483

number of forward simulations. Table 3 shows the relative standard deviation obtained with Monte484

Carlo replication and the single ASMC run estimates. For CM1, the relative standard deviations485

calculated with both estimators are similar for K = 10 and K = 20 suggesting that equations486

15 and 16 may provide high-quality uncertainty estimates for long-enough ASMC runs. For small487

K, we observe significant underestimation of the relative standard deviations. For K = 1, the sin-488

gle ASMC estimation is three times smaller than those obtained by Monte Carlo replication. Why489
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does the single-run ASMC uncertainty estimation work well for largeK, but not for small ones? To490

shed some light on this question, we present in Figure 12 the evolution of the difference between491

the weighted mean of the 40 particles’ likelihoods p̂(y|θ) and the target log-likelihood calculated492

with the noise realization pn(y|θ), both raised to the power of the corresponding α with the differ-493

ences expressed in logarithmic units, that is, ∆log[p(y|θ)α] = log[p̂(y|θ)α]− log[pn(y|θ)α]. This494

difference is shown for the ten replications and for the different K-values considered. In addition,495

Table 3 shows the variance and the root-mean-square error (RMSE) for the last states (α = 1)496

∆log[p(y|θ]) that decrease with increasing K. We observe in Figure 12 that when K decreases,497

the trajectories becomes more separate and show more auto-correlation. At K = 20 and K = 10498

for which the single-ASMC estimates worked well, we observe that the trajectories overlap and499

cross each other, thereby, suggesting that the information content of one individual ASMC run is500

not so much different than another. In contrast, for K = 1 (Figure 12a) the mean trajectories tend501

to be more separated from each other suggesting that they sample slightly different posteriors. The502

Monte Carlo replications account for these differences between individual ASMC runs, while this503

is impossible when considering estimates from a single ASMC run. This suggests then that the504

single-run evidence estimator should only be trusted when performing a sufficient number of K505

iterations, thereby, ensuring that the approximations of the intermediate distributions for different506

ASMC runs are small. In practice, this suggests that it is useful to run at least two ASMC runs and507

to ensure that the weighted mean-likelihoods of their particles are similar and tend to cross mul-508

tiple times during the ASMC runs. If this is not the case, our results suggest that the uncertainty509

estimation of the evidence obtained from one ASMC run is too small.510

This finding is also supported by the CM2 estimations in Table 3. This is clearly a more chal-511

lenging conceptual model, where the K used for the ASMC runs was three times higher than for512

CM1. Even if the single-run uncertainty estimations decrease consistently when increasing K, the513

values are too low compared to those of Monte Carlo replication. This suggests that K was not514

large enough to trust the single-run estimator. This is also reflected in the higher variance and the515

RMSE of the likelihood difference compared to CM1. This suggests that either Monte Carlo repli-516
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Figure 11. Eve index evolution vs. α-sequence evolution for (a) K = 1 and (b) K = 5. The increasing
opacity indicates superposition, that is, replication of specific Eve indices for different particles.

cations are needed to obtain an accurate error estimator or K should be increased to improve the517

reliability of the single-run estimator.518

4 DISCUSSION519

Our results suggest that ASMC can provide accurate approximations of posterior PDFs for chal-520

lenging inverse problems for which state-of-the-art adaptive MCMC fails to converge when con-521

Table 3. Relative standard deviation of evidence estimations obtained with ASMC-DREAM using different
K iterations per intermediate distribution. Results are shown for estimates based on a single run (equations
16 and 15) and by ten replications for CM1 and five replications for CM2 of the ASMC algorithm. Variance
and root-mean-square error (RMSE) of the difference between the average log-likelihoods and the target
(noise) log-likelihood are shown for the replications.

K σr [single run] σr [replications] σ2(∆log[p(y|θ)]) RMSE(∆log[p(y|θ)])

CM1

1 0.62 1.72 1.70 2.99
3 0.42 0.66 1.42 1.91
5 0.35 0.50 0.62 1.84
10 0.29 0.27 0.67 1.14
20 0.21 0.20 0.69 1.47

CM2

5 0.47 1.92 8.45 43.34
10 0.40 1.56 4.16 21.59
20 0.38 1.02 3.66 13.89
40 0.36 1.52 5.06 7.70
60 0.33 1.22 6.36 2.46



31

Figure 12. Evolution of the difference between the weighted mean log-likelihood p̂(y|θ) and the target
log-likelihood calculated with the noise realization pn(y|θ) raised to α, where each color represents one
replication, for (a) K = 1, (b) K = 3, (c) K = 5 (d) K = 10, and (e) K = 20

sidering a similar number of forward simulations (Figure 8). Furthermore, ASMC is very well522

suited for parallel computation, which is less the case for most MCMC methods. A general recom-523

mendation for practical applications is that the algorithmic variables K and CESSop in Algorithm524

1 are chosen sufficiently large to ensure that the weighted-mean likelihood of the particles is close525

to the target likelihood during the ASMC run (Figure 12). Clearly, if the total number of forward526

simulations are insufficient, the ASMC algorithm fails in sampling posterior realizations of high527
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likelihood for most particles. This leads to an impoverished particle approximation of the posterior528

PDF as evidenced by few surviving Eve indices (Figure 11) and mode collapse.529

A similar argument holds for the evidence estimation. ASMC provides an unbiased estimation,530

as shown for the high-noise setting example (section 3.5). However, the evidence estimation pro-531

cedure will only be reliable if the particles approximate the target power posteriors well enough.532

In addition, too low K and CESSop lead to frequent resampling that increases the estimation533

variance. Our results also suggest that error approximations based on single ASMC runs (eqs. 15534

and 16) are too optimistic in such settings, but reliable for sufficiently long ASMC runs (Table 3).535

We also note that the relative standard deviations of the evidence estimates (Figure 10) are several536

orders of magnitude smaller than the evidences obtained for the consistent and inconsistent prior537

models (Table 2).538

Providing practical recommendations for parameter settings away from easily-recognizable539

degenerate conditions is challenging. Of course, the larger the N the better, as the particle ap-540

proximation of the parameter space will be improved. Our choice of N = 40 was dictated by the541

number of forward runs we could perform in parallel on one compute node, while much larger542

values are possible on modern computational architectures. An important point is how well the543

posterior can be described by a weighted average of N particles. The complexity of the posterior544

distribution depends on several factors like the dimension of the parameter space, the physics, the545

number and type of data, and the experimental design. Consequently, a much larger number of par-546

ticles might be needed in challenging high-dimensional settings with strong parameter correlations547

or for problems with multi-modal posterior PDFs. In agreement with Neal (2001), we recommend548

distributing the total number of forward runs for each ASMC particle by favouring a large number549

of intermediate distributions over larger K. In practice, we typically first choose a suitably large550

CESSop and then vary K. In contrast to K, the influence of CESSop on the total number of for-551

ward simulations is non-linear and difficult to predict before running the algorithm. The trial tests552

in this study suggest that CESSop needs to be larger than 0.99N , for our considered ranges of553

K, in order to reach the target misfit and build a smooth α-sequence. After fixing CESSop, one554

can then first run the ASMC with an initially small K before re-running it with a twice as large555
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value. If the difference between the resulting evidence estimates for these two choices of K are556

much smaller than the computed evidences for competing conceptual models, and if the inferred557

posteriors are similar, then this choice of K is probably sufficient. If important differences are ob-558

served between the ASMC runs obtained for the different K, then one needs to further double K,559

and so on. Finally, the proposal scale ε needs to be initialized with a high enough value such that560

the initial acceptance rate is above ARmin. After this, the automatic rescaling of this parameter561

ensures high-quality estimates regardless of the model proposal scheme.562

The observed relative insensitivity of the ASMC results to the model proposal type (Figures 4563

and 5) is noteworthy, as the MCMC results (Figure 6) are highly sensitive to this choice. CM1 and564

CM2 present different levels of complexity. For CM1, MCMC-DREAM achieves convergence565

without difficulty (Fig. 6i), while this is far from being the case for MCMC-Gauss (Figure 6j).566

For CM2, both MCMC approaches fail (Figures 6k and l), while ASMC-DREAM and ASMC-567

Gauss perform similarly well for both CM1 and CM2 (Figures 4 and 5). The underlying reason568

for the success of ASMC and its insensitivity to the proposal mechanism is likely found due to569

the following factors. On the one hand, the adaptive scaling of the proposals (e.g., Figure 4c) and570

the tempering (e.g., Figure 4d) allow the particles to more easily move away from local minima,571

while resampling, on the other hand, gives priority to the high-likelihood regions (e.g., Figure 4h).572

Clearly, no such tuning of the proposal scale is possible when using MCMC as it violates detailed573

balance conditions. We stress that the comparisons made herein are with MCMC algorithms run-574

ning at a unitary temperature, while parallel tempering-based MCMC methods might not have575

these problems (Sambridge, 2014).576

The presented ASMC method share similarities to other approaches for evidence estimation.577

Nested Sampling (Skilling, 2004) reduces the evidence multidimensional integral to sampling of578

a one-dimensional integral over prior mass elements, using an increasing constraint on the log-579

likelihood lower bound. Other methods rely on MCMC sampling using power posteriors. For580

instance, thermodynamic integration (TIE) (Gelman & Meng, 1998), also called path sampling,581

reduces the evidence computation to a one-dimensional integral of the expectation of the likeli-582

hood over α. Zeng et al. (2018) shows that TIE performs better than nested sampling in terms583
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of accuracy and stability. Stepping Stone Sampling (SS) (Xie et al., 2011) also rely on power-584

posteriors but improves in accuracy compared with TIE by formulating the evidence estimation by585

the product of ratios of intermediate normalizing constants, that is, similarly to AIS and ASMC. An586

important practical difference is that SS is often performed in parallel by running multiple MCMC587

runs targeting different power posteriors (Brunetti et al., 2019). Since each chain starts from the588

prior, the total computational cost is high, and perhaps more importantly, there is no solution to589

deal with MCMC chains for α close to one that do not converge (as in our MCMC trials with both590

MCMC-Gauss and MCMC-DREAM for CM2). This latter problem can be circumvented by run-591

ning the SS algorithm sequentially using a similar tempering sequence as for ASMC. However, the592

α-sequence needs to be pre-defined, while ASMC allows for adaptive tuning. Even if not presented593

here, we stress that the improvements offered by ASMC over AIS are drastic. Despite extensive594

testing and tuning of AIS parameters, we were unable to match the performance of ASMC.595

5 CONCLUSIONS596

This study demonstrates that adaptive sequential Monte Carlo (ASMC) is a powerful method to597

approximate the posterior PDF and estimate the evidence in non-linear geophysical inverse prob-598

lems. Crosshole GPR examples in which complex geological priors are parameterized through599

deep generative networks are used for demonstration purposes, but the method is of wide appli-600

cability. ASMC is robust with respect to the type of model proposals used and to algorithmic601

settings, implying a comparatively low user effort required for tuning the algorithm for a given ap-602

plication. ASMC is particularly useful for moderately to strongly non-linear inverse problems and603

for multi-modal distributions, where targeting the posterior distribution with MCMC algorithms604

may result in poor convergence. For the considered examples, ASMC outperforms state-of-the-art605

adaptive MCMC in estimating posterior PDFs. The major advantage of ASMC compared with606

MCMC in a Bayesian model selection context is that it provides straightforward computation of607

the evidence. Reliable uncertainty estimation of evidence estimates is possible from single ASMC608

runs, provided that they are long enough. We hope that this study will stimulate further adaptations609

of sequential Monte Carlo in a geophysical context, and more specifically, lead researchers to the610
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adaptation of ASMC when confronted with challenging inference problems and model selection611

tasks.612
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