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The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expres-

sion quantitative trait loci (eQTLs) impact expression of local genes (cis-eQTLs). More research is needed to identify effects

of genetic variation on distant genes (trans-eQTLs) and understand their biological mechanisms. One common trans-eQTLs

mechanism is “mediation” by a local (cis) transcript. Thus, mediation analysis can be applied to genome-wide SNP and ex-

pression data in order to identify transcripts that are “cis-mediators” of trans-eQTLs, including those “cis-hubs” involved in

regulation of many trans-genes. Identifying such mediators helps us understand regulatory networks and suggests biological

mechanisms underlying trans-eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The

multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study

cis-mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems

can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse sam-

ples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjust-

ment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables

for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders

by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new in-

sights into the observed patterns of cis-hubs and trans-eQTL regulation across tissue types.

[Supplemental material is available for this article.]

Recent studies have demonstrated that many expression quantita-
tive trait loci (eQTLs) that affect expression of local transcripts (cis-
eQTLs) also affect the expression of distant genes (trans-eQTLs)
(Battle et al. 2014; Pierce et al. 2014). This observation suggests
the effects of trans-eQTLs are “mediated” by the local (cis-) gene
transcripts near the eQTLs (Fehrmann et al. 2011; Pierce et al.
2014). In otherwords, some cis-eQTLs are also trans-eQTLs because
the variation in the expressionof the cis-gene affects the expression
of a trans-gene or genes. In the simplest scenario, a cis-eQTL affects
expression of a nearby gene that is a transcription factor, which
then regulates the transcription of a distant gene; thus, the tran-
scription factor “mediates” the effect of the eQTL on the distant
gene. By studying eQTLs that have both the cis- and trans-effects,
one may identify the cis-genes that mediate the effects of trans-
eQTLs on expression of distant genes, including “cis-hub” genes
that regulate the expression of many trans-genes (Chen et al.
2007; Stranger et al. 2012). Studying mediation (causation) moves
beyond the analysis of cis- and trans- associations (correlation).
Prior studies have applied mediation tests to genome-wide SNPs
and expression data (from blood cells) to identify transcripts that

are cis-mediators of the effects of trans-eQTLs (Chen et al. 2007;
Battle et al. 2014; Pierce et al. 2014). Characterizing these regulato-
ry relationships will allow us to better understand regulatory net-
works and their roles in complex diseases (Veyrieras et al. 2008),
as it is well known that SNPs influencing human traits tend to be
eQTLs (Nicolae et al. 2010). Analyses of cis-mediationwill also pro-
vide us with a better understanding of the biological mechanisms
underlying trans-eQTLs (Westra et al. 2013).

The expression levels of a given gene can vary substantially
across human cell types, and the regulatory relationships between
SNPs and gene expression levels may also depend on cell type
(Torres et al. 2014; Wang et al. 2016). To date, most large-scale
eQTL studies have been conducted using RNA extracted from pe-
ripheral blood cells, which are mixtures of different cell types
and may not be informative for gene regulation in other human
tissues. In order to study gene expression and regulation in a vari-
ety of human tissues, the National Institutes of Health common-
fund GTEx (Genotype-Tissue Expression) project has collected
expression data on 44 tissue types from hundreds of post-mortem
donors (Lonsdale et al. 2013; Ardlie et al. 2015). This rich transcrip-
tome data, coupled with data on inherited genetic variation, pro-
vides an unprecedented opportunity to study gene expression
and regulation patterns from both cross-tissue and tissue-specific
perspectives.
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One major challenge in mediation analysis is the presence of
unmeasured or unknown variables that affect both the mediator
(i.e., cis-gene) and outcome (i.e., trans-gene) variables. The pres-
ence of such a variable is known as “mediator-outcome confound-
ing,” and in such a scenario, estimates obtained from mediation
analysis can be biased (Robins and Greenland 1992; Pearl 2001;
Cole and Hernan 2002). In other words, in the presence of an un-
measured confounding variable(s), the association between the
two cis- and trans-genes will be a biased estimate of the causal rela-
tionship between the two genes, and estimates obtained fromme-
diation analysis will be biased. It is well recognized that measures
of transcriptional variation can be affected by genetic, environ-
mental, demographic, technical, and biological factors. The pres-
ence of unmeasured or unknown confounding effects may
induce inflated rates of false detection of mediation relationships
or jeopardize the power to detect real mediation, if those con-
founding effects are not well accounted for. Given that eQTL anal-
yses are conducted in the context of complex biological systems,
there is a wide array of biological variables that could potentially
confound the mediator-outcome association and bias mediation
estimates, a problem that may be exacerbated by the diversity of
GTEx participants, with respect to ethnicity, age, and cause of
death. Given these challenges, it is desirable to have methods
that consider a large pool of potential confounding variables.

To adjust for unmeasured or unknown confounding effects in
genomics studies, existing literature focused on the construction
of sets of “hidden” variables that capture a substantial amount of
the variation in a large set of variables (Price et al. 2006; Leek
and Storey 2007; Stegle et al. 2012). A commonality of those ap-
proaches is that theymodel the effects of hidden confounding fac-
tors and summarize those effects into a set of constructed
variables, sort those variables decreasingly by their estimated im-
pacts, and adjust the top ones as a set of covariates to eliminatema-
jor confounding effects in the subsequent analysis. For example, in
GTEx eQTL analyses (Ardlie et al. 2015; The GTEx Consortium
2017), the top Probabilistic Estimation of Expression Residuals
(PEER) factors were estimated for each tissue type, and up to 35 fac-
tors were adjusted. One aspect that is largely ignored is that not all
potential gene pairs (or pairs of regulator and regulated genes) are
affected by the same set of hidden confounders. There are likely
thousands of cis-mediated trans-eQTLs in the human genome,
i.e., trios consisting of a genetic variant, a cis-gene transcript, and
a trans-gene transcript in a specific tissue type. However, for each
trio, mediator-outcome confounding will be present only when
a hidden variable is causally related to the regulator and regulated
genes. By this criterion, the potential confounder set varies by dif-
ferent trios. Adjusting a universal set of variables for all mediation
trios is not only inefficient but alsomay limit our ability to consid-
er a larger pool of potential confounding variables in genomicme-
diation analyses.

We propose to adaptively select the variables to adjust for
each trio given a large set of constructed or directly measured po-
tential confounding variables. This strategy supplements existing
confounding adjustment approaches that focus on the construc-
tion of variables for capturing confounding effects and enlarges
the pool of variables to be considered. Additionally, by leveraging
the cis genetic variant as an “instrumental variable,”we are able to
select the variables capturing confounding effects rather than var-
iables only correlatedwith cis- and trans-genes.We further propose
amediation testwithnonparametric P-value calculation, adjusting
for the adaptively selected sets of confounders. We term the pro-
posed algorithm Genomic Mediation analysis with Adaptive

Confounding adjustment (GMAC). The GMAC algorithm im-
proves the efficiency and precision of confounding adjustment
and the subsequent genomic mediation analyses. We applied
GMAC to each of the 44 tissue types of GTEx data in order to study
the trans-regulatory mechanism in human tissues. Our algorithm
identifies genes that mediate trans-eQTLs in multiple tissues, as
well as “cis-hubs” that mediate the effects of a trans-eQTL on mul-
tiple genes.

Results

GMAC improves power and precision of analysis of GTEx data

We performed genomic mediation analysis with data from each
tissue type in GTEx. Taking the tissue, adipose subcutaneous, as
an example, there are 298 samples for this tissue type, and gene-
level expression measures for 27,182 unique transcripts are avail-
able after quality control. Consider a candidatemediation trio con-
sisting of a gene transcript i (Ci), its cis-associated genetic locus (Li),
and another gene transcript j (Tj) in trans-association with the lo-
cus. The goal is to test for mediation of the effect of the genetic lo-
cus on the trans-gene by the cis-gene (see Fig. 1). We focused on
only the trios (Li, Ci, Tj) in the genome showing both cis- and
trans-eQTL associations, i.e., Li→Ci and Li→ Tj. Because associa-
tions are necessary but not sufficient conditions for inferring me-
diation, by considering only the trios with cis- and trans-
associations, we effectively reduced the search space to a promis-
ing pool of candidate mediation trios and alleviated the multiple
testing burdens. We detected and selected a lead cis-eQTL for
8500 of these transcripts, corresponding to 8216 unique cis-
eSNPs for subsequent analysis (see Methods). We applied Matrix
eQTL (Shabalin 2012) to the 8216 SNPs and the 27,182 gene ex-
pression levels to calculate the pair-wise trans-associations. At the
P-value cutoff of 10−5, there were 3169 significant pairs of SNP
and trans-gene transcripts. Since some cis-eSNPs were the lead
cis-eSNPs for multiple local gene transcripts, those significant
SNP and trans-gene pairs entailed a total of 3332 trios (i.e., SNP-
cis-trans) for this tissue type. We applied GMAC (see Methods;
see Fig. 2 for a graphical illustration of the main steps of the
GMAC) to the 3332 trios in this tissue type to test for mediation

Figure 1. Causal diagramdemonstratingmediation and “mediator-out-
come confounding.” Here, the variable set “U” represents a set of unmea-
sured or unknown variables that may show confounding effects in the
mediation analysis. Mediation analysis can detect mediation of the effect
of the eSNP on the trans-gene by the cis-gene, assuming mediator-out-
come confounding is absent or adjusted for in the analysis. Mediation
will not be detected if the effect of the eSNP on the trans-gene is through
some alternative pathway that does not involve the cis-gene.

Yang et al.

1860 Genome Research
www.genome.org



and obtained themediation P-values for those trios. Since different
tissue types have different sample sizes in GTEx and in addition to
cross-tissue confounders, there are many tissue-specific confound-
ing effects, we constructed Principal Components (PCs) from the
expression data of each tissue type as potential confounders (Fig.
2B). The number of PCs for each tissue type is equal to the tissue
sample size minus 1. We analyzed trios for mediation in a similar
fashion for all other GTEx tissue types.

At the 5% false discovery rate (FDR) (Storey and Tibshirani
2003) level, we identified 6145 instances of significant mediation
out of 64,824 trios tested in the 44 tissue types. These trios repre-
sent potential examples of cis-mediation of trans-eQTLs within a
specific tissue. Table 1 lists the number of significantmediation tri-
os at 5% FDR and the number of trios with suggestive mediation
(P-value < 0.05), aswell as the total number of trioswith significant
cis- and trans-associations for all tissue types. The number of con-
founders selected for each mediation test ranged from 0 to 22
across all tissue types, with a mean of 7.695 and a median of
8. The median number of confounders selected for each tissue
type ranged from 3 to 12, while the pool of variables (PCs) from

which we selected confounders ranged from 69 to 360.
Supplemental Table S1 presents the descriptive statistics for the
number of selected confounders for all the trios in each tissue
type. It is clear that with GMAC, on average, we adjust an efficient
numberwhile considering a large pool of confounding variables in
themediation tests, and thatmay improve the power and accuracy
of the analyses.

Again taking the tissue, adipose subcutaneous, as an illustra-
tion, in Figure 3, we plotted the negative log base 10 of the me-
diation P-values versus the percentages of reduction in trans-
effects after adjusting for a potential cis-mediator, based on medi-
ation tests without adjusting for hidden confounders (Fig. 3A)
and mediation tests by GMAC considering all PCs as potential
confounders (Fig. 3B). The percentage of reduction in trans-ef-
fects is calculated by (bm

2 − b2)/bm
2 × 100%, where bm

2 is the mar-
ginal trans-effect of the eQTL on the trans-gene expression levels,
and β2 is the trans-effect after adjusting for cis-mediation. For tri-
os representing true cis-mediation, we expect the trans-effects to
be substantially reduced after adjusting for the mediator; that
is, we expect the trios with very significant mediation P-values

A

B

E F

C D

Figure 2. Graphical illustrations of GMAC and its main ideas. (A) A summary of the GMAC algorithm; (B) a mediation relationship among an eQTL, Li, its
cis-gene transcript, Ci, and a trans-gene transcript, Tj, with confounders, Xij, allowing Li to affect Tj via a pathway independent of Ci; (C) a mediation trio
whereCi and Tj have common child variable(s),Zij; (D) amediation triowhereCi affects Tj through intermediate variable(s),Wij. (E) The adaptive confound-
er selection procedure: Based on the P-value matrix for the association of each potential confounder variable to at least one of the cis- or the trans-gene
transcripts, we apply a stratified FDR approach by considering the P-values for each potential confounder (each column) as a stratum, with the significant
ones indicated by a check mark (√). When conducting the mediation test for each trio, we only adjust for the significant confounding variables (the ones
with√ in each row). (F) A mediation trio Li→ Ci→ Tj (left) and a trio under the null with both cis-linkage and trans-linkage but nomediation (right). Within-
genotype permutation of the cis-gene expression levels maintains the cis- and trans-linkage (different mean levels) while breaking the potential correlation
between the cis- and trans-expression levels within each genotype group. Note that Xij, Zij,Wij may vary by trios and are all subsets of H. We assume that
either Xij or a combination of variables in Xij would capture the variation of the unmeasured confounder U in Figure 1.
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to have positive percent reduction in the trans-effect. In Figure
3A, we observed many trios with significant mediation P-values,
but for a substantial number of these trios, the percentages of re-
duction in trans-effects are negative. At the mediation P-value
threshold of 0.05, 1577 out of 3332 trios were significant; how-
ever, 712 trios (712/3332 = 21.3%) have negative percent reduc-
tion in trans-effects. This contradicting result is expected in the
presence of unadjusted confounders, and many of these trios
may be false positives. Thus, mediation analyses of GTEx data
without adjusting for hidden confounding effects will lead to
many spurious findings.

In addition to our main analysis based on GMAC (adaptively
selecting confounders from all expression PCs), we also conducted
mediation tests adjusting for only the 35 PEER factors used in the
GTEx eQTL analyses (The GTEx Consortium 2017). At the 5% FDR
level, 3356 out of 64,824 trios from all tissue types were signifi-
cant. Using GMAC adjusting for adaptively selected PEER factors,
5131 trios were significant at the 5% FDR level. The comparison of
adjusting for all (up to 35) PEER factors versus GMAC (considering
a larger pool of potential confounders with up to 360 PCs) demon-

strates that adaptive selection enables more efficient adjustment
of confounding effects with much fewer selected confounding
variables (Supplemental Table S1) and improves power to detect
mediation. Furthermore, using GMAC to adaptively select con-
founders from all PCs identifies 6145 significant trios, suggesting
an increase in power. It can also be seen that all three methods—
(1) GMAC with adaptively-selected PCs, (2) GMAC with adaptive-
ly-selected PEER factors, and (3) adjusting for all PEER factors—
would yield reasonable mediation estimates (i.e., percentages of
reduction in trans-effects versus mediation P-values), compared
to no confounder adjustment (see Supplemental Fig. S1). In con-
clusion, motivated by the fact that the potential confounder set
may vary by different trios, GMAC adaptively adjusts for only
the variables that are causally related to both cis- and trans-genes
and may show confounding effects in the mediation analysis of
each trio (Fig. 2B). Compared with adjusting for a universal set
of (top) variables for all mediation trios, GMAC considers a larger
pool of potential confounding variables in genomic mediation
analyses and enjoys improved power while controlling for false
positives.

Table 1. A description of GTEx tissue types and the number of significant instances of mediation (i.e., SNP-cis-trans trios) identified by GMAC

Tissue name Tissue sample size # Trios tested
# Trios with suggestive mediation

(P-value < 0.05) # Trios significant at 5% FDR

Muscle skeletal 361 2387 496 264
Whole blood 338 2274 508 281
Skin sun-exposed lower leg 302 3273 629 330
Adipose subcutaneous 298 3332 640 325
Artery tibial 285 2699 527 281
Lung 278 2762 543 323
Thyroid 278 3894 696 376
Cells transformed fibroblasts 272 3000 642 340
Nerve tibial 256 3812 677 326
Esophagus mucosa 241 2640 465 242
Esophagus muscularis 218 2431 447 230
Artery aorta 197 2009 368 186
Skin not sun-exposed suprapubic 196 1961 365 177
Heart left ventricle 190 1290 242 115
Adipose visceral omentum 185 1410 257 125
Breast mammary tissue 183 1422 254 126
Stomach 170 1153 235 107
Colon transverse 169 1585 309 161
Heart atrial appendage 159 1221 243 103
Testis 157 3896 607 267
Pancreas 149 1270 208 102
Esophagus gastroesophageal junction 127 857 148 74
Adrenal gland 126 981 185 94
Colon sigmoid 124 968 220 108
Artery coronary 118 874 191 95
Cells EBV-transformed lymphocytes 114 856 152 78
Brain cerebellum 103 1295 187 84
Brain caudate basal ganglia 100 763 139 61
Liver 97 496 87 41
Brain cortex 96 754 134 45
Brain nucleus accumbens basal ganglia 93 592 97 43
Brain frontal cortex BA9 92 595 102 52
Brain cerebellar hemisphere 89 1072 222 116
Spleen 89 825 157 68
Pituitary 87 732 132 61
Prostate 87 474 101 54
Ovary 85 469 95 43
Brain putamen basal ganglia 82 481 94 35
Brain hippocampus 81 343 93 47
Brain hypothalamus 81 342 74 41
Vagina 79 248 58 25
Small intestine terminal ileum 77 434 82 39
Brain anterior cingulate cortex BA24 72 365 81 29
Uterus 70 287 62 25
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The majority of the cis-mediators and trans target genes ob-
served among our trios showing mediation have high mappabil-
ity scores (Supplemental Fig. S2). However, nonuniquely
mapping reads can result in false positive eQTLs, so we consider
the mappability of each gene as a quality control filter for study-
ing specific examples of cis-mediation (see Methods). Examining
the mappability for genes involved in cis-mediation, we observed
that cis-genes showing evidence of cis-mediation for multiple
trans-genes were enriched for cis-genes with low mappability
scores (Supplemental Fig. S2). Similarly, genes showing evidence
of cis-mediation across many different tissue types were also en-
riched for genes showing low mappability scores (Supplemental
Fig. S2). This finding demonstrates that transcripts that do not
uniquely map to the genome are an important source of false
positives when conducting genomic mediation analysis. More
specifically, we find that analyzing low-mappability genes can
lead to the identification of spurious cis-hubs and cross-tissue
cis-mediators.

We attempted to identify “cis-hubs”with highmappability in
the GTEx data, defined as a transcript that appears to mediate the
effect of a nearby eSNP on expression of multiple distant (i.e.,
trans) gene transcripts. Restricting our analysis to cis- and trans-
genes with mappability > 0.95, we observed 685 cis-genes with at
least two trans targets (considering all tissues), representing 21%
of the 3168 cis-genes observed among the trios with a mediation
P-value < 0.05 (Table 2). In addition, we attempted to identify
cis-genes that have at least one trans target in multiple tissues.
Restricting to high-mappability genes, we observed 531 cis-genes
with trans targets in more than one tissue, representing 17% of
the 3168 cis-genes observed among the trios with a mediation P-
value < 0.05 (Table 2). We observed only six examples of cis-genes
that had the same trans targets in multiple tissues. In other words,
the vast majority of cis-hubs observed were of two distinct types:
(1) those that mediated the effect of a trans-eQTL on multiple
trans-genes within a single tissue type; and (2) those that were
mediators in multiple tissues but with unique trans targets in

each tissue type. All instances of cis-me-
diation of trans-eQTLs with a mediation
P-value < 0.1 (16,648 trios) are listed in
Supplemental Table S2, including
trios containing transcripts with low
mappability.

Examples of mediation across tissues

In analyses restricted to cis- and trans-
genes with mappability scores > 0.95,
one biologically interpretable example
of a cis-gene that appears to mediate the
effects of trans-eSNPs in multiple tissues
is the IFI44L gene on Chromosome 1
(Fig. 4A). IFI44L is a cis-eGene in two
GTEx tissues (cerebellar hemisphere and
tibial nerve), and the cis-eSNPs associated
with IFI44L expression are also associated
with expression of multiple genes in
trans in both cerebellar and tibial nerve
tissue. OAS1 is a trans target of these
SNPs in both tissues, while other trans
targets are observed in only cerebellar
(AGRN and PARP12) or tibial nerve
(RSAD2, OAS2, and EPSTI1). Below the

mappability threshold of 0.95, we observe an additional potential
trans target of IFI44L, present in both cerebellar and tibial nerve tis-
sue, IFIT3 (mappability = 0.87). These relationships are depicted in
Figure 4A.

Interestingly, if we expand our analysis to include cis- and
trans-genes with mappability > 0.90, we detect IFI44 (mappability
of 0.93) as a cis-mediator regulating a nearly identical set of trans
genes across three tissues: cerebellar hemisphere (OAS1, IFIT2,
AGRN, and PARP12), tibial nerve (OAS1, IFIT3, RSAD2, and
EPSTI1), and sun-exposed skin (IFIT1) (Fig. 4B). IFI44 and IFI44L
are paralogs and reside adjacent to each other on 1p31.1. These
genes are regulated by the same SNP in each tissue. It is highly un-
likely that sequence similarity between these two genes causes our
RNAseq-based expression measurements for IFI44 (and/or IFI44L)
to reflect the expression variation of both genes. The two regions
of similarity shared between these two transcripts are 753 and
202 bp in length, and these regions share 69% and 67% similarity,
respectively (Supplemental Fig. S3). These two regions contain no
identical sequences longer than ∼10 bp, making it impossible for
an RNA-seq read (76 bp) to be ambiguous in terms of its mapping
to IFI44 vs. IFI44L. Furthermore, a prior study of array-based

A B

Figure 3. Plots of negative log base 10 of mediation P-values versus the percentages of reduction in
trans-effects after accounting for cis-mediation. The P-values are calculated based on (A) mediation tests
without adjusting for hidden confounders, and (B) mediation tests by GMAC considering all PCs as po-
tential confounders. P-values are truncated at 10−16. The plots are based on the results from the adipose
subcutaneous tissue. The percentage of reduction in trans-effects is calculated by (bm

2 − b2)/bm
2 × 100%,

where bm
2 is the marginal trans-effect of the eQTL on the trans-gene expression levels, and β2 is the trans-

effect after adjusting for a potential cis-mediator and other covariates. For trios with true cis-mediations,
the marginal trans-effects are nonzero, and after adjusting for the true cis-mediators, we expect the ad-
justed trans-effects β2 to be substantially reduced; that is, we expect the trios with very significant medi-
ation P-values to have positive percent reduction in trans-effects. For results based on no adjustment of
hidden confounders (A), we observedmany trios with significant mediation P-values but the percentages
of reduction in trans-effects are negative. At the 0.05 P-value threshold, 712 (21.4%) and 188 (5.6%) out
of 3332 trios have P-values below the threshold and percent reduction in trans-effects being negative in A
and B, respectively.

Table 2. Frequency of cis-genes that mediate the effect of a trans-
eQTL on multiple trans-genes or in multiple tissue types

Observed number of trans targets
for each cis-gene

Number of tissues for which
each cis-gene is a mediator

Number of trans
targets

Cis-gene
count

Number of
tissues

Cis-gene
count

1 2510 1 2637
2 482 2 420
3 123 3 91
4 33 4 16
5–6 12 5 3
7–14 8 6 1
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expression measures in endometrial cancer tissue reported genetic
coregulation of IFI44 and IFI44L (in trans) (Kompass and Witte
2011).

Based on these observations, it is unclear which of these two
genes is truly a cis-mediator of the observed trans-eQTLs (or if both
are mediators). The causal cis-eSNP for IFI44 (and/or IFI44L) ap-
pears to be different in different tissues, as the LD between the
lead cis-eSNPs in cerebellar (rs12129932) and the lead eSNP in tib-
ial nerve (rs74998911) is quite low, with r2 < 0.01 in EUR 1000
Genomes data (The 1000 Genomes Project Consortium 2015).

Regardless of the uncertainty whether IFI44L or IFI44 (or
both) is the true cis-hub of this trans-eQTL, nearly all of the genes
involved in the putative regulatory pathways identifiedhere are in-
terferon-regulated/inducible genes, namely OAS1, OAS2, IFIT1,
IFIT3, IFI44, IFI44L, RSAD2, and AGRN (Cheon and Stark 2009;
Kyogoku et al. 2013). These genes have been previously reported
to be co-expressed and/or coregulated in various human cell types,
including interferon-exposed fibroblasts and mammary epithelial

cell lines (Cheon and Stark 2009), virus-
infected airway epithelial cell cultures
(Ioannidis et al. 2012), and peripheral
blood of individuals with acute respirato-
ry infections (Zaas et al. 2009), as well as
in both normal and cancerous human
tissue (Cancer Cell Metabolism Gene
DB, https://bioinfo.uth.edu/ccmGDB/).
These previously reported co-expression
findings also extend to EPSTI1 (Cheon
and Stark 2009), the one gene we find
to be a trans target of IFI44L (and/or
IFI44) that does not have a well-estab-
lished function in immune response,
providing additional evidence of an im-
mune-related function for this gene.

Variation in the IFI44L gene is asso-
ciated with risk for MMR (measles,
mumps, and rubella) vaccination-related
febrile seizures, with a missense variant
in IFI44L showing the strongest associa-
tion (Feenstra et al. 2014). Variation in
IFI44L has also been implicated in schiz-
ophrenia risk (Ruderfer et al. 2014) as
well as bipolar disorder (Chen et al.
2013). These findings suggest that the
putative cross-tissue cis-hub identified
here may be relevant to multiple neuro-
logical and psychological disorders, par-
ticularly those with etiologies related to
immune function.

Comparison of GMAC with other

methods using simulated data

We evaluate the performance of the pro-
posed GMAC in various simulated data
scenarios. For each scenario described be-
low, we simulated 1000 mediation trios
(Li, Ci, Tj) for a sample size of n = 350,
similar to the sample size of the GTEx
data. Each mediation trio consists of a
gene transcript i (Ci), its cis-associated ge-
netic locus (Li), and a gene transcript j

(Tj) in trans-associationwith the locus. Note that, in themediation
analysis in this work (simulations and real data analysis), we con-
sider only the trios with evidence of cis- and trans-associations,
Li→Ci and Li→ Tj. We are interested in testing whether an ob-
served trans-eQTL association is mediated by the cis-gene tran-
script, i.e., Li→Ci→ Tj. We compared GMAC with other
methods in different scenarios, including in the presence of con-
founders, common child variables, and intermediate variables. A
common child variable is a variable that is affected by both Ci

and Tj (Fig. 2C). An intermediate variable is a variable that is affect-
ed by Ci and affecting Tj, that is, at least partially mediating the ef-
fects from Ci to Tj (Fig. 2D).

Scenario 1: Under the null in the presence of common child variables

This is a scenario in which there is one common child variable for
each pair of cis- and trans-gene transcripts (Fig. 2C). In this sce-
nario, adjusting for common child variables inmediation analyses
would “marry” Ci and Tj and make Ci appear to be regulating Tj

A

B

Figure 4. A biologically interpretable example of a cis-eGene (IFI44L) that appears to mediate the ef-
fects of trans-eSNPs in multiple tissues. The gene IFI44L (A) resides <5 kb away from IFI44 (B), and expres-
sion of these genes is associated with a common cis-eQTL that also impacts the expression of multiple
genes in trans in multiple tissues. Both IFI44 and IFI44L show statistical evidence of mediation for a similar
set of interferon-related genes. Thus, based on this evidence, we infer that at least one of these genes is a
cis-mediator, although we cannot know which is (or if both are) the true mediator.
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even if there is no such effect (i.e., “collider bias”) (Greenland
2003), increasing the false positive rate for detecting mediation.
Therefore, we consider it as “improper” to adjust for common
child variables.We simulated a pool of independent and normally
distributed variablesH, with dimensionality being the same as the
sample size of 350. For each of the 1000 mediation trios, we simu-
lated the genetic locus Li under Hardy-Weinberg Equilibrium with
a minor allele frequency of 0.1. Given Li, the cis-gene transcript Ci

and the trans-gene transcript Tj are generated according to the
models: Ci = βi0c + βi1c Li + εic and Tj = βi0t + βi1t Li + εit. In this sce-
nario, the trans-effect is not mediated by the cis-gene transcript.
We let the parameters in the abovemodels vary across the 1000 tri-
os, with βi1c sampled uniformly from 0.5 to 1.5, and the rest sam-
pled uniformly from 0.5 to 1.0. The error terms εic and εit are
normally distributed. For each mediation trio, one candidate vari-
able inH is randomly chosen to be the common child variable, Zj,
and the effects of cis- and trans-gene transcripts on Zj are sampled
uniformly from 1 to 1.5.

Scenario 2: Under the null in the presence of confounders

Scenario 2 is generated under the null in the presence of con-
founders (Fig. 2B). Each candidate confounding variable has a
5% probability of being a true confounder of the cis-trans relation-
ship for a randomly chosen proportion of trios where the propor-
tion follows a uniform distribution from 0 to 0.2. This
specification results in, on average, 1.85 confounders for each
trio in our simulated data. Suppose for the ith trio there are ni
number of variables in H selected to be confounders; we denote
the confounders as Xi1, . . . , Xini . The cis-gene transcript Ci and
trans-gene transcript Tj are generated according to the regres-
sion models Ci = bi0c + bi1cLi + ai1Xi1 + . . .+ ainiXini + eic and
Tj = bi0t + bi1tLi + gi1Xi1 + . . .+ giniXini + eit . We let the parame-
ters in the above models vary across the 1000 trios with similar
parameter specification as before. In this scenario, there are no
cis- to trans-gene mediation effects. Failure to adjust for confound-
ers may induce false positive results, and it is improper to not ad-
just for confounders.

Scenario 3: Under the alternative in the presence of intermediate variables

We consider another scenario in which there is one intermediate
variable for each cis-trans relationship (Fig. 2D). For each media-
tion trio, we simulated the genetic locus and the cis-gene transcript
as before and further simulated a child variable,Wi of the cis-gene
transcript. The trans-gene transcript, Tj is then simulated to be af-
fected byWi, according to Tj = βi0t + βi1t Li + γiWi + εit. Note that the

trans-gene Tj is simulated to be affected by the cis-gene Ci only via
the intermediate variable Wi. The mediation effects from cis- to
trans-gene transcript (via Wi) is nonzero in this scenario. Because
Wi is on the causal pathway from Ci to Tj, it is improper to adjust
forWi, and the adjustmentwill reduce or eliminate power to detect
true mediation.

Scenario 4: Under the alternative in the presence of confounders

To compare with the existing approach that adjusts for a universal
set of variables, we consider a scenario in which the dimensional-
ity of potential confounding variablesH is 100. For each trio, up to
five variables inH are randomly selected to confound the cis-trans
gene relationship. The absolute effects of confounders on cis tran-
scripts are sampled uniformly from 0.15 to 0.5 with a 50% proba-
bility to be negative; the effects of confounders on trans transcripts
are sampled uniformly from 0.15 to 0.5, with all to be positive. We
set the effect of cis transcript on trans transcript to be 0.1, i.e., non-
zero mediation effects. When the number of potential confound-
ing variables is large, although onemay still adjust them all for the
simulated sample size, this adjustment is inefficient and may hurt
the power.

Simulation results

For each scenario, we compared the results based on the following
methods: (1) Oracle adjustment, which correctly adjusts for the
true confounders but no child or intermediate variables in theme-
diation test; (2) the GMAC algorithm; and (3) improper (or ineffi-
cient) adjustment, which corresponds to incorrectly adjusting for
the common child variables in scenario 1, failure to adjust for con-
founders in scenario 2, incorrectly adjusting for the intermediate
variables in scenario 3, and universally adjusting for all variables
in H in scenario 4, including variables which are not true con-
founders. Table 3, A and B, shows the true type I error rates at
the significance levels of 0.01 and 0.05 in scenarios 1 and 2, respec-
tively. As expected, adjusting for child variables “marries” the cis-
and trans-genes in the mediation test, resulting in inflated rates of
false positive findings. Failure to adjust for confounding also leads
to inflated type I error rates. In contrast, both the Oracle and
GMAC adjustment control the type I error rates. Table 3C shows
that, when the power to detect mediation is high (by Oracle and
GMAC), incorrectly adjusting for an intermediate variable in this
setting greatly reduces the power to detect mediation. In compar-
ison, GMAC correctly filters out most of the true intermediate var-
iables in the adjustment for mediation tests and maintains power
comparable to Oracle adjustment. Table 3D shows that GMAC has

Table 3. Comparison of the type I error rate and power of GMAC compared to othermethods formediation analysis under the null (A and B) and
the alternative (C and D) hypotheses, based on simulated data

(A) Type I error rate in the presence of a common child variable (B) Type I error rate in the presence of confounders
Significance
level

Oracle
adjustment

GMAC
algorithm Child adjustment

Significance
level

Oracle
adjustment

GMAC
algorithm

No
adjustment

0.01 0.011 0.010 0.287 0.01 0.007 0.008 0.459
0.05 0.049 0.050 0.413 0.05 0.045 0.048 0.585

(C) Power in the presence of an intermediate variable (D) Power in the presence of confounders
Significance
level

Oracle
adjustment

GMAC
algorithm

Adjusting intermediate
variable

Significance
level

Oracle
adjustment

GMAC
algorithm

Adjusting all

0.01 0.999 0.868 0.006 0.01 0.258 0.257 0.161
0.05 0.999 0.871 0.041 0.05 0.473 0.468 0.364
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comparable power to Oracle adjustment in scenario 4. In our sim-
ulation, 2962 out of 3023 generated confounders across the 1000
mediation trios are correctly selected. In comparison, adjusting
for all variables in the pool of confounders is inefficient and reduc-
es power to detect mediation.

Discussion

In this work, we have developed theGMAC algorithm for conduct-
ing mediation analysis to identify cis transcripts that mediate the
effects of trans-eQTLs on distant genes. We address a central prob-
lem in mediation analysis, “mediator-outcome confounding,” by
developing an algorithm that can (1) search a very large pool of
variables (surrogate and/or measured) for variables likely to have
confounding effects and (2) adaptively adjust for such variables
in each mediation test conducted. We acknowledge that we can-
not make definitive causal claims regarding any of the media-
tion/regulatory relationships for which we detect evidence.
Instead, the focus of our work is to strengthen the evidence that
mediation analysis can provide and to identify candidate cis-hub
genes likely to mediate the effects of eQTLs on many trans-genes
within or across human tissue types. Cis-hub genes are likely to
be key players in the regulatory networks relevant to human dis-
ease, thus it is important that we understand their patterns of reg-
ulation. By applying GMAC to 44 human tissues from the GTEx
project, we are able to characterize cis-hubs with potential disease
relevance by aggregating information across many different tissue
types. Analyses of simulated data show that the GMAC algorithm
improves the power to detect true mediation compared with exist-
ing methods, while controlling the true false positive rate.

In analyses of GTEx data, over 20% of cis-mediators we ob-
serve appear to mediate the effects of a trans-eQTL on multiple
genes, but the vast majority of these cis-hubs are either tissue-spe-
cific (i.e., mediating multiple trans-genes in a single tissue type) or
have unique trans targets in each tissue type. We provided one ex-
ample of a biologically plausiblemultitissue cis-hub, whereby a cis-
mediator of trans-eQTLs appears to have common trans targets
across multiple tissue types. The cis-hub identified (IFI44L) has po-
tential relevance for neurological and psychological disorders, par-
ticularly those with etiologies related to immune function,
demonstrating the potential value of our approach for understand-
ing disease-relevant pathways.

One innovative aspect of this work is our algorithm that rig-
orously addresses the problem of “mediator-outcome confound-
ing” in the context of genomic mediation analysis. In eQTL-
basedmediation analysis, potential confounders of the cis-trans as-
sociation include demographic and environmental factors, as well
as awide array of biological phenomena, such as expression of spe-
cific genes or other biological processes thatmay be represented by
the expression of sets of genes. Neglecting to control for such con-
founding variables can lead to substantial bias in estimates of me-
diation, resulting in spurious findings, as we have described
previously (Pierce et al. 2014). Considering the complexity of the
biological systems under study, as well as the diversity of the
GTEx donors, a careful control for such confounding variables is
critically important.

Most existing methods control for confounding variables by
constructing a set of variables that represent the largest compo-
nents of variation in the transcriptome and adjusting for the se-
lected set for all tests conducted. However, only when a variable
is causally related to both the cis- and trans-genes (as shown in
Fig. 2B) will the variable potentially show confounding effects in

mediation analysis. GMAC adaptively selects a set of confounding
variables for each trio undergoing mediation analysis, enabling
large-scale genomicmediation analyses adjusting only for the con-
founding variables that could potentially bias a specific mediation
estimate. As opposed to adjusting for all known covariates, our
strategy of selecting only potential confounders for adjustment
purposes is important for three reasons: (1) Adjusting for fewer var-
iables increases power (i.e., fewer degrees of freedom) (see
Supplemental Table S1); (2) the number of variables from which
one selects covariates could be extremely large (e.g., all expressed
genes),making adjustment for all covariates impossible; and (3) in-
advertently adjusting for “common child” or intermediate vari-
ables can result in substantial biases. In this work, we select
potential confounders from all expression PCs, but one could
also select from among transcripts that are not well-represented
by PCs. By efficiently selecting confounders from a very large
pool of potential variables, GMAC improves both power and preci-
sion in mediation analyses.

There are several limitations of our approach and its applica-
tion to GTEx data. First, when working with real genomic data, we
can never be sure that wehavemeasured and accounted for all pos-
sible mediator-outcome confounding. Potential confounders in-
clude participant characteristics, environmental factors, and
tissue micro-environmental factors, as well as a wide array of bio-
logical factors which may or may not be captured by the expres-
sion data being analyzed. Second, in the analysis presented here,
we only consider the trios with both strong cis- and trans-eQTL ef-
fects. For any given tissue type we are analyzing, our sample size is
too small for robust genome-wide detection/analysis of trans-
eQTLs. As such, themediation trioswe considered are only a subset
of the true mediation trios in the genome, and the small sample
sizes may also result in underpowered mediation tests. As the sam-
ple size of GTEx increases, future studies will have increased power
to identify cis-mediators using GMAC. Third, we did not consider
the full complexity of gene isoforms and splice variants in this
work; future studies should consider the possibility of mediation
relationships that are isoform-specific. Lastly, some trans-eQTLs
may not be mediated by variation in the expression of a cis-gene.
Other potential mediating mechanisms could include variation
in coding sequence, physical inter-chromosomal interaction, or
variation in noncoding RNA. Our work is not intended to identify
and analyze such trans-eQTLs, as we perform trans-eQTL analyses
using only SNPs known to be cis-eSNPs.

It is important to note that our expectation is that most trans-
eQTLs are fully mediated by a transcript that is regulated in cis by
the causal trans-eQTL variant. We did not observe “complete me-
diation” (i.e., % mediation = 100%) for the majority of the signifi-
cant mediation P-values we observed. However, as we have
explained and demonstrated previously (Pierce et al. 2014), full
mediation will be observed as partial mediation in the presence
of mediator measurement error and/or imperfect LD between the
causal variant and the variant used for analysis purposes. Thus,
considering RNA quantification is not error-free and causal vari-
ants are often unknown, we expect to often observe partial medi-
ation when full mediation is present.

We also demonstrate that it is critical to consider mappability
for both cis- and trans-genes involved in mediation analysis. For
genes containing sequences that do not uniquely map to the hu-
man transcriptome, it is possible that gene expression measures
may be comprised of signals coming from multiple genes, which
can produce false positives in mediation analysis, including spuri-
ous detection of cis-hubs and cross-tissue cis-mediators.
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Our application of theGMAC algorithm to themultitissue ex-
pression data fromGTEx provides a unique cross-tissue perspective
on cis-mediationof trans-regulatory relationships acrosshumantis-
sues. This multitissue perspective is important because observing
mediation relationships that are consistent across multiple tissues
provides confidence that a significant mediation P-value reflects
a true instance of mediation. For the “cis-hub” genes and genes
that appear to be cis-mediators in multiple tissues, further investi-
gation is warranted, as these genesmay havemany regulatory rela-
tionships that we are not powered to detect in this work. Thus, a
multitissue mediation analysis approach has the potential to in-
crease power to identify true mediators while controlling for false
positives. In future work, attempts at joint analyses of multiple tis-
sue types may provide a more complete picture of the cross-tissue
and tissue-specific trans-regulatory mechanisms. The GMAC ap-
proach described here will be a valuable tool for such studies as
well as any future studies that aim to understand the relationships
among cis- and trans-eQTLs and characterize the biological mecha-
nisms and networks involved in human disease biology.

We have developed an R GMAC package to perform the pro-
posed genomic mediation analysis with adaptive selection of con-
founding variables. The package is currently available through R
CRAN.

Methods

Biospecimen collection and processing of GTEx data

A total of 7051 tissues samples were obtained from 44 distinct tis-
sue types from 449 post-mortem tissue donors (with 65.6%male).
Those donorswere frommultiple ethnicity groups, spanned awide
age range, and have various causes of death (seeGTEx portal for de-
scriptive statistics). Donor enrollment, consent processes, and bio-
specimen collection and processing have been described
previously (Lonsdale et al. 2013; Ardlie et al. 2015). Briefly, each
tissue sample was preserved in a PAXgene tissue kit and stored as
both frozen and paraffin-embedded tissue. Total RNAwas isolated
from PAXgene fixed tissue samples using the PAXgene Tissue
mRNA kit. For whole blood, total RNA was isolated from samples
collected and preserved in PAXgene blood RNA tubes.

Blood samples were used as the primary source of DNA.
Genotyping was conducted using the Illumina Human Omni5-
Quad and Infinium ExomeChip arrays. Standard QC procedures
were performed using PLINK software (Purcell et al. 2007), and ge-
notype imputation was performed using IMPUTE2 software
(Howie et al. 2009) and reference haplotypes from the 1000
Genomes Project (The 1000 Genomes Project Consortium 2015).
The first three PCs representing ancestry (Price et al. 2006) were in-
cluded as covariates in all analyses.

RNA-seq data were generated for RNA samples with an RIN
value of six or greater. Nonstrand-specific RNA sequencing was
performed using an automated version of the Illumina TruSeq
RNA sample preparation protocol. Sequencing was done on an
Illumina HiSeq 2000, to a median depth of 78M 76-bp paired-
end reads per sample. RNA-seq data were aligned to the human ge-
nome using TopHat (Trapnell et al. 2009). Gene-level expression
was estimated in RPKM units using RNA-SeQC (DeLuca et al.
2012). RNA-seq expression samples that passed various quality
control measures (as previously described) were included in the fi-
nal analysis data set.

Mappability of transcripts

Because nonuniquely mapping reads can result in false positive
eQTLs, we use the mappability of each gene as a quality control

filter, as described by The GTEx Consortium (2017). The mapp-
ability was calculated as follows: Mappability of all k-mers in
the reference human genome (hg19) computed by ENCODE
(The ENCODE Project Consortium 2012) was downloaded from
the UCSC Genome Browser (accession: wgEncodeEH000318,
wgEncodeEH00032) (Rosenbloom et al. 2013). The exon- and
UTR-mappability of a gene were computed as the average mapp-
ability of all k-mers in exons and UTRs, respectively. We used k =
75 for exonic regions, as it is the closest to GTEx read length
among all possible k’s. UTRs are generally quite small, so k = 36
was used, the smallest among all possible k’s. Mappability of
a gene was computed as the weighted average of its exon-
mappability and UTR-mappability, with the weights being pro-
portional to the total length of exonic regions and UTRs,
respectively.

The selection of trios for mediation tests

In themediation analysis presented in this work, we consider only
the trios with evidence of cis and trans associations, Li→Ci and
Li→ Tj. The identification of cis-eQTLs is described elsewhere
(Ardlie et al. 2015; The GTEx Consortium 2017). For genes with
multiple cis-eSNPs as eQTLs, only one cis-eSNP for each gene
(i.e., the high-quality SNP with the smallest P-value) was selected
and was included in the subsequent trans-eQTL and mediation
analyses. The complete cis-eQTL list is available through the
GTEx portal (https://gtexportal.org/), and all data can be obtained
through dbGaP (phs000424.v6.p1).

Furthermore, using Matrix eQTL (Shabalin 2012), we con-
ducted genome-wide trans-eQTL analyses, restricted to the cis-
eSNPs described above and examining association for all genes
located at least 1 Mb away from the cis-eSNPs. Up to 35 PEER
factors and other covariates were adjusted. In each tissue type,
when a trans-association P-value is less than 10−5, the eSNP,
its corresponding cis transcript, and the trans transcript were
treated as a candidate trio and were retained for mediation
analysis.

The GMAC algorithm

In order to identify cis-mediators of trans-eQTLs across the ge-
nome, we propose theGMAC algorithm (Fig. 2A). Here, we present
a brief description of each step. A detailed description and justifi-
cation for each can be found in the Supplemental Methods.
Specifically,

• Step 0.We focus on only the trios (Li,Ci,Tj) in the genome show-
ing both cis- and trans-eQTL associations, i.e., Li→Ci and Li→ Tj.
Consider a pool of candidate variablesH consisting of either real
covariates, constructed surrogate variables, or both.

• Step 1. Filter out common child and intermediate variables from
the pool of potential confounders. For each trio (Li, Ci, Tj), we
calculate themarginal associations of variables inH to Li and fil-
ter the ones with significant associations at the 10% FDR level.
As shown in Figure 2B–D, common child and intermediate var-
iables are directly associated with Li, while confounders are as-
sumed to be unassociated with Li. Note that since genetic loci
are “Mendelian randomized” (Smith and Ebrahim 2003), with-
out loss of generality we assume the confounders are not associ-
ated with Li. Let Hij denote the retained pool of candidate
variables specific to the trio (Li, Ci, Tj).

• Step 2. Adaptively select confounders. For each trio and each of
its potential confounding variables in Hij, we calculate the P-
value of the overall F-test to assess the association of the vari-
able to at least one of the cis and trans transcripts. Considering
the P-values for one potential confounding variable to all trios

Genomic mediation analyses of GTEx data

Genome Research 1867
www.genome.org

https://gtexportal.org/
https://gtexportal.org/
https://gtexportal.org/
https://gtexportal.org/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.216754.116/-/DC1


as one stratum, we apply a 10% FDR significance threshold to
each stratum (each column in Fig. 2E)—a stratified FDR ap-
proach (Sun et al. 2006). The significant variables correspond-
ing to a trio (each row in Fig. 2E) will be selected in the
mediation analyses as the adaptively selected confounders spe-
cific to that trio (see Supplemental Methods for details). Let Xij

denote the list of adaptively selected confounding variables for
the trio, (Li, Ci, Tj).

• Step 3. Test for mediation. For each trio and its adaptively select-
ed confounder set, we calculate the mediation statistic as the
Wald statistic for testing the indirect mediation effect H0: β1 =
0 based on the following regression regressing the trans-gene ex-
pression levels on the cis-gene expression levels adjusting for the
cis-eQTL, other covariates, and selected confounders:

Tj = b0 + b1Ci + b2Li + GXij + 1.

We perform within-genotype group permutation on the cis-
gene transcript at least 10,000 times and recalculate each null
mediation statistic based on the locus, a permuted cis-gene
transcript, and the trans-gene transcript, (Li, Ci0, Tj). Figure 2F
shows the expression variation patterns of a hypothetical medi-
ation relationship Li→Ci→Tj on the left panel, and a null rela-
tionship entailed by (Li, Ci0, Tj) with Li→Ci0 and Li→Tj but
no mediation. It justifies that by permuting the cis-gene expres-
sion levels within each genotype group, one maintains the cis-
associations while breaking the potential mediation effects
from the cis- to the trans-gene transcript (i.e., conditional cor-
relations of cis and trans transcript conditioning on Li, or corre-
lation within each genotype group). We calculate the P-value
of mediation for the trio (Li, Ci, Tj) by comparing the observed
mediation statistic with the null statistics.

The proposed algorithm is superior to existing approaches for
mediation analysis that adjust a universal set of variables for all tri-
os. GMAC avoids the adjustment of common child variables, inter-
mediate variables, and unrelated variables in genomic mediation
analysis, and it is able to search a much larger pool of variables
for potential confounders, not just those captured by the top few
surrogate variables or PCs.

Software availability

The R software package GMAC is available in the Supplemental
Materials and also online through R CRAN https://cran.r-project.
org/.
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