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It is often supposed that a protein’s rate of evolution and its amino acid content are determined by the function and
anatomy of the protein. Here we examine an alternative possibility, namely that the requirement to specify in the
unprocessed RNA, in the vicinity of intron–exon boundaries, information necessary for removal of introns (e.g., exonic
splice enhancers) affects both amino acid usage and rates of protein evolution. We find that the majority of amino
acids show skewed usage near intron–exon boundaries, and that differences in the trends for the 2-fold and 4-fold
blocks of both arginine and leucine show this to be owing to effects mediated at the nucleotide level. More specifically,
there is a robust relationship between the extent to which an amino acid is preferred/avoided near boundaries and its
enrichment/paucity in splice enhancers. As might then be expected, the rate of evolution is lowest near intron–exon
boundaries, at least in part owing to splice enhancers, such that domains flanking intron–exon junctions evolve on
average at under half the rate of exon centres from the same gene. In contrast, the rate of evolution of intronless
retrogenes is highest near the domains where intron–exon junctions previously resided. The proportion of sequence
near intron–exon boundaries is one of the stronger predictors of a protein’s rate of evolution in mammals yet
described. We conclude that after intron insertion selection favours modification of amino acid content near intron–
exon junctions, so as to enable efficient intron removal, these changes then being subject to strong purifying selection
even if nonoptimal for protein function. Thus there exists a strong force operating on protein evolution in mammals
that is not explained directly in terms of the biology of the protein.
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Introduction

Why do some parts of proteins evolve more slowly than
others? Why, in turn, do some proteins evolve more slowly
than others? Intragenic conserved regions are typically
considered to reflect domains of functional importance to
the protein [1]. Similarly, proteins with a high density of
important functional sites should evolve slowly. There are,
however, potentially multiple other correlates to rates of
protein evolution [1]. The expression parameters of a gene
(rate of expression, protein abundance, and number of tissues
in which a gene is expressed) are consistently reported to be
important predictors [2–5]. This may in part reflect selection
to resist mistranslation [6]. Other possible covariates include
essentiality and the number of protein interactions, but the
issues here are more contentious, not least because of
covariance with expression parameters [7–17]. Here we test
the hypothesis that selection acting to ensure that introns are
correctly removed skews amino acid content in predictable
ways and imposes constraints on rates of protein evolution.

In mammalian genes, which are rich in introns [18], correct
removal of introns often requires the presence, in the
flanking exons, of splice-enhancer domains, these being short
(six nucleotide) blocks required for binding of serine/
arginine-rich proteins [19]. The need for splice enhancers
can impact the use of synonymous codons in the domains
flanking intron–exon junctions, such that when a synonymous
codon is used commonly in splice enhancers it is preferred
over its less commonly used synonym [20,21]. Moreover,
selection to preserve splice enhancers affects both the
synonymous single nucleotide polymorphism profile [22,23]

and the rate of evolution at synonymous sites of splice-
enhancer-associated domains [24].
Might the same forces also act to cause skews in amino acid

usage in the vicinity of intron–exon junctions? In a
preliminary analysis, we showed that there is a tendency for
enrichment near boundaries of an amino acid whose codons
are common in splice enhancers: lysine is coded by AAA and
AAG, both of which are common in splice enhancers, and at
both 59 and 39 ends of exons, lysine’s proportional usage
increases [24]. Is it more generally the case that an amino
acid’s usage increases near intron–exon junctions if it
commonly features in splice enhancers? Conversely, are some
amino acids avoided near such boundaries if they are rare in
splice-enhancer domains? To address these issues, we derive
patterns of amino acid preference in the vicinity of intron–
exon boundaries and compare these patterns with a metric of
enrichment of amino acids in splice enhancers relative to
rates of usage in the genome. In turn, we ask whether selective
constraints are stronger near intron–exon boundaries, and
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whether such constraints explain much of the variation
between proteins in their rate of evolution.

Results

Amino Acid Preferences near Intron–Exon Junctions Are
Common

For 178,382 human exons we considered the trends in
amino acid composition as one approaches the intron–exon
boundary, as assayed by the rank correlation, rho, between
distance from the boundary and proportional usage of the
amino acid. Considering the 2-fold and 4-fold blocks of the 6-
fold degenerate amino acids as different groupings, we found
that of 46 independent comparisons (23 amino acid groups 59

and 39 prime), 34 showed significant trends for enrichment or
avoidance near intron–exon boundaries (Table 1). After
Bonferroni correction 26 remained significant (with 46
comparisons p , 0.001 indicates significance). For all plots
for individual amino acids see Figure S1. We repeated the
analysis for 115,466 exons from 14,005 mouse genes and
found that patterns of preference are strikingly similar
between the two species (Table 1). In mice, 34 amino acids
again showed significant trends, and the correlation of rho
values for 46 comparisons in mice versus human was
extremely high (Pearson product moment correlation, r ¼
0.96, p , 0.0001).

Do these effects necessarily relate to the nucleotide content
of the codons, as the splice-regulation model requires? One
might conjecture instead that these effects reflect some
coincidence of exon boundaries with protein substructures
having unusual amino acid contents. Several facts strongly
support the hypothesis that the trends seen are at least in part
driven by effects at the nucleotide level. Notably, while the 2-
fold block of arginine (amino acid r in Table 1) was strongly
preferred near boundaries at both 39 and 59 ends, the 4-fold
redundant block (amino acid R) showed the reverse pattern.
A comparable difference was seen for the 2-fold (amino acid
l) and 4-fold (amino acid L) blocks for leucine. The same
pattern was seen in mouse genes. A preference for certain

amino acids, regardless of the nucleotide content of their
codons, would not have predicted this.

Amino Acid Preferences near Intron–Exon Junctions Are
Predicted by Involvement in Splice-Enhancer Domains
If splice-enhancer domains impact amino acid usage near

intron–exon boundaries, we expect that those amino acids
preferred in splice enhancers should be preferred near
junctions (i.e., rho , 0). To test this we developed a metric of
involvement of codons in splice-enhancer hexamers, which
we term the hexamer preference index (HPI). Using
hexamers found both in mouse and human to define the
HPI (and ignoring 39 and 59 differences), we found a striking
predictability of patterns of preference near boundaries
(Spearman rank correlation between HPI and rho for
preference/avoidance near boundaries, rho ¼ �0.54, p ,

0.0001, n ¼ 46). As an alternative to rho, we can employ the
slope of the best-fit regression line between proportional
usage of an amino acid and distance from intron–exon
junctions. A negative slope, like a negative rho, indicates
preferential usage near junctions. Using this slope on the
best-fit regression line revealed, as expected, the same trend
(Spearman rank correlation, slope versus HPI ¼�0.57, p ,

0.0001; Figure S2). The trend for preference of high HPI
amino acids near boundaries was also seen in mice (e.g., using
mouse–human overlap set of hexamers, correlation of rho
with HPI¼�0.49, p¼ 0.0005; correlation of slope with HPI¼
�0.52, p ¼ 0.0002).

These results are not greatly affected by considering 59 and
39 ends separately (Spearman rank correlation between rho 59

and HPI 59 using human 59-specific hexamers ¼ �0.59, p ¼
0.003, n ¼ 23, Figure 1A; between rho 39 and HPI 39 using
human 39-specific hexamers¼�0.57, p¼ 0.004, n¼ 23, Figure
1B). This is reflected in the fact that trends in usage (rho) and
patterns of HPI are similar 59 and 39 (Pearson correlation, r,
between rho 59 and rho 39 for the 23 amino acid classes¼0.80,
p , 0.0001; Pearson correlation between HPI 59 and HPI 39

for the 23 amino acid classes ¼ 0.95, p , 0.0001).
One might suppose that our measure of HPI might be

biased by incomplete knowledge of enhancers. We can
control for this, in part, by recognizing that splice enhancers
tend to be adenine rich and cytosine poor. Consider then the
composite measure AC bias ¼ frequency of adenine in
synonymous codon set – frequency of cytosine. For example,
in the 4-fold degenerate set for alanine (GCN), of the 12 bases
in four possible synonymous codons, adenine and thymine
both featured 1/12 of the time, and guanine and cytosine both
featured 5/12 of the time. So AC bias for alanine is 1/12� 5/12
¼ �1/3. This AC bias was a robust predictor of preference/
avoidance near boundaries (Spearman rank correlation, AC
bias versus rho ¼�0.67, p , 0.0001) (Figure 2). Avoidance of
cytosine in the synonymous codons appeared to be a
somewhat stronger predictor of patterns of avoidance or
preference of amino acids than was preference for adenine
(Spearman rank correlation, cytosine content of codons
versus rho ¼ 0.67, p , 0.0001; adenine content of codons
versus rho ¼�0.37, p ¼ 0.01). Neither thymine nor guanine
content showed any trends (p .. 0.05). These results suggest
that the general profile of enhancers and the specifics
employed to define HPI are about equally good predictors
of patterns of preference/avoidance.

Author Summary

Most of the DNA in our genes is actually not involved in the
specification of proteins. Rather, the bits with the protein-coding
information (exons) are separated from each other by noncoding
bits, introns. Before a gene can be translated into protein these
introns are removed and the exons are spliced back together to be
translated into protein. While information about which DNA to
remove is largely in the introns themselves, parts of the exons near
the intron–exon boundary can, for example, function as splice
enhancer elements. In principle, then, these parts of exons have two
functions: to specify the amino acids of the resulting protein and to
enable the correct removal of introns. What impact might this have
on a gene’s evolution? We show that near intron–exon boundaries,
amino acid usage is biased towards nucleotides involved in splice
control. Moreover, these parts of genes evolve especially slowly.
Indeed, we estimate that a gene with many exons would evolve at
under half the rate of the same gene with no introns, simply owing
to the need to specify where to remove introns. Likewise, genes that
have lost their introns evolve especially fast near the former intron’s
location. Thus, human proteins may not be as optimised as they
could be, as their sequence is serving two conflicting roles.
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Rates of Evolution Are Reduced near Intron–Exon
Boundaries and in Genes Rich in Introns

The above results suggest that selection acts to prefer
nucleotides that permit efficient intron removal. Does this in
turn affect rates of protein evolution? Were there such an
effect, we should expect that smaller exons should evolve
more slowly, as a higher proportion of sequence is near (e.g.,
within 70 bp) boundaries. Indeed, from a set of 36,683
mouse–human aligned exons, we found that small exons do
tend to have low rates of evolution (Spearman rank
correlation between the number of nonsynonymous substi-
tutions per nonsynonymous site [KA] and exon length, rho¼
0.15, p , 0.0001). This might, however, be owing to a trend for
genes with small exons to be disproportionately in functional
classes of protein that have intrinsically low rates of
evolution. To control for this we considered, for all genes
with more than two internal exons, the Spearman rank
correlation between exon KA and the size of the exon. As each
correlation coefficient is derived from a given gene, between-
gene variation in KA (and indeed the number of synonymous
substitutions per synonymous site [KS]) is controlled for in
any such analysis. If splice control impacts rates of exon
evolution we expect that on the average this correlation
should be positive, while the null hypothesis, that small exons
have low rates of evolution because they derive from classes
of genes with intrinsically low KA, predicts a mean rho of
zero. The distribution of rho was very strongly skewed to
positive values (median rho¼þ0.14, Wilcoxon rank test, p ,

0.0001, n ¼ 3,629). Restricting analysis to genes with ten or
more exons only strengthened this conclusion (median rho¼
þ0.16, p , 0.0001, n ¼ 1,286).

Is there also a trend for lower rates of evolution near
boundaries? Using all exons, asking about the proportion of
all sites a given distance from a boundary (59 or 39) in which
we see a nonsynonymous change, we observed the predicted
low rate of amino acid evolution near boundaries (Spearman
rank correlation, proportion of aligned sites showing non-
synonymous change versus distance from boundary, rho ¼
0.955, p , 0.0001) (Figure 3, circles). Might this result simply
be an artefact of the possibility that small exons might both
come disproportionately from a class of slow-evolving genes
and contribute more data to the estimate of divergence near
the exon–intron junctions than they do to the more distant
sites? To control for this, we again considered divergence
rates within 40 codons of boundaries (59 and 39) but
considered only the 1,836 exons that are at least 80 codons
long. This way all exons contribute approximately the same
amount of data at all distances from the junction. We found
that the lower rate of evolution near the boundary remained
highly robust (rho ¼ 0.7685, p , 0.0001) (Figure 3, squares).
Note, however, that absolute rates of evolution, at any given

distance from the boundary, were higher in this long exon set.
This is consistent either with reduced density of splice-
control elements near boundaries in long exons or with a
splice-unrelated force acting more profoundly on long exons.
There is good evidence for the former. When we examined

Table 1. Trends in Avoidance of (rho . 0) or Preference for (rho , 0) Amino Acids as a Function of Distance from the Intron–Exon
Junction

Amino Acid DPI HPImh 59 39

Human Mouse Human Mouse

rho p rho p HPI rho p rho p HPI

A 2.535 �5.81 0.866 1.36E�07 0.8118 4.81E�07 �4.89 0.661 4.32E�05 0.6404 8.63E�05 �5.35

C �3.18 �3.92 0.095 0.59 �0.187 0.30 �2.83 0.140 0.436 0.0495 0.78 �3.99

D 6.664 2.596 �0.499 0.0035 �0.496 0.0037 1.852 �0.578 0.0005 �0.59 0.0004 2.85

E 20.07 13.69 �0.642 8.31E�05 �0.636 9.87E�05 8.125 0.125 0.48 0.0996 0.58 12.42

F �12.4 �2.53 �0.520 0.002 �0.652 5.97E�05 �2.2 �0.757 1.40E�06 �0.768 1.07E�06 �2.4

G �17.1 �1.33 �0.058 0.75 0.1624 0.36 �0.57 0.301 0.0886 0.3168 0.073 �2.06

H 0.528 �3.39 0.607 0.0002 0.6628 4.08E�05 �1.49 �0.202 0.26 �0.194 0.28 �3.85

I 1.211 �1.83 �0.830 3.54E�07 �0.784 7.71E�07 �1.57 �0.839 2.88E�07 �0.783 7.85E�07 �1.1

K 17.23 13.93 �0.881 6.95E�08 �0.88 7.61E�08 10.28 �0.936 0 �0.891 3.48E�08 12.45

L �1.1 �5.83 0.279 0.115 0.2102 0.24 �3.91 0.505 0.003 0.1705 0.34 �5.4

M 5.054 3.471 �0.628 0.00013 �0.528 0.0018 3.358 �0.446 0.00980 �0.53 0.0018 1.943

N 8.652 4.355 �0.582 0.0005 �0.699 1.09E�05 2.625 �0.590 0.0004 �0.572 0.00063 5.846

P �1.03 �5.83 0.617 0.00018 0.618 0.00017 �4.14 0.660 4.42E�05 0.6731 2.83E�05 �5.43

Q 7.914 1.758 0.874 9.77E�08 0.8078 5.14E�07 0.186 0.440 0.011 0.5084 0.0028 3.941

R �1.2 �3.81 0.875 9.34E�08 0.9358 0 �2.96 0.959 0 0.8971 1.59E�08 �3.89

S �1.91 �3.41 0.476 0.005 0.4174 0.016 �1.58 0.450 0.0091 0.4856 0.0046 �2.82

T 6.044 �0.27 0.723 4.45E�06 0.5993 0.0003 �0.14 �0.257 0.15 �0.109 0.54 1.698

V �23.8 �5.7 �0.175 0.33 �0.293 0.010 �3.29 0.391 0.025 0.4081 0.0191 �5.35

W �1.42 1.253 �0.069 0.71 �0.238 0.18 2.002 �0.125 0.49 �0.153 0.392 0.32

Y �3.22 �3.55 �0.055 0.759 �0.443 0.01 �1.32 �0.376 0.033 �0.218 0.222 �2.89

l �17.4 �2.47 �0.958 0 �0.951 0 �1.2 �0.728 3.67E�06 �0.805 5.41E�07 �2.79

s �1.26 �1.56 0.795 6.32E�07 0.7985 5.98E�07 �2.85 0.791 6.75E�07 0.877 8.63E�08 �1.6

r 12.41 13.15 �0.696 1.22E�05 �0.582 0.00050 9.352 �0.840 2.84E�07 �0.717 5.54E�06 10.17

Also specified is the HPI for each amino acid using hexameric data specific to human exonic ends (HPI) and, alternatively, using the set of hexamers reported in both mouse and human
regardless of end (HPImh). The figures for HPImh were derived using human codon frequencies as expected. Using mouse frequencies shows a highly similar pattern (Pearson r between
HPImh using human versus mouse codon frequencies, r ¼ 0.999). rho and p were calculated from Spearman rank correlation with 31 degrees of freedom (i.e., from 33 data points,
representing the codons up to 34 away from the boundary but excluding the first). DPI is the comparable index but for decameric splice suppressors.
doi:10.1371/journal.pbio.0050014.t001
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the density of putative exonic splice enhancers (ESEs) in the
exon span within 100 bp of a boundary at either end (or all of
the exon in the case of exons shorter than 200 bp), we found a
robust negative correlation between enhancer density and
exon size (rho ¼ �0.18, p , 0.0001). Comparably, when we
considered exons longer than 200 bp to be long exons and
those shorter than this to be short exons, we found that ESEs
occupy a median of 31% of the short exons, but only 21% of
the 200 bp near the boundaries (100 bp 59 and 100 bp 39) of
the long exons. This is consistent with the idea that there is
less space in short exons to pack in the information necessary
to enable proper splicing.

As expected, KA was lower in ESEs than in nonenhancers
(Figure 4) (see also [24]). This was also true if we restricted
analysis to exons longer than 200 bp (paired test, p , 0.0001)
(Figure S3). These results tally with the finding that genes with
long introns tend to have low rates of evolution [12], as exons
flanked by long introns tend to be richest in ESEs [25].

As expected from the above results, genes with a high
proportion of sequence within, for example, 70 bp of an
intron–exon junction showed lower KA (Table 2; Figure 5).
Using alternative bounds (50 or 100 bp) did not qualitatively
affect conclusions (Table 2). The difference between a gene
with all sequence within 70 bp of exon boundaries and one
with very little (,10%) was striking (mean KA ¼ 0.032 for
those with small exons and 0.083 for those with less than 10%
of sequence near junctions). Were all things equal, this result
suggests that the rate of evolution of an intron-rich gene is on
average approximately under 40% that of an intron-poor
gene.

It is, however, unlikely that all things are equal. To allow for
this, we performed a paired test. For each gene we
concatenated all sequences in the alignment flanking (within
72 nucleotides) intron–exon boundaries, both 59 and 39, and
concatenated all of the middle sections of exons (defined as
anything beyond 72 nucleotides). As before we considered
only internal exons. We then calculated KA for the con-
catenated flanks and the concatenated middle sections and
considered the gene-specific ratio of the two. We then
considered the mean of the gene-specific ratio for all genes.

By necessity we had to eliminate all genes with no exon
larger than 144 bp, leaving 3,058 genes. Moreover, as accurate
estimation of KA probably requires a minimum of 100
codons, we restricted analysis to those genes with at least
300 bp in the concatenated flanks and in the concatenated
middle of exons. We found that the mean ratio of the rate of
evolution (KA) of the middle part of exons to the flanks within
the same gene was 1.93 (Wilcoxon signed rank test, p ,

0.0001, n¼ 666). Requiring at least 600 bp in both flanks and
middle sections, the middle was estimated to evolve 2.3 times
faster than the flanks. When we considered the exon flanks to
be 102 bp, the mean ratio of middle to flank was 2.5 when
requiring a minimum of 300 bp in each class (n ¼ 368).
Requiring a minimum of 600 bp, the middle parts of exons
evolved on average 2.7 times faster than the exon flanks from
the same genes (n ¼ 167). Overall, then, it seems safe to
conclude that exon centres evolve at about 2.3 times the rate
of exon flanks from the same gene, the precise estimate
depending on parameter choices.
These results demonstrate that exon flanks evolve more

slowly than exon centres, regardless of the functional class of
the protein. The mean KA of flanking domains was around
0.04 in the above samples. A gene with short exons should
then have approximately a KA of 0.04, controlling for
between-gene heterogeneity. By contrast one with 90% of
sequence not near boundaries should have a KA of on average
around 0.086, assuming exon centres of such long exons
evolve 2.3 times faster than flanks (0.0432.330.9þ0.0430.1
¼ 0.086). Controlling then for functional class, we estimated
that a gene with all sequence near intron–exon boundaries
should evolve at about 46% (0.04/0.086) the rate of one with
proportionally little sequence near boundaries.
This estimate can be downwardly adjusted if we consider

that some of the genes with long exons have more than 90%
of sequence near boundaries: at the limit intronless genes
should evolve with KA ffi 0.092, i.e., at 2.3 times the rate of
small exon genes. Likewise, if our estimate of the ratio of
rates of evolution is higher, then the discrepancy between
intron-poor and intron-rich genes will be greater. Using the
2.7 ratio, for example, intron-rich genes evolve at 37% of the

Figure 1. The Relationship between Tendency for an Amino Acid to Be Preferred near Exon–Intron Junctions (rho , 0) or Avoided (rho . 0) and the HPI

(A) 59 exonic ends and (B) 39 ends.
doi:10.1371/journal.pbio.0050014.g001
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rate of intronless genes, controlling for protein function.
Equally, the estimate can be upwardly adjusted if we presume
a more modest ratio of rates of evolution of internal parts of
exons to flanks. Overall, it seems fair to suppose that
constraints imposed in the proximity of intron–exon boun-
daries can reduce the rate of evolution of a gene by a half or
more, if the gene is full of small exons rather than lacking
introns. That this is similar to the prior estimate, not
controlling for between-gene heterogeneity, suggests that
selection on exon flanks is a major determinant of rates of
evolution.

Comparing Constraints Owing to Splicing with Other
Correlates of Rates of Evolution

How does the effect of selection in the vicinity of intron–
exon junctions compare with and covary with other strong
predictors of rates of protein evolution? In principle any
relationship between rate of protein evolution and propor-
tion of sequence near a boundary might in part be because
genes with many introns tend to be housekeeping genes [26],
and housekeeping genes (those expressed in many tissues)
tend to have low rates of evolution [4,27,28]. The two
parameters (expression breadth and proportion of sequence
near boundaries) both appear, however, to be good predic-
tors when controlling one for the other (Table 2). Use of
alternative metrics of gene expression (mean rate and peak
rate) (see Table 2) make no qualitative difference to the
conclusion that, before and after control for covariates, the
proportion of sequence near intron–exon junctions is at least
as strong a predictor of rates of evolution as expression
parameters, if not stronger.

After expression parameters, the dispensability of a protein
may, in mammals, also be a good predictor [12]. From a
sample of 1,198 mouse genes for which knockout experiments
have resolved whether they are essential or not, and for which
we have orthologues, we can ask whether essential and
nonessential genes (a) differ in their proportion of sequence
near intron–exon junctions and (b) differ in their rate of
evolution. Confirming the prior report [12], we found that
essential proteins evolve at about two-thirds the rate of

nonessential ones (mean KA for nonessential proteins, 0.07;
for essential proteins, 0.049; p , 0.0001, Mann-Whitney U
test). However, the two classes are no different as regards the
proportion of sequence near intron–exon boundaries (mean
proportion of sequence near boundaries for nonessential
proteins, 0.618; for essential proteins, 0.607; p ¼ 0.67, Mann-
Whitney U test). There is, therefore, no reason to suppose
that the lower rate of evolution of genes with much sequence
near intron–exon boundaries is owing to their being more
likely to be essential. Equally, there is no reason to suppose
that the lower rate of evolution of essential genes is owing to
their having more sequence near intron–exon boundaries.
Note too that the difference in evolutionary rate between
essentials and nonessentials is more modest than that
between genes with high and low proportion of sequence
near intron–exon junctions. The majority of our sample is of
unknown dispensability. These genes have a mean KA of
0.059, more or less as expected, given the means for the
essential and nonessential genes and assuming that 30% of
mouse genes are essential [12].

Retrogenes and Loss of Selective Constraint near Intron–
Exon Junctions
Let us now consider two models for what might happen

after a new intron has been inserted. In the first, a new intron
might be favoured only if enough splice-enhancer domains in
adequate proximity are already present to enable efficient
removal of the intron (model 1). An alternative model (model
2) might suppose that immediately after introduction of a
new intron, proper excision, owing to a dearth of local splice
enhancers, is not always possible. If, then, some transcripts
preserve the original mRNA by proper excision, but others
fail to so do, the new intron would effectively reduce the rate
of protein production for a given transcription rate. Such a
mutation might be weakly deleterious such that fixation
through drift is still possible. Selection may then favour shifts
in amino acid usage to enable more efficient splicing. The
second model is especially interesting as it suggests that intra-
protein amino acid usage is not dictated simply by protein
requirements alone.

Figure 2. AC Bias in the Codon Set of a Given Amino Acid and Its Relationship to Amino Acid Usage near Exon–Intron Junctions

(A) 59 exonic ends and (B) 39 ends.
doi:10.1371/journal.pbio.0050014.g002
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Both models predict that should enhancer domains be
employed, they may then be under selection to preserve
functionality. Both also predict that amino acids that feature
commonly in the hexameric sequences describing splice
enhancers should be more common near intron–exon
junctions, as observed. How they differ is in the prediction

of subsequent evolution following gain/loss of introns. Model
1 supposes that if an intron inserts but is not successfully
removed owing to a dearth of splice-enhancer domains in the
near vicinity, the insertion may simply be too deleterious to
be tolerated and is hence lost from the population. By
contrast, model 2 considers the possibility that compensatory
nonsynonymous changes can further occur that permit more
efficient intron removal.
To discriminate these two classes, one needs a sufficiently

sized dataset of intron losses or gains in humans. Unfortu-
nately, intron gain appears to be vanishingly rare in humans
and mammals more generally. However, functional retro-
posed genes do provide a means to ask about the con-
sequences of intron loss. Is it then the case that, after
retroposition, the residues that, in the original parental copy
of the gene, flanked intron–exon junctions are more prone to
change?
We examined a set of 49 old functional retroposed genes

for which, in all cases, there existed mouse and human parent
and retroposed sequences. For all sites in the alignment that
specified an amino acid in all four lineages, we considered the
proportion of retrogene-specific changes (see Materials and
Methods). We then considered how this varied as a function
of the distance from what was, in the parental gene, the
intron–exon boundary. Merging figures for 39 and 59 ends, we
found that the rate of evolution in retrogenes is higher close
to what was the boundary (Spearman rank correlation,
proportion of sites subject to change in retrogenes versus
distance from ancient boundary, rho ¼ �0.48, p ¼ 0.019)
(Figure 3). Moreover, retrogenes that are derived from genes
in which a high proportion of the sequence was near exon
boundaries (genes with predominantly small exons) tended to
have higher overall rates of evolution (proportion of parent
sequence 70 bp from boundary versus number of retrogene-
specific changes per base pair, rho¼þ0.38, p¼ 0.008, n¼ 49).
The difference in behaviour between genes that have lost

their introns and intron-containing genes (Figure 3) suggests
that constraints that exist near intron–exon boundaries have

Figure 4. Rate of Nonsynonymous Evolution as a Function of the Distance from an Intron–Exon Boundary for ESS and Non-ESS Sequence

The rate of evolution of sequences defined as part of ESSs (circles) and those not in enhancers (triangles) is shown as a function of the distance from
exon boundaries in the mouse–human analysis at (A) the 59 end of exons and (B) the 39 end of exons. To define putative enhancer sequence the mouse
and human sequence was matched to the set of species-specific, exon-end-specific set of hexamers. Any part of the alignment not found to be
enhancer in either species was considered nonenhancer. Any part of the alignment found to be enhancer in both was considered to be enhancer
sequence. As can be seen, exonic enhancer sequence evolves more slowly than nonenhancer. Given that functional splice enhancers are rare more than
100 bp from a boundary, it is expected that the further into the exon, the less the difference between enhancer and nonenhancer.
doi:10.1371/journal.pbio.0050014.g004

Figure 3. Rate of Nonsynonymous Evolution as a Function of the

Distance from an Intron–Exon Boundary

The proportion of informative sites in intron-containing genes showing a
nonsynonymous change in the human–mouse comparison (all exons,
circles; exons . 80 codons, squares), and the proportion of informative
sites in retrogene sequences showing retrogene-specific changes as a
function of distance from what was originally the exon–intron boundary
(black spots) and as a function of the distance from the real exon
boundary.
doi:10.1371/journal.pbio.0050014.g003
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been released in the retrogenes, and, hence, that these sites
are now free to change. This evidence, therefore, lends some
support to the converse possibility, namely that, after intron
insertion, exonic domains flanking the new boundary
changed, probably to permit better splicing. The result does
not specifically show that all the change involved the
evolution of new splice enhancers; however, with the data
showing that the HPI predicts trends in amino acid usage
near junctions and low nonsynonymous rates in ESEs (Figure
4) [24], this is likely to explain much of the effect.

Discussion

We have found that, in both mouse and human, most
amino acids show skewed usage in the vicinity of intron–exon
junctions. These patterns appear owing to preference at the
nucleotide level, as evidenced by the different behaviours of
the 2-fold and 4-fold blocks of leucine and arginine. To a first
approximation, the patterns are well explained by the
abundance of the relevant codons, relative to levels in the
genome, in splice enhancers. The preferences are also
reflected in reduced rates of evolution near intron–exon
boundaries and in intron-rich genes more generally. Indeed,
the proportion of sequence near intron–exon boundaries is,
to the best of our knowledge, one of the strongest predictors
to date of rates of protein evolution (for analysis of
alternatives see [12]). That in retrogenes the domains that
used to be near intron–exon junctions show increased rates
of evolution supports the view that intron–exon junctions are
domains on which constraint operates. Were it the case that
new introns are only tolerated if the full repertoire of splice-
control elements is already in place, we would not expect
that, on loss of introns, these domains would show unusually
high rates of evolution. Although by necessity our sample size

of retrogenes is small, we suggest that model 2, evoking
evolution to modify amino acid content after intron
insertion, is more parsimonious.
Whether the elements being preferred are necessarily and

exclusively splice enhancers remains uncertain. First, as can
be seen in Figure 4, sequence putatively not in enhancers is
more highly constrained near boundaries, at least at the 39

end. This suggests the possibility of constraint imposed near
boundaries independent of splice enhancers and/or inaccur-
acy in the definition of enhancers. Further, there are a few
strong outliers in the distribution of HPI versus preference
near boundaries (Table 1). In human sequences, of 46
comparisons, 14 fail to match with the expectation that if
HPI is negative, rho should be positive and vice versa, of
which nine are significant and six significant after Bonferroni
correction: I59, l59, Q59, F39, I39, and l39 (Table 1). Glutamine
(CAA and CAG) is unique in being preferred in splice
enhancers and avoided both 39 and 59 at boundaries. Three
amino acids are strongly preferred near boundaries (rho ,,

0) but disfavoured in splice enhancers (HPI , 0), these being
the 2-fold degenerate codons of leucine (TTA and TTG),
isoleucine (ATC, ATA, and ATT), and phenylalanine (TTC
and TTT). Tyrosine (TAC and TAT) may be a weaker outlier
(rho , 0 both 59 and 39, HPI , 0). The same outliers are seen
in mouse genes (Table 1).
Are these apparent exceptions instructive of some other

force driving amino acid choice near boundaries, or might
they reflect limitations in our understanding of splice-
enhancer hexamers? Were the latter the case we might expect
that a surrogate measure of involvement in splice enhancers
might reveal these exceptions to simply have poorly described
roles in splice enhancers. As noted above adenine and
cytosine content of the synonymous codon blocks of each
amino acid well predicts HPI (Figure 2). Fitting the best-fit

Table 2. Correlations and Partial Correlations between Rate of Protein Evolution (KA or KA/KS), Proportion of Sequence within 50, 70, or
100 bp of an Intron–Exon Junction, and Measures of Expression of the Relevant Gene in Humans

X Y Z rXY rXYjZ pXYjZ rXZ rXZjY pXYjZ rYZ

KA Proportion 50 Breadth �0.1984 �0.1603 1.00E�04 �0.2019 �0.1647 1.00E�04 0.2250

KA Proportion 50 Median �0.2055 �0.2015 1.00E�04 �0.0942 �0.0849 1.00E�04 0.0549

KA Proportion 50 Peak rate �0.2055 �0.2037 1.00E�04 �0.0368 �0.0246 0.12669 0.0621

KA/KS Proportion 50 Breadth �0.2064 �0.1719 1.00E�04 �0.1858 �0.1462 1.00E�04 0.2250

KA/KS Proportion 50 Median �0.2175 �0.2140 1.00E�04 �0.0827 �0.0726 1.00E�04 0.0549

KA/KS Proportion 50 Peak rate �0.2175 �0.2165 1.00E�04 �0.023 �0.0097 0.32067 0.0621

KA Proportion 70 Breadth �0.2007 �0.1639 1.00E�04 �0.2019 �0.1654 1.00E�04 0.2181

KA Proportion 70 Median rate �0.2066 �0.2015 1.00E�04 �0.0942 �0.082 1.00E�04 0.0685

KA Proportion 70 Peak rate �0.2066 �0.2046 1.00E�04 �0.0368 �0.0219 5.00E�04 0.0748

KA/KS Proportion 70 Breadth �0.2115 �0.1783 1.00E�04 �0.1858 �0.1464 1.00E�04 0.2181

KA/KS Proportion 70 Median rate �0.2219 �0.2175 1.00E�04 �0.0827 �0.0694 0.00060 0.0685

KA/KS Proportion 70 Peak rate �0.2219 �0.2208 1.00E�04 �0.023 �0.0066 0.3817 0.0748

KA Proportion 100 Breadth �0.2030 �0.1646 1.00E�04 �0.2019 �0.1633 1.00E�04 0.2278

KA Proportion 100 Median �0.2068 �0.1989 1.00E�04 �0.0942 �0.0747 0.00030 0.104

KA Proportion 100 Peak rate �0.2068 �0.2041 1.00E�04 �0.0368 �0.0152 0.23318 0.1065

KA/KS Proportion 100 Breadth �0.2138 �0.1793 1.00E�04 �0.1858 �0.1441 1.00E�04 0.2278

KA/KS Proportion 100 Median �0.2227 �0.2160 1.00E�04 �0.0827 �0.0614 0.00220 0.104

KA/KS Proportion 100 Peak rate �0.2227 �0.2216 1.00E�04 �0.023 7.00E�04 0.4889 0.1065

The first three columns in each row indicate which variables are the X, Y, and Z variables. The subsequent columns indicate the correlations between X and the other two variables (rXY, rXZ)
and the partial correlation (rXYjZ indicates the partial of X versus Y controlling for Z). p-Values indicate the significance of the partial correlation determined by 10,000 randomizations.
Spearman rank correlation was employed throughout. The expression data were derived from Su et al.’s array-based analysis [35]. Breadth is the number of tissues in which a gene was
expressed (defined by presence/absence calls). The median rate for a gene is the median value of the signal sampled across all tissues in which the gene is considered to be expressed. The
peak rate is the highest level of expression for a given gene across all tissues. For the comparable data employing mouse expression data see Table S1.
doi:10.1371/journal.pbio.0050014.t002

PLoS Biology | www.plosbiology.org February 2007 | Volume 5 | Issue 2 | e140349

Splicing and the Evolution of Proteins



regression of AC bias to rho (using both 59 and 39 data), we
indeed find from inspection of the standardised residuals
(Figure S4) that, both 39 and 59, isoleucine and leucine usage
now sit within the 95% confidence intervals, as does phenyl-
alanine usage 59. However, phenylalanine usage 39 is a little
outside the line, as is glutamine 59 usage.

Another possibility is that the presence of exonic splice
suppressors may impact amino acid usage. Wang et al. [29]
have identified 131 decamers that function as splice
suppressors. We therefore adapted our method to calculate
a decamer preference index (DPI) to correspond with these
splice suppressors (Table 1). DPI and HPI are not themselves
correlated (for mouse–human set for HPI, Spearman rank
correlation between HPI and DPI ¼�0.05, p ¼ 0.7). Relating
DPI scores to either the slope or the rho values for amino acid
preference, we find only a marginal tendency for DPI to
explain amino acid preferences (Spearman rank correlation,
rho versus DPI, �0.27, p ¼ 0.07; slope versus DPI, �0.26, p ¼
0.07). Splice suppressors hence appear to have less impact on
amino acid usage than do splice enhancers. Taking a
combined measure, the mean of DPI and HPI, marginally
improves the fit between amino acid preference and involve-
ment in splice regulation (Spearman rank correlation
between mean of DPI and HPI and rho, �0.61, p , 0.0001;
for HPI alone, �0.54, p , 0.0001). AC bias remains a better
predictor. Involvement in splice suppressors may, however,
explain some of our apparent exceptions. Notably, phenya-
lanine and the 2-fold block of leucine, while having a negative
HPI, have a strongly positive DPI (9.8 and 14.9, respectively).
Similarly, glutamine, while having a positive HPI, has a
strongly negative DPI (�6.1). The converse roles of these
amino acids in splice enhancers and splice suppressors may
hence explain their apparently aberrant behaviour. Indeed,

on a plot of the mean of DPI and HPI these amino acids no
longer appear as outliers (Figure S5). Isoleucine remains an
exception, being negative for both HPI and DPI but preferred
near boundaries.
The only other model for selection near intron–exon

junctions, the so-called cryptic splice-site avoidance model
[21,30], does not predict any tendency for cytosine avoidance
near boundaries. The relevance of this model is unclear as
both AG[AjG] (arginine) and AG[CjT] (serine) appear to have
patterns of usage near boundaries at both 59 and 39 ends as
expected given their HPI scores, whereas the cryptic splice-
site avoidance model would predict avoidance at 59 ends. This
model cannot also obviously explain why 39 usage of
phenyalanine might be discordant.
One further striking peculiarity is notable. The profile of

usage of glycine (GGN) shows a curious pattern at both 39 and
59 ends (also seen in mouse, data not shown) (Figure 6): at
every third codon the usage is much higher than at the
intervening distances from the boundary. With the sample
sizes in question (;10,000 glycines at these positions), this is
not a sample-size artefact. The effect is highly repeatable,
being found regardless of the phase of the exon (Figure S6).
At both the 39 and 59 ends, it is found for all of the four (GGN)
codons when analysed separately, although it may be most
pronounced for GGA (data not shown). This appears to
reflect a pattern at the protein level, at least in part owing to
collagens, whereby glycines are very commonly three apart
(see Figure S7). Given that introns tend to prefer GjG
insertion sites, codons starting GG may well be hot spots for
insertion, potentially at all positions. This together with the
apparent periodicity in the occurrence of glycine might
explain the observations. We leave this to future analysis.
Whatever the cause, it points to a limitation of our method,

Figure 5. The Relationship between KA in the Mouse–Human Comparison and the Proportion of Sequence within 70 bp of an Exon–Intron Junction

Error bars show standard error of the mean. CDS, coding sequence.
doi:10.1371/journal.pbio.0050014.g005
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which assumes that trends towards boundaries are monotonic
and consistent. For the most part (see Figure S1) these
assumptions appear relatively sound, although 59 usage of
proline suggests a U-shaped function.

The hypothesis that the domains under constraint are
uniquely splice enhancers might also predict that amino acids
not having a role in splice enhancers tend to be gained in
retrogenes in boundary proximal domains. Unfortunately,
from a sample of 803 gains/losses for retrogenes and 229 in
parental genes in regions near intron–exon junctions (,30
codons), we find no amino acid showing statistically signifi-
cant differences between parental and retrogenes. However,
the top three most discordant amino acids (judged by the chi-
squared value) all show net gain in the retrogenes and net loss
in the parental genes, and, as might be predicted, are all
avoided in splice enhancers. These are the 4-fold block of
leucine (49 gains to 39 losses in retrogenes; nine losses to 18
gains in parental genes; chi-squared ¼ 4.13), histidine (20
gains to 13 losses in retrogenes; three gains to seven losses in
parental genes; chi-squared ¼ 2.89), and the 4-fold block of
serine (48 gains to 29 losses in retrogenes; 14 gains to 17 losses
in parental genes, chi-squared¼ 2.66; N.B., for three degrees
of freedom p , 0.05 occurs at chi-squared . 7). It would be
unwise to read too much into this observation, not least
because there are several other amino acids with strong
avoidance in splice enhancers that show no evidence of
switching substitutional profile (notably alanine, cysteine,
phenylalanine, and valine). No amino acids show any good
evidence for being gainers in the parental gene but losers in
the retrogene. Firmer conclusions regarding the patterns of
amino acid loss and gain will require larger sample sizes.

Given the outliers being possibly explained by splice-
suppressor roles and the strange behaviour of glycine, we do
not wish to suggest that the need for splice enhancers
determines all amino acid bias, nor all constraint, seen near
intron–exon boundaries. Constraints operating near intron–
exon boundaries not explained by splice enhancers may
nonetheless reflect selection on splice regulation of some
form (e.g., exonic splice suppressors). These caveats aside, it is
notable that constraints in the vicinity of intron–exon

boundaries appear to be one of the stronger, if not the
strongest, predictors of rates of protein evolution in
mammals. Naturally, for intron-poor genomes the same will
not apply.

Materials and Methods

Amino acid preferences near intron–exon junctions. We estab-
lished a dataset of 178,382 human exons derived from the RefSeq
track at the University of California Santa Cruz genome browser
(http://genome.cse.ucsc.edu/cgi-bin/hgTables), March 2006 release. We
obtained a set of 21,990 RefSeq files with the exon structure of the
CDS specified. All files were checked to ensure that the coding
sequence started with ATG, finished with a stop codon, had no
internal stop codons, had no codons of uncertain translation, and was
a multiple of three. This resolved to a dataset of 19,384 RefSeq files.
We eliminated all first and last exons, leaving a sample of 178,382
exons. We trimmed all exons so that the first base was the first base of
the first complete codon, and the last base the last of the final
complete codon. As, to ensure correct splicing, first and last codons
are by necessity highly skewed in usage, these too were eliminated.
For each codon and in turn each amino acid, we considered
proportional usage of that amino acid at a given distance from the
junction both 39 and 59. All exons were divided in two, so a given
codon never featured in both 39 and 59 calculations. This sample was
not purged for duplicates. However, we repeated the analysis on a
more stringently defined set of over 2,000 genes and 14,000 exons,
previously purged for duplicates [21]. We confirmed that all
qualitative trends are identical (data not shown).

We then considered the trend in usage of each amino acid as a
function of the distance from the boundary. This we did by calculating
Spearman rank correlations (rho) between the distance from the
boundary (59 or 39) and proportional usage of the amino acid (i.e., in
proportion to the number of residues at that given distance). Note
that a negative rho implies an amino acid that is preferred near
boundaries, and a positive rho implies a tendency to be avoided. To
simplify numbering on the plots, we refer to amino acid positions by
reference to the number of full codons between the given position and
the relevant end of the trimmed exon. We split the three 6-fold
degenerate amino acids into a block of four and a block of two. The
block of two is specified by the usage of the lowercase letter (i.e., ‘‘S’’
implies TCA, TCC, TCG, and TCT, while ‘‘s’’ implies AGC and AGT).
In relevant circumstances, the 2-fold and 4-fold blocks were treated as
separate amino acids. Changes between the 2- and 4-fold blocks were
not, however, treated as nonsynonymous changes.

Mouse–human orthologous exon set. As with the derivation of the
human exon set, we obtained a set of mouse exons via the RefSeq
track at the University of California Santa Cruz genome browser. For
analysis of trends in amino acid preference near junctions, these
exons were handled as described above. For analysis of orthologous

Figure 6. Glycine Usage as a Function of Distance from 59 and 39 Exonic Ends

(A) 59 and (B) 39 exonic ends.
doi:10.1371/journal.pbio.0050014.g006
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exons, we obtained the human–mouse orthologue list from Mouse
Genome Informatics (ftp://ftp.informatics.jax.org/pub/reports/index.
html). We identified all pairs for which both mouse and human
sequence had a RefSeq entry. As before, we eliminated all full coding
sequences that were not well translated (more than one stop,
ambiguous codons, etc.). We further eliminated those in which the
number of exons differed between the orthologues. We then
compared the phases of the putatively orthologous exons. Gene pairs
in which any orthologous exon did not have the same phase in mouse
and human were eliminated, leaving 7,767 genes. Any genes in which
any orthologous exon differed by more than 5% in size were also
eliminated, leaving 5,057 genes. First and last exons were removed,
and all remaining orthologous exons were trimmed to start at the
first full codon and end at the end of the last complete codon. They
were then aligned at the peptide level using muscle v3.6 [31]. This left
36,683 aligned orthologous internal exons.

HPI. Burge and colleagues have characterised numerous hexame-
ric sequences that function as splice enhancers [22,25,32,33]. For each
hexamer we can then define a series of full codons that could
potentially be present in the hexamer. If we consider a series of six
nucleotides, n1n2n3n4n5n6, then codons n1n2n3, n2n3n4, n3n4n5, and
n4n5n6 are specified in their entirety. We sum all such possible codons
for all specified splice-enhancer hexamers. This provides a measure
of ESE hexameric involvement of all possible codons, within any
given hexamer dataset. The three stop codons were removed, and the
proportions renormalised. To provide a metric of involvement of an
amino acid in ESEs, we compared rates of involvement of codons in
the hexamers with those in the genome as a whole. To this end, we
normalised (after stop codon removal) the relative abundances of all
codons as specified in the appropriate codon usage database (http://
www.kazusa.or.jp/codon). We then generated 10,000 sets of random
hexamers, each set being the same size as the input hexamer list.
Hexamers were generated by joining two codons selected at random
in proportion to their frequency in the appropriate genome. We
parsed each random hexamer in the same manner as we parsed the
input list, extracting all non-stop codons.

For each amino acid, given the frequencies of the relevant
synonymous codons, we then determined the mean and standard
deviation in relative abundance in the 10,000 random sets. The
difference between the observed frequency of an amino acid in the
real hexamer set and in the randomised sets, normalised by the
standard deviation in the randomised sets, then is our HPI (i.e., a Z
score). A high HPI value indicates that a given amino acid is enriched
in ESEs compared with what is expected given its content in the
genome, and given the underlying variance expected based on the
number of hexamers used as input. Source code to calculate HPI is
freely available from L. D. H.

In principle, the HPI score for an amino acid will change as a
function of both input codon frequencies and with the input set of
known ESE hexamers. In practice, we find that employing mouse
rather than human codon frequencies makes little or no difference
(data not shown). In this analysis we thus employed human codon
frequencies to assemble random hexamers. As regards the input list
for hexamers, we considered three sets: two sets specific to human 59
and 39 exonic ends (95 59 enhancers and 177 39 enhancers) and a set
of 175 hexamers found both in mouse and human at either exonic
end. We found that scores for 59 and 39 ends were very similar to each
other. Unless otherwise stated, we employed the mouse–human
conserved set. Use of this latter set is advantageous as it is most
probably enriched for strong enhancers.

The splice-enhancing hexamers in all datasets have two striking
features, notably an abundance of adenine and a dearth of cytosine,
relative to their usage in the human genome. In the human genome,
cytosine constitutes 26.0% of all nucleotides in coding sequences
(derived from table of codon usage as noted above) but only 12.5% in
splice enhancers, while adenine is 25.6% of all nucleotides in coding
sequences but is 49.0% of the nucleotides in splice enhancers. Guanine
is used in approximately the same amount in hexamers and in the
genome (26.4% in genome and 25.7% in hexamers). Thymine is, like
cytosine, underused in hexamers (12.4%), but its usage in the genome is
just 22.0%, so its relative reduction in hexamers is less dramatic than
that of cytosine. As expected, amino acids with few cytosine
nucleotides in their codon set and many adenine residues tend to
have positive HPI values (Spearman rank correlation, HPI versus
cytosine content of codons, rho¼�0.63, p¼0.0012; HPI versus adenine
content of codons, rho¼þ0.71, p¼0.0002, n¼23). A compositemeasure
of adenine and cytosine bias of codons (frequency of adenine in
synonymous codon set minus frequency of cytosine) is a good
predictor ofHPI (Spearman rank correlation¼0.85, p, 0.0001, n¼23).

For the DPI pertinent to splice suppressors we extracted the 131

decamers provided by Wang et al. [29] from http://www.cell.com/cgi/
content/full/119/6/831/DC1. The protocol to define DPI scores was
identical to that to calculate HPI, except that random decamers were
made by random selection of four codons and trimming off of the
final two bases. The eight full codons in the decamers were employed
to define expected frequencies.

Establishing a set of ancient functional retroposed genes. Mouse
retroposed gene copies were identified using the procedure
described in Vinckenbosch et al. [34]. For humans, we used a
previously established retrocopy dataset [34]. To identify orthologous
retrocopies shared between humans and mouse, we used human–
mouse chained alignments available from the University of California
Santa Cruz (hg17 versus Mm6). Similar to our previous procedure
[34], we first extracted the best alignments that overlapped with the
genomic location of human retrocopies and that were .15 kb (this
length ensures that the alignment also covers surrounding, nonretro-
copy-derived sequences in the two species). If no such alignments
could be identified, presence/absence in mouse was not determined.
We then scanned the chained alignments for an aligned block
(putative orthologous sequence in the chain) that overlapped with the
human retrocopy. If such a block was found, its corresponding mouse
coordinates were compared to the mouse retrocopy set. Mouse
retrocopies overlapping with these coordinates were considered
orthologues of human retrocopies. In total, we identified 56
orthologous retrocopy pairs, of which 49 showed intact open reading
frames in both species. The fact that these retrocopies emerged in the
common ancestor of humans and mice (at least approximately 75–90
million years ago) and possess intact open reading frames strongly
suggests that they have been selectively preserved by natural
selection. Thus, they likely represent functional retroposed gene
copies (retrogenes). Functionality of these human–mouse retrocopies
is further supported by their generally higher transcription levels and
lower KA/KS values relative to younger, lineage-specific retrocopies
[34].

To infer retrogene-specific changes, the sets of four sequences
were aligned at the protein level using Muscle [31]. The sequences
were then cut into individual exons by reference to the human
annotation of parental genes. Exons were trimmed so as to contain
only complete codons. The 59 end of the first exon and the 39 end of
the last exon were ignored. All sites in the amino acid alignment that
specified the same amino acid in three of the four sequences but a
different amino acid in the third were considered, by parsimony, to
be informative. That is, if the two human sequences specify amino
acid X, as does the mouse parent gene at a given position, while the
mouse retrogene is amino acid Y, then an X!Y change is inferred to
have occurred in the mouse retrogene. The total number of
retrogene changes is simply the sum of those in the mouse and those
in the human retrogene, employing this strict 3:1 criterion.

Expression data. Gene expression estimates were obtained from Su
and colleagues [35], employing the March 2006 annotation (http://
wombat.gnf.org/index.html). Mas5 files with Affymetrix present/
absent calls were used. Human gene expression data were obtained
by merging U133A and GNF1h chip datasets. In both mouse and
human, average expression was obtained from samples of the same
tissues. Probes matching to more than one gene were eliminated from
further analyses. Indexes of gene activity were obtained only from
samples obtained from normal adult tissues. Levels and breadth of
expression were calculated. Three indexes for expression levels were
obtained: peak, average, and median expression. The peak level was
the highest score across all analysed tissues. Breadth of expression was
calculated from present/absent calls. For the analysis of mean/median
levels, for each gene we considered only those tissues in which a gene
was expressed (judged by present/absent call). When multiple probes
matched the same gene we considered a gene to be expressed in a
given tissue if half or more of the probes indicated presence.

Supporting Information

Figure S1. Trends in Relative Levels of Amino Acid Usage as a
Function of the Distance from Intron–Exon Boundaries at Both 59
and 39 Ends

Found at doi:10.1371/journal.pbio.0050014.sg001 (183 KB PDF).

Figure S2. Relationship between Slope of Regression Line (between
Proportion of Amino Acid and Distance from Boundary) and HPI
Score

For (A) 59 and (B) 39 ends.

Found at doi:10.1371/journal.pbio.0050014.sg002 (47 KB DOC).

PLoS Biology | www.plosbiology.org February 2007 | Volume 5 | Issue 2 | e140352

Splicing and the Evolution of Proteins



Figure S3. Rates of Evolution in Enhancer and Nonenhancer Domains
as a Function of Distance from the Boundary for Exons Longer than
200 bp

All exons contribute equally to all data points. Here we merge 39 and
59 data.

Found at doi:10.1371/journal.pbio.0050014.sg003 (55 KB DOC).

Figure S4. Plot of Standardised Residuals for the Regression of AC
Content Versus rho

Grey lines indicate top and bottom 95% confidence intervals.

Found at doi:10.1371/journal.pbio.0050014.sg004 (41 KB DOC).

Figure S5. Relationship between the Correlation between Proportion
of Amino Acid and Distance from Boundary (rho) and the Mean of
HPI and DPI

For (A) 59 and (B) 39 ends.

Found at doi:10.1371/journal.pbio.0050014.sg005 (43 KB DOC).

Figure S6. Glycine Usage as a Function of Frame of Exon and Exonic
End

The first number in the title is the exonic end (59 or 39); the second is
the phase (0, 1, or 2).

Found at doi:10.1371/journal.pbio.0050014.sg006 (115 KB DOC).

Figure S7. Periodicity Analysis of Glycine and Proline

For (A) glycine and (B) proline the distribution of homologous
residues in the flanking sequence was determined. The first such
residue in the sequence was taken as the reference point 0; once
frequency data for the same amino acid were obtained, for the 150
flanking residues, the reference point moved along to the next
homologous residue. The frequency of the residue in the flanking
sequence was then determined by the absolute occurrence of the

residue at this distance, divided by the number of informative sites.
Glycine exhibits an unusual pattern where, following the use of a
glycine, there is a preference for glycine to be used every third amino
acid (top series of points in [A]). This is not an artefact of
contamination by collagen transcripts (GPXn), as the distribution
of proline indicates no such trend. This pattern in glycine usage is
still strong over 500 residues away from the reference point.

Found at doi:10.1371/journal.pbio.0050014.sg007 (79 KB DOC).

Table S1. Correlations and Partial Correlations between Rate of
Protein Evolution (KA or KA/KS), Proportion of Sequence within 50,
70, or 100 bp of an Intron–Exon Junction, and Measures of
Expression of the Relevant Gene in Mouse

Found at doi:10.1371/journal.pbio.0050014.st001 (36 KB DOC).
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