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Robustness and innovation in synthetic
genotype networks

Javier Santos-Moreno 1,3,4, Eve Tasiudi 2,4, Hadiastri Kusumawardhani 1,
Joerg Stelling 2 & Yolanda Schaerli 1

Genotype networks are sets of genotypes connected by small mutational
changes that share the same phenotype. They facilitate evolutionary innova-
tion by enabling the exploration of different neighborhoods in genotype
space. Genotype networks, first suggested by theoretical models, have been
empirically confirmed for proteins and RNAs. Comparative studies also sup-
port their existence for gene regulatory networks (GRNs), but direct experi-
mental evidence is lacking. Here, we report the construction of three
interconnected genotype networks of synthetic GRNsproducing three distinct
phenotypes in Escherichia coli. Our synthetic GRNs contain three nodes reg-
ulating each other by CRISPR interference and governing the expression of
fluorescent reporters. The genotype networks, composed of over twenty dif-
ferent synthetic GRNs, provide robustness in face of mutations while enabling
transitions to innovative phenotypes. Through realistic mathematical model-
ing, we quantify robustness and evolvability for the complete genotype-
phenotype map and link these features mechanistically to GRN motifs. Our
work thereby exemplifies how GRN evolution along genotype networks might
be driving evolutionary innovation.

A genotype network (also called neutral network)1–6 is a connected set
of genotypes that produce the same phenotype. Within a genotype
network, genotypes are directly connected to each other if they differ
by a small mutational change. Genotype networks are thought to be a
common organizational property of genotype spaces of biological
systems at different levels. Ample empirical evidence for their exis-
tence supports this notion for RNAs7–9, proteins10–14 and binding sites
of regulatory proteins15–18.

In contrast, genotype networks of gene regulatory networks
(GRNs) have remained more recalcitrant to investigations. This is an
important limitation because GRNs underlie fundamental behavioral
and developmental processes19,20, and because understanding the
relationshipbetween aGRNand its biological function (phenotype) is a
central area of investigation in modern biology21. Current empirical
evidence for the existence and features of genotype networks of GRNs

is indirect. It mainly comes from comparative analyses of the expres-
sion dynamics and regulatory structure of GRNs in related species
showing that rewiring of GRNs during the course of evolution does not
necessarily alter the resulting gene expression pattern22–26. Indeed,
extensive rewiring seems to be very common27–29. Complementary
theoretical studies revealed that a large number of different GRNs can
produce the same phenotype and that many of those GRNs are inter-
connected by small mutational changes30–33. However, these theore-
tical studies used abstracted models of GRNs not supported by
experimental data.

Potential genotype networks for GRNs have three important
implications. First, a genotype network ofmanyGRNs can be traversed
by making one mutational change at a time without losing the phe-
notype. Thus, a GRN is robust to those mutations that keep it on the
same genotype network34. Second, a genotype network implies that
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the genotype can evolve while the phenotype is preserved. This is
known as phenogenetic drift or system drift35,36, especially when
referring to developmental GRNs. Thereby, genotype networks cru-
cially contribute to evolutionary innovation6,37: different genotypes at
different positions within the genotype network provide access to
genotypes that are part of adjacent genotype networks featuring dis-
tinct phenotypes. Consequently, evolving on a genotype network
facilitates the exploration of different mutational neighborhoods in
genotype space, which may harbor different phenotypes38,39. Third, in
some cases, the same specific mutation can have different effects
depending on the genotype where it occurs: some GRNs, when
mutated, retain their phenotype and thus are part of the same geno-
type networks; the same mutation introduced into other GRNs can
lead to mutant GRNs with a distinct phenotype. This common phe-
nomenon, in which the effect of a mutation depends on the genetic
background, is known as epistasis40. Furthermore, epistasis can itself
be dependent on environmental conditions, such as the temperature,
the medium, the concentration of an expression inducer, or an enzy-
matic co-factor41–43.

Unfortunately, we still have very few experimentally accessible
systems that allow us to understand comprehensively how GRNs map
to their phenotypes, how they organize into genotype networks, and
how these provide robustness to mutations and facilitate access to
novel phenotypes44–47. To address this issue, here we turned to syn-
thetic biology, which allows us to build GRNs by assembling well‐
characterized parts that differ by small mutational changes. It also
enables us to study GRNs without the common challenges and con-
founding factors associated with studying GRNs in situ, like the
unknown influence of the genetic background, high complexity and
interconnectivity of the networks, and pleiotropy of their genes39,48–50.
Specifically, we decided to build a large set of synthetic GRNs based on
CRISPR interference (CRISPRi)51 using Escherichia coli (E. coli) cells as
host. Our GRNs differ from each other by small mutational changes,
thus potentially creating genotype networks. As a starting GRN, we
chose a type 2 incoherent feed-forward loop (IFFL-2)52, which is com-
monly found in natural systems, including in developmental processes
ofmulticellular organisms such asDrosophila blastodermpatterning53.

Our IFFL-2 has been shown to produce a low-high-low gene expression
pattern (“stripe” pattern) across a bacterial population in response to a
chemical concentration gradient (Fig. 1a)51, analogous to the formation
of spatiotemporal gene expression patterns guided by morphogen
gradients during development54,55. In the present study, we char-
acterized a large number of IFFL-2-derived GRNs by incubating bac-
teria at discrete concentrations of a chemical inducer and evaluating
the expression pattern across the concentration range. Overall, we
report the construction and experimental exploration of three syn-
thetic genotype networks, each composed of a group of inter-
connected GRNs and displaying a distinct phenotype, as well as the
generalization to the complete genotype-phenotype map using
mathematical modeling.

Results
A genotype network of GREEN-stripe GRNs
We previously described a synthetic GRN with an IFFL-2 topology that
governs the spatial patterning of a population of E. coli cells51. Our
synthetic IFFL-2 responds to a gradient of arabinose (Ara) and pro-
duces a stripe of green fluorescence (Fig. 1a). It consists of three nodes
connected by repression interactions so that the input node (orange)
represses both the intermediate (blue) and the third (green) nodes,
and the intermediate represses the third node as well (Fig. 1a). The
input node (orange) expression rises with increasing Ara levels. The
repression logic produces a concomitant decrease of expression in the
intermediate node (blue); consequently, expression of the third node
(green) is highestwhere combined levels of the other nodes are lowest,
resulting in a stripe (peak) of gene expression at intermediate Ara
concentration (Fig. 1a). In our GRN, this behavior can be easily mon-
itored byfluorescence reporters present in eachnode:mKO2 (orange),
mKate2 (red, here represented in blue for clarity) and sfGFP (green).
More specifically, repression is based on CRISPR interference
(CRISPRi)56. A repressing node produces single guide RNAs (sgRNAs)
that recognize specific target binding site (bs) sequences downstream
of the promoters in the node to be repressed. CRISPRi-based repres-
sion constitutes a versatile framework for synthetic GRN construction
due to high programmability and orthogonality and low incremental
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Fig. 1 | Overview of three interlinked genotype networks of synthetic GRNs
built in this study that produce distinct phenotypes for stripe formation:
BLUE-stripe, GREEN-stripe, and non-functional. The different levels of organi-
zation are depicted. aDetails of themolecular implementation of oneGRN (GRN 1.1
from Fig. 2), with the resulting GREEN-stripe phenotype schematically depicted
below. Key to symbols: Bent arrows: promoters; squares: sgRNA binding sites;
jagged rectangles: sgRNAs; crosses: Csy4 recognition sites; semicircles: ribosome
binding sites (RBSs); pointed rectangles: reporter genes; and T-s: transcriptional
terminators. MarA, MarAn20 and RepA70 denote orthogonal degradation tags.

b For a GRN topology, there might exist multiple interlinked GRN variants with
different parameters that preserve the same phenotype (here shown as connected
if they differ by a single change, eitherqualitative or quantitative). cWebuilt several
topologies (colored according to the phenotype) that connect within and between
genotype networks. dThe topologies in c are part of larger genotype networks that
share the same phenotype. Each node in the genotype networks represents one
GRN topologywith an edgebetween two nodes if topologies can be interconverted
with a single mutational change.
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burden51,57, and we can easily construct new GRN variants with a pre-
viously described modular cloning strategy58.

To construct a synthetic genotype network, we applied two types
of changes to GRNs (Fig. 1b, c): qualitative ones, where interactions are
gained or lost and thus the topology (i.e. the wiring) of the network
changes, and quantitative ones, where the strengths of the regulatory
interactions (i.e. the parameters) change44. Here, we modified topol-
ogies by addingor removing repression interactions, corresponding to
a gain or loss of a sgRNA and/or its corresponding binding site. As for
parameters, wemodulated them in two ways: first, through the choice
of three promoters (low, medium, high) that govern transcription of
the nodes; and second, by employing four sgRNAs with different
strengths. We also used two truncated versions (‘t4’, truncation of the
four 5’ nucleotides) of the sgRNAs,whichprovides anotherway to tune
repression strength51. Overall, changes involve differences ranging
from2-4nt (in the caseof promoters and truncated sgRNAs) to 20nt (in
the case of the sgRNAs and their binding sites). We consider each of
these modifications as a single mutational event (also seeDiscussion)
and quantify relations between quantitative and qualitative changes
using mathematical models.

Starting from theoriginal GRN (Fig. 2, design 1.1), which produces a
GREEN-stripe pattern in a gradient of Ara, we first introduced quanti-
tative changes without modifying the GRN topology. Replacing sgRNA-
1t4 with its full-length version to yield GRN 1.2 only slightly decreased
the height of the stripe (Fig. 2, design 1.2). A significant increase in the
strength of the blue node’s promoter in GRNs 1.3 and 1.4 resulted in
stripes being asymmetric and shifted towards higher Ara concentra-
tions (Fig. 2, designs 1.3 and 1.4). Thus, the quantitative modifications
preserved the GREEN-stripe, but they affected the shape of the stripe.

Previous theoretical work suggested that other GRN topologies
populate the same genotype network as our IFFL-233,59,60. To explore
those, we next increased GRN complexity by adding one extra
repression. The addition of sgRNA-4t4 or of the full-length version
sgRNA-4 from thegreennode to theorangenode indeedpreserved the
GREEN-stripe (Fig. 2, GRNs 2b.1 and 2b.2). Alternatively, we also added
a new repression from the blue to the orange node (insteadof green to
orange) toproduce yet a different topology,GRN2a.1, also displaying a
GREEN-stripe phenotype (Fig. 2). Overall, these GRNs demonstrate an
uninterrupted genotype network: single (qualitative or quantitative)
mutations connect the GRNs, such that distant GRNs are connected by
intermediates that preserve the same common phenotype.

A genotype network of BLUE-stripe GRNs
To explore a different genotype network, we noted that adding a
repression from the green node to the blue node in the original GRN
(1.1) makes the topology completely symmetrical. In this topology,
either the green or the blue node can form a stripe, depending on the
parameters.Adding the repression to twodifferentGREEN-stripeGRNs
(Fig. 2, GRNs 1.1, 1.4) inverted the roles of the two nodes, producing a
BLUE-stripe, with the green node now decreasing with increasing Ara
concentration (Fig. 2, GRNs 2c.1, 2c.2, 2c.4). A series of control GRNs
confirmed that the GREEN- to BLUE-stripe transition is a consequence
of the action of the sgRNA added, and not some spurious context-
dependent effect (Supplementary Fig. 1). Thus, a single mutation in
some of the GRNs of the GREEN-stripe genotype network suffices to
achieve a new phenotype, highlighting the potential of genotype net-
works for evolutionary innovation.

As already observed for the GREEN-stripe GRNs, quantitative
changes in the promoter and/or the sgRNA strengths yielded new
BLUE-stripe GRNs in an interlinked network (Fig. 2, GRNs 2c.1 to 2c.8).
Manyof theseGRNsproduce skewedBLUE-stripes, but oneGRNshows
a remarkable symmetry, both in the design and in the phenotype
(Fig. 2, GRN 2c.5).

To assess the robustness of the BLUE-stripe genotype network to
topological changes, we further increased the complexity to five

repression interactions. Adding a new sgRNA from the green to the
orange node resulted in GRNs 3.1 to 3.3, all of which produce a BLUE-
stripe (shifted to higher Ara concentrations; Fig. 2). Interestingly, this
5-repression BLUE-stripe producing topology can be accessed from a
4-repression topology with either a BLUE-stripe (2 c.6 to 3.1 transition)
or a GREEN-stripe (2b.1 to 3.3 transition). The 5-repression GRN 3.2 in
turn served as the basis for building a GRN with six repressions
between the three nodes – the theoretical maximum number of
repressions for a 3-node GRN without self-repression (Fig. 2, GRN 4.1).
This design produces a stripe similar to the other ones in its genotype
network. In summary, we explored a genotype network of synthetic
BLUE-stripe GRNs; these GRNs are connected not only among them-
selves, but also to the genotype network of the GREEN-stripe
GRNs (Fig. 2).

Ensemble mathematical modeling predicts genotype-
phenotype relations
In our synthetic implementations, we explored a large set of functional
GRNs (19 3-node GRNs) thanks to the versatility of CRISPRi. Yet,
compared to the total number of 1’873’152 possible implementations
(42 topologies with 3 to 6 edges, each with 6 possible sgRNAs and 3
promoter efficiencies), this set was too small to conclude quantita-
tively on robustness and evolvability of genotype networks for GRNs.
In addition, some experimental findings required mechanistic inter-
pretations, for example, why we always observed a BLUE-stripe
whenever a repression from the green node to the blue node was
present. We, therefore, developed mechanistic mathematical models
to explore the full genotype space in silico on the one hand, and to
analyze mechanisms and guide experimental design on the
other hand.

The models represent detailed interactions between Ara-
controlled gene expression, sgRNA and fluorescent protein expres-
sion, dCas9-sgRNA interactions, CRISPRi-mediated control of gene
expression, and component degradation or dilution, as illustrated in
Fig. 3a for an IFFL-type 2 GRN. To capture the experiments conducted
in microplate readers realistically, we included simplified model
components for microbial growth and fluorescent protein maturation
into the dynamic (ordinary differential equation-based) models; the
overall model structure allowed us to specify all possible topologies
and parametrizations (seeMethods for details). Formodel calibration,
we used experimental data for two-nodeGRNswith different sgRNAs51,
and for a selection of three-node GRNs (Supplementary Fig. 2).
Importantly, we constrained parameters to map 1:1 to biological
components, such that a specific sgRNA or promoter had the same
value for, e.g., affinity constants, throughout allmodels (seeMethods).
In principle, this enables predictions for the entire genotype space of
GRNs implementable with the synthetic parts used.

The models faithfully predicted the experimentally observed
behaviors of GRNs that differed in topologies or parts from those used
in model calibration (i.e., the independent validation set), as shown in
Fig. 3b, c and Supplementary Fig. 2. In addition, the inferred sgRNA
affinities were qualitatively consistent with measured repression
strengths (Supplementary Data 1). Overall, we conclude that the
mathematical models are sufficiently realistic for comprehensive in
silico analyses.

Models enable a comprehensive analysis of robustness and
evolvability
To assess the global genotype-phenotype (GP)map, we predicted the
behavior of all 1’873’152 possible GRNs and established three phe-
notypes for stripe formation: BLUE-stripe, GREEN-stripe, and non-
functional (NF; seeMethods for definitions). For the genotypes, each
parametrized model (i.e., representing a GRN) is a genotype and a
single mutation amounts to a change in one parameter value. Note
that such a parametric change may also alter the topology, for
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example, by effectively eliminating a repressive interaction. The
summary in Fig. 4a shows that functional GRNs (GREEN- and BLUE-
stripe GRNs) are relatively rare (80% NF, 10% BLUE-stripe, and 10%
GREEN-stripe), both in terms of topologies and of GRNs within a
topology, consistent with previous results for RNAs and proteins1. In
more detail, as suggested by our experimental data, mutual inhibi-
tionof green and blue nodes is required to enable a topology that can
produce two different phenotypes – either BLUE- or GREEN-stripes,
depending on the parameters.

Surprisingly, we found that the BLUE-stripe, GREEN-stripe, and NF
genotype networks were each composed of a single connected net-
work (a strongly connected component in graph terms). Hence, it is
possible for very different GRNs to establish the same phenotype and
to reach any of these GRNs in single mutations without changing the
phenotype. To analyze the GPmap in more detail, we first determined
genotype evolvability, defined as the number of phenotypes accessible
fromaGRN in a singlemutation change (i.e., in the 1-neighborhoodof a
GRN in the genotype network)61. Most functional GRNs were adjacent
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Fig. 2 | A synthetic genotype network of GREEN-stripe (bottom) and BLUE-
stripe (top) GRNs. Starting from a CRISPRi-based GREEN-stripe incoherent feed-
forward loop (IFFL-2, design 1.1), we introduced quantitative (gray) or qualitative
(black) changes to produce a genotype network of synthetic GREEN-stripe GRNs.
Single changes enabled the transition from GREEN-stripe GRNs to BLUE-stripe
GRNs. We then explored this BLUE-stripe genotype network through parameter
(gray) or topology (black) changes, up to the GRN with the maximum number of
repressions for a 3-node GRN without self-repression, GRN 4.1. Dashed lines
represent the boundaries of the GREEN-stripe and BLUE-stripe genotype networks.
Each design is denoted with a unique code displayed in an ellipse (color-coded
according to the phenotype), with the details of the design provided in the dia-
grams below. The GRN code denotes both the complexity (i.e. number of interac-
tions) and the topology, as well as the specific implementation. A higher starting
number of the GRN (e.g. 2 vs. 1) reflects an increased complexity, while different

topologies sharing the same complexity are denoted with different letters (e.g. 2a
vs. 2b). Lastly, the final number (e.g. 2b.1 vs. 2b.2) distinguishes specific imple-
mentations within the same topology. Numbers by the repressions indicate the
identity of the sgRNAs, while PH, PM, and PL represent constitutive promoters
(BBa_J23100, BBa_J23102, and BBa_J23150, respectively). Small GRNs by the arrows
display the changes (in red) between the connectedGRNs: topology changes (T) or
changes in the promoter strength (P) or in the identity of the sgRNAs (sg). The
phenotype of each GRN was characterized in a microplate reader by determining
the fluorescence of the three protein reporters (mKO2 (orange), sfGFP (green), and
mKate2 (red, here depicted in blue for clarity)) as a function of arabinose (Ara)
concentration. Data show the mean of three biological replicates, with error bars
depicting the s.d. of normalized replicates (n = 3). GRNs sharing a common topol-
ogy are grouped with a colored background. The dashed arrow indicates the
transition towards another synthetic genotype network (that of oscillators, Fig. 7).
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to at least one GRN of all the other phenotypes, in contrast to the NF
GRNs (Fig. 4b), indicating the high evolvability of functional GRNs
specifically. However, this adjacency does not imply that it is likely that
a mutation will yield a new (specific) phenotype, for example, when
this phenotype is rare in the neighborhood, as illustrated in Fig. 4c.We,
therefore, analyzed possible transitions between phenotypes (Fig. 4d).
Entries on the diagonal show that NF GRNs are highly robust to
mutations, and functional ones moderately robust. Transitions to a NF
phenotype dominate for all GRNs, but switching between a BLUE- and
GREEN-stripe has a substantial probability. Tomake these resultsmore
interpretable, we used random walks on the genotype network to
determine the mutational path lengths for altering phenotypes (see
Methods). Median path lengths were 2 for functional GRNs and 12 for
NF GRNs (Supplementary Fig. 3), representing a high evolutionary
barrier to establish function, but high evolvability of function. Impor-
tantly, when we repeated the analysis with additional artificial inhibi-
tion and promoter strengths (see Methods) as a control, the results
were very similar (Supplementary Fig. 4).

To relate this analysis to our synthetic biology approach in more
detail, we determined robustness to changes in GRN parts and

interactions. As in prior work62, we define robustness of a phenotype
(GREEN-stripe, BLUE-stripe, or non-functional) of a reference GRN by
the fraction of neighboring GRNs that have the same phenotype when
we apply a singlemutation (i.e., changing an inhibitory interaction or a
promoter strength). Over all genotypes, phenotypes were most sen-
sitive to alterations of promoter strengths for the blue and green
nodes, and (in a bimodal manner) of sgRNA-mediated interactions
between these two nodes (Fig. 4e for the BLUE-stripe phenotype and
Supplementary Fig. 3 for theGREEN-stripe andNFphenotypes). To test
these predictions, we asked how we could convert the phenotype of
topologies that theoretically afford both functional phenotypes, but
for which we experimentally observed only BLUE-stripes. Specifically,
we used the models to predict modifications of GRNs in our experi-
mentally implemented BLUE-stripe genotype network that yield a
GREEN-stripe. The requirements to swap between the functional
phenotypes mirrored the parameter sensitivities (Fig. 4e), namely
promoter and inhibition strengths between the blue and green nodes.
Similar to Munteanu et al.63, we predicted that a stronger inhibition
(higher sgRNA affinity) on the green node with the correct promoter
efficiencies for both green and blue nodes was enough to alter the

a

b c

Fig. 3 | Model overview and predictions. aModel components and processes for
the example of an IFFL-type 2 using generic sgRNAs 1-3 (inset). Arabinose induces
expression of sgRNA-1 (brown jagged rectangle), sgRNA-2 (red) and A (orange).
sgRNA-1 and sgRNA-2 form complexes with dCas (brown), and A undergoes
translation (mRNA-A) andmaturation (A). sgRNA-3 (purple), B (blue) and C (green)
are constitutively expressed (bent arrows). sgRNA-3 forms a complex with dCas,
and B and C are translated (mRNA-B, mRNA-C) and mature (B,C). sgRNA/dCas

complexes can bind to their target sites (brown, red, and purple squares) and
inhibit gene expression. RNAsare subjected to active degradation, proteins (A, B,C)
to active degradation and dilution, and complexes to dilution. b, c Independent
model predictions (dashed lines) compared to experimental data (symbols, as in
Fig. 2) for two example GRNs (Supplementary Fig. 2). Models were adapted to
account for the sgRNAs in the implementedGRNs. Symbols show themeanof three
biological replicates, while error bars show s.d. based on error propagation (n = 3).
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phenotypes. In experiments, GRN 2c-P.1 indeed showed a phenotype
switched to GREEN-stripe, as illustrated in Fig. 4f. Thus, our models
provide global as well as detailed, experimentally actionable, analyses
of GRN robustness and evolvability.

Combining IFFL and mutual inhibition enhances evolvability
To understand mechanisms in biological networks, a powerful
approach is to focus on the topology, and specifically on network
motifs, small sub-networks that are critical for function, and reveal
design principles64. For example, they helped investigate robustness
and (to a certain extent) evolvability of the gap gene patterning
system of insects65. However, a systematic analysis of GP maps in
terms of topologies and motifs is non-trivial because, for example,
here the number of GRNs per topology varies between 3’456 and
746’496.

We propose to address this challenge by computing genotypic
robustness and evolvability in two ways: (i) for the entire
1-neighborhoodof eachGRNand (ii) for only those neighbors of a GRN
that have the same topology. The results for evolvability in Fig. 5a show
a clear differentiation of topologies into five clusters (see also Sup-
plementary Table 2). Topologies that are always non-functional
(evolvability of one with fixed topology) can only become functional
when evolving (directly or indirectly) to topologies containing an IFFL.
Evolvability increases further by incorporating amutual inhibition (MI)
of blue and green nodes, complementing our earlier observations.
Importantly, these network motifs, and not GRN complexity (i.e.
number of interactions) determine evolvability.

Regarding robustness (Fig. 5b for the GREEN-stripe phenotype,
and Supplementary Fig. 2), functional GRNs – those with an IFFL –

perform substantially better (have higher robustness in both

a b

c

d

e f

Fig. 4 | Model-predicted robustness and evolvability. a Network topologies
(schemes as in Fig. 1) and their neighbor relations (grey lines indicating thatGRNs in
two topologies are reachable by a single mutation). Pie charts indicate fractions of
GRNs (genotypes) with BLUE-stripe (blue), GREEN-stripe (green) and non-
functional (NF; grey) phenotype per topology. b Distributions of evolvability
(number of phenotypes in the 1-neighborhood of a genotype) for genotypes with
BLUE, GREEN, and NF phenotype (colors as in a). c Example subgraph for the red-
circled node with evolvability 3 and its direct neighbors (37 BLUE-, 1 GREEN-stripe
and 4 NF, colors as in a). d Transition frequencies (median, interquartile range in

brackets) between indicated phenotypes resulting from transitions between
neighboring genotypes. e Robustness (fraction of neighboring genotypes with the
same phenotype as a given genotype) classified by type of perturbations (indicated
by numbers in GRN diagram), namely changes of sgRNA type (1–6) and promoter
strengths (7–8) for the respective interactions andnodes forGRNswith BLUE-stripe
phenotype. f Experimental test of amodel prediction to convert a BLUE-stripe GRN
to a GREEN-stripe GRN with the same topology; symbols as in Fig. 2. Data show the
mean of three biological replicates, with error bars depicting s.d. of normalized
replicates (n = 3).
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dimensions) than the other GRNs. In contrast to evolvability, including
theMImotif decreases the robustnessof a given functional phenotype,
again not correlated with GRN complexity. This is consistent with a
previously observed trade-off between genotypic evolvability and
robustness66, derived from abstractly modeled GRNs. We argue that
experimentally validated GRN models and their analysis via network
motifs provide amore realistic andmechanistically interpretable view,
as illustrated in Fig. 5c.

Epistatic interactions within the BLUE-stripe genotype network
A third aspect important for evolution is the existence and prevalence
of epistatic interactions; small sample sizes make the latter difficult to

estimate in vivo, but a recent analysis in yeast showed a prevalence of
~3%67. To relate to genotype networks, we focused on one type of
epistasis, namely where two sequential changes (‘A’ and ‘B’) allow
genotype network exploration without a phenotype loss, while the
same changes in the reverse order (first ‘B’ then ‘A’) goes along with a
loss of the phenotype after the first change (Fig. 6a). Our models
predict median prevalences of ~4.5% for functional GRNs, and a lower
one for non-functional GRNs (~2.6%) (Fig. 6b). This is qualitatively
consistent with prior experimental studies; it highlights again the need
to differentiate between functional and non-functional phenotypes.

In our synthetic GRNs, we also discovered that the order of the
changes actually matters. We found an instance of epistasis in the

a

c

b

Fig. 5 | Mechanistic basis of robustness and evolvability. a Average predicted
phenotypic evolvability per topology (circles) over all neighboring genotypes (x-
axis) vs only genotypes with the same, fixed topology (y-axis). Topologies were
clustered (indicated by colors; k-means clustering with k = 5). Circle sizes reflect
numbers of repressive interactions in a topology and grey lines link adjacent
topologies as in Fig. 4a. The dashed diagonal indicates equal evolvability with and

without fixed topology. MIBC: mutual inhibition of nodes B (blue) and C (green).
bQuantification of robustness for the GREEN-stripe phenotype; results shown as in
a, with the samecoloringof clusters. c Example for the effect of transitions between
topologies (arrows: removal of one inhibitory interaction) on average evolvability
(E) and evolvability with fixed topology (EF) measured as in a.
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transition from topology 2c to topology 3. Starting fromGRN 2c.6, the
addition of sgRNA-4 from the green to orange node yielded the
functional GRN 3.1, which could then bemodified by replacing sgRNA-
1t4 with its stronger repressing full-length version to produceGRN3.2,
also functional (Fig. 6c). However, the same changes in the reverse
order required traversing through a non-functional intermediate, GRN
2c-NF.1, implying that strengthening the repression from the orange to
the green node was only tolerated if an opposing interaction was
present. These findings underline the usefulness of combining syn-
thetic GRNs and modeling to analyze genotype networks
comprehensively.

A genotype network of oscillating GRNs
Finally, to evaluate if our findings on the existence of genotype net-
works translate to other definitions of phenotypes, we exploited prior
theoretical work. It demonstrated that GRNs with topologies like GRN
2b.2 can produce temporal oscillations65,68–70 – its topology actually
contains that of the repressilator, a well-known molecular oscillator
that relies on a time-delayed negative feedback structure71. In addition,
we previously demonstrated that CRISPRi can be employed to build a
repressilator – a circuit that we named the CRISPRlator51. The
CRISPRlator is composed of three nodes forming a negative feedback
loop, each expressing a sgRNA that represses the next node in the
loop. An increased level of any given node triggers a cascade of
repression interactions that eventually bring its own levels down again,
leading to oscillations.

Starting from GRN 2b.2, a single parameter change (a stronger
promoter in the blue node) sufficed to produce an oscillatory pheno-
type, as assessed through a continuous characterization of the gene
expression dynamics in amicrofluidic device (Fig. 7a, GRN 2-OS.1). The
removal of sgRNA-1t4 did not abolish oscillations and indeed rendered
the topology closer to that of the classical repressilator; substituting
the reporters with ones better suited for our microscopy settings also

preserved the oscillatory dynamics (Figs. 7a, 1-OS.1 and 1-OS.2). Finally,
the replacement of PBAD with a constitutive promoter (PH) recreated
the previously reported CRISPRlator displaying highly regular oscilla-
tions (Fig. 7a, 1-OS.3). Hence, a genotype network composed of syn-
thetic GRNs that enables exploration of the genotype space without a
phenotype loss exists also for dynamic phenotypes.

By adjusting our mathematical model ensemble to account for
dynamic phenotypes (by parametrizing dilution rate and arabinose
concentration in the microfluidic device; see Methods for details), we
could predict which topologies oscillate. As expected, most topologies
that contained a repressilator were able to show oscillations (Fig. 7b,
Supplementary Table 3). Intriguingly, akin to the stripe-forming net-
works (e.g., Figs. 4a, 5b), notnecessarily themost complex topologyhad
the highest fraction of oscillating GNRs (Fig. 7b), which can point to
trade-offs between genotypic evolvability and robustness. As for the
stripe phenotypes (Fig. 4d), we next analyzed the transition prob-
abilities between the oscillatory and NF phenotypes. The oscillatory
phenotype is quite robust to small mutational perturbations (Fig. 7c);
yet obtaining an oscillatory phenotype from an NF phenotype is
extremely rare. Note, however, that we obtained these results with
minimal re-parametrization of the models: this demonstrates the con-
sistency of themodels with different phenotypes of interest, but we did
not explicitly validate the models on oscillatory experimental data.

Discussion
Synthetic biology has recently been used to address fundamental
questions in the molecular evolution of regulatory networks39,72–75.
Taking advantage of synthetic biology tools allowed us to assess sev-
eral key features of GRN genotype networks experimentally and the-
oretically. We demonstrate that distinct synthetic GRNs can indeed be
part of the same genotype network in which small mutational changes
enable the smooth transitionbetween any twoGRNswithout losing the
target phenotype. On the other hand, genotypes very close in the
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Fig. 6 | Epistatic interactions. a Schematic illustration of epistasis. Two con-
secutive changes ‘A’ and ‘B’ allow for a smooth ‘walk’ within the BLUE-stripe gen-
otype network. However, the same changes in the reverse order transition through
a GRN that is in the non-functional genotype network. bModel-based estimation of
epistasis incidence by sampling 5% of pairs of GREEN and BLUE, and 2% of NF GRNs
within their corresponding genotype network. Circles: median; vertical lines:
interquartile range. c Experimental demonstration of epistasis. The transition from

GRN2 c.6 to 3.2within the BLUE-stripe genotypenetwork requires two changes in a
specific order, via intermediate 3.1. The reverse order of changes involves a non-
functional intermediate, 2c-NF.1. Grey arrows: parameter changes; black arrows:
topology changes; red shading: connections from/to non-functional GRNs. Data
show the mean of three biological replicates, with error bars depicting s.d. of
normalized replicates (n = 3).
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mutational distance can have distinct phenotypes, and genotypes in
different positions of the genotype network can access different novel
phenotypes. More specifically, our results conform to a ‘bowl of spa-
ghetti’ metaphor known from the RNA world1,76, but with subtle dif-
ferences in the robustness and evolvability of GRN function. Both the
connectedness of genotype networks and that they spread throughout
the genotype space were proposed to be crucial for robustness and
evolutionary innovation77. Our study provides experimental as well as
theoretical evidence for it. Importantly, this is not restricted to stripe-

forming GRNs. For example, our data suggests an evolutionary tra-
jectory from a GREEN-stripe to an oscillatory GRN.

Prior theoretical work on GRNs highlighted that the definition of
mutations is crucial for the analysis of robustness and evolvability, but
it used abstract concepts such as signal-integration logic66. Here,
quantitative changes involve mutations in DNA sequences encoding
both cis-regulatory elements (promoters) and trans-regulatory factors
(sgRNAs). The three constitutive promoters used in this study differ in
2–4 nucleotides. Mutations in trans involve a 4 nt difference between

a

b c

Fig. 7 | A synthetic genotype network of oscillatory GRNs. a Starting from the
GREEN-stripe GRN 2b.2, a stronger promoter for the blue node leads to a GRN that
displays oscillatory expression. Few changes suffice to transition to the
CRISPRlator51, with all intermediates showing the oscillatory phenotype. Bacteria
carrying the indicated GRNs were grown in continuous exponential phase in a
microfluidic device and imaged every 10min for up to two days. Oscillations are
shown as kymographs: images of the microfluidic chamber (hosting ~100 cells) are
displayed in order in a timelinemontage. Due to anoverlap ofmKO2 andmKate2 in
the same channel, red color for 2-OS.1 and 1-OS.1 (top) represents both mKO2 and

mKate2, while green corresponds to sfGFP. Different fluorescent reporters
mCherry (red),mCitrine (yellow) andCerulean (blue) allowedus to characterize the
dynamics of all three nodes (1-OS.2 and 1-OS.3; bottom). b Part of network topol-
ogies (schemes as in Fig. 1) and their neighbor relations predicted by the mathe-
matical framework. Similar to Fig. 4a, the pie charts indicate fractions of GRNs
(genotypes)with oscillatory (orange) andnon-functional (NF; grey) phenotypes per
topology. Numbers: percentages of occurrences of the oscillatory topologies.
c Similar to Fig. 4d, transition frequencies between the neighboring indicated
phenotypes.
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full-length or truncated sgRNAs or changing the DNA-binding part of
the sgRNA (20 nt). Such small differences in cis- or trans-regulatory
regions have been found to play a role in the evolution of natural
networks78. Qualitative changes between our GRNs involve the gain or
loss of a sgRNA and its corresponding binding site. Comparative stu-
dies show that rewiring within transcriptional networks is common in
natural systems, often facilitated by duplication events and sub-
sequent diversification79. Our transitions in genotype space include
duplications of a regulatory element (e.g., fromGRN 1.4 to 2 c.4: a new
sgRNA-2 in the green node binds to the existing bs-2 in the blue node),
binding site duplications (e.g., from GRN 2 c.6 to 3.1: the existing
sgRNA-4 in thegreennodebinds to anewbs-4 in theorangenode), and
combinations of both (e.g., from GRN 1.1 to 2b.2: a new sgRNA-4 in the
green node binds to a new bs-4 in the orange). Hence, our synthetic
GRNs and their mathematical models – while not representing indivi-
dual mutations at the DNA level – incorporate realistic single muta-
tional changes in evolutionary trajectories. Future work could extend
this approach to investigate the effect of varying gene numbers on
robustness and evolvability, as in prior work with abstract GRNs62.

Another critical aspect is the selection of phenotypes, and cor-
respondingly the phenotypic space. Our GRNs displayed phenotypes –
stripe formation in a gradient and oscillations – that are crucial for
metazoan development of many organisms and body structures54,55.
We used coarse-graining (e.g., BLUE-stripe, GREEN-stripe, and NF) to
characterize these phenotypes. It is a justified simplification and
common practice when studying the evolution of GRNs33,39,80,81. How-
ever, because the underlying experimental and simulation data is
quantitative, our coarse-graining is already a step towards a more
realistic scenario than Boolean logic behaviors64,82. Correspondingly,
GRNs in one of our genotype networks may display quantitatively
different behaviors. In a natural system, many of these differences
could be buffered downstream83, while others might lead to different
organismal features. Coarse-graining to only three phenotypes for
stripe-forming GRNs, however, implied that we could not study phe-
notypic robustness and evolvability. They are suggested to exhibit
subtle, yet important differences from their genotypic counterparts37

and could be addressed in future studies.
We combined experiments and modeling to characterize the GP

map of our synthetic GRNs realistically and comprehensively; neither
of the two approaches alone could achieve this. It allowed us to link
robustness and evolvability to small network motifs. Even when
embedded in larger networks, motifs are necessary and sufficient for
many network functions64. For example, one of the best-studied GRNs,
the gap gene network in insects, comprises several genes that regulate
each other by intricate repression motifs (among them IFFL-2) to
produce stripes of gene expression that eventually establish anterior-
posterior embryo segmentation26. Comparative analysis in different
dipteran insects provides strong evidence for system drift and evolu-
tion on a genotype network26,44,84. Interestingly, Anopheles gambiae
and Drosophila melanogaster have inverted stripe expression patterns
of the gap genes giant (gt) and hunchback (hb)26,85. Given the potential
for simple mutational changes to switch between GREEN- and BLUE-
stripe in IFFL-2-based synthetic GRNs, our work provides possible
evolutionary paths for this role-switching in dipteran gap GRNs.

Similarly, the network topology of 2-OS.1 is known as AC-DC69,70. It
is involved in patterning the vertebrate neural tube86 and in the Dro-
sophila melanogaster gap gene network65. Importantly, the AC-DC
circuit may explain how segmentation of the developing embryo in
long germ-band insects such as Drosophila, where all segments are
determined simultaneously, could have evolved from short germ-band
insects, where oscillations establish the segments sequentially87. Our
synthetic GRNs illustrate that it is indeed straightforward to transition
between stripe-forming and oscillatory networks.

More generally, epistasis profoundly complicates our under-
standing of how GRNs respond to mutations and is therefore studied

extensively in different biological systems across scales40. So far, most
work on the mechanistic causes of epistasis in GRNs has been purely
computational80,88–90. These studies suggest that epistasis is common
in GRNs and that it relies on nonlinearmechanisms of gene regulation,
e.g. those generated by mutual repressions and feedbacks. Because
experimental validation of these predictions is largely missing, mainly
due to the high complexity of natural GRNs, our results underscore
that small, mechanistically well-understood (synthetic) GRNs are pro-
mising model systems to study mechanisms and prevalence of
epistasis39,41,75,91. The epistatic relation between GRNs 2 c.6 and 3.2 also
exemplifies how hybrid incompatibilities could arise: certain crossings
between individuals carrying theseGRNs could lead to GRNswithout a
stripe phenotype. This is consistent with system drift being an
important source of hybrid incompatibilities that cause reproductive
isolation92–94.

Overall, we demonstrated that building many synthetic counter-
parts of natural systems, combinedwith realisticmathematicalmodels
to explore complete GP maps, can provide us both with general prin-
ciples and specific insights into GRN evolution and function. We,
therefore, anticipate that synthetic biology will gain further relevance
in deciphering the mechanisms of molecular evolution.

Methods
GRN construction
Genes encoding sfGFP, mKO2, mKate2, mCherry, mCitrine, Cerulean,
Csy4, and dCas9 were obtained as previously described51,58. All repor-
ters were fused to orthogonal degradation tags95, as follows: mKO2-
MarA, sfGFP-MarAn20, RepA70-mKate2, mCherry-MarA, mCitrine-
MarAn20, RepA70-Cerulean. Primers were purchased desalted from
Microsynth or Sigma-Aldrich. TheGRNswere constructed employing a
previously described Gibson-based cloning framework that allows for
the fast and modular cloning of synthetic gene networks58. Briefly, the
method consists of two steps: step 1 involves Gibson assembly of
transcriptional units into individual intermediate plasmids; in step 2,
these plasmids are digested with restriction enzymes so that the
resulting flanking regions contain overlaps that drive a second Gibson
assembly into a single plasmid to yield the finalGRN. For step 1, all DNA
parts carried the same Prefix (CAGCCTGCGGTCCGG) and Suffix
(TCGCTGGGACGCCCG) sequences for modular Gibson assembly
using MODAL96. Basically, forward and reverse primers annealing to
Prefix and Suffix sequences, respectively, were used for PCRs that
added unique linkers to the DNA parts. PCR amplifications were
column-purified using theMonarch PCR&DNACleanupKit (NEB), and
assembled using NEBuilder HiFi DNA Assembly Master Mix (NEB, 1 h
50 °C) into backbones previously digested with corresponding
restriction enzymes (NEB, 1 h 37 °C) to yield intermediate plasmids
containing individual transcriptional units. In step 2, these inter-
mediate plasmids were digested with enzyme sets yielding over-
lapping sequences, purified, and assembled as described above. 1 µl of
non-purified Gibson reaction was transformed into 50 µl of electro-
competent NEB5α cells, and 2/5 of them were plated onto selective
agar plates. Plasmids used in this study are listed in (Supplementary
Table 1) and all sequences are provided in a supplementary file
(Supplementary Data 2).

Microplate reader experiments
Gene expression of fluorescent reporters was used to assess synthetic
GRN performance; fluorescence was measured in microplate readers
(except for the microfluidic experiments in Fig. 7). MK0197 electro-
competent cells were transformedwith a “constant” plasmid encoding
proteins required for GRN function (namely dCas9 and Csy4)58 as well
as with a “variable” vector bearing AraC (when needed) and the
CRISPRi GRN (see Supplementary Table 1). 2ml of selective LB were
inoculated with single colonies and incubated at 37 °C for ~6 h with
200 rpm shaking; cells were pelleted at 4000 rcf and resuspended in
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selective EZmedium (Teknova) containing0.4%glycerol. 120 µl of 0.05
OD600 bacterial suspensionswere addedperwell on a96-well CytoOne
plate (Starlab), and 2.4 µl of L-arabinose (Sigma) were added to yield
the indicated concentrations. Plates were incubated at 37 °C with
double-orbital shaking in a Synergy H1 microplate reader (Biotek)
running Gen5 3.04 software. Fluorescence was determined after ~16 h
with the following settings: mKO2: Ex. 542 nm, Em. 571 nm; sfGPF: Ex.
479 nm, Em. 520 nm; mKate2: Ex. 588nm, Em. 633 nm. Fluorescence
levels were treated as follows: i) the fluorescence signal in a blank
sample was subtracted, ii) the resulting value was divided by the
absorbance at 600nm to correct for differences in bacterial con-
centration, and finally iii) the bacterial auto-fluorescence of a strain
with no reporter genes was subtracted. Subsequently, corrected
fluorescence was normalized to a percentage scale by dividing all
values of a given color by the highest value of that color. Normalized
datawereplotted in R98 using RStudio 1.0.143 (runningR 3.4.0). Source
data are provided in a supplementary file (Source Data).

Microfluidic experiments
MK0197 electrocompetent cells were transformed with the constant
plasmid pJ1996_v258 and a variable plasmid encoding a CRISPRi GRN.
Single colonies were used to inoculate 5ml of selective LB, which were
grown overnight at 37 °C. The next morning, 3ml of selective EZ
containing 0.85 g l−1 Pluronic F-127 (Sigma) were inoculated with the
overnight preculture in a 1:100 ratio and grown for 3-4 h at 37 °C. Cells
were centrifuged for 10min at 4000 rcf and resuspended in ~10 µl of
the supernatant to obtain a dense suspension, which was loaded into
the PDMS microfluidics device. Cells were grown in a continuous cul-
ture insidemicrofluidic chambers (dimensions: 1.2 µm× 12 µm×60 µm,
h x w x l, purchased from Wunderlichips)51 for 2 days with a constant
0.5ml h−1 supply of fresh medium (selective EZ plus 0.85 g l−1 Pluronic
F-127) and removal of waste and excess of bacteria, powered by an AL-
300 pump (World Precision Instruments). For GRNs 2-OS.1, 1-OS.1, and
1-OS.2 the overnight and the subsequent 1:100 incubations contained
0.2% Ara, while 0.0001% Ara (for 2-OS.1) or 0.2% Ara (for 1-OS.1 and
1-OS.2) were used in the medium for the microfluidic experiment. For
1-OS.3, which lacks the PBAD promoter, no Ara was used in any of the
media. Imaging was performed using a Leica DMi8 microscope and a
Leica DFC9000 GT camera controlled by the Leica Application Suite X
3.4.2.18368, with the following settings: Cerulean: Ex. 440nm 10%
50ms, Em. 457–483 nm; mCitrine: Ex. 510 nm 10% 50ms, Em.
520–550 nm; mCherry: Ex. 550nm 20% 200ms, Em. 600–670nm;
sfGFP: Ex. 470 nm 30% 200ms, Em. 507–543 nm; mKO2 and mKate2
(indistinguishable): Ex. 550nm 30% 200ms, Em. 520–550nm. Images
were acquired every 10min with LAS X software, and analyzed using
Fiji99 for montage.

Mathematical modeling, overview
We developed an ensemble of mechanistic mathematical models that
capture in detail level the biology of the transcription/translation/
fluorescent maturation of various 2-node and 3-node GRNs. A model
can be automatically generated depending on the GRN we want to
simulate. Below, we decompose the model into its two core structures
and assumptions. Next, we continue with additional functions we uti-
lize to account for cell growth in the experiments.

Modeling the dynamics of sgRNAs
The production rate of the sgRNA(s) depends on having either an
inducible promoter (by arabinose) or a constitutively expressed pro-
moter. The orange node (Fig. 3) is always induced by arabinose; the
other two nodes (green and blue) have a constitutively expressed
promoter.We also considered in ourmodel the leakage of sgRNA(s) by
the inducible promoter. The sgRNA(s) can bind reversibly to the
catalytically-dead mutant dCas9, which forms a complex sgRNA:dCas.
In turn, the sgRNA:dCas complex canbind reversibly and inhibit, via its

target sequence on the promoter (DNA), the respective gene expres-
sion, forming a sgRNA:dCas:DNA complex. We assume that RNAases
act on degrading the sgRNA(s), whereas the complexes are affected by
the dilution rate, m (see below for details on dilution). These biomo-
lecular processes are described as chemical reactions.

Two chemical reactions represent the induction by arabinose and
the leakage that a specific promoter has

!Arabinose
sgRNAi

!leakage
sgRNAi

and one chemical reaction depicts the case of the constitutive pro-
moter:

! sgRNAi,

where the number of sgRNAs that is available is indicated with i and j,
taking values from one to three based on the three reporter protein-
coding genes that exist in the GRNs. RNA degradation (denoted by the
empty symbol) as well as complex formation with dCas and DNA are
modeled as:

sgRNAi ! +

dCas + sgRNAi $ dCas : sgRNAi

dCas : sgRNAi +DNAj $ dCas : sgRNAi : DNAj

dCas : sgRNAi : DNAj ! DNAj:

The final reaction corresponds to the combination of dilution of
the [dCas: sgRNAi: DNA j] complex with DNA replication. Since dCas is
constitutively expressed, the total concentration of dCas is conserved.
The total promoter concentration (DNAj) is also conserved. These
assumptions lead to the algebraic equations (using square brackets to
denote concentrations):

½dCastotal �= ½dCas�+
X
i

½dCas : sgRNAi�+
X
i,j

½dCas : sgRNAi : DNAj�

ð1Þ

½DNAtotal,j �= ½DNAj�+ ½dCas : sgRNAi : DNAj � ð2Þ

By usingmass action kinetics (except for inducible promoters and
dilution, see below), we transform the above chemical reactions and
assumptions into a system of ordinary differential equations (ODEs):

d _½sgRNAi�
dt

= f ðAraÞ + bsgRNAi
� dRNA � ½sgRNAi� � kf ds

� ½dCas�
� ½sgRNAi�+ krds

� ½dCas : sgRNAi�
ð3Þ

d _½sgRNAi�
dt

= ksgRNAi
� ½DNAj� � dRNA � ½sgRNAi� � kf ds

�½dCas� � ½sgRNAi�+ krds
� ½dCas : sgRNAi�

ð4Þ
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d _½dCas : sgRNAi�
dt

= kf ds
� ½dCas� � ½sgRNAi�+ krdsd

� ½dCas : sgRNAi : DNAj �
�m � ½dCas : sgRNAi� � krds

� ½dCas : sgRNAi�
� kf dsd

� ½dCas : sgRNAi� � ½DNAj �
ð5Þ

d _½dCas : sgRNAi : DNAj�
dt

= kf dsd
� ½dCas : sgRNAi� � ½DNAj�

�krdsd
� ½dCas : sgRNAi : DNAj�

�m � ½dCas : sgRNAi : DNAj�

ð6Þ

Depending on whether the sgRNA is expressed by an inducible or
a constitutive promoter, we use either the first or the second ODE. If
there is an inducible promoter, then promoter leakage is constant,
bsgRNAi

. Production and degradation kinetic constants are ksgRNAi
and

dRNA; the binding and unbinding constants of sgRNA-dCas and sgRNA-
dCas-DNA complexes are kfds , krds and kfdsd , krdsd , respectively.

In addition, we assume a Hill function for promoter induction by
arabinose (Ara):

f ðArasgRNAi Þ
=

Aran

Aran + Km
n � k2 � ½DNAtotal,j� � ð1� bsgRNAi

Þ ð7Þ

where n is the Hill coefficient, Km is the affinity constant and k2 is the
production constant.

Dynamics of reporter protein-coding genes
Similar to the production rate of sgRNAs, the mRNA production of the
three reporters used in this study depends either on the activity of an
inducible promoter or on a constitutive promoter (expression of the
orange node via arabinose induction, green and blue node via con-
stitutive promoter). mRNA translation produces protein PIj, which
matures to the final fluorescent reporter (Pj). mRNA is degraded at the
same rate as the degradation of sgRNAs. However, the reporter proteins
(immature and fluorescent) undergo active degradation (which depends
on the reporter) and dilution (see growth model section). The chemical
reactions that summarize the expression of the reporter proteins are:

!Arabinose
mRNAj

!leakage
mRNAj

! mRNAj

mRNAj ! +

mRNAj ! mRNAj + PIj

PIj ! +

PIj ! Pj

Pj ! +:

Again, we differentiate between arabinose-inducible and con-
stitutive promoters and account for leakage. By assuming mass-action

kinetics, the ODE system is:

d _½mRNAj �
dt

= f ðAramRNAj
Þ +bmRNAj

� dRNA � ½mRNAj � ð8Þ

d _½mRNAj �
dt

= kmRNAj
� ½DNAj � � dRNA � ½mRNAi� ð9Þ

d _½PIj�
dt

= kPIj
� ½mRNAj� �mPIj

� ½Pj� � ðm+dPIj
Þ � ½PIj� ð10Þ

_d½Pj �
dt

=mPIj
� ½PIj� � ðm+dPIj

Þ � ½Pj� ð11Þ

Kinetic constants of production, degradation, and promoter
leakage are kmRNAj

, dRNA and bmRNAj
. Translation,maturation and active

degradation constants are kPIj , mPIj
and dPIj

respectively. In addition,
f ðAramRNAj

Þ is the same function as above, but for mRNAj:

f ðAramRNAj
Þ =

Aran

Aran +Km
n � k2 � ½DNAtotal,j� � ð1� bmRNAj

Þ ð12Þ

Growth model
We represent the cell population growth during the microplate
experiment, G(t), by a superposition of three generalized logistic
functions. This approach allows capturing events such as diauxic shifts
in which growth slows down due to limited nutrient availability. Spe-
cifically:

GðtÞ=p1 +
X3
k = 1

pk
2

ð1 +pk
3e

�t�pk
4 Þ1=p

k
5

ð13Þ

In our model, the dilution rate m is the ratio of the derivative of
G(t) and G(t) – that is, the specific growth rate – with parameters
estimated from the appropriate data (see Data S1). The rest of the
experimental data was used for independent model validation.

Initial conditions
Prior to the microplate experiments, the uninduced cells where pre-
cultured in Luria Broth medium for approximately six hours. We cap-
ture these initial conditions using the growth data from100 and
simulating the appropriate model for six hours.

Model parametrization
Dependingon the total number of inhibitions, theODEmodels differ in
the mRNA degradation constants and the total concentration of dCas
(e.g. all the 3-node models with three inhibitions have a different
mRNA degradation compared to the 3-node models with six inhibi-
tions). In addition, the translation constant of the orange node is ara-
binose dependent (see details below). Because our plasmids are of
medium copy number (i.e. 25-30 copies), and assuming that one copy
is 1nM20, we used a total concentration of all promoters (DNAA, DNAB,
DNAC) of 30 nM. Finally, we assumed that an optical density at 600nm
of one corresponds to 8 � 108 E. coli cells.

To estimate the remaining model parameters, initially, we turned
to the literature101,102 to obtain the biologically relevant ranges (e.g.,
mRNA degradation, binding or unbinding of dCas complexes). Next,
parameters were estimated by using the enhanced scatter search
method103, a robust method for solving non-linear global optimization
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problems. We defined an objective according to:

XN
i= 1

xi � xs
i ðθÞ

σi

� �2

!θ min ð14Þ

that is, the minimization of the weighted squared residuals. Specifi-
cally, N is the number of data points used for parameter estimation, xi
is the vector of experimental data, σi is the corresponding measure-
ment variance (for details, see below and Supplementary Fig. 5e) and
xsi are the relevant state variables of the ODE models. To evaluate a
model fit, we used the χ2-test, with χ2 = 27099,71 estimated parameters
and 27312 degrees of freedom.

Given that all models share most of their parameters, we per-
formed the estimation simultaneously for all experimental data and
models used. Specifically, we used all the 2-node experimental data (9
different arabinose inputs, 6 different inhibition strengths, 100 time
points) and four 3-node GRNs (1.4, 2cNF.1, 3.2, 4.1). The rest of the
experimental data was used for independent model validation.

Promoter efficiencies
ThePH (BBa_J23100) andPM (BBa_J23102) promoters thatwereused for
building some of the synthetic GRNs are from a standard collection
recovered from a library screen104. Therefore, in ourmodeling process,
we used the measured strength 1 and 0.86, respectively. Concerning
the PL (BBa_J23150) promoter, we found discrepancies between pre-
viously determined promoter strengths105,106 and our estimates, pos-
sibly due to context-dependent effects on gene expression107.
Specifically, we identified common promoters (BBA_J23102,
BBA_J23116, BBA_J23113) in the dataset from Kelly et al. and the
Anderson collection. Using linear regression, we predicted the pro-
moter efficiency of the PL we would have observed if it had been
measured in the Anderson collection. With the same procedure, we
compared the Davis dataset and the Anderson collection (common
promoters: BBA_J23101, BBA_J23113). For the two comparisons, we
predicted for the PL promoter a relative strength of 0.3 and 0.2,
respectively. However, from our estimation, we predicted that the
strength was 0.75. Given that we have the additional control analysis
which contains the relative strengths identified by105,106, we continued
withour estimated strengthwhen comparing to the experimentaldata.

Translation of mRNA induced by arabinose
The expression of the orange node (reporter protein: mKO2) is
induced by arabinose, controlling the expression of the mKO2 mRNA,
which then translates into the immature protein of mKO2. When cali-
brating the mathematical models we noticed non-linearities in the
arabinose response, although we used the MK01 strain97. A possible
explanation108 is the difference in the number of transporters per cell
in the population; cells can accumulate sufficient arabinose (or not) to
overcome the internal threshold concentration for gene activation.We
tackled this observation phenomenologically by making the transla-
tion constant dependent on the concentration of arabinose, inde-
pendent of the modeled topologies.

Scaling parameters and measurement models
To map the model output (PA, PB, PC) to the microplate reader
experiments, we included three scaling factors (for the three fluor-
escent reporters) in the optimization procedure (Data S1). Given that
the experiment for each reporter was performed with the same set-
tings, we assumed three measurement models. We performed linear
regression on the variance (s.d.) as a function of average fluorescent
signal per reporter.Weused the followingmodels per reporter, with its

average fluorescent signal x (Supplementary Fig. 5):

GFPðxÞ=
10350, x < 7e+04

0:13 � x + 1250, 7e+04≤ x ≤ 2:5e+05

3:375e+04, x >2:5e+05

8><
>: ð15Þ

mKO2ðxÞ=
899, x <600

0:08 � x +419, 6e+03≤ x ≤ 2e+04

2e+03, x >2e+04

8><
>: ð16Þ

mKate2ðxÞ= 43, x < 500

0:03 � x +23, x ≥ 500

�
ð17Þ

Definition of a stripe
To characterize a GRN as a stripe-forming one, initially, we normal-
ized the simulated data. We divided each reporter model output (PA,
PB, PC) at 900min for the different arabinose concentrations by the
maximum observed for each reporter (at 900min for the same ara-
binose concentrations). Next, we identified the node that reached the
maximum peak (i.e. a value of 1) when the other two were at the
minimum. To accept or reject a stripe (even if a node was identified),
we set a threshold of 6% increase and decrease, concerning the
average of two lower and two higher arabinose induction levels with
respect to the maximum point. Therefore, a functional (BLUE- or
GREEN-stripe) phenotype should on average at the two lowest and
two highest arabinose concentrations have at least an increase of 6%
and a decrease of 6%. We designated all other phenotypes as non-
functional.

Mutational change in GRNs
Within themodeling framework,we represent eachGRN as an 8-length
vector.Thefirst six elements of the vector represent thepositions of an
inhibition, similar to Fig. 4e (or absence, represented with 0), and the
last two elements represent the type of promoter for the blue and
green nodes. In the genotype networks, we define one mutational
change as the 1-Hamming distance between any one change in the
8-length vectors (i.e. 1-neighborhood).

Genotype maps of synthetic GRNs
We created genotypemaps by finding all the possible combinations of
the modular parts at our disposal (i.e. qualitative and quantitative
changes) and evaluating them for observing a non-functional or
functional phenotype. A single set of parameters (that best minimizes
the objective function) was used for all the forward simulations. Spe-
cifically, we had: (1) four different promoter efficiencies (the PL,PM,PH
and the 0 case) with two available promoter positions (green and blue
node), (2) six sgRNAs, and (3) 42 topologies with a minimum of three
and a maximum of six inhibitions. We did not include topologies with
only one or two inhibitions due to the expected reduced functionality
these topologies33,60. Therefore, for each topology, the total number of
GRNs is:

T ðEÞ =p
2 � sE ð18Þ

where p is the total number of promoter efficiencies, s is the total
number of sgRNAs, and E depends on the number of total inhibitions a
specific topology has. For the control analysis with artificial parameter
values (a regular grid in parameter space), the number of modular
parts consisted of: (1) five evenly spaced (from 0 to 1) promoter effi-
ciencies with two available promoter positions (green and blue node),
(2)five sgRNAswith evenly spaced kineticdissociation constants (from
5 to 45 nM), and (3) 42 topologies.
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Genotype maps of oscillatory synthetic GRNs
To generate the genotype maps of oscillatory synthetic circuits, we
used the same mathematical models and parametrization as for the
stripe-forming GRNs. However, we assumed that the binding of the
species for the sgRNA-dCas-DNA complex formation is irreversible
(similarly assumed here)109. This means that the kinetic constant krdsd
was set to zero. Given the nature of the microfluidic experiment, we
assumed constant growth of 1e-03 min−1 and an effective arabinose
concentration of 1e-05 %. In addition, we used the parameter values of
sgRNAs that were experimentally evaluated (six sgRNAs: sgRNA1,
sgRNA1t4, sgRNA2, sgRNA3, sgRNA4, sgRNA4t4 and four promoter
efficiencies: 1, 0.86, 0.75, 0). To automatically detect whether a GRN is
oscillating or not, we used the normalized autocorrelation method (at
zero lag the sequence is identical) with a peak detection of at least
0.01110,111.

Connectivity of genotype networks
A connected component of an undirected graph is the maximal set of
nodes such that each pair of nodes is connected by a path112. To eval-
uate the connectivity for the genotype networks, we utilized the
command components from the igraph package113 in Rstudio114. It uses
either a simple breadth-first search or two consecutive depth-first
searches.

Robustness per perturbation
As in Catalán et al.62, we measured the fraction of neighbors that
maintain the same phenotype per perturbation (i.e. changes in sgRNAs
or in promoter efficiencies), termed here as robustness per perturba-
tion (or neutrality, see Catalán et al.62). We randomly sampled 1% of
GRNs per functional phenotypes (2000 GRNs) and 0.1% of non-
functional phenotype (2000 GRNs) and evaluated all their neighbors
(which accounts for ~4.5% of the total possible GRNs). We tested var-
ious sampling schemes, until convergence was observed (Supple-
mentary Tables 4–6).

Random walks
To determine the path length for alternating phenotypes (GREEN-
stripe, BLUE-stripe, and NF phenotypes), we randomly selected 5%
GRNs per functional phenotype and 2% for the non-functional one
(~10700GRNswith BLUE-stripe andGREEN-stripe, and 28903GRNs for
NF). From these starting GRNs, the algorithm proceeded by uniform
random selection of a GRN from the set of neighboring GRNs. We
stopped the walk upon a change in phenotype or when the maximum
number of steps (50 for functional phenotypes, 300 for NF) was
reached. We used the built-in command random_walk from the igraph
package113 in RStudio114.

Prevalence of epistasis
To measure the occurrence of epistasis within our genotype net-
works we sampled again 5% GRNs per functional phenotype and 2%
for the non-functional one. Our goal was for each sampled GRN to
evaluate if it is part of an orthogonal network of GRNs, in which only
one of the direct neighbors will differ in the phenotype. We did this
by evaluating the 1- and 2-Hamming distance neighborhoods of the
sampled GRN.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data and code for generating the model-related figures
(Figs. 3b, 3d, 4a–e, 5a, 5b, 6b, 7b, 7c and Supplementary Figs. 2–5) are
available at https://doi.org/10.3929/ethz-b-000604092. Model para-
meters are provided in Supplementary Data 1. The plasmids used in

this study are listed in Supplementary Table 1 and their annotated
sequences are provided (Supplementary Data 2). The source data
underlying Figs. 2, 3b, 3c, 4f, 6c, and 7a, and Supplementary Fig. 1 are
provided as a Source Data file (Source data). A comparison of pro-
moter efficiencies was done using data available in Anderson et al.104,
Davis et al.105, and Kelly et al.106. Source data are provided with
this paper.

Code availability
Custom code for the analysis and generation of model-related figures
is available at https://doi.org/10.3929/ethz-b-000604092.
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