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ABSTRACT
Relating seismic attributes to the characteristics of mesoscopic fractures is inherently
challenging, yet these heterogeneities tend to dominate the mechanical and hydraulic
properties of the medium. Analytical approaches linking the effects of material prop-
erties on seismic attributes, such as attenuation and velocity dispersion, tend to be
limited to simple geometries, low fracture densities, and/or non-interacting fractures.
Furthermore, the influence of fluid flow within interconnected fractures on P-wave
and S-wave attenuation is difficult to accommodate in analytical models. One way
to overcome these limitations is through numerical upscaling. In this paper, we apply
a numerical upscaling approach based on the theory of quasi-static poroelasticity to
fluid-saturated porous media containing randomly distributed horizontal and vertical
fractures. The inferred frequency-dependent elastic moduli represent the effective be-
haviour of the underlying fractured medium if the considered sub-volume has at least
the size of a representative elementary volume. We adapt a combined statistical and
numerical approach originally proposed for elastic composites to explore wether the
overall statistical properties of simple fracture networks can be captured by compu-
tationally feasible representative-elementary-volume sizes. Our results indicate that,
for the considered scenarios, this is indeed possible and thus represent an important
first step towards the estimation of frequency-dependent effective moduli of realistic
fracture networks.
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INTRODUCTION

The hydraulic characterization of fractured rocks based on
seismic data is widely regarded as something like an ulti-
mate frontier in geophysics, yet it has a number of impor-
tant applications, such as, for example, the sustainable use
of groundwater, the optimized production of hydrocarbons
and geothermal energy, and the safe storage of nuclear waste.
While fractures tend to control the mechanical and hydraulic
properties of the medium, they can in general not be resolved

∗E-mail: eva.caspari@unil.ch

directly, which makes it challenging to relate measured seismic
attributes to the characteristics of the fractured rocks.

Numerous analytical effective medium theories were pro-
posed to relate the effects of fractures to the overall elas-
tic and hydraulic properties of the considered media (e.g.,
Kachanov 1992; Schoenberg and Sayers 1995; Sanchez-Vila,
Guadagnini, and Carrera 2006). Recent studies have shown
that attenuation and velocity dispersion of seismic waves
are sensitive to the elastic and hydraulic properties and thus
may provide critical insights into fracture characteristics (e.g.,
Chapman 2003; Brajanovski, Müller, and Gurevich 2006;
Gurevich et al. 2009). However, analytical effective medium
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models tend to be inherently limited to simple geometries,
low fracture densities, and/or non-interacting fractures, cri-
teria which are generally not fulfilled by actual fracture
networks.

One way to overcome the limitations of analytical ap-
proaches is through numerical upscaling procedures based on
spatial averaging. These methods have been used for various
rock physical properties, e.g., elastic, electrical, and hydraulic
properties (e.g., Saenger, Krüger, and Shapiro 2006; Ostoja-
Starzewski 1999, 2006; Willot and Jeulin 2011). Recently, the
upscaling of the seismic characteristics of porous media, such
as velocity dispersion and attenuation, based on the theory
of poroelasticity has gained increasing acceptance and popu-
larity (e.g., Masson and Pride 2007; Rubino, Ravazzoli, and
Santos 2009; Wenzlau, Altmann, and Müller 2010; Quintal
et al. 2011). In these numerical approaches, a homogeneous
displacement or stress field is applied to the boundaries of a
subvolume of a heterogeneous poroelastic medium. By spa-
tial averaging of the resulting complex stress and strain fields,
the phase velocities and the attenuation as functions of fre-
quency can then be inferred. These upscaling procedures are
restricted to a finite sub-volume of the considered medium.
Correspondingly, the upscaled physical properties describe the
effective behaviour of the underlying heterogeneous medium
only if the probed sub-volume has at least the size of a so-
called representative elementary volume (REV). The adequate
definition of a REV for a given upscaling problem is therefore
of critical importance.

Hill’s (1965) classical work for elastic composites defines
a REV as (i) a sub-volume for which the inferred average
properties are independent of the applied boundary condi-
tions and (ii) that is structurally representative of the entire
medium. Jänicke, Quintal, and Steeb (2015) extended Hill’s
(1965) approach to derive a consistent upscaling procedure of
a heterogeneous poroelastic medium to a viscoelastic medium.
A main focus of their investigation was boundary condition
effects on the fluid pressure, which can cause a shift in fre-
quency of the attenuation maximum. Recently, Milani et al.

(2016) explored the definition of a REV for periodically frac-
tured porous media and analysed in detail the corresponding
boundary condition effects on the stress and strain fields. They
found that the REV size depends on the compressibility con-
trast between the fractures and their embedding background
and on the fracture density.

In this paper, we extend the analysis of Milani et al.

(2016) to porous media containing randomly distributed hor-
izontal and vertical fractures. The question then arises if
the considered sub-volumes represent the overall statistical

properties of the underlying heterogeneous fractured medium.
In the context of elastic composite media, Kanit et al. (2003)
addressed this problem through a combined statistical and nu-
merical approach based on the concept of the integral range.
This method provides estimates of the REV size for a given
relative error of the moduli and a given number of realiza-
tions of the considered random media by fitting a scaling law
to simulations of several realisations and domain sizes. Here,
we adapt this approach to porous media with randomly dis-
tributed fractures. This provides a critical step towards the
estimation of frequency-dependent effective moduli of realis-
tic fracture networks.

In the following, we first describe the properties of the
considered fractured media and then proceed to present the
numerical upscaling procedure, the associated characteristic
length scales, and the statistical approach. Finally, we apply
the combined statistical and numerical approach to 2D poroe-
lastic media with randomly distributed fractures and assess the
corresponding results.

FRACTURED POROUS R OCKS MODELLED
AS POROELASTIC MEDIA

We consider 2D numerical models of a water-saturated tight
sandstone containing randomly distributed horizontal and
vertical fractures. This is equivalent to corresponding 3D mod-
els under plane strain conditions, for which the displacements
out of the modelling plane are zero. For simplicity, we only
consider uniform distributions and thus uncorrelated fracture
centres. Four different scenarios are analysed (Fig. 1): uniform
distributions of fractures of the same size for two fracture
densities (ρ f rac = 0.16 and ρ f rac = 0.32) and uniform distri-
butions of fractures of variable length for parallel fractures
and orthogonal fracture sets. The fracture density is calcu-
lated as ρ f rac = (

∑
N 0.5 l2

f rac)/S, where N is the number of
fractures, l f rac is the fracture length, and S is the domain size
(Kachanov 1992). The fractures have a rectangular geometry
with a constant aperture (a = 0.06 cm), regardless of their
lengths (l f rac1 = 2.4 cm, l f rac2 = 4.8 cm, l f rac3 = 9.6 cm).

The uniform distribution of fracture centres is created
by drawing n integers from a discrete uniform distribution in
the interval from [1, nx × ny], where nx and ny are integers
proportional to the side lengths of the sample. These random
numbers are then mapped to x- and y- coordinates and suc-
cessively placed into the model area discarding overlapping
fractures and replacing them by newly generated fracture cen-
tres. Although, in a strict sense, this violates the condition of
uncorrelated fracture centres, the number of rejected fractures
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Figure 1 Examples of uniform fracture distributions considered in this study: fractures of the same size with a fracture densities of (a)
ρ f rac = 0.16 (base case) and (b) ρ f rac = 0.32 (dense case), and fractures of variable length for (c) parallel fractures (length distribution case)
and (d) orthogonal fracture sets (orthogonal case).

is generally small and can hence be assumed not to create a
systematic error. This procedure is performed independently
for horizontal and vertical fractures and thus we are not con-
trolling the number of connected fractures in the orthogonal
set.

The tight-sandstone and the embedded fractures are rep-
resented as a poroelastic continuum. The sandstone is charac-
terized by a stiff porous matrix of low permeability and poros-
ity. Traditionally in elastic media, fractures are described as
discontinuities by their aperture and their normal and tan-
gential compliances (Kachanov 1992; Schoenberg and Sayers
1995). In this study, we represent the fractures as strongly
compliant poroelastic features, which in turn implies that
pore-scale characteristics must enter the macroscopic poro-
elastic equations in an averaged form. Therefore, in addi-
tion to the compliances, estimates of the fracture porosity
and permeability are needed. Given that fractures do not tend
to be entirely void and that their walls do not correspond

to smooth parallel planes, we choose a somewhat lower per-
meability than that given by the analytical solution of the
Navier–Stokes equation for laminar flow between two smooth
walls with a uniform aperture (Jaeger, Cook, and Zimmerman
2007). Moreover, we choose high compliance and very high
porosity, which results in a large stiffness contrast with respect
to the embedding sandstone matrix. The rock properties are
summarized in Table 1.

NUMERICAL UPSCALING IN
POROELASTICITY

The numerical upscaling procedure is based on Biot’s (1941)
quasi-static poroelastic equations, in which inertial coupling
between the solid and fluid motion is neglected. The quasi-
static approximation is applicable if the highest considered
frequency is much smaller than Biot’s critical frequency at
which viscous and inertial forces equally act on the pore
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Table 1 Physical properties of the fractures, the embedding background, and the saturating pore fluid. Adopted from Rubino et al. (2013) and
Milani et al. (2016)

Bulk modulus, K Shear modulus, μ Porosity, φ Pemeability, κ

Background 26.0 GPa 31.0 GPa 0.10 1.0 mD
Fracture 0.03 GPa 0.02 GPa 0.80 100 D

Bulk modulus, K Density, ρ Viscosity, η

Grain 37 GPa 2650 kg/m3

Water 2.25 GPa 1000 kg/m3 1.0 · 10−3 Pa·s

fluid (Mavko, Mukerji, and Dvorkin 2009). In the quasi-static
regime, dissipation of wave energy can be attributed to the vis-
cous coupling of the elastic solid and the fluid resulting in an
out-of-phase relative fluid–solid motion. The associated slow
P-wave behaves as a pressure diffusion wave.

Quasi-static poroelasticity equations

The system of two coupled equations in the frequency domain
is given by the stress equilibrium and Darcy’s law, i.e.,

∇ · σ = 0, (1)

− ∇ pf = iω
η

κ
w, (2)

where σ and pf are the total stress tensor and fluid pres-
sure, respectively, and ω is the angular frequency. The relative
fluid–solid displacement is given by w = φ(U − u), where φ is
the porosity, and U and u are the macroscopic fluid and solid
displacements, respectively. The ratio of the permeability κ

and the fluid shear viscosity η denotes the hydraulic conduc-
tivity. The constitutive equations of the poroelastic medium
are

σ = [(H − 2G)∇ · u + αM∇ · w]I + G[∇u + (∇u)T], (3)

− pf = αM∇ · u + M∇ · w, (4)

where I denotes the identity tensor, and G is the shear-wave
modulus of the porous material. The undrained low-frequency
P-wave modulus is defined as H = L + α2 M, with L denot-
ing the dry P-wave modulus , α = 1 − Kd/Ks the Biot–Willis
coefficient, and M = [(α − φ)/Ks + φ/K f ]

−1 the fluid storage
coefficient. The parameters Kd, Ks , and K f are the bulk mod-
uli of the drained frame, the solid phase, and the fluid phase,
respectively.

Spatial scales

In this paper, we focus on fluid pressure diffusion at meso-
scopic scales lmeso, which implies that the considered fracture
lengths l f rac are much larger than the pore size l pore, but much
smaller than the dominant seismic wavelength λ

l pore � l f rac � λ. (5)

The prevailing seismic wavelength defines the observa-
tion scale, generally referred to as the macroscopic scale,
at which we want to assess the effective properties of the
medium. Thus, the wavelength provides an upper limit for the
area of investigation for obtaining meaningful effective prop-
erties through numerical volume averaging. The side length of
the modelling domain larea therefore has to obey

larea � λ. (6)

Seismic waves propagating through a medium with meso-
scopic heterogeneities induce fluid pressure diffusion at the
interfaces of these heterogeneities. Biot’s slow compressional
wave is a proxy for this process and the characteristic scale of
the mechanism is defined by the pressure diffusion length of
the background medium:

λD =
√

κ

ηω

ML
H

. (7)

If λD is much larger than the average distance between
two consecutive fractures, there is enough time for pressure
gradients to equilibrate, whereas if λD is much smaller, there
is no communication between fractures and the pore space of
the background medium (Rubino et al. 2014). In these low-
and high-frequency limits, the medium behaves as an elastic
medium with a constant or piecewise constant fluid pressure.
At all intermediate frequencies, velocity dispersion and atten-
uation occurs in response to pressure diffusion. Jänicke et al.

(2015) argued that in this intermediate frequency regime a
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poroelastic medium can be replaced by an upscaled viscoelas-
tic medium at the macroscopic scale if the diffusion length is
smaller than the side length of the modelling domain, i.e.,

λD < larea . (8)

This implies that all diffusion processes take place in
the mesoscopic scale range and no wave-induced fluid flow
takes place at the macroscopic scale. Consequently, upscal-
ing of Biot’s quasi-static poroelastic equations involves spatial
and temporal upscaling, leading to a homogeneous equivalent
medium with time- and thus frequency-dependent effective
properties.

Relations (6) and (8) provide constraints with regard to
the side length of the modelling area considered in the up-
scaling procedure. Based on these relations, we can deter-
mine the effective frequency-dependent properties from the
spatially averaged complex stress and strain fields by solving
the coupled system of equations (1)–(4) under proper bound-
ary conditions using a finite element approach (Rubino et al.

2009).

2D stiffness coefficients

By applying a set of three oscillatory relaxation tests, compris-
ing two compressional tests and one shear test, the equivalent
frequency-dependent 2D stiffness coefficients are computed
from the spatially averaged stress and strain fields

⎛
⎜⎝

〈σ11(ω)〉
〈σ22(ω)〉
〈σ12(ω)〉

⎞
⎟⎠ =

⎛
⎜⎝

C11 C12 C13

C12 C22 C23

C13 C23 C33

⎞
⎟⎠

⎛
⎜⎝

〈ε11(ω)〉
〈ε22(ω)〉
〈2ε12(ω)〉

⎞
⎟⎠ . (9)

The details of the procedure are described in the work of
Rubino et al. (2015). Here, we slightly modify the boundary
conditions. The two compressional tests are performed by
imposing a time-harmonic homogeneous displacement on the
upper boundary for test one and on the right lateral boundary
for test two. Along the remaining boundaries, the sample is
confined so that the solid phase is not allowed to have a
normal displacement component relative to these boundaries.
The third test is a pure shear test. In all three tests the sample is
hydraulically sealed so that the fluid cannot flow in or out of
the sample. A description of the used boundary conditions is
given in Appendix. The resulting stiffness coefficients describe
the effective behaviour of the entire heterogeneous medium
provided that the considered sub-volume has at least the size
of an REV.

Representative elementary volume

The classical definition of a representative elementary volume
(REV) by Hill (1965) for elastic composites is that the in-
ferred average properties of the medium are: (i) independent
of the applied boundary conditions, and (ii) representative
of the entire heterogeneous medium. More precisely, for an
elastic medium a REV prevails if uniform displacement and
uniform stress boundary conditions provide the same aver-
aged moduli. Huet (1999) has shown that the same holds for
viscoelastic media, and Jänicke et al. (2015) extended the con-
cept to the upscaling of a heterogeneous poroelastic medium.
Milani et al. (2016) studied boundary condition effects by
performing creep (stress boundary condition) and relaxation
(displacement boundary conditions) tests for sub-volumes of
increasing size for a poroelastic medium with periodically dis-
tributed fractures. Here, we limit our investigation to dis-
placement boundary conditions that provide an upper bound
on the effective properties. Our aim is to analysze if these so-
called apparent moduli (Ostoja-Starzewski 2006) represent
the overall statistical properties of the underlying heteroge-
neous fractured medium.

To address this problem, we utilize the concept of the
integral range for estimating the size of the REV as suggested
by several authors (e.g. Willot and Jeulin, 2011; Kanit et al.,
2003; Cailletaud et al., 1994). The integral range represents a
domain over which the properties in a heterogeneous medium
are correlated to each other. This in turn provides informa-
tion on the domain size at which the average moduli are rep-
resentative of the heterogeneous medium. This range can be
estimated from the variogram or the covariance function of
a random field and in a 2D medium has units of an area.
For morphological parameters, such as the volume fraction
or fracture density, the integral range can be calculated an-
alytically for a given distribution. However, for elastic and
viscoelastic moduli, it depends on the statistical properties of
the stress and strain fields, which are not known a priori and
can only be inferred from numerical simulations. To estimate
the REV size of the frequency-dependent stiffness coefficients,
we follow a combined statistical and numerical approach as
proposed by Kanit et al. (2003) for elastic composite media.

We consider ensembles of finite-size random medium
realizations for different domain sizes S. For each ensemble,
we calculate the mean stiffness coefficients Ci j (S) and the cor-
responding variances from numerical simulations. The size of
the modelling domain S is large enough to represent an REV
for the stiffness coefficients Ci j if the variance of the average
properties Ci j (S) tends to zero, i.e.,
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Var (Ci j (S)) → 0 . (10)

Assuming ergodic and stationary stress and strain fields,
the variance of the coefficients on the macroscopic scale can
be expressed by the following scaling law (Cailletaud, Jeulin,
and Rolland 1994)

Var (Ci j (S)) = σ 2 A
S

, (11)

where σ 2 is the point variance of Ci j (S) at the mesoscopic
scale, and A is the integral range of the medium. The in-
tegral range can therefore be experimentally estimated from
simulations of several realisations of the random medium for
different domain sizes by fitting the scaling law (11) (e.g.,
Matheron 1971; Jeulin 1981). In the framework of this statis-
tical approach, it is not possible to define a single minimum
REV size. Instead, the size of the REV depends on the desired
accuracy, as quantified by relative or absolute error, of the
apparent moduli and the number of realizations of the ran-
dom medium. The relative error of the mean apparent moduli
Ci j (S) for a given number of realizations and a given size of
the medium can be obtained from the confidence interval as

εrela = 2
√

Var (Ci j (S))

Ci j (S)
√

n
, (12)

where n denotes the number of realizations. The correspond-
ing absolute error is given by

εabs = 2
√

Var (Ci j (S))√
n

. (13)

Although the considered method does not yield a partic-
ular REV size, it still provides an indication whether an REV
exists and how large the numerical cost is to obtain a certain
accuracy with regard to the estimated moduli.

UPSCALED STIFFNESS COEFF IC IENTS

We perform numerical simulations for three different domain
sizes. The considered models comprise two different fracture
densities and three different fracture lengths (Table 2). Earlier
studies suggest that boundary condition effects are sensitive
to the fracture density (Milani et al. 2016) as well as to the
ratio between the edge length of the computational domain
and the fracture length δ = larea/ l f rac (Saenger and Shapiro
2002). The number of model realizations n, the number of
fractures per domain size N/S, the fracture volume fraction
Vfrac, the fracture density ρ f rac, and the scaling parameter δ

are listed in Table 2.
Figure 2 shows the mean value and variance of the stiff-

ness coefficients over all model realizations (Table 2) obtained

Table 2 Number of numerical realisations for the four different frac-
ture models and model characteristics

Model N/S [m2] Vfrac [%] ρ f rac δ n

Base case 25/0.09 0.8 0.16 6.25 40
100/0.36 0.8 0.16 12.5 20
400/1.44 0.8 0.16 25 5

Dense case 50/0.09 1.6 0.32 6.25 40
200/0.36 1.6 0.32 12.5 30
800/1.44 1.6 0.32 25 5

Length distribution 25/0.09 0.8 0.208 3.125 60
case 100/0.36 0.8 0.208 6.25 30

400/1.44 0.8 0.208 12.5 5
Orthogonal case 50/0.09 1.6 0.416 3.125 40

200/0.36 1.6 0.416 6.25 20
800/1.44 1.6 0.416 12.5 5

from the relaxation tests applied to domain sizes of 0.09 m2

and 1.44 m2. In all cases, the coefficients C13 and C23 are
close to zero; thus, the symmetry of the fractured media is
close to vertical transverse isotropy (VTI) for the horizon-
tal fractures and hexagonal for the orthogonal fracture set.
The coefficients C22 and C33 correspond to the P-wave mod-
ulus Hv for vertical compression along the top boundary and
the shear wave modulus G, respectively. We observe that C22

and C33 decrease with an increase in the domain size, be-
cause the stress and strain fields at the boundaries are dis-
turbed by applying a constant displacement. By increasing the
domain size, these boundary effects are gradually averaged
out. As expected, the boundary condition effects are larger
for higher fracture densities and variable fracture lengths. In
the latter case, the largest fracture length of 9.8 cm for the
smallest domain size corresponds to a scaling parameter δ of
3.125, which explains the larger boundary effects. This value
of δ is significantly smaller than values reported in literature
for which boundary effects become sufficiently small (Saenger
and Shapiro 2002). Table 3 lists the absolute difference of the
moduli between the smallest and largest domain size for C22

and C33. For the orthogonal case, additional boundary effects
occur for C11, the P-wave modulus Hh for the horizontal com-
pression and the coupling coefficient C12 of the two P-wave
moduli.

Boundary effects as well as the variance of the appar-
ent P-wave moduli Hv increase with decreasing frequencies
as a result of fluid pressure diffusion between the fractures
and the stiff pores of the background. At low frequencies,
the fluid has time to flow out of the fracture into the back-
ground to equilibrate pressure differences; thus, the fracture
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Figure 2 Mean value and variance of the real part of the stiffness coefficients for the domain sizes of 0.09 m2 (solid lines) and 1.44 m2

(dashed lines) over all model realisations listed in Table 2: base and dense cases with fracture densities of (a) ρ f rac = 0.16 and (b) ρ f rac = 0.32,
respectively, and (c) length distribution and (d) orthogonal cases. The curves for the coefficients C13 and C23 are superimposed.

Table 3 Approximate absolute differences between the smallest and largest domain sizes for C22 and C33 at the lowest considered frequency

Length distribution Orthogonal
Base case Dense case case case

C22(small) − C22(large) 1.5 GPa 2.13 GPa 2.25 GPa 3.12 GPa
C33(small) − C33(large) 0.4 GPa 0.75 GPa 0.48 GPa 1.03 GPa

becomes more compliant. At high frequencies, no fluid ex-
change between the two regions occurs; hence, the fluid inside
the fracture increases the resistance to compression. These
stiffening effects of the fractures with increasing frequency
reduce the compressibility contrast between the two regions
and diminish boundary effects as well as the variance of the
apparent P-wave moduli Hv. The attenuation curves for the
P-wave modulus Hv are shown in Fig. 3 for the largest domain
size. The characteristic frequency of the pressure diffusion

process corresponding to the peak attenuation depends on
the diffusivity of the background medium (equation (7)) and
the average distance between fractures. For the dense case,
it is approximately 275 Hz, and for all other cases, it is
20 Hz. For the orthogonal case, an additional dispersion
mechanism occurs between intersecting fractures at approx-
imately 4.6 kHz due to different pressure gradients in the
vertical and horizontal fractures (Rubino et al. 2014; Quintal
et al. 2014).
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Figure 3 Attenuation of the P-wave modulus estimated for the mean
value of the largest domain size for all four fracture distributions and
for the S-wave modulus of the orthogonal case.

For the S-wave modulus, we observe a small amount of
dispersion due to the change of shape of the sample. This cre-
ates a dilation of the finite-sized fractures in the upper left and
lower right corners and a compression of the fractures in the
two opposite corners. Consequently, we observe in the former
case a low pressure in the proximity of the fractures and in
the latter case a high pressure. However, these small pressure
differences lead to a negligible amount of attenuation, except
for the case of orthogonal fractures where it might become
noticeable (Fig. 3). As observed for the P-wave modulus an
additional dispersion mechanism occurs at higher frequencies
with a characteristic frequency of 4.6 kHz due to the con-
nectivity of fractures (Fig. 3). Since the S-wave modulus is
not sensitive to the bulk modulus of the fluid, the contrast
between the two regions and the variance of C33 and the
boundary effects remain the same for all frequencies. A de-
tailed description of boundary effects is given by Milani et al.

(2016) and Jänicke et al. (2015), and an analysis of fracture-
to-fracture wave-induced fluid flow is given by Rubino et al.

(2014) and Quintal et al. (2014). In the following, we focus
on the statistical representativeness of the obtained apparent
moduli.

Estimation of the integral range

For the four different fracture distributions (Table 2), we es-
timate the integral range by fitting the inferred variances of
the moduli Var (Hv(S)) and Var (G(S)), with the scaling law
(11) for each frequency. This assumes that the real parts of
the stress and strain fields are stationary at each frequency.

Figures 4 and 5 show the variance of the average moduli in-
ferred from the simulations. As the scaling law (11) implies,
the variance of the average moduli decreases with an increas-
ing domain size, since the sample becomes statistically more
representative. Furthermore, for all four cases, Var (Hv(S)) de-
creases with frequency, whereas Var (G(S)) remains the same
for the horizontal fractures and slightly decreases with fre-
quency for orthogonal fractures. In order to utilize equation
(11), we need the point variance of the P-wave and S-wave
moduli. The point variance of the S-wave modulus (Kanit
et al. 2003) is given by

σ 2
G = φ f r (1 − φ f r )(Gfr − Gb)2 , (14)

where φ f r , Gfr , and Gb are the volume fraction of the frac-
ture, the S-wave modulus of the fracture (inverse of tangential
compliance), and S-wave modulus of the background, respec-
tively. The point variance of the P-wave modulus varies with
frequency since the normal compliance of the fracture is sen-
sitive to the fluid pressure diffusion process and thus changes
with frequency. Consequently, the frequency-dependent frac-
ture compliance depends on the properties of the background
medium and is difficult to calculate. However, the point vari-
ance in the high-frequency limit and for the dry case can be
estimated as follows:

σ 2
H = φ f r (1 − φ f r )(Hfr − Hb)2, (15)

σ 2
L = φ f r (1 − φ f r )(Lfr − Lb)2, (16)

where H is the saturated modulus of each phase, and L is
the dry modulus of each phase. The saturated modulus H is
obtained by applying Gassmann’s equation (Gassmann 1951)
to each phase separately. The two point variances σ 2

H and σ 2
L

correspond to upper and lower limits, respectively. For sim-
plicity, we utilized these two variances to estimate the integral
range. This is justified since the difference between the two
limits is small and the estimation of the integral range does
not seem to be sensitive to the point variance (Fig. 6a).

The quality of the fitted scaling law (11) can be assessed
based on Figs. 4 and 5, in which the simulated results and
the fitted law are compared for the P- and S-wave moduli at
all considered frequencies. Overall, the scaling law represents
the simulations reasonably well. However, we observe that
Var (Hv(S)) for the base case of the largest domain size is
smaller than predicted by the scaling law (11). Furthermore,
for the case with a length distribution, the simple scaling law
seems to be no longer applicable since it is not able to capture
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Figure 4 Comparisons of the estimated variance of the mean P-wave moduli for three medium sizes with the scaling law: (a) base case, (b) dense
case, (c) length distribution and (d) orthogonal case. The number of realizations for each domain size is given in Table 2.

the change in the slope for higher frequencies. This might
point to a scaling law of the form

Var (Hv(S)) = σ 2

(
A
S

)α

, (17)

where α is an additional fitting parameter. A value of α larger
than 1 implies a faster decrease of the variance, whereas a
value smaller than 1 implies a slower decrease. Such a power
law was indeed proposed by Kanit et al. (2003) and Cailletaud
et al. (1994) with the justification that the change of scale is
in general not additive. However, such an empirical scaling
law does not allow for a straightforward interpretation of
the integral range and hence is not further considered in this
study.

In the following, we refer to
√

A as the effective length
to allow for a better comparison with the length scales of the
fractured medium. The resulting effective lengths are plotted
in Fig. 6. The estimates using σ 2

H and σ 2
L show only minor

differences (Fig. 6a). Please note that the effective lengths
for the P-wave modulus for the length distribution case are
only reliable for the first two frequencies. Interestingly, at low
frequencies, the effective lengths of the P-wave modulus for
all four cases are on the order of the average vertical dis-
tances between horizontal fractures. This average distance is
approximately 3 cm for the dense case and 6 cm for the other
three cases. Furthermore, the decrease in the effective length
with frequency is a mirror image of the dispersion curve. This
makes intuitively sense since the integral range depends on
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Figure 5 Comparisons of the estimated variance of the mean S-wave moduli for three domain sizes with the scaling law: (a) base case, (b) dense
case, (c) length distribution, and (d) orthogonal case. The number of realization for each domain size is given in Table 2.

the volume fraction and on the elastic contrast between the
fracture and background. This contrast decreases with fre-
quency due to the stiffening of the fracture, and as a conse-
quence, the interaction between fractures decreases. For the
S-wave modulus, the effective lengths of the base and dense
cases approximately correspond to the average distance be-
tween the fracture tips.

Estimation of the REV size

The fitted scaling law allows us to determine the size of
the REV for a given relative or absolute error of the ap-
parent moduli and a given number of realisations. Figures 7
and 8 show as a function of the sample area the number of

realizations required to obtain a REV with a relative error of
1% (equation (12)) and an absolute error of 0.5 GPa (equa-
tion (13)) of the apparent P-wave and S-wave moduli. The
dashed grey lines indicate the size of the REV for five real-
izations. The estimations for the P-wave and S-wave moduli
correspond to the lowest considered frequency. The estimated
REV sizes indicate that five realizations of the largest consid-
ered domain (1.44 m2) are sufficient to obtain the apparent
moduli with a relative error of less than 1% for the base,
dense, and length distribution case. For the orthogonal case, a
larger modelling domain or a larger number of realizations is
required to obtain the same relative precision, especially in the
case of the S-wave modulus. However, the REV sizes for an
absolute error of 0.5 GPa with the same number of simulations
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Figure 7 Number of realizations for (a) a relative error of 1% and (b) an absolute error of 0.5 GPa of the apparent P-wave modulus as a
function of the domain size at the lowest frequency. The dashed grey lines indicate the size of the REV for five realizations.

are much smaller. In these context, it is, however, important
to remember that, for these small modelling domains, strong
boundary condition effects prevail, and the estimated appar-
ent moduli provide only an upper bound of the true effective
properties.

For the P-wave modulus, the REV size decreases with
increasing frequency, as shown in Fig. 9 since the contrast
between fractures and the host rock diminishes. Consequently,
the variance of the apparent moduli is very small and, as
discussed at the beginning of the section, the reduction in the
compressibility contrast also diminishes the boundary effects.
In fact, a difference of 0.5 GPa is larger than the difference
in apparent moduli between the smallest and largest domain

sizes in the high-frequency limit. Hence, for an absolute error
of 0.5 GPa, the REV size at high frequencies appears to be
negligible.

D I S C U S S I O N

Our results indicate that the overall statistical properties of
the considered fracture distributions can be described with
reasonable accuracy of the apparent moduli for computation-
ally feasible REV sizes. We have limited the analysis to dis-
placement boundary conditions, which only provide an up-
per bound on the effective properties. The decrease in the
mean moduli with an increasing domain size does, however,
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Figure 9 REV sizes for five realizations and an absolute error of
0.5 GPa as function of frequency for the P-wave moduli.

provide indications with regard to the convergence rate to the
effective properties (Fig. 10). It remains to be seen how large
the REV size has to be to obtain effective properties of the
medium that are independent of the applied boundary condi-
tions. This will be investigated in a future study considering
stress boundary conditions, which provide a lower bound on
the effective properties.

Furthermore, for the length distribution case, the simple
scaling seems to be no longer applicable. This might be due
to the fact that changes of scale are not additive in general.
Another reason might be that the domain sizes of 0.09 m2

and 0.36 m2 are too small for the largest fracture length of

9.8 cm, which corresponds to scaling parameters δ of 3.125
and 6.25, respectively. For comparison, Saenger and Shapiro
(2002) have shown that in the case of pennyshaped cracks
finite-size effects become sufficiently small for δ larger than 7.
Interestingly, the scaling law seems to hold for the orthogonal
case with scaling parameters δ of 3.125 and 6.25, although
we observe the largest difference between the average moduli
of the three domain sizes.

Another aspect which has to be taken into account to
obtain meaningful effective properties by volume averaging
are the restrictions on the modelling domain. In our study,
the wavelengths of the P- and S-waves become smaller than
the largest domain size larea at frequencies of ∼ 400 Hz and
∼ 300 Hz, respectively, and thus violate the upper limit
larea � λ. At higher frequencies, a wave travelling through
such a medium scans the entire medium, but it is only sen-
sitive to a certain part of the medium at any given point in
time. Conversely, the response of the stress and strain fields
to an oscillatory displacement takes place everywhere in the
medium at once but is confined to the immediate vicinity of the
heterogeneities. If the stress and strain fields are ergodic, i.e.,
if ensemble averaging (passage of the wave) and volume aver-
aging (oscillatory test) are interchangeable, both approaches
should lead to the same effective properties as long as the con-
sidered frequencies are below Biot’s critical frequency and no
scattering effects occur.

The combined statistical and numerical approach allows
us to estimate REV sizes of the frequency-dependent stiffness
coefficients. In general, the REV size depends on the physical
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Figure 10 Relative difference of (a) the P-wave modulus and (b) the S-wave modulus with respect to the largest domain size (S3) as functions
of the domain size.

property as shown for the P- and S-wave moduli. Hence, the
REV size for the attenuation might differ from the estimated
sizes for the stiffness coefficients. However, an extension
of the analysis for attenuation is not straightforward since
one would need to estimate its point variance that cannot
be obtained analytically. The problem already arose for the
P-wave modulus that can only be represented by a two-phase
medium in the dry case and high-frequency limit. Both of
these approximations provide very similar estimates of the
REV size (Fig. 6), which does however not guarantee that we
adequately capture the variability of the medium at the meso-
scopic scale. The frequency-dependent fracture compliance
depends on the state of the fluid pressure in the entire medium
and thus on the properties of the background medium. A more
suitable approximation of the point variance and its changes
with frequency might thus be obtained from the simulated
stress fields. This would open an avenue towards studying the
variability of the real and imaginary parts of the stress field,
which in turn are linked to the dispersion and attenuation
of the coefficients. Furthermore, it has to be clarified if
the assumption of stationarity holds for the complex stress
fields.

In this study, we considered 2D numerical models under
plane strain conditions. This is equivalent to corresponding
3D media with infinite fracture planes in the third dimension,
i.e., outside the 2D modelling plane. Furthermore, we assumed
a uniform distribution of fracture centres for parallel and or-
thogonal fracture sets. In spite of their simplicity, these frac-
ture networks still provide insights into the upscaling problem
of water-saturated fractured media, and this represents a first
step towards the estimation of effective frequency-dependent
moduli of more realistic fracture networks.
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APPENDIX

BOUNDARY CONDITIONS

To estimate the frequency-dependent stiffness coefficients, we
solve Biot’s 1941 quasi-static poroelastic equations (1)–(4)
using the following displacement boundary conditions. The
computational domain is given by � = [0, Lx] × [0, Lz] with
the boundary  = L ∪ B ∪ R ∪ T, where

L = {(x, z) ∈ � : x = 0} , (A-1)

R = {(x, z) ∈ � : x = Lx} , (A-2)

B = {(x, z) ∈ � : z = 0} , (A-3)

T = {(x, z) ∈ � : z = Lz} . (A-4)

The boundary conditions for the two compressional tests are
given by

u · ν = −�u , (x, z) ∈ T ,

u · ν = 0, (x, z) ∈ L ∪ R ∪ B (Test 1) , (A-5)

u · ν = −�u , (x, z) ∈ R ,

u · ν = 0, (x, z) ∈ L ∪ T ∪ B (Test 2) , (A-6)

w · ν = 0 , (x, z) ∈  , (A-7)

with the compatible condition

(σν) · χ = 0 , (x, z) ∈  , (A-8)

where ν and χ denote the unit outer normal and unit tangent
on  so that {ν, χ} is an orthonormal system on . The third
test is a pure shear test with the following boundary conditions

u · χ = �u , (x, z) ∈ T ∪ B , (A-9)

u · ν = �u · x , (x, z) ∈ T ∪ B , (A-10)

u · ν = �u · z , (x, z) ∈ L ∪ R , (A-11)

u · χ = �u , (x, z) ∈ L ∪ R, (A-12)

w · ν = 0 , (x, z) ∈ , (A-13)
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