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Abstract

Gene expression oscillations constitute the molecular basis of circadian rhythms in mammalian physiology
and behavior. Two molecularly poorly understood aspects of rhythmic gene expression are (1) its striking
tissue-specificity and (2) the contribution of post-transcriptional mechanisms to the generation of mRNA
and protein abundance oscillations. We have used ribosome profiling in mouse kidney to quantify the
translation of mMRNAs intro protein transcriptome-wide and around-the-clock, and we have compared the
protein biosynthesis rates in this organ with those from the livers of the same cohort of animals that we
reported on recently. Our analyses revealed a small set of constantly abundant transcripts in kidney (<100
genes) that underwent daily rhythms in translation. Interestingly, these translational oscillations were
almost exclusively tissue-specific, as neither the identity of genes showing this phenomenon, nor the
global phase distribution of translational rhythms were shared between the two organs. The analysis of
the rhythmically abundant transcripts in both tissues further revealed organ specificity in the relative
timing of translational vs. RNA abundance oscillations, as well as in the protein biosynthetic output of core
clock genes. Finally, our transcriptome-wide data uncovered marked tissue-specificity in translation rates
across constitutively expressed genes. Although in magnitude less divergent than mRNA abundances,
translation efficiency was identified as an important contributor to tissue-specificity in gene expression
levels. Notably, we detected a clear signature of compensation of RNA expression differences at the
translational level, leading globally to higher concordance across organs at the level of ribosome

footprints than of RNA abundances.

Reviewer link to deposited data: [available on request]
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Introduction

Circadian clocks serve organisms to anticipate daily recurring changes of the environment and to
synchronize behavior, physiology and gene expression according to time of day. In mammals, the
circadian system consists of a master clock in the brain’s suprachiasmatic nuclei (SCN) that receives photic
inputs from the retina and synchronizes peripheral clocks present in most cells throughout the body. The
molecular timekeeping mechanism — the core clock — relies on a network of transcriptional activators and
repressors interacting in negative feedback loops (reviewed in (Dibner et al. 2010; Partch et al. 2014)). In
the core loop, the heterodimeric transcription factor ARNTL:CLOCK drives the expression of its own
repressors, encoded by the Period (Perl, Per2, Per3) and Cryptochrome (Cryl, Cry2) genes — a
configuration also known as the positive and negative limbs of the oscillator. Additional feedback — in
particular an interconnecting limb involving nuclear receptors of the REV-ERB (encoded by genes Nrid1,
Nrid2) and ROR (Rora, Rorb, Rorc) family — intersects with the core loop, and numerous post-translational
modifications of clock proteins further add to the complexity of the circuitry. The final outcome is a set of
robustly cycling transcriptional activities peaking at different phases of the day that drive the rhythmic
expression of hundreds to thousands of other genes, known as the clock output or clock-controlled genes
(CCGs). It is noteworthy that, despite the probably (near-)identical molecular makeup of the core clock
across cell types, CCGs show considerable tissue-specificity (Zhang et al. 2014). The co-regulation by core
clock and tissue-specific (non-rhythmic) transcription factors may engender such cell type-specific
rhythmic expression patterns, as shown to occur in Drosophila (Meireles-Filho et al. 2014). Overall,
however, the origins of tissue-specificity in rhythmic gene output (and even in certain core clock
parameters (Yoo et al. 2004)) are poorly understood and an active field of research. Mechanisms that act
at the post-transcriptional level and that impact daily mRNA and protein accumulation kinetics are
plausible players in the generation of cell type differences as well.

So far, oscillatory gene expression has been mainly investigated at the transcriptome level i.e., using
mRNA abundances as a primary readout. However, comparison of mRNA levels with genome-wide
transcriptional activity and protein abundance data that has become available more recently, has

suggested that a surprisingly large fraction of gene expression oscillations may have post-transcriptional
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origins (reviewed in (Luck and Westermark 2016)). The many cases of protein rhythms that are
independent of an underlying oscillating transcript — an observation initially reported in a low-throughput
mass-spectrometric study from mouse liver already 10 years ago (Reddy et al. 2006) and recently
confirmed at a comprehensive scale (Mauvoisin et al. 2014; Robles et al. 2014) — point to important roles
for translation, protein degradation and protein secretion in shaping time of day-dependent proteomes.
We (Janich et al. 2015) and others (Atger et al. 2015) have recently used ribosome profiling, a genome-
wide method that assesses translation efficiency through the deep sequencing of ribosome-protected
mRNA fragments, to chart the contribution of translational control to daily protein biosynthesis in mouse
liver. From the identified cases of translationally generated protein oscillations it could be concluded that
circadian clock activity and feeding rhythms both contribute to the regulation of rhythmic gene expression
output (Atger et al. 2015; Janich et al. 2015). Notably, the most abundant group of transcripts subject to
rhythmic translation, i.e. mMRNAs encoding ribosomal proteins and other components of the translation
machinery, which all contain 5’-terminal oligopyrimidine tract (5-TOP) sequences responsive to the
mammalian target of rapamycin (mTOR) regulation (Jouffe et al. 2013), appear to be under the dominant
control of feeding (Atger et al. 2015).

Analogous to our liver datasets (Janich et al. 2015), we have now generated ribosome profiling data from
a second organ from the same cohort of animals, the kidney, which is an emerging circadian model organ
with distinct rhythmic functions (Bonny et al. 2013). By comparing kidney and liver datasets we
comprehensively assessed commonalities and differences in the translatomes, and we evaluated in how
far the regulation of translation efficiency contributed to tissue-specificity in rhythmic and constitutive

protein biosynthesis.

Results

Around-the-clock ribosome profiling datasets from two organs
For our recent study of the mouse liver translatome around-the-clock (Janich et al. 2015) we had used the
method ribosome profiling (RPF-seq) on a time series of organs collected from animals sacrificed every 2

hours over the 24-hour day (12 timepoints in duplicate; Fig. 1A). In order to generate a complementary
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Figure 1. Ribosome profiling around-the-clock in mouse liver and kidney.

(A) Overview of the experimental design: livers and kidneys from the same mice were collected every 2 hours for two
daily cycles and ribosome profiling was performed. Each timepoint sample was a pool of two mice livers or kidneys.
Animals were kept under 12 hour:12 hour light-dark conditions, with Zeitgeber times ZT0OO corresponding to lights-on
and ZT12 to lights-off. (B) Read distribution within the transcripts’ 5 UTRs, CDS and 3’ UTRs for RPF-seq (left; yellow
and green for kidney and liver, respectively) and RNA-seq (right; blue and red for kidney and liver, respectively)
compared to a distribution expected from the relative feature sizes (grey). As the distributions based on the feature
sizes were highly similar for both organs, only that for one organ (kidney) is shown. Note that RPF-seq footprints were
enriched on the CDS and depleted from UTRs, whereas RNA-seq reads distributed more homogeneously along the
transcript, according to feature size. (C) Predicted position of the ribosome’s aminoacyl tRNA-site (A-site) of reads
relative to the CDS start and stop codons. Read density at each position was averaged across single protein isoform
genes (i.e. genes with one expressed transcript isoform) that had an average RPF RPKM > 5, a CDS > 400 nt in length
and were expressed in both organs (n=3037 genes). This analysis revealed the trinucleotide periodicity of RPF-seq (but
not RNA-seq) reads in both organs. Inset: Frame analysis of CDS reads showed preference for the annotated reading
frame (i.e. frame 1) in RPF but not RNA-seq reads. Violin plots extend to the range of the data (n=3694 genes for liver,
n=4602 genes for kidney). (D) Principal component (PC) analysis of kidney and liver RPF-seq and RNA-seq datasets,
using the top-4000 most variable genes. The first two components reflected the variability coming from organ
(64.21%) and from RPF/RNA origin of datasets (28.35%). (E) PC3 vs. PC5 (together 12.5% of variation) sequentially
resolved the factor time within each dataset, resembling the face of a clock. Each dot represents a timepoint sample,
replicates are joined by a line and timepoints within each dataset are sequentially colored. The circular arrangement
of the liver data was larger than that of kidney, indicating a higher contribution of hepatic rhythmic genes to overall
variability. A scree plot of the ten first PCs and a representation of PC4 can be found in Supplemental Fig. S3.
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dataset from a second organ we chose the kidneys from the same cohort of animals. Liver and kidney
express thousands of genes in common (Brawand et al. 2011; Zhang et al. 2014), thus providing a
particularly suitable setting for a cross-organ comparison of translation rates.

Applying the same experimental and computational methods as for liver RPF-seq (Janich et al. 2015;
Janich et al. 2016), we obtained comparable high-quality data for kidney (see Supplemental Table S1 and
Supplemental Fig. S1A-C for details on sequencing and mapping outcomes). Briefly, ribosome footprints
from both organs were similarly enriched for protein coding sequences (CDS) of mRNAs and depleted
from untranslated regions (UTRs) (Fig. 1B). Like the footprints from liver, also those from kidney exhibited
excellent reading frame preference, which allowed resolving the 3-nt periodicity of coding sequences
transcriptome-wide (Fig. 1C). Moreover, the high correlation coefficients seen across replicates of the
kidney time series for both RNA- and RPF-seq data indicated excellent biological and technical
reproducibility (Supplemental Fig. S2A-B). Finally, principal component (PC) analysis on all available
datasets (96 libraries, i.e. RPF-seq and RNA-seq from 2 organs, over 12 timepoints, and in duplicate)
segregated the data according to the main experimental and biological covariates. PC1 (explaining 64.2%
of variation) thus separated libraries according to organ, indicating that tissue origin represented the
major source of variability, followed by PC2 (28.4%) that separated RNA-seq (mRNA abundance) and RPF-
seq (footprints/translation) (Fig. 1D). The cyclic nature of the data was resolved in the PC3 (6.97% of
variation) vs. PC5 (5.53% of variation) representation, in which timepoints assembled to a near-perfect
clock (Fig. 1E). The larger circular arrangement of the liver vs. kidney time series suggested that rhythmic
gene expression in the liver contributed more strongly to overall variation than did kidney rhythms. This
observation is in line with the notion that there are more rhythmic transcripts in liver than in kidney and
that hepatic oscillations are overall of higher amplitude (Zhang et al. 2014). Of the further components of
the PCA (Supplemental Fig. S3A), PC4 (5.94% of variation) was remarkable as it grouped RNA-seq from one
organ with RPF-seq from the other organ (Supplemental Fig. S3B). A plausible interpretation of this
observation was the occurrence of translational buffering, which has recently been described in other
systems (McManus et al. 2014; Schafer et al. 2015) and which compensates divergent RNA expression to

lead to higher similarity at the level of protein biosynthesis (i.e., ribosome footprints). Taken together, we



112 concluded that the kidney data were of similar high quality as our previous liver datasets (Janich et al.
113 2015) and would be suitable for comparative analyses of time of day-dependent and constitutive
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Figure 2. Contribution of translation efficiency to tissue-specific protein biosynthesis.

(A) Venn diagram showing the overlap in the expressed genome (i.e. detected at both RPF-seq and RNA-seq
levels) between kidney (yellow, n=12423 genes) and liver (green, n=10676 genes). (B) Inter-organ Spearman
correlation for RNA-seq and RPF-seq samples. Each dot represents the correlation coefficient for a timepoint and
replicate sample. Note that RPF-seq samples consistently correlated significantly better than RNA-seq samples
did (p=1.19e-07; Wilcoxon signed rank test). (C) Scatterplot of kidney-to-liver ratio of mRNA abundance vs.
translation efficiency (TE) for all expressed genes (n = 10289), averaged over all timepoints. Corresponding
density curves are plotted on the margins. Dashed red lines represent the 2.5 and 97.5 percentiles of each
variable, and the corresponding fold-change is indicated. Linear regression line is depicted in blue (R*=0.0009,
p=0.0009). While 95% of genes spanned a 114-fold range in mRNA abundance differences across organs, the
same number of genes changed less than 3-fold in TE, indicating that transcript abundance was the main
contributor to divergent gene expression output. (D) Relative TE in liver vs. kidney, centered and averaged over
all timepoints for all expressed genes (n=10289), showed an overall inter-organ correlation (grey, n=9329).
However, differential TE was detected for ~9% genes (red, n=960). Differential TE genes are defined as having
FDR-corrected p-value < 0.01 (Wilcoxon signed rank test on TE) and >1.5 difference in TE across organs. (E)
Cumulative distribution of Hellinger distances for genes showing differential TE (red, n=960), or not (grey,
n=9329), as detected in (D). Hellinger distance was used as a measure to quantify how divergent relative
transcript isoform usage was across organs (see main text and methods section); the analysis shows that
divergent TE correlated with larger diversity in transcript isoform expression (D=0.0702, p=3.74e-04, two-sample
Kolmogorov-Smirnov [KS] test). (F) Cumulative distribution of the absolute kidney-to-liver TE ratio for genes
whose transcript diversity originated only from the 5 UTR (blue, N=216), only from the CDS (red, N=117) or only
from the 3 UTR (green, N=20). The vertical dotted grey line marks the 1.5-fold difference used to define
differential TE (as in (D)). Although the difference between the “5' UTR diversity only” and the “CDS diversity
only” distributions did not reach statistical significance (D=0.15349, p=0.056, two-sample KS-test), these results
suggested that tissue specificity in TE was partially achieved by expressing transcript isoforms that differ in their

5" UTR.
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Quantifying the contribution of translation efficiency to tissue-specific gene expression levels

Applying identical cut-offs on RPKM (reads per kilobase of transcript per million mapped reads) for both
organs, we identified 10289 genes whose expression was shared and which were detectable at both
levels, RNA and RPF (Fig. 2A). Of note, the number of genes expressed uniquely in one organ was greater
for kidney than for liver (2134 vs. 387 cases of tissue-specific expression), likely owing to the more
heterogeneous cellular composition of this organ.

Interestingly, we noted that between organs, footprint abundances correlated consistently better than did
RNA abundances (Spearman p [RPF]: mean 0.784 vs. p [RNA]: mean 0.736; p=1.19e-07; Wilcoxon signed
rank test) (Fig. 2B; Supplemental Fig. S2C-D). This observation lends further support to the idea that
differences in mRNA expression across tissues are partially compensated by translation, leading to
convergence at the level of protein biosynthetic output. Of note, this finding is conceptually similar to the
reported higher evolutionary conservation of the proteome vs. the transcriptome that has been described
(e.g. (Schrimpf et al. 2009; Khan et al. 2013)).

From the ratio of CDS-mapping RPF-seq to RNA-seq reads we next calculated relative translation
efficiencies (TEs) per transcript and for each organ. We first quantified the degree to which TE differences
contributed to organ-specific gene expression output. These analyses revealed that TEs were overall
rather similar between organs, as 95% of genes fell into a less than 3-fold range for the kidney/liver
relative TE ratio (Fig. 2C). By contrast, this range was greater than 100-fold for the transcript abundance
ratio. Given that already within each organ, mRNA abundances showed a considerably broader spread
than TEs (several hundredfold vs. barely greater than tenfold, respectively; Supplemental Fig. S4A-B; see
also (Ingolia et al. 2011; Janich et al. 2015)), large differences in TEs between organs were not to be
expected. Together with other recent analyses (discussed in (Li and Biggin 2015; Liu et al. 2016)), our
observations make earlier suggestions that TE could be particularly good predictors of protein abundances
seem improbable. They are rather in line with a dominant role for the regulation of mRNA levels (i.e.,
transcription and mRNA decay) in controlling gene output.

Despite the overall comparatively narrow dynamic range, TE differences between the organs reached

statistical significance for a large proportion of the transcriptome. Comparison of the 24 kidney and
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matching 24 liver samples conferred high statistical power and yielded 5013 genes whose transcripts’ TEs
were significantly different between tissues (Wilcoxon signed rank test for paired samples; FDR<0.01); we
further implemented a 1.5-fold cut-off on TE ratio in order to select the cases that showed the strongest
regulation, resulting in 960 “TE different” genes (Fig. 2D).

We next examined whether any overt transcript characteristic would have predictive value for differential
TE. Remarkably, however, we were unable to identify any single, dominant mRNA feature that would
potentially indicate an underlying mechanism. For example, we had previously observed that in the liver
the presence of a translated upstream open reading frame (uUORF) in the 5 UTR had strong predictive
value for low TE on the transcripts’ main ORF (Janich et al. 2015). An analogous analysis on the kidney
datasets revealed a comparable relationship between uORF usage and low TE in this organ as well
(Supplemental Fig. 4C). Nevertheless, we were unable to detect a significant correlation between
differential uORF usage and TE differences of transcripts across organs (data not shown; see also below,
Fig. 5F). Similarly, the 960 “TE different” transcripts were not enriched for any predicted miRNA binding
sites, making it unlikely that this class of post-transcriptional regulators is a major player in establishing
tissue-specific TEs (data not shown).

The only feature that we were able to identify as significantly associated with differential TE was
transcript isoform diversity between the two organs i.e., the occurrence of tissue-specific mRNA variants
as generated by alternative transcriptional start sites, by alternative splicing, and by alternative 3’
cleavage/polyadenylation sites (Fig. 2E). In short, in this analysis we first used the RNA-seq data to
compile an inventory of the annotated, protein-coding transcript isoforms and their estimated relative
expression levels for each gene and separately for both tissues. We then used the Hellinger distance
(Gonzalez-Porta et al. 2012) as a measure of dissimilarity of isoform expression levels between kidney and
liver. A value of 0 for this metric signifies that a gene has identical distribution of isoform expression levels
between the tissues and a value of 1 the lack of overlap in expressed isoforms. Globally, “TE different”
genes showed significantly higher Hellinger distances than the remainder of the expressed genes
(p=3.74e-04; Kolmogorov-Smirnov-test) (Fig. 2E), indicating that TE differences between tissues may in

part have their origin in tissue-specific transcript variants. However, it is important to note that this
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mechanism can potentially account only for some of the observed TE divergence, as slightly over half of all
expressed genes, including those within the “TE different” set, showed Hellinger distance of O (i.e., the
same, single protein-coding transcript isoform was expressed in kidney and liver) (Fig. 2E). Molecularly,
the term “transcript isoform” comprises variations in mRNA structure that can affect 5° UTR, CDS, 3’ UTR,
or frequently combinations thereof. To evaluate whether any particular such variation would be more
predictive of TE differences than another, we selected the genes for which the expressed variants affected
only one of the features (5' UTR, CDS, or 3’ UTR), omitting the more common, but potentially complicated
combinatorial cases from our analysis. We found that transcript diversity affecting the 5' UTR was more
highly associated with differential TE than was CDS diversity (Fig. 2F). Of note, the association of the 5’
UTR with TE is in line with the view that initiation is rate-limiting for translation and that structure and
sequence at and upstream of the translational start determine the efficiency with which scanning
ribosomes commit to a productive engagement. Unfortunately, the low number of transcripts that
showed exclusive 3’ UTR diversity (20 genes) precluded a reasonable interpretation, and although the
generally low number of genes available for all three groups limited the statistical power of our analyses,
it is remarkable that the difference between 5 UTR and CDS only marginally failed the commonly used
threshold of statistical significance (p=0.056; Kolmogorov-Smirnov-test) (Fig. 2F).

Finally, we were interested in whether cross-organ differences in TE were associated with functional
classes of transcripts. For the 640 “TE different” genes that showed increased translation rate in liver (Fig.
2D), gene ontology (GO) analyses revealed significant enrichment for categories related to transcription
(Supplemental Table S2). Conceivably, tissue-specific translational control of transcriptional regulators
may have wide-ranging implications for the organs’ transcriptomes. The 320 “TE different” genes that

were translated better in kidney (Fig. 2D) did not show any enrichment for specific functional classes.

Translational modulation of phase of oscillation in kidney
We next turned to the analysis of factor time across the datasets. In order to annotate rhythmic events for
kidney we used the same methodology, including a 1.5-fold cut-off on peak-to-trough amplitudes, as

previously for the liver time series (Janich et al. 2015). A list of the detected RNA and RPF rhythms and
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genome-wide gene expression plots can be found in Supplemental Table S3 and in Supplemental Dataset
S1, respectively. Our analyses yielded 1338 genes whose RNA abundance oscillated and 977 that cycled at
the footprint level, corresponding to 10.8% and 7.9% of expressed genes in kidney (Fig. 3A). The overlap of
542 genes corresponded to 41% and 55% of the “transcript rhythmic” and “footprint rhythmic” cases,
respectively (Fig. 3A). However, it is important to note that this rather modest concordance between the
rhythmic RNA and RPF gene sets certainly underestimates the true extent of rhythmicity shared between
RNA abundance and ribosome footprints, and overestimates the extent of “RNA only” and “translation
only” oscillations. The reasons lie in the propensity of rhythmicity detection algorithms to generate false-
negatives, and the lack of a canonical method to reliably determine true absence of rhythms (a common
problem in the field, see (Luck and Westermark 2016) for discussion). As in our previous study (Janich et
al. 2015) the only sector from the Venn diagram that we analyzed further was that of the 542 common
rhythmic gene, and we implemented more sophisticated methods to identify the true-positive
“translation only” cycling transcripts (see later).

Interestingly, the comparison of RNA abundance and footprint rhythmicity parameters across the 542
genes revealed that the timing of the RPF peaks relative to the RNA peaks had a significantly different and
broader distribution than the analogous set from liver (p<1.0e-04; permutation test) (Fig. 3B). This finding
suggested that the phase of protein biosynthesis rhythms undergoes stronger translational modulation in
kidney than it does in liver, where RPF peaks are more tightly gated by RNA abundance peaks. Moreover,
it was striking that the kidney data showed a tendency for maximal translation to precede maximal mRNA
abundance (Fig. 3C). Although the mean RPF peak time advance (-0.123 hours) did not reach statistical
significance (p=0.16, Wilcoxon rank sum test), the large number of transcripts (282) for which the rhythm
of translation was phase-advanced to its RNA accumulation was intriguing.

A shortcoming of the above phase analysis is that different rhythmic gene sets were compared between
the two organs. The alleged tissue differences in the RPF-RNA phase relationships could therefore have
simply arisen from transcript-specific rather than tissue-specific differences in the timing of translation.
We therefore determined the common rhythmic transcript set by overlapping kidney and liver with regard

to rhythmic events (Fig. 3D). A group of 178 genes (that included most core clock components;
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Figure 3. Rhythmicity analysis across organs and oscillation phase regulation.

(A) Venn diagram of the rhythmicity analysis in kidney. Of the 12423 genes detected, 1338 showed 24-hour
oscillations of >1.5-fold amplitude in mRNA abundance (RNA-seq, 10.7%), 977 in footprints abundance (RPF-seq,
7.9%), and 542 (4.3%) were detected as rhythmic at both levels. 10650 (85.7%) genes were detected as non-
rhythmic in our analysis. (B) Cumulative distribution of phase differences (RPF peak - RNA peak, in hours) for
genes rhythmic at both RNA-seq and RPF-seq in liver (green, N=1178) and kidney (yellow, N=542). The two
distributions were significantly different (p < le-04, permutation test), and reflected that maximal footprint
abundance frequently preceded mRNA abundance peaks in kidney (note that the two distributions differed
mostly in their negative tail). (C) Histogram of phase differences (RPF-RNA, in hours) for genes rhythmic at both
levels in kidney (N=542). Although the distribution mean was not significantly different from 0, more genes had
their footprint abundance peaks advanced (N=282) than delayed (N=260) with respect to their mMRNA abundance
peak. (D) 4-way Venn diagram of rhythmicity sets for genes expressed in both tissues (n=10289). 364 and 238
genes were detected as rhythmic in both organs at the RNA-seq and RPF-seq levels, respectively, and 178 genes
were detected as rhythmic throughout (i.e. at RNA-seq and RPF-seq, in kidney and in liver). (E) Cumulative phase
difference distribution in liver (green) and kidney (yellow) for the 178 genes rhythmic throughout. As in (B), the
distributions were significantly different (p=0.007, permutation test), and reinstated that even when comparing
the same set of genes, footprint peaks frequently preceded mRNA abundance maxima in kidney. (F) Histogram of
the differential (kidney - liver) phase delay (RPF - RNA) for the 178 genes rhythmic throughout. (G) Daily profiles
of RPF-seq RPKM (blue) and RNA-seq RPKM (orange) for four representative genes in which footprint abundance
peaks preceded by several hours maximal mRNA abundance in kidney (top) but not, or less so, in liver (bottom).
Arrowheads indicate the peak in footprint and mRNA abundance in their respective colors as estimated by the
rhythmic fits.
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Supplemental Fig. S5A; Supplemental Table S4; Supplemental Dataset S2), showed rhythmicity
throughout, i.e. in both organs at RNA and RPF level. For this transcript set, the distribution of RPF-RNA
intervals was significantly broader in kidney than in liver (Fig. 3E; p=0.007, permutation test) with an RPF
peak phase advance in kidney (mean -0.143 h) and a phase delay in liver (mean 0.036 h) (Supplemental
Fig. S5B-C). We next calculated the gene-wise RPF-RNA phase difference in kidney relative to that in liver.
More genes showed their RPF peaks advanced (96) than delayed (82) in kidney vs. liver, with a mean
phase advance that amounted to -0.178 hours (Fig. 3F). Although the phase advance globally did not
reach statistical significance (p=0.152, Wilcoxon rank sum test), visual inspection of the RNA and RPF
profiles identified numerous compelling cases of transcripts where specifically in kidney translation
peaked up to several hours ahead of maximal RNA abundance, as shown by the examples HIf (Hepatic
leukemia factor, a circadian PAR-domain basic leucin zipper transcription factor), Nampt (Nicotinamide
phosphoribosyltransferase, an enzyme involved in NAD biosynthesis), Slc5a6 (solute carrier family 5
member 6, a sodium-dependent transporter for biotin and other vitamins) and Tardbp (TAR DNA binding
protein) (Fig. 3G).

Translation that is phase-advanced to mRNA abundance is counterintuitive at first sight. Conceivably,
however, it may occur when the translation rate is not constant over the lifetime of the mRNA but
decreases, e.g. as a result of its gradual deadenylation liver (Kojima et al. 2012). In keeping with this
hypothesis, we have observed that most subunits of the major cytoplasmic deadenylase complex, CCR4-
NOT, are significantly more highly expressed in kidney than in liver (Supplemental Fig. S6A-C). Higher
deadenylase activity in kidney could provide an attractive molecular explanation for the observed tissue-

specific differences in RPF-RNA phasing, and in particular for phase-advanced RPF rhythms.

High tissue divergence in translationally driven rhythms

The aforementioned predisposition of rhythmicity detection methods to yield false-negatives, which was
confirmed in our liver study (Janich et al. 2015) and evident in the kidney datasets as well (Supplemental
Fig. S7), reinforced the notion that Venn diagrams that simply overlap rhythmic gene sets need to be

interpreted with caution. Specifically, it led to an overestimation of the number of “RNA only” and of
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Figure 4. Tissue-specificity of translational rhythms.

(A) Venn diagram of rhythmic RPF-seq sets in liver (green, N=142) and kidney (yellow, N=92) after the Babel
analysis showed the tissue-specificity of translational control. (B) Daily profiles of RPF-seq RPKM (blue) and RNA-
seq RPKM (orange) for the two genes detected as translationally regulated in both tissues in (A). (C) Circular
phase histogram for the 92 genes showing footprint rhythmicity in kidney. Maxima were clustered around ZT04
and ZT16, but not at the light-dark transition. (D) Circular phase histogram for the 142 genes showing footprint
rhythmicity in liver. As reported before (Janich et al. 2015), translational rhythmicity in liver is enriched for
maxima at the day-to-night transition. (E) Heatmap of RNA-seq (left) and RPF-seq (right) expression for the 92
genes translationally regulated in kidney. Genes are sorted by footprint phase and expression levels are
standardized by row (gene). The heatmap reflects presence and absence of rhythmicity at the footprint and
mRNA abundance levels, respectively. (F) As in (E) for the 142 rhythmically translated transcripts from liver. (G)
Daily profiles of RPF-seq RPKM (blue) and RNA-seq RPKM (orange) for representative examples of genes with
translational rhythms only in liver (lower panels) and not in kidney (upper panels). (H) Daily profiles of RPF-seq
RPKM (blue) and RNA-seq RPKM (orange) for representative examples of genes with translational rhythms only in
kidney (upper panels) but not in liver (lower panels). Hoxd3 was not expressed in liver. (I) Translation efficiency
(TE) along the day for ribosomal protein (RP) genes expressed in liver (green, n=86) and in kidney (yellow, n=89).
For each timepoint (ZT) boxplots represent the interquartile range and whiskers extend to the minimum and
maximum TE within 1.5 times the interquantile range. Lines connect the median of each boxplot to ease
visualization. Notice the global TE upregulation at ZT10 in liver, whereas TEs in kidney remain high over the day.
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“footprints only” rhythmic genes (Supplemental Fig. S7B, D). In order to identify the rhythmically
translated, constantly abundant transcripts in kidney with higher confidence, we implemented the
analytical framework Babel (Olshen et al. 2013) that we had previously used for the liver data as well
(Janich et al. 2015), to preselect the transcripts whose translation efficiency changed significantly over the
day (and/or whose TEs deviated significantly from the global transcript population). Rhythmicity analyses
that were then performed on this gene subset yielded 92 cases with the sought after temporal profiles of
rhythmic translation on non-rhythmic mRNAs (Fig. 4A). Comparison with the 142 genes of the analogous
set from liver revealed that translationally driven oscillations in protein biosynthesis showed near-perfect
tissue specificity. Only two genes, Abcd4 (ATP binding cassette subfamily D member 4) and Lypla2
(lysophospholipase 2), were shared between the organs and, moreover, visual inspection indicated that
they were among the least compelling cases of “translation only rhythms” that our method had identified
(Fig. 4B).

Marked tissue-specificity was further apparent for the daily timing of rhythmic translational events. The
phase histograms thus showed striking differences in the peak time distribution between the organs (Fig.
4C-D; difference in distributions: p=1.66e-04; W = 17.403, df = 2; Watson-Wheeler test for homogeneity of
angles). Of note, the enrichment for translational maxima at the light-dark transition (Zeitgeber time,
ZT10-16; ZTOO corresponds to lights-on and ZT12 to lights-off) that dominated the distribution in liver (Fig.
4D, F) was virtually absent from kidney (Fig. 4C, E). Instead, kidney showed enrichment for transcripts with
maximal translation occurring around ZT4 and ZT16. Visual inspection of individual examples confirmed
liver- and kidney-specificity of RPF rhythms. The cases of robust translational oscillations that we (Janich
et al. 2015) and others (Jouffe et al. 2013; Atger et al. 2015) had previously identified in liver were thus
absent or severely blunted in kidney; of note, this included mRNAs encoding ribosomal proteins that make
up the bulk of genes showing translational upsurge at the light-dark transition (e.g. Rps25, Rpl23a), as well
as transcripts encoding the transcription factors Deafl1 (deformed epidermal autoregulatory factor 1) and
Mxi1 (MAX interactor 1), and mRNAs containing iron-responsive elements in their 5 UTRs (e.g. Ferritin
light chain 1, Ft/1) (Fig. 4G), all of which we had previously reported as translationally rhythmic in liver

(Janich et al. 2015). Rhythmic translation exclusive to kidney was not significantly enriched for particular
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pathways (data not shown), and the temporal profiles were overall of lower amplitude than those seen
for liver; Tma7 (Translational machinery associated 7 homolog), Ddb2 (Damage-specific DNA binding
protein 2), Actgl (Actin, gamma, cytoplasmic 1) and Hoxd3 (Homeobox D3; not expressed in liver) were
among the most distinct examples (Fig. 4H). We concluded that temporal changes in TE were relatively
rare in kidney and overall strikingly tissue-specific, possibly indicating differential sensitivity of the organs
to the systemic signals or other mechanisms that drive such protein biosynthesis rhythms. Specifically for
the most prominent group of genes subject to daily TE regulation in liver i.e., transcripts encoding
ribosomal proteins (RPs) and other components of the translation machinery, it has been suggested that
feeding-dependent mTOR-signaling underlies their translational upsurge at the light-dark transition via a
mechanism that involves the 5'-terminal oligopyrimidine (5'-TOP) motifs that these transcripts carry
(Jouffe et al. 2013; Atger et al. 2015), and our findings thus suggest that kidney is less sensitive to the
responsible systemic cues. Moreover, the TE comparison between both tissues revealed that in kidney RPs
were translated at a higher level throughout the day (Fig. 4l), indicating that the lack in rhythmicity in this
organ resulted from an absence of translational repression during the light phase rather than an absence

of activation in the dark phase.

Tissue-specificity in core clock protein biosynthesis

Observations such as the signature of translational compensation (Fig. 2B) or the phase modulation of
CCGs (Fig. 3E), led us to conclude that the initial transcriptomal gene expression outputs underwent
widespread refinement at the translational level. In particular within the core clock circuitry, such
regulation could have important consequences. Conceivably, the rate and timing in the biosynthesis of
individual clock proteins could underlie known cell type differences in core clock parameters (such as free-
running period ex vivo/phase of oscillation in vivo (Yoo et al. 2004)), in clock output gene repertoires
(zhang et al. 2014), in oscillator strength and robustness (e.g. (Yagita et al. 2010; Lee et al. 2011)), or in
clock gene loss-of-function phenotypes (e.g. (Landgraf et al. 2016)). We therefore aimed to gain
quantitative insight into core clock protein biosynthesis in the two organs and at all three levels, RNA

abundance, protein biosynthetic output (footprints), and translation efficiency. We first investigated RNA-
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Figure 5. Translational buffering within the core clock circuitry.

(A) Scatterplot of transcript abundance vs. translation efficiency for liver (grey) and kidney (sepia), where core
clock components are highlighted. Diagonal grey dashed lines indicate same amounts of absolute protein
synthesis, where RNA abundance differences are compensated by TE differences. Colored dashed lines join the
relative locations of each core clock genes between organs (kidney dots with dashed circles). Note that several
core clock components (e.g. Per genes, Cryl, Nrid1, Rorc, Npas2) are located along the descending diagonals,
suggesting that translational buffering occurs for clock components and counteracts mRNA expression variations.
(B) Magnification of the indicated area of (A). (C) Bar graph of the average RPKM ratio between kidney and liver
for the main circadian core clock genes, at the level of mMRNA abundance (dark shades) and ribosome footprints
(light shades) showed that translational buffering led to a higher similarity at the level of protein biosynthesis
(RPF) for several core clock genes. (D) Hierarchical clustering of the organs’ transcriptomes and translatomes
based on the similarities of the core clock genes expression patterns (n=12 genes shown in A-C). The height of the
branches represents weighted average distances over the considered genes (see Methods). (E) Hierarchical
clustering of the organs’ transcriptomes and translatomes based on the similarities in expression patterns of
genes detected as rhythmic throughout (i.e. at both RNA and RPF levels in both organs, N=178, see Fig. 3D). The
height of the branches represents weighted average distances over the considered genes (see Methods). When
compared to the clustering based on core clock gene expression patterns in (D) — for which the higher
conservation of protein synthesis levels than mRNA levels was evident — this rhythmic gene set showed an organ-
based clustering. (F) Scatterplot of upstream ORF (uORF) translation efficiency (TE) vs. main ORF (mORF) TE
across organs for genes containing AUG-initiated translated uORFs in both organs (n=1199). uORF-containing core
clock genes are highlighted. This analysis showed that differential uORF usage could not globally explain
differences in mORF TE across organs (note the lack of negative correlation between the two variables, R® =
0.005, p=0.008). As an exception, the lower uORF TE of Nrid2 in kidney might explain its relatively higher mORF
TE. (G) Raw read distribution for RPF (in blue) and RNA (in orange) along the 5’ UTR and CDS of Nrid2 in kidney
(top) and liver (bottom) for the timepoint of maximal CDS translation. Red boxes indicate AUG-initiated uORFs as
predicted in our analyses.

seq RPKMs and TEs in a non-time-resolved fashion (averages over timepoints) in order to compare the
cumulative daily production across all clock proteins. We noted that most core clock components showed
a considerable degree of organ-specificity in their expression that was readily appreciable in the TE vs.
RNA abundance representation with both organs plotted in a single graph (Fig. 5A-B). In this
representation, identical amounts of biosynthesized protein (i.e., identical RPF RPKMs) locate along the
descending diagonals on which differences in transcript abundance and TE cancel each other out.
Interestingly, the majority of core clock genes (Npas2, Cryl, Cry2, Perl, Per2, Per3, Nrid1, Rorc) showed,
at least to some degree a diagonal vectorial component (Fig. 5B), which indicated compensatory TE
changes that partially counteracted RNA abundance differences between the organs. For Clock, Arntl,
Nrld2 and Rora, changes in TE exacerbated transcript abundance differences (Fig. 5B-C).

The inspection of quantitative relationships between clock components revealed that the main positive
(Clock, Arntl) and negative (Perl/2, Cry1/2) limb members were all produced in roughly comparable
amounts in kidney (i.e., they aligned along a relatively narrow diagonal zone in Fig. 5B), whereas
interconnecting limb protein biosynthesis (Nr1d1/2, Rora/c) was 2-4-fold higher (i.e., they were shifted to

the right in Fig. 5B). Overall, we had previously observed a similar pattern in the liver data (Janich et al.
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2015). Despite the overall similarity between kidney and liver, however, we also noticed two striking
manifestations of organ specificity in the amounts and relative ratios of clock protein biosynthesis. First,
the interconnecting limb appeared to be subject to “reprogramming”, with an increased biosynthesis of
repressive (Nr1d1/2) and a decreased production of activating (Rora/c) elements in the kidney (Fig. 5C). Of
note, beyond functioning in the rhythm-generating clock circuitry, interconnecting limb transcription
factors also control an output branch of the oscillator. Consistent with the gene expression differences
that we observed (i.e., more activators and less repressors in liver), major loss-of-function phenotypes of
interconnecting limb components that have been reported are indeed associated with hepatic pathways,
for example with lipid, cholesterol and bile acid metabolism (e.g. (Raspe et al. 2002; Le Martelot et al.
2009)). We deem it an attractive hypothesis that by controlling the relative levels of NR1D1/2 vs. RORs,
clock output gene repertoires would be tailored in a tissue-specific fashion. Translational mechanisms are
likely involved in the regulation, in particular to enhance NR1D2 production in kidney. Second, we
observed that within the negative limb, the ratio between PER and CRY biosynthesis was shifted towards
increased PERs in kidney (Fig. 5C). PERs (and in particular PER2) are considered stoichiometrically rate-
limiting components of the inhibitory complex, and increased PER2 dose engenders long period (Gu et al.
2012; D'Alessandro et al. 2015). Consistent with our finding of increased PER production, the free-running
kidney clock shows almost 1.5 hour longer period than that of the liver (Yoo et al. 2004). Conceivably, the
modulation of the relative levels of core clock protein production could engender different stoichiometry
of the circuitry components and lead to distinct oscillatory parameters of clocks across tissues. Of note,
the increase in PER and decrease in CRY biosynthesis in kidney is already established at the transcriptomal
level, with TE differences rather leading to partial compensation (Fig. 5B-C).

We next extended the core clock analysis to the time-resolved data. In the expression plots (Supplemental
Fig. S8) we calculated for each gene individually the Euclidean distances between the four rhythmic traces
(i.e., RNA, RPF in kidney, liver), which served as a measure of similarity between the temporal profiles.
Hierarchical clustering of the similarities for the ensemble of the 12 core clock genes showed that RPF
rhythms of the two organs grouped together (Fig. 5D), indicating higher similarity of clock protein

biosynthesis rhythms between organs than of RNA and RPF rhythms within organs. As a control set, we
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analyzed the 178 common rhythmic genes identified in Fig. 3D, which revealed within-organ clustering
(Fig. 5E). These findings underscored that translational compensation was operative within the core clock,
leading to more similar rhythms in clock protein biosynthesis than would have been predicted from the
rhythmic RNA abundance profiles.

In our previous liver RPF-seq study we had identified uORF translation as a mechanism that is able to
regulate the gene expression output for clock components, and we had annotated AUG-initiated uORFs in
Nridi, Nrid2, Cryl, Clock and Arntl (Janich et al. 2015). We therefore wished to evaluate whether
differential uORF usage could potentially underlie any of the observed cross-organ TE differences for the
core clock components. To this end, we calculated the translation efficiency specifically on uORFs (from
the ratio of uORF-mapping RPF to RNA reads; see Methods) for all uORF-containing genes in the two
organs, and then correlated uORF TE ratio (kidney/liver) with main ORF TE ratio (kidney/liver) (Fig. 5F).
Importantly, given that uORF translation has been associated with decreased initiation at the main ORF
((Wethmar 2014; Janich et al. 2015) and Supplemental Fig. S4C), we would have expected uORF and main
ORF TE ratios to negatively correlate if differential UORF usage were one of the main mechanisms to
establish organ-specific TEs. This was, however, globally not the case, and we rather observed weak
positive correlation (Spearman p=0.095). Among individual core clock genes, Nrld2 represented the
clearest case for negative correlation, showing lower uORF TE and higher main ORF TE in kidney (Fig. 5F).
Moreover, this negative correlation of uORF- and CDS-mapping footprints in the two organs could be
confirmed by visual inspection of raw RPF reads mapping to the Nrld2 transcript (Fig. 5G). For Nrld2,
differential uORF usage could thus represent a plausible mechanism that contributes to organ-specific

protein production, keeping its biosynthesis low in liver and high in kidney.

Discussion

Along the way from transcription to protein degradation, gene expression can be regulated at numerous
levels. Certain steps and intermediates have been particularly well explored, including by genome-wide
and quantitative approaches. This has led overall to the view that gene expression differences are typically

generated transcriptionally and can be conveniently studied at the transcriptomal level. However, the
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functionally relevant output of most gene expression is the protein rather than the transcript.
Quantitative, genome-wide analyses of protein biosynthesis are thus of high interest to complement the
wealth of available transcriptome data. Such studies are still scarce because it is only with the recent
development of the ribosome profiling technique that a dedicated analysis of translational events in a
high-throughput fashion has become possible (Ingolia 2014). Here, we report on a combined analysis of
two paradigms of differential gene expression, namely its tissue dependence and its time of day-
dependence, to evaluate the contribution of translation to the regulation of gene expression output. We
have addressed several, rather fundamental, but still unanswered questions that are of interest to both
chronobiology and the gene expression field at large: How does the dynamic range of translation
efficiency compare to that of transcript abundance across two distinct organs? Is translation efficiency a
default transcript property and comparable across two tissues, or do TEs become reinterpreted in
different cellular environments? Does cross-tissue variability of TEs come with a direction i.e., is there a
global tendency to either reinforce or to buffer transcriptomal differences? What is the extent and what
are the properties of daily rhythms in translation efficiency, in an organ and between organs? Could
differential TE underlie any of the known cross-tissue differences in core clock parameters?

To our knowledge, only one previous study has reported on RPF-seq datasets from two complementary
mammalian tissues (Schafer et al. 2015). The authors recorded datasets from rat liver and heart but, of
note, they also included animals with different genetic backgrounds as covariates in the experimental
design. The study thus mainly focused on exploring strain differences and how genetic variation
influenced translational levels, while tissue differences were not investigated in great detail. Our choice of
liver and kidney (with more than 10’000 commonly expressed transcripts) from the same animals, and the
high resolution of the time series (24 RPF-seq datasets per organ), provided high statistical power to our
analyses.

Over the last years there has been some dispute regarding the contribution that differences in TE make to
gene expression output (discussed in (Li and Biggin 2015; Liu et al. 2016)) — including suggestions that TE
may actually represent the best predictor of protein abundances (Schwanhausser et al. 2011). Our data

contribute to clarifying some of the disagreement and show that — across genes in a tissue and for
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individual genes between tissues — the dynamic range of transcript abundances is about 30-50-fold
broader than that of translation efficiencies. Gene expression differences are thus mainly set up by
differences in transcription (and, possibly, RNA stability), whereas differences in translation rate have
more of a modulatory role. It is noteworthy that this modulation is globally characterized by directionality
— overall, TE differences thus help to buffer against mRNA abundance differences. Examples for such
translational buffering of divergent gene expression (a phenomenon that was also covered in a recent
review (Liu et al. 2016)) have been reported across yeast species (McManus et al. 2014) and across
genetically different strains of rats (Schafer et al. 2015), and our study now extends this observation
across organs. Conceptually, all these cases of buffering may reflect the fact that selective pressure on
precise gene expression levels likely acts on protein abundances and that more tolerance may exist
towards divergence in RNA levels. It will be exciting to further study the underpinnings of translational
compensation, across tissues and across species.

At first site, it may appear unsatisfactory that our analyses did not identify specific, dominant transcript
features and mechanisms that would explain TE differences between organs. Transcript isoform diversity
(in particular at the 5' UTR) may play a role, but for more than half of the transcripts with differential TE,
the same, single protein-coding isoform was expressed in both tissues under investigation. Tissue
differences in the translation machinery and its regulators — including signaling pathways, the activity of
trans-acting factors such as RNA binding proteins (RBPs), translation factors, and even ribosomal
composition or tRNA repertoires — are likely involved. They may act in a combinatorial fashion and we
expect that a complex translational regulatory universe thus awaits discovery. While ribosome profiling
now allows us to record the consequences of such regulation, understanding all its causes represents an
exciting challenge for the future.

Our study has allowed novel insights into rhythmic gene expression. The extent to which rhythmicity is
generated by the temporal regulation of translation efficiency has been the subject of speculation ever
since the first report that many rhythmic proteins in liver are encoded by non-rhythmic mRNAs (Reddy et
al. 2006). Our new kidney datasets complement recent time-resolved ribosome profiling studies from liver

(Atger et al. 2015; Janich et al. 2015) and from a circadian cell line, U20S cells (Jang et al. 2015). Our
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comparisons reveal that the number of transcripts subject to translational rhythms is slightly lower in
kidney, but overall in a similar order of magnitude as in liver, affecting around 1% of the transcriptome.
We were surprised to see that translational rhythms are essentially tissue-specific in terms of the identity
of rhythmic translation events and in their phase distribution. A possible explanation is that these rhythms
are not driven by local clocks, but by rhythmic systemic cues to which different tissues are not equally
responsive. The effects of feeding and mTOR signaling, for example, may be more pronounced in liver
than in kidney due to the dedicated role that this organ has in energy homeostasis and fasting responses.
Nevertheless, the lack of rhythmicity of components of the translational machinery (ribosomal proteins) in
kidney came as a surprise in the light of previous suggestions of conservation across tissues (Jouffe et al.
2013). In addition to the generation of rhythms by translation (which affected only a relatively small
population of transcripts), our analyses have pointed to a rhythmicity-modulating role affecting the timing
of protein biosynthesis oscillations relative to phase of mRNA abundance rhythms. Consistent with work
by the Green lab that showed interactions between polyadenylation status of mRNAs and rhythmic
protein expression in the liver (Kojima et al. 2012), it is tempting to speculate that such mechanisms are
also operative across organs, with tissue-specific deadenylation kinetics tuning the timing of rhythmic
protein biosynthesis.

Historically, the core clock mechanism has been referred to as a “transcript-translation feedback loop”
(TTFL; see e.g. (Dunlap 1996) for an early mention of this term). The actual feedback, however, occurs at
the transcriptional level, and a possible mechanistic role of translational regulation has not been much
investigated. Our cross-organ comparison of core clock protein biosynthesis suggests that translational
control — including through the activity of uORFs (Jang et al. 2015; Janich et al. 2015) — is of regulatory
interest and represents a way by which the identical set of core clock genes could form circuitries with
different stoichiometry of its main components. As a result, both clock parameters and output gene

repertoires may be organ-specifically tuned.
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Methods

Animals

12-week old male mice (C57BL/6J; Janvier Labs) were entrained for two weeks to light:dark 12:12 cycles
with ad libitum access to food and water and were anesthetized (isoflurane) and sacrificed every two
hours (ZTO - ZT22, with ZTO corresponding to “lights-on”) for two daily cycles. Livers and kidneys were
removed and processed either directly or flash-frozen in liquid N,. All experimental procedures were

approved by the Veterinary Office of the Canton Vaud (authorization VD2376).

Ribosome profiling

Generation of the ribosome profiling libraries (RPF-seq and RNA-seq) was described in our previous study
(Janich et al. 2015). Kidney libraries were prepared in the same manner, with one modification. After RNA
digestion and recovery of ribosome-protected fragments, 5ug of RNA were treated with Ribo-Zero
magnetic kit (Epicentre) according to the manufacturer’s protocol. Ribsomal RNA-depleted samples were
then separated in a 15% PAGE gel. Gel was cut to obtain 26-35 nucleotides long fragments and library
preparation was continued as done for liver samples and according to the ARTseq ribosome profiling kit
instructions (Epicentre). These two steps (Ribo-Zero treatment and PAGE separation) had been inverted
during the preparation of our liver samples in order to obtain sufficiently concentrated libraries for
sequencing. However, applying this strategy for kidney samples recovered (and sequenced) the rRNA
fragments of the Ribo-Zero kit intended for sample rRNA removal itself. We reasoned that this might be
due to overall lower levels of translation (and therefore relatively less mRNA footprints) in kidney and
decided to revert the steps and follow the original ribosome profiling protocol from Illumina. Total RNA
libraries were prepared as previously described (Janich et al. 2015). RPF and RNA libraries were sequenced

on an lllumina HiSeq 2500.

Sequencing data processing, alignment and quantification
Processing, quality assessment, alignment and quantification of sequencing data were performed as
described in our previous study ((Janich et al. 2015; Janich et al. 2016)). Briefly, sequenced reads were

trimmed of their adaptors using Cutadapt (Martin 2011) and the length distribution of trimmed reads was
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used to assess the quality of nuclease digestion and size-selection steps, particularly important for RPF
libraries (Supplemental Fig. S1B). Next trimmed reads were filtered by size (21-35 for RPF; 21-60 for RNA)
using an in-house Python script, and sequentially mapped to mouse rRNA, human rRNA, mt-tRNA, mouse
tRNA, mouse cDNA (Ensemble mouse database release 75) using Bowtie v2.2.1 (Langmead and Salzberg
2012) and mouse genome (GRCmM38.p2) using Tophat v2.0.11 (Trapnell et al. 2009). Trimmed and filtered
sequences were also directly mapped against the mouse genome (using Tophat) in order to estimate
expressed transcript models in each organ (using Cufflinks v2.2.1 (Trapnell et al. 2010). Transcriptome-
mapping reads in the sequential alignment were counted towards their location into the 5" UTR, CDS or 3’
UTR of the transcript, based on feature annotation (Ensemble mouse release 75). Mappable and
countable feature lengths were not calculated for this study (see “faux reads analysis” in the
“Quantification of MRNA and ribosome footprint abundance” section of (Janich et al. 2015) Supplemental
Experimental Procedures) as its contribution was negligible for further analyses. Therefore RPKM
calculations in this study were not corrected with such factor. Read counts in RNA-seq and RPF-seq
datasets were normalized with upper quantile method of edgeR (Robinson and Oshlack 2010) and RPKM
values were calculated as the number of reads per 1000 bases per geometric mean of normalized read
counts per million. Relative translation efficiencies (TE) were calculated as the ratio of RPF-RPKM to RNA-
RPKM per gene per sample. Reading frame and nucleotide periodicity analyses were done using the same
criteria as in (Janich et al. 2015). Principal Component Analysis (PCA) was done using a combined matrix of
CDS counts for RPF and RNA from both liver and kidney and following the same approach as before

(Janich et al. 2015).

Correlation of RNA-seq and RPF-seq across organs
Inter-organ correlation at the levels of RNA and RPF-seq (Fig. 2B) was done per timepoint and replicate.
Significance of the difference in the spearman coefficient between both distributions was assessed by

Wilcoxon rank sum test in R (stats package).

Analysis of differential translation efficiency
Significance of differences in translation efficiency (TE) between liver and kidney was assessed using the

Wilcoxon-rank sum test in R (stats package). A two-sided, paired test was performed on centered TE

25



504

505

506

507

508

509

510

511
512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

values per timepoint and replicate, and resulted p-values were FDR-corrected. A gene was defined as

having differential TE when FDR < 0.01 and the inter-organ difference in TE was at least 1.5-fold (Fig. 2D).

Analysis of transcript usage diversity across organs

For each gene g, P(g) = (p1,...,pn) is the vector of the relative expression proportions of its n protein-
coding transcripts, as estimated in our RNA-seq analysis (see Sequencing data processing, alignment and
guantification). To quantify the dissimilarity in relative transcript isoform expression between liver L and

kidney K, the Hellinger distance H (Gonzalez-Porta et al. 2012) is defined as:

n

H(PL(9), Pr(9)) = 1/-*(17‘f(2)\j2(m — VpKi)? (1)

1=1

Similarity between the distribution of the genes detected as differentially translated (Fig. 2D) and the
overall distribution was tested by two-sided two-sample Kolmogorov-Smirnov (KS) test. In order to detect
the transcript feature that mostly determines the tissue specificity in translation efficiency, we selected
genes whose transcript diversity in both organs originated only from either the 5 UTR, the CDS, or the 3’
UTR of the transcripts, based on the annotation information for the protein-coding transcripts detected.
Similarity of the “5' UTR-only diversity” distribution to the “CDS-only diversity” distribution was tested
with the two-sided two-sample Kolmogorov-Smirnov (KS) test, although the low and very different
number of genes in each group (n=216 vs. n=117) might limit the power of the test to detect a significant

difference between the distributions.

Rhythmicity analyses

Rhythmicity detection and rhythmic parameters estimation in each dataset (RNA-seq and RPF-seq, liver
and kidney) were done based on Akaike information criterion (AIC) model selection as in our previous
study (Janich et al. 2015). The Babel computational framework (Olshen et al. 2013) was used to detect

rhythmically translated genes from constantly expressed mRNAs within each organ.

Hierarchical clustering of rhythmic genes
In order to study the similarity of rhythmic genes based on their expression profiles, a dissimilarity matrix

was computed for each gene of interest, based on the Euclidean distance between the RNA-seq and RPF-

26



529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

seq expression profiles within and across organs. A hierarchical clustering tree was constructed on the
weighted average of the dissimilarities matrices under consideration (core clock genes in Fig. 5D or all
rhythmic genes in Fig. 5E), using the “average” clustering method. The R functions{packages} dist{stats},
fuse{analogue} and hclust{stats} were used for computing the individual dissimilarity matrices, the

weighted mean dissimilarity matrix, and the hierarchical clustering, respectively.

Upstream open reading frame (UORF) translation efficiency calculation

In order to assess the impact of differential upstream ORFs (uORFs) usage on translation efficiency
differences across organs, uORFs were identified as in our previous study (Janich et al. 2015). Briefly,
genes expressing a single protein-coding isoform in both organs were selected (n=5815) and uORFs
starting with an AUG and being at least 18 nucleotides long were considered as translated if they showed
significant frame bias towards the first reading frame (relative to the uORF 5’) and had a coverage >10%.
UORF translation efficiency was calculated from the ratio of RPF-seq to RNA-seq reads on the uORF
regions. If several uORFs partially or completely overlapped on a given transcript 5° UTR, a non-

overlapping composite uORF was considered for read counting.

Data access
The sequencing data from this study have been submitted to the NCBI Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/) under accession number [available on request].
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Figure S1. Outcome of ribosome profiling around-the-clock in mouse liver and kidney.

A) Summary of the sequential mapping outcome, indicating the number (y-axis) and percentage
(within bars) of reads mapping to each database, averaged over all timepoints. For each library
of the four datasets an average of more than 20 million reads aligned to cDNA.

(B, C) RPF-seq (B) and RNA-seq (C) read lengths after trimming of adaptors showed that RPF-seq
reads were mostly 29-30 nucleotides in both organs, whereas RNA-seq fragments showed a
broader distribution as expected from chemical RNA fragmentation. Boxplots represent the
interquartile range and whiskers extend to the minimum and maximum value within 1.5 times

the interquartile range.
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Figure S2. High reproducibility of the datasets.

(A, B) Spearman correlation of normalized CDS read counts between timepoints and between

replicates for kidney RPF-seq (A) and kidney RNA-seq (B) datasets. Correlation coefficient is

indicated by the size and intensity of the disks.

(C, D) Normalized CDS read counts (RPKM) in liver vs. kidney at the RNA-seq (C) and RPF-seq

level (D), plotted as averages over all timepoints. Note the overall higher Spearman correlation

at the footprint level than mRNA level.
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Figure S3. Principal component analysis across datasets.

(A) Scree plot of the first 10 principal components of the PCA in Fig. 1D. Components 4 and 5
explained a closely similar proportion of variation (between 5-6%) and a plateau was reached
from component 6.

(B) Principal component (PC) 3 vs. PC4 of the PCA. PC4 clustered RPF-seq data of one organ with
RNA-seq data of the other, hinting towards translational buffering as a relevant mechanism
impinging on variability in gene expression across organs. Each dot represents a timepoint
sample, replicates are joined by a line and timepoints within each dataset are sequentially

colored.
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Figure S4. Contribution of translation efficiency to protein biosynthesis within organs.

(A, B) Scatterplot of mRNA abundance vs. translation efficiency (TE) in kidney (A) and liver (B)
averaged over all timepoints (N=12423 and N=10676 genes, respectively). Corresponding
density lines are plotted on the margins. Dotted red lines represent the 2.5 and 97.5 percentiles
of each variable, and the corresponding fold-change is indicated. Transcript abundance range for
95% of genes spanned 2-3 orders of magnitude, whereas TE dynamic range was less than 12-

fold in either organ, suggesting the
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54 medians) relative to all transcripts. Genes with translated uORFs: TA, p=0.16; TE, p<2.2e-16
55 (Wilcoxon rank sum test). Genes without translated uORFs: TA, p=8.7e-05; TE, p<2.2e-16

56  (Wilcoxon rank sum test).
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Figure S5. Phase and amplitude relationships for RNA and RPF in both organs.

(A) Scatterplot of phase differences at the RNA (x-axis) vs. the RPF (y-axis) levels between kidney
and liver for the genes rhythmic throughout (n=178). Clock genes are highlighted in red. The
blue diagonal line represents the linear regression. Note that the phase concordance between
organs is larger at the footprint level than at the mRNA level (i.e., the blue line is less steep than
the grey dashed line that marks he 1:1 relationship).

(B, C) Histogram of the phase differences (footprints to mRNA abundance, in hours) in kidney (B)
and liver (C) for the 178 genes rhythmic in both organs. Note the broader distribution of phase
differences in kidney and an average phase advance of RPF with respect to RNA (0.143 hours) as

opposed to an overall more synchronous phase of RPF and RNA in liver. See also Fig. 3B, E.
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Figure S6. Higher expression of deadenylase complex subunits in kidney.

(A, B) Daily expression
profiles of the CCR4-NOT
complex  components in
kidney (A) and liver (B). Note
that for all but one subunit,
the daily expression is higher
in kidney than in liver.

(C) RPF expression of the
CCR4-NOT subunits averaged
over the day. Boxplots
represent the interquartile
range and whiskers extend to
the minimum and maximum
TE within 1.5 times the
interquartile range. Note that
differences in protein
biosynthesis are statistically
significant for all but one of
the subunits (p<0.05, two-

sample t-test).
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Figure S7. Heatmaps of all detected RPF and RNA rhythms indicates false-negatives of
rhythmicity detection method.

(A) Same as Fig. 3A, but re-plotted here for ease of comparison with (B-D).

(B-D) Heatmap of RNA-seq (left panels) and RPF-seq (right panels) expression in kidney for genes
detected as rhythmic only at the mRNA level (B, n=796), at both levels (C, n=542), and for the
ribosome footprints only (D, n=435). Gene expression levels are standardized by row (gene).
Even the panels that should represent “non-rhythmicity” (i.e. right panel in B and left panel in D)
clearly show underlying rhythmicity, albeit with more noise and/or lower amplitude. Many of
these cases are therefore probably not truly “non-rhythmic”, indicating that the conventional

rhythmicity detection s prone to false negatives, as described in the main text.

A rhythmic in kidney

RNA N\ footprints

hythmi hythmic

AR ) o
Y (N=12423)
B “RNA only” rhythmic C RNA and RPF rhythmic D “footprints only” rhythmic

(796 genes) (542 genes) (435 genes)
mRNA footprints mRNA footprints mRNA footprints
(RNA) (RPF) (RNA) (RPF) (RPF)

Genes (N=435)

=796)

04 81216200 4 8 121620
Zeitgeber time (h)

Genes (N

04 81216200 4 8 121620
Zeitgeber time (h)

= = — s low <«—>  high
g R R N S S

0 4 81216200 4 8 121620 standardized expression levels
Zeitgeber time (h)



98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Figure S8. Core clock gene expression at RNA and RPF levels in both organs.

Left panels: Daily
expression profiles of
the main core clock

genes shown in Fig. 5A-

D.
Right panels:
Hierarchical clustering

of the organs’ RNA and
RPF profiles for each
clock gene. Branch
height represents the
average Euclidean
distance. Note that for
7 out of the 12 core
clock genes,

protein

synthesis profiles are

more similar across
organs than mRNA
abundance and than

RPF-RNA within organs.
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