
Ribosome profiling reveals the rhythmic liver
translatome and circadian clock regulation
by upstream open reading frames

Peggy Janich,1,3 Alaaddin Bulak Arpat,1,2,3 Violeta Castelo-Szekely,1 Maykel Lopes,1

and David Gatfield1

1Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland; 2Vital-IT, Swiss Institute
of Bioinformatics, 1015 Lausanne, Switzerland

Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock

mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome

profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nu-

cleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set

of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins pro-

duced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways

(notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and in-

dicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of rel-

ative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock

better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the

clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr,
a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In

summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expres-

sion, and metabolic control in a solid mammalian organ.

[Supplemental material is available for this article.]

The mammalian circadian system consists of a master pacemaker
in the brain’s suprachiasmatic nuclei (SCN) that synchronizes sub-
sidiary oscillators present in most cell types. In the liver and other
organs, up to 15% of gene expression shows daily oscillations that
are driven directly by local clocks, or by systemic signals such as
feeding and body-temperature rhythms (Vollmers et al. 2009;
Mohawk et al. 2012; Zhang et al. 2014). Of the molecular mecha-
nisms potentially accounting for rhythmic gene expression, tran-
scription has been extensively studied, notably within the core
clock circuitry consisting of transcriptional activators (mainly
CLOCK; ARNTL/BMAL1; RORA, RORB, RORC) and repressors
(mainly PER1, 2; CRY1, 2; NR1D1/REV-ERB alpha; NR1D2/REV-
ERB beta). Their interactions in negative feedback loops generate
transcriptional oscillations not only of clock genes, but genome-
wide (Mohawket al. 2012),whichhas led to theviewthat transcrip-
tion represents the dominant driver of gene expression rhythms.
However, post-transcriptional mechanisms likely contribute as
well. In extension to earlier work showing poor overlap between
liver proteome and transcriptome rhythms (Reddy et al. 2006),
two recent studies have indicated that 20% (Robles et al. 2014) to
50% (Mauvoisin et al. 2014) of cyclically accumulating proteins
are expressed fromnonoscillatingmRNAs. Conceivably, these pro-
tein rhythmsaregeneratedat the levelof translationand/orprotein

stability. In other fields, translational regulation is emerging as key
tounderstanding theoverallmoderate correlations betweenmRNA
andproteinabundances (Vogel andMarcotte2012); a role in rhyth-
mic gene expression is thus conceivable as well.

Time of day–dependent translation is not unprecedented in
mammals. Transcripts encoding ribosomal proteins (RPs) associate
with polysomes preferentially at the beginning of the night, coin-
cidentwith feeding time (Jouffe et al. 2013). ThesemRNAs contain
5′-terminal oligopyrimidine (5′-TOP) motifs that are regulated by
the nutrient-sensitive mammalian target of rapamycin complex
1 (TORC1) pathway (Meyuhas and Kahan 2015). Another docu-
mented mechanism for rhythmic translation involves daily dy-
namics in poly(A) tail length and the rhythmic activity of
cytoplasmic polyadenylation element-binding proteins (CPEBs)
(Kojima et al. 2012). Despite such individual examples, a compre-
hensive and quantitative analysis of rhythmic translation from a
mammalian organ is still lacking.

We have used ribosome profiling (RPF-seq), a method based
on the massively parallel sequencing of ribosome-protected
mRNA footprints (Ingolia et al. 2009), to determine the positions
of translating ribosomes transcriptome-wide and to establish a
quantitative, high-resolution map of the mouse liver translatome
around the clock. From RPF-seq and matching whole-transcrip-
tome sequencing (RNA-seq) data, we determined the relationship
between translation and mRNA abundance rhythms, uncovered
the set of mRNAs for which these rhythms are uncoupled, and
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calculated translation efficiencies transcriptome-wide. Moreover,
we inferred the relative levels of clock protein biosynthesis and
identified upstream open reading frame (uORF) translation as a
novel regulatory mechanism within the clock circuitry.
Altogether, our study reveals key features of rhythmic protein bio-
synthesis and the impact of translational control on gene expres-
sion in a solid, highly differentiated mammalian organ with
well-studied functions.

Results

Ribosome profiling in liver around the clock

We collected time-resolved ribosome profiling data from 48 male
mice entrained to light-dark cycles and euthanized at 2-h intervals
around the clock. We assembled liver extracts into two indepen-
dent replicate time series (12 timepoints, Zeitgeber time ZT0 to
22) (Fig. 1A), prepared ribosome footprints and matching total
RNA, converted them into sequenceable libraries (Fig. 1B), and se-
quenced them with high coverage (Supplemental Table S1). Our
protocol yielded high-quality footprints that mainly mapped to
protein coding sequences (CDS) and were depleted from untrans-
lated regions (UTRs) ofmRNAs (Fig. 1C,D; Supplemental Table S1).
Moreover, the predominant footprint length of 29–30 nt (Fig. 1E)
allowed the precise identification of translated codons. The align-
ment of CDS-mapping reads relative to the position of the ribo-
some’s aminoacyl tRNA-site (A-site; inferable from footprint
length and sequence) (Ingolia et al. 2011) thus revealed excellent
reading frame preference (Fig. 1F) and captured the CDS triplet co-
don composition transcriptome-wide (Fig. 1G). These characteris-
tics were absent in the RNA-seq data, as expected (Fig. 1D–G;
Supplemental Fig. S1A). Moreover, the quantification of CDS-
mapping reads showed high reproducibility across biological repli-
cates (Supplemental Fig. S1B,C). Finally, principal component
analysis (PCA) on the ensemble of data sets (Fig. 1H) separated
RPF-seq and RNA-seq data on PC1 and recapitulated its cyclic na-
ture with near-perfect temporal resolution (PC2 and PC3); i.e.,
the covariates in the experimental design (RNA/RPF and factor
time) were retrieved by an unsupervised method for sample clus-
tering. We concluded that the data sets were of high technical
quality and would be suitable for comprehensive analyses of
rhythmic and constitutive translation in the liver.

Hallmarks of translational regulation in liver

Ribosome profiling from mammalian tissues is still relatively un-
common, and we therefore started with a characterization of gen-
eral properties of the translatome data, independently of its time
resolution. From the ratio of CDS-mapping RPF-seq to RNA-seq
reads, we first computed relative ribosome occupancies, which
can be interpreted as relative translational efficiencies (TEs) be-
cause each footprint reflects the synthesis of an individual protein
molecule and, importantly, integrating read numbers across the
entire CDS corrects for local variation in footprint density
(Ingolia et al. 2011). Briefly, while the local speed of translation
elongation may vary (e.g., ribosome pausing due to RNA structure
or codon usage) and represents a source of inhomogeneous foot-
print distribution on a given CDS, average translation speeds
across genes appear to be rather constant (Ingolia et al. 2011). It
should be noted, however, that a possible influence of local varia-
tion on overall translation speed of an mRNA has been suggested
(Dana and Tuller 2012) and is a current topic of debate (Ingolia
2014).

Inmouse embryonic stemcells (mESCs), TEs cover an approx-
imately 10-fold range and have an asymmetric distribution indic-
ative of an intrinsic upper limit that is transcript-specifically
decreased by inhibitory mechanisms (Ingolia et al. 2011). TEs in
liver showed a broader dynamic range and analogous asymmetry
(Fig. 2A). While multiple mechanisms are likely involved in estab-
lishing transcript-specific ribosome occupancies, several simple
transcript features have previously been observed to correlate
with TEs. In yeast, ORF length and translation rate correlate in-
versely, presumably due to a selection for faster translation initia-
tion on loci encoding short proteins (Arava et al. 2003; Ingolia
et al. 2009). Also in the liver data set, CDS lengths explained a sig-
nificant proportion of variance in ribosome occupancies (R2 =
0.16; P = 1.26 × 10−160) (Fig. 2B). 5′ UTR (R2= 0.047; P = 2.33 ×
10−46) and 3′ UTR lengths (R2 = 0.015; P = 4.29 × 10−16) correlated
with TEs as well (Fig. 2B), and the predictive power of the 5′ UTR
length remained significant even after correction for interdepen-
dence of UTR and CDS lengths (Supplemental Fig. S2A–C). These
results are consistent with a prominent role for 5′ UTRs in transla-
tional control and with the idea that translation regulatory ele-
ments—of which longer 5′ UTRs potentially contain more—are
predominantly inhibitory.

Within 5′ UTRs, uORFs are emerging as important cis-regula-
tory elements that control CDS translation, usually in an inhibito-
ry fashion (Wethmar et al. 2014). Six percent of RPF-seq reads fell
into annotated 5′ UTRs (Fig. 1C), albeit with pronounced tran-
script-specific variability (Supplemental Fig. S3A), suggestive of
abundant uORF usage in the liver. uORFs are short and often poor-
ly conserved (Churbanov et al. 2005) and frequently initiate at
near-cognate (non-AUG) start codons (Ingolia et al. 2011), compli-
cating prediction just from sequence. To explore uORFusage in the
liver, we therefore compiled a uORF-enriched transcript set based
on whether the 5′ UTRs harbored sequence stretches (1) embraced
by AUG initiation and stop codons and (2) covered by footprints
with distinct reading frame preference. Despite these simple crite-
ria that miss, for example, non-AUG-initiated uORFs, the detected
transcripts showed significantly lowermainORF TEs (difference in
location of red vs. gray densities on the ordinate of −0.525 corre-
sponds to >30% TE reduction; P = 2.2 × 10−16; Wilcoxon rank-
sum test) (Fig. 2C), whereas the TEs of transcripts lacking translat-
ed uORFs were slightly increased (Fig. 2C, blue). Importantly, the
correlation of low TEs with translated uORFs was independent of
5′ UTR (or CDS/3′ UTR) lengths (Supplemental Fig. S2D–F).
Instead, linear regression analysis uncovered that the underlying
cause for the correlation of TE with 5′ UTR length (see above)
(Fig. 2B) was uORF presence rather than 5′ UTR length per se
(Supplemental Fig. S2, cf. G–K and A–C). Finally, uORF-containing
mRNAswere globally less abundant (Fig. 2C, red density on abscis-
sa), possibly reflecting the activity of the nonsense-mediated
mRNA decay (NMD) pathway that selectively degrades mRNAs
with premature termination codons and that is known to act on
uORF-containing transcripts (Mendell et al. 2004). We concluded
that uORF usage is frequent in the liver and likely a major determi-
nant of transcript-specific TEs, correlating with reduced protein
biosynthesis from the CDS. Of note, we also analyzed another fea-
ture that may have been expected to correlate with TE, i.e., the
presence of pause sites. By using an analogous approach to
Ingolia et al. (2011) to identify local variation in footprint density
that exceeded the CDS median (more precisely, we used the simi-
lar, but for low translated transcripts, less stochastic “trimean”) by
a certain threshold,we found that the presence of such sites hadno
predictive power for translation rates (Supplemental Fig. S4A,B).
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Figure 1. Time-resolved ribosome profiling data frommouse liver. (A) Overview of the experimental design for liver sampling over the 24-h cycle of the
day. Forty-eight livers were collected and assembled into two replicate time series of 12 timepoints around the clock (each sample representing a pool of
two mice). (B) Overview of the main steps in the protocol for the preparation of RNA abundance (RNA-seq) and ribosome profiling (RPF-seq) data; for
details, see Supplemental Material. (C) Mapping summary of RPF-seq and RNA-seq reads across all replicates and timepoints. Note that RPF-seq reads
were enriched for mRNAs, as expected. For detailed mapping outcome, see Supplemental Table S1. (D) Read distribution within 5′ UTRs, CDS, and 3′
UTRs for RPF-seq (blue) and RNA-seq data (orange) compared with the distribution expected by chance, which is determined by the feature sizes
(gray; N = 10829). Note the enrichment of RPF reads within CDS, the depletion from 3′ UTRs, and considerable amounts of reads (6%) within the 5′
UTR. (E) Insert size distribution of RPF-seq reads across all replicates and timepoints shows that the majority of footprints are 29–30 nt in length. Box-
and-whisker plots: midline, median; box, 25th and 75th percentiles. Whiskers extend to the minimum and maximum values within 1.5 times the inter-
quartile range from the box. (F) Frame analysis for RPF-seq and RNA-seq reads within the CDS (using genes for which the expressed transcript isoforms
define one main translated CDS/protein—called single protein isoform genes—with an RPF-RPKM [reads per kilobase per million mapped reads] value
>5 and fulfilled a few other minor criteria described in Supplemental Material; N = 3793). RPF-seq reads show a clear preference for reading frame 1
(the annotated frame), whereas RNA-seq reads distribute equally across the three reading frames, as expected. Violin plots extend to the range of the
data, with horizontal lines marking the 2.5% and 97.5% quantiles. (G) Read density distribution of RPF-seq and RNA-seq reads within 200 nt from the
start or −200 nt from the stop codons reveals a 3-nt periodicity of RPF reads within coding sequences. The analysis used only transcripts from single protein
isoform genes (see F) with RPF-RPKM > 5 and CDS > 400 nt (N = 3237) and quantified the number of reads per nucleotide based on the A-site prediction as
described in the Supplemental Material. (H) Principal component (PC) analysis of RPF-seq and RNA-seq data sets, using the top-ranked 4000 genes (see
Supplemental Methods). The first three PCs explain 70.3%, 8.3%, and 4.9% of total variation, respectively (3D scatter plot, left panel). While PC1 mainly
reflected variance attributable to differences between the mRNA abundance and footprint data sets (middle panel), PC2 and PC3 resolved mainly variance
attributable to factor time (right panel). Note that the timepoints assemble to a near-perfect “clock” in the PC2 versus PC3 representation. A scree plot
showing contributions of further PCs can be found in Supplemental Figure S1D.
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In the core clock and globally, rhythmic mRNA abundance

is a good predictor of footprint rhythms

Weused the clock genes for first temporal analyses of the data sets.
As illustrated by the anti-phasic expression ofArntl andNr1d1, core
clock transcripts were detected with high coverage and oscillated
in both the RNA-seq and RPF-seq data sets (Fig. 3A). Read count in-
tegration over the CDS indicated that for all core clock compo-
nents, footprint profiles closely matched mRNA abundance
rhythms (Fig. 3B). We concluded that the rhythmic biosynthesis
of core clock proteins was determined by mRNA availability with

no further regulation by time of day–
dependent translation (Supplemental
Fig. S5A). We next conducted tran-
scriptome-wide rhythmicity analyses.
Applying a more than 1.5-fold peak-to-
trough amplitude cut-off, we identified
oscillations in the RNA-seq and RPF-seq
data sets that affected in both cases
∼17% of the protein-coding transcrip-
tome (almost 1900 mRNAs) (Fig. 4A;
Supplemental Table S2).However,mRNA
abundance and ribosome occupancy
rhythms showed different peak phase
distributions (Fig. 4B,C). In good agree-
ment with previous reports (Le Martelot
et al. 2012; Zhang et al. 2014), a majority
of mRNAs thus showed maximal abun-
dance during the night, with an enrich-
ment around ZT15–ZT19 (Fig. 4B). In
contrast, maximal translation was preva-
lent at the beginning of the dark phase,
with a dominant peak around ZT15–
ZT16 (Fig. 4C). These different distribu-
tions resulted from transcripts that were
unique to either data set rather than
from phase delays occurring between
mRNA accumulation and translation,
because the intersecting set of 1192
“mRNA and footprints rhythmic” tran-
scripts (Fig. 4A) showed near-identical
RNA-seq and RPF-seq oscillations (Fig.
4D–G; Supplemental Fig. S6A). We con-
cluded that whenever both mRNA abun-
dance and ribosome occupancy cycled,
they globally did so in sync. Similar to
the core clock components (Fig. 3),
most rhythmic mRNAs were thus trans-
lated concomitant with their cellular ac-
cumulation and had constant TEs.
Distinct out-of-phase translation was in-
deed confined to rather few exceptional
cases (Supplemental Fig. S6B). Finally, it
is noteworthy that the TEs of “mRNA
and footprints rhythmic” transcripts
were slightly increased compared with
the global population of expressed tran-
scripts (location shift of dark blue vs.
gray densities of 0.106 corresponds to
∼8% higher TEs; P = 2.2 × 10−05; Wil-
coxon rank-sum test) (Fig. 4H). No en-
richment or depletion for rhythmic

genes was seen with regard to AUG-initiated uORFs or pause sites
(P = 0.533 and P = 0.315, respectively; Fisher’s exact test).

Widespread time of day–dependent translation

of nonrhythmic mRNAs

More than one-third (682/1874) of genes that cycled at the foot-
print level did not have a rhythmic mRNA (Fig. 4A); globally,
these transcripts showed decreased TEs (location shift of −0.105
corresponds to a 7% TE reduction; P = 0.002) (Fig. 4H, light
blue). However, closer inspection of the underlying RPF-seq and

A

C

B

Figure 2. Analysis of translation efficiencies in mouse liver. (A) TE distribution in mouse liver (red curve;
representing all 24 ZTs from 10829 genes, i.e.,N = 129870 individual data points) comparedwith that in
mESCs (black curve; data from Ingolia et al. 2011;N = 10217 genes). Liver datawere adjusted formean to
ensure comparability with mESC data. The asymmetrical nature of the TE distribution that has previously
been reported for mESCs and that is indicative of an intrinsic upper limit to translation rates (Ingolia et al.
2011) is also observed in the liver. Note that the TE range is significantly broader in the liver, where 95%
of data fall into a 13.2-fold TE range, compared with a 10.6-fold range in mESCs (P < 2 × 10−5, permu-
tation test). (B) Correlation between TEs and 5′ UTR, CDS, or 3′ UTR lengths. Analysis was performed
on transcripts from genes for which the transcriptomics analysis showed that a single protein isoform
was produced, and that had an RNA-seq RPKM value >5, and 5′ and 3′ UTR lengths ≥10 nt (N =
4277). Linear regression lines for each group are plotted over the data points, and related t-test results
of the regression slopes are reported in the plot area with the same color code. Inverse and statistically
significant correlation between TE and feature length was thus apparent for all three features, with pre-
dictive value CDS > 5′ UTR > 3′ UTR. (C) Scatter plot of TEs (ordinate) versus transcript abundances (TAs;
abscissa) averaged over timepoints and replicates. Highlighted are transcripts from single protein isoform
genes, which do (red) or do not (blue) contain at least one translated AUG-initiated uORF. Density curves
of TEs and TAs for highlighted data points are plotted on the margins with same color code. uORF trans-
lation is thus associated with a pronounced TE decrease and a slight decrease in transcript abundances.
Numbers on density curves reflect the location shift (log2 values of the median calculated from the dif-
ferences across all timepoints) relative to all transcripts. Transcripts with translated uORF: TE, P < 2.2 ×
10−16; TA, P = 1.3 × 10−5 (Wilcoxon rank-sum test). Transcripts without translated uORF: TE, P < 2.2 ×
10−16; TA, P = 0.287 (Wilcoxon rank-sum test).
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RNA-seq profiles indicated that in many cases, nonrhythmicity
assignments at the mRNA level had resulted from noise or low
amplitudes (close to the imposed 1.5-fold cut-off) in expression
profiles that otherwise still appeared to be rhythmic (false-nega-
tives caused by “cliff effects”) (Supplemental Fig. S6C). To refine
the “mRNA flat–footprints rhythmic” assignments, we used the
analytical framework Babel (Olshen et al. 2013) to first identify
all transcripts that had significant TE differences over timepoints
(and/or whose TEs significantly deviated from the global tran-
script population), and subsequently performed the rhythmicity
analyses on these. This strategy resulted in a high-confidence
set of 147 rhythmically translated, but otherwise nonoscillating,
mRNAs (Fig. 5A; Supplemental Table S3). Their RPF-seq profiles
showed a striking phase distribution with a dominant peak
around the day-to-night transition (ZT10–ZT16) (Fig. 5B). Gene
ontology (GO) analyses revealed enrichment for mRNAs encod-
ing components of the protein biosynthesis machinery, including
RPs, elongation factors, and poly(A) binding proteins, whose
translation underwent a characteristic upsurge starting from
ZT10 (Fig. 5C,D). Of note, increased polysome association at the
beginning of the night has previously been described for this class
of transcripts (Jouffe et al. 2013), which all contain 5′-TOP motifs
that are regulated by TORC1 (Meyuhas and Kahan 2015). Of 79
RPs, 35 were contained in the high-confidence list, and—with
the exception of eight proteins whose mRNAs were undetectable
or translationally invariable—visual inspection confirmed that

most other RPs shared a similar RPF-seq profile as well
(Supplemental Fig. S7A; Supplemental Dataset 1). In summary,
our data extend previous findings (Jouffe et al. 2013) and precisely
quantify the coordination of protein biosynthesis within the
translational apparatus in mouse liver. Of note, our study uncov-
ers a peculiarity of RP gene expression, i.e., particularly high
mRNA abundances paired with low TEs, which undergo coordi-
nated upsurge/translational de-repression prior to the day-to-
night transition (Supplemental Fig. S7B; Supplemental Movie
M1).

Other GO terms and individual “mRNA flat–footprints rhyth-
mic” transcripts caught our attention as well. The electron trans-
port chain components that the GO analysis identified (Fig. 5C)
corresponded throughout to mitochondrially encoded transcripts
characterized by a translational spike at ZT12 (Supplemental Fig.
S8A; Supplemental Dataset 1). As Western blot analysis did not re-
veal any oscillations at the protein level (Supplemental Fig. S8B),
the significance of these translational rhythms remains to be un-
covered. We next verified for other examples of rhythmic transla-
tion whether protein abundances oscillated. This was indeed the
case for geranylgeranyl diphosphate (GGPP) synthase 1 (Ggps1),
encoding a key branchpoint enzyme in the mevalonate pathway
(Supplemental Fig. S8C,D). GGPP is important for the C20-preny-
lation of proteins and for the regulation of the nuclear receptor
NR1H3/LXR alpha (Forman et al. 1997). Moreover, two transcrip-
tion factors, Deformed epidermal autoregulatory factor 1 (Deaf1)

A B

Figure 3. Core clock transcripts show mRNA abundance and ribosome occupancy in sync. (A) Time-resolved distribution (ZT00 to ZT22; arranged ver-
tically) of normalized counts of ribosome profiling (RPF-seq; blue) and RNA abundance (RNA-seq; orange) reads along the Arntl/Bmal1 and Nr1d1/Rev-erb
alpha transcripts. Different color shadings (dark/light orange and blue) indicate the two biological replicates. Gray shading of the boxes marks the CDS;
UTRs are in white. (B) RPKM values of CDS-mapping RPF-seq (blue) and RNA-seq (orange) data for circadian core clock genes around the 24-h daily cycle.
Means per timepoint are plotted; error bars, the two biological replicates. Dashed lines represent rhythmic curve fittings to the data.
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and Max interactor 1 (Mxi1), showed robust greater than twofold
rhythms in translation (Fig. 5E; Supplemental Fig. S8E). For
DEAF1, steady-state protein levels oscillated as well (Fig. 5E), rais-
ing the interesting possibility that translational rhythmicity is
propagated to transcriptional target genes and thus contributes

to shaping the rhythmic transcriptome. In accordance, previously
reportedDEAF1 targets (Yip et al. 2009)were significantly enriched
for genes that are rhythmically transcribed (enrichment 1.6-fold;
P = 0.009) (Fig. 5F; identified by Du et al. 2014). Notably, the ma-
jority of DEAF1 target gene pre-mRNAs peaked between ZT6 and

A

D E

H

F G

B C

Figure 4. Transcriptome-wide analysis of transcript abundance and ribosome occupancy rhythms. (A) Venn diagram summarizing the result of rhyth-
micity detection in the RNA-seq and RPF-seq data. Of a total of 10,829 expressed protein-coding loci, 1870 showedmRNA rhythms and 1874 had footprint
rhythms (in both cases 17% of all) with a >1.5× peak-to-trough amplitude (FDR < 0.05); 1192 transcripts were common to both sets. (B) Phase histograms
for the transcripts in A, showing the peak phase distribution of mRNA abundance (RNA-seq) rhythms over the 24-h cycle in orange. The length of the spoke
indicates howmany transcripts peaked at a specific time. (C) As in B for footprint rhythm (RPF-seq) in blue. Note the different phase distribution of ribosome
occupancy rhythms compared with RNA abundance rhythms depicted in B. (D) Heat map of rhythms at the level of mRNA abundance (RNA-seq; left) and
footprints (RPF-seq; right) for the overlapping set from A (1192 genes). Transcripts are sorted by the phase of maximal ribosome occupancy. For the rep-
resentation, mRNA abundances and translation levels are standardized within each gene (row) and independently for RNA-seq and RPF-seq columns
(Z-scores). (E) Phase histograms showing the phase distribution of “mRNA and footprints rhythmic” transcripts from the overlap in A (N = 1192) for
mRNA accumulation (RNA-seq) in orange. (F ) As in E, but for footprints (RPF-seq) in blue. Note that the distribution is near-identical to that in E. (G)
Phase correlation plot of the “mRNA and footprints rhythmic” genes (N = 1192). Each row contains two dots marking the phase of maximal mRNA abun-
dance (orange) and the phase of maximal footprints (blue) for each gene. Genes are ordered according to the phase of the mRNA. (H) Scatter plot of TE
versus transcript abundances for the genes classified into the different rhythmicity categories shown in A (values averaged over timepoints and replicates).
Density curves are plotted on the margins with the same color code. Numbers on density curves reflect the location shift (log2 values) relative to all tran-
scripts (gray). (∗) Significance at the 0.05 level (Wilcoxon rank-sum test). The plot shows that rhythmic genes (i.e., those with rhythmic mRNAs [light salm-
on], with rhythmic footprints [light blue], or with rhythmic mRNA and footprints [dark blue]) are significantly different at the level of TE and of transcript
abundances than transcripts of nonrhythmic genes (red).
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ZT12, coinciding with maximal DEAF1 protein abundance (Fig.
5E,F).

Finally, our data revealed that the well-known case of transla-
tional control through iron-responsive elements (IREs) undergoes
high-amplitude oscillations. IREs are stem–loops found in mRNAs
involved in iron, oxygen, and energy metabolism (see Anderson

et al. 2012 and references therein). Depending on the cytosolic
iron concentration and other cues (see Discussion), IREs located
in 5′ or 3′ UTRs regulate mRNA translation and degradation, re-
spectively. Ferritin heavy and light chain 1 (Fth1, Ftl1), involved
in iron storage, as well as aminolevulinic acid synthase 2 (Alas2),
a rate-limiting enzyme of heme synthesis, showed high-amplitude

0 5 10 25 30
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Figure 5. Daytime-dependent translational control of protein biosynthesis machinery components, of transcription factors, and in iron metabolism. (A)
Heat map of “mRNA flat–footprints rhythmic” genes identified after Babel analysis (significant changes in ribosome occupancy) showing the mRNA abun-
dance (RNA-seq; left) and footprint (RPF-seq; right) data for 147 genes. Transcripts are sorted by the phase of maximal ribosome occupancy. For the rep-
resentation, mRNA abundances and translation levels are standardized within each gene (row) and independently for RNA-seq and RPF-seq columns
(Z-scores). Note that this high-confidence set of 147 transcripts has clear rhythms at the translational level, but not so at the mRNA abundance level.
(B) Phase histogram showing the phase distribution of footprint data across the 24-h cycle. Generally, there was a strong enrichment of ribosome occu-
pancy maxima at the light-to-dark transition. This distribution is significantly nonrandom (P = 1.12 × 10−10; R = 0.395; Rayleigh uniformity test) and sig-
nificantly different from those in Figure 4C (P < 7.6 × 10−08; W = 32.80; Watson–Wheeler test for homogeneity of angles). (C) Gene ontology (GO)
analysis of biological process based on genes detected in A. Bar graph shows log10 of P-values for each category. Numbers next to the bars represent
the number of genes within each category. Marked in red are the GO terms connected to the protein biosynthesis machinery. (D) RPF-seq (blue) and
RNA-seq (orange) profiles for several rhythmically translated transcripts connected to the protein biosynthesis machinery—ribosomal proteins, translation
factors, and poly(A) binding proteins—around the 24-h cycle. Means per timepoint are plotted; error bars, replicates. Dashed lines represent rhythmic
curve fittings. (E, left) RNA-seq (orange) and RPF-seq (blue) profile as in D for transcription factor Deaf1 around the clock. (Right) Western blot analysis
for DEAF1 (and loading control U2AF2) in liver nuclear extracts. Numbers below the panels show relative levels of DEAF1 protein after normalization to
U2AF2. Data from one representative time series are shown (N = 2). (F, left) Rhythmically transcribed genes (from Du et al. 2014) are 1.6-fold enriched
in DEAF1-regulated genes (Fisher’s exact test P = 0.009) (Yip et al. 2009), consistent with the idea that rhythmic translation and protein accumulation
of DEAF1 leads to rhythmic transcriptional activity on its target genes. (Right) Peak abundances of rhythmically transcribed genes around the clock.
(Black) All rhythmically transcribed genes; (green) rhythmic DEAF1-regulated genes. (G, left) RNA-seq and RPF-seq profiles for Ftl1, Fth1, and Alas2, similar
as in D. Note the high-amplitude rhythms in translation from flat mRNAs. (Right) Confirmation of protein rhythmicity by Western blot analysis of total pro-
tein extracts (FTL1, FTH1) or mitochondrial extracts (ALAS2) prepared frommouse liver. Protein levels were normalized to beta tubulin or NDUFB8, respec-
tively. Protein data from one representative time series are shown (N = 2–3).
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oscillations in translation that led to protein rhythmicity (Fig. 5G).
All three transcripts contain IREs in their 5′ UTRs,whereas transfer-
rin receptor (Tfrc) is a case where a 3′ UTR–borne IRE controls
mRNA turnover (Anderson et al. 2012). TfrcmRNA (and footprint)
profiles were rhythmic in our data set (Supplemental Dataset 1);
moreover, previous RNA-seq data quantifying pre-mRNA and
mRNA levels around the clock (Du et al. 2014) revealed that the
abundance of Tfrc mRNA, but not of its pre-mRNA (and hence,
its transcription), oscillated (Supplemental Fig. S8F). These analy-
ses suggest that regulation by IREs is overall under time of day–de-
pendent control. Of note, besides the temporal regulation of IRE-
containing transcripts, we observed high-amplitude oscillations
in gene expression (RNA-seq and RPF-seq) throughout key steps
in iron metabolism (Supplemental Fig. S8G). These findings indi-
cated widespread rhythmic regulation of iron homeostasis that
has been largely overlooked so far.

Core clock transcripts show a broad range of TEs and abundant

uORF usage

Although core clock transcript TEs were temporally invariable (see
above) (Fig 3B; Supplemental Fig. S5A), further analyses of the data
revealed features of regulation that were potentially of functional
importance. First, we noticed that the intrinsic TEs of clock
mRNAs spanned a greater than sixfold range from the poorest
(Clock, Per3) to the best (Nr1d1) translators (Supplemental Fig.
S5A,B, upper panel). TEs and mRNA abundances together define
the amounts of protein that are produced, and RPF-seq RPKMs
are hence a direct readout of relative protein biosynthesis levels.
We therefore used our footprint counts to precisely quantify the
stoichiometry at which the clock proteins are produced. Impor-
tantly, these estimates explained known features of the clock bet-
ter than did RNA expression data alone. Notably, Clock is in excess
of its heterodimerization partner Arntl at the transcript level (inte-
grated over the day, about 1.6-fold more Clock than Arntl mRNA),
but due to TE differences, about 1.5-foldmore ARNTL thanCLOCK
protein is produced (Supplemental Fig. S5B; for similar results ob-
tained when peak levels rather than daily amounts were consid-
ered, see Supplemental Fig. S5C), which is consistent with the
conjecture that ARNTL is in excess over CLOCK (Huang et al.
2012). For the main positive and negative limb components,
our data indicated daily biosynthesis at a ratio of CLOCK(1.0):
ARNTL(1.5):PER1(0.6):PER2(1.1):CRY1(2.3):CRY2(2.3), i.e., over-
all similar levels of produced proteins (Supplemental Fig. S5B).
Finally, it is established that in the interconnecting limb NR1D1/
REV-ERB alpha represents the dominant Rev-erb paralog in liv-
er (Preitner et al. 2002; Bugge et al. 2012). While Nr1d2/Rev-erb
beta is nevertheless significantly more abundant at the mRNA lev-
el, the amount of biosynthesized NR1D1 protein exceeds the
NR1D2paralog by greater than twofold due to greater than fivefold
differences in TEs (Supplemental Fig. S5B, lower panel). In sum-
mary, these analyses suggest that TE is an important factor in es-
tablishing the appropriate clock protein output. Conceivably, it
may represent an additional layer at which the core clock can un-
dergo regulation.

The striking correlation of uORF usage with TEs (Fig. 2C)
prompted us to explore whether translated uORFs were present
in core clock transcripts. Intriguingly, Arntl, Clock, Cry1, Nr1d1,
and Nr1d2, all showed considerable ribosome occupancy in their
5′ UTRs and contained one or more AUG-initiated uORFs (Fig.
6A)with footprint coverage that showed clear framepreference, in-
dicative of their active translation (Fig. 6B). To investigate how

uORFs regulated the rhythmic production of a clock protein, we
chose Nr1d1, for which RPF-seq reads on uORFs 1 and 2 showed
particularly high coverage (Fig. 6A), frame bias (Fig. 6B), and rhyth-
micity in sync with the main ORF (Supplemental Fig. S9A).
Moreover, uORF1 was remarkably long (192 nt) and conserved
in mammals, potentially coding for a 63-amino-acid polypeptide
(Supplemental Fig. S9B). We constructed a lentiviral reporter
gene from an Nr1d1 genomic fragment that contained promoter
sequences conferring rhythmic transcription (Stratmann et al.
2010), exon 1 (5′ UTR and codons 1–10), intron 1, and a modified
exon 2, in which firefly luciferase (FL) was fused to NR1D1 after
amino acid 15 (Fig. 6C). Moreover, we designed reporter variants
in which the predicted uORF initiation codons were mutated or
the uORFs were deleted altogether (Supplemental Fig. S9C).
When expressed in a circadianmodel cell line, NIH3T3 fibroblasts,
all constructs showed comparable high-amplitude biolumines-
cence rhythms in the detrended data (Fig. 6C), indicating that
uORFs were dispensable for rhythmic protein expression per se.
Importantly, the differences in absolute luciferase signals that we
observed between reporters (Supplemental Fig. S9D,E) could
have resulted from altered TEs or simply reflect unequal lentiviral
titers, transduction efficiencies, cell numbers, or similar.We there-
fore measured the effect of the uORFs on main ORF translation in
an independent assay in which the 5′ UTRs were cloned upstream
of FL CDS in a lentiviral vector that also expressed an internal con-
trol gene, Renilla luciferase (RL), driven from the same bidirec-
tional promoter (Fig. 6D, top; Du et al. 2014). These analyses
revealed that uORF deletions, or the subtle initiation codonmuta-
tions, led to increased levels of FL reporter activity (Fig. 6D, bot-
tom). Moreover, uORF1 and uORF2 had an additive effect, as
judged bymutants in which uORF1 and uORF2 AUGs were mutat-
ed to alanine codons either singly (mutantsM1A-uORF1 andM1A-
uORF2) or in combination (M1A-uORF1+2). We next measured
RNA expression levels of both luciferases, which allowed us to es-
timate the relative contributions that altered RNA stability (lighter
shading in Fig. 6D, bottom) and translation regulation (darker
shading in Fig. 6D, bottom) made to the observed increases in re-
porter protein output. These analyses suggested dual contribution
by both mechanisms, in line with the initial observation (Fig. 2C)
of decreased TE and mRNA abundance of uORF-containing tran-
scripts (the latter possibly involving regulation through the
NMD pathway). Extrapolated to the regulation of the endogenous
Nr1d1 transcript in vivo, the prediction from these results would
be that uORF1+2 could regulate the magnitude of NR1D1
oscillations.

There was evidence for translated uORFs in several core clock
transcripts (Fig. 6A,B), but the net regulatory effect of uORF trans-
lation on clock function would likely be difficult to predict from
studying each case individually. In order to estimate the overall
impact of uORF translation on the clock, we took advantage of
the recent discovery that Density Regulated Protein (DENR) is im-
plicated in ribosome recycling after translation termination and
acts as a selective regulator of reinitiation at the main CDS after
uORF usage (Skabkin et al. 2013; Schleich et al. 2014). In the ab-
sence of DENR, proteins whose expression is regulated by uORFs
are thus produced at lower levels (Schleich et al. 2014). We
down-regulated endogenousDenr in NIH3T3 cells carrying a circa-
dian Dbp-Luciferase reporter gene (Stratmann et al. 2012) using
three different shRNAs (Fig. 6E).Denr-deficient cells showed robust
period shortening of free-running circadian oscillations by up
to 1.5 h (Fig. 6F); moreover, a short period phenotype was also
observed using a second reporter, Arntl-Luciferase (Supplemental
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Figure6. uORF translation is prevalent in core clock transcripts and impacts clock functions. (A) The 5′ UTRs of the depicted clock transcripts all contained
at least one translated AUG-initiated uORF. Distribution of raw read counts of RPF reads (blue) along the 5′ UTR (white region in box) and the first 200 nt of
the CDS (gray shaded region) is shown for the timepoint with maximal CDS translation. Red filled boxes indicate AUG-initiated uORFs within the 5′ UTR.
Predicted uORFs for each gene are serially numbered. (B) Frame preference of uORF-mapping footprints. The fractions of footprints aligning to the three
reading frames are shown for the uORFs shown in A and for themain ORF (CDS). Frame definition is relative to the annotated 5′ end of the transcript; please
note that frame definition is different from that in Figure 1F.Most uORFs are thus covered by footprints that have a similar degree of frame preference as the
main ORF-mapping footprints, indicating that uORF-mapping reads likely originate from processive translation. (C, top) Schematic showing the wild-type
Nr1d1-firefly luciferase (FL) reporter gene consisting of a genomic Nr1d1 fragment in which FL (blue) is expressed in fusion with the first 15 amino acids of
NR1D1 (green). In exon 1, the location of uORF1 and -2 (red) and their predicted start codons within the 5′ UTR is shown. (Bottom) Real-time biolumines-
cence recordings of luciferase rhythms in NIH3T3 cells lentivirally transduced with the Nr1d1-FL reporter (Wt) and various mutants in which either uORFs
are deleted (Del mutants) or uORF initiation codons are mutated to an alanine codon (M1A mutants). Cells were synchronized with dexamethasone. Raw
bioluminescence was detrended using a 24-h moving average, and one representative replicate of a total N = 3–9 is shown. (D, top) Schematic represen-
tation of the dual luciferase reporter construct to measure how the Nr1d1 5′ UTR (Wt/mutants) influences the expression of the FL CDS. From the same
bidirectional promoter, Renilla luciferase (RL) is expressed for internal control. (Bottom) Results of dual luciferase assay where FL signals were internally nor-
malized to RL. Empty vector (gray) only contained the vector-encoded 5′ UTR. Experiments were performed in NIH3T3 cells (N = 2–4 independent exper-
iments of triplicates). Lighter shading of the bars indicates the proportion of the increase that can be attributed to increased FL mRNA abundance in the
mutants (measured by qRT-PCR), leaving the remainder of the increase (darker shading) attributable to translation. Note that whenever the translated
uORF1 and -2 of the Nr1d1 5′ UTR are deleted (Del mutants) or just the initiation codons are mutated to alanine codons (M1A mutants), the inhibitory
activity of the Nr1d1 5′ UTR is relieved. uORF1 and uORF2 appear to have an additive inhibitory effect on main ORF translation (cf. M1A uORF1 and -2
single mutants with the double mutant). For a schematic of the mutants, see also Supplemental Figure S9C. (E, left) Relative mRNA levels (RT-qPCR; nor-
malized to expression of control geneNudt4) of Denr in DBP-Luciferase reporter–expressing NIH3T3 cells transduced with scramble shRNA (Scr; serving as
control) or three different shRNAs targeting Denr (N = 3). All shRNAs reduced Denr expression to <10%. (Right) Western blot analysis for DENR indicated
efficient depletion at the protein level. Beta tubulin served as loading control. (F ) shRNA-mediated Denr knockdown causes a short period phenotype of
free-running circadian rhythms in NIH3T3 cells. (Left) Summary of period change engendered by Denr shRNAs 1–3 relative to Scr (control) shRNA in cells
expressing theDBP-Luciferase reporter (N = 3–8). (Right) Representative bioluminescence tracks of Scr (control) andDenr shRNA-transducedDBP-Luciferase
cells. Depending on the shRNA, the period of free-running circadian oscillations was 0.8–1.5 h shorter. (D–F ) Bar graphs, mean ± SD; (∗∗) P < 0.01, (∗∗∗) P <
0.001 (t-test). P-value in D refers to differences in FL/RL activities (darker shading).
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Fig. S9F).We concluded that DENR has important functions in the
regulation of the mammalian circadian clock.

Discussion

How translation efficiency contributes to temporal gene expres-
sion is a largely unexplored facet of chronobiology. Translation
is one step closer than the mRNA to the relevant output of most
gene expression, the protein. Our ribosome profiling data should
therefore be of wide interest to the research community and com-
plement the many transcriptome data sets that are already avail-
able. By providing a resource consisting of transcriptome-wide
RPF-seq/RNA-seq and TE plots (Supplemental Dataset 1), associat-
ed rhythmicity parameters (Supplemental Table S2), and high-
confidence transcript lists from Babel analysis (Supplemental
Table S3), we wish to facilitate the widespread use of our data.
This resource provides a number of straightforward opportunities
for exciting future endeavors, one example being the interesting
cases of genes whose mRNAs, but not the footprint profiles, oscil-
late (Fig. 4A; Supplemental Fig. S6C), which wewere unable to fur-
ther investigate within the scope of this study.

Our study provides part of the explanation for the longstand-
ing enigma that the mRNAs of many oscillating proteins show
constant abundance over the day (Reddy et al. 2006). Two recent
reports have estimated that 20% (Robles et al. 2014) to 50%
(Mauvoisinet al. 2014)ofprotein rhythmsare engenderedby trans-
lation, protein degradation, or secretion. Our high-confidence set
of approximately 150 nonoscillating mRNAs that undergo robust
daily TE rhythms corresponds to ∼8% of all detected rhythmically
biosynthesized proteins. Considering the conservative selection
criteria that were applied, the true extent of translationally driven
rhythmicity may even be higher.

How does the translatome data correlate with the rhythmic
proteome? The answer to this question is less straightforward
than expected. A first complication lies in the poor overlap of
the proteomics studies; although both report on almost 200 rhyth-
mic proteins (Mauvoisin et al. 2014; Robles et al. 2014), <20% are
shared between the studies, and the particularly interesting
“mRNA flat–protein rhythmic” class has only three proteins in
common (Supplemental Fig. S10A,B). As the overlap in the total
detected proteome (about 3000–5000 polypeptides in both stud-
ies) is >50%, the differences seen in the rhythmic sets are not
just a matter of proteome coverage. Differences in mass-spectro-
metric and, very likely, rhythmicity detection methodology may
have caused the discrepancies; sophisticated meta-analyses on all
available raw data using comparable algorithms and statistical pa-
rameters would thus be of great value. Another concern when
comparing RPF-seq and proteome data sets is that MS data are in-
evitably biased for abundant (i.e., highly expressed and/or stable)
polypeptides, whereas rhythmic TEs predominantly affected
mRNAs whose abundance was below average (Fig. 4H). Many
translationally regulated transcripts are hence not covered by the
proteome data. It is reassuring that, despite such limitations, sever-
al translationally rhythmic transcripts are part of the rhythmic
proteome (e.g., FTH1, EEF1A1, and EEF2 in study by Robles et al.
2014).

Transcripts encoding components of the protein biosynthesis
machinery stand out among the rhythmically translated mRNAs.
Their preferential association with polysomes at the light-to-dark
transition has been reported before; it likely gates the energy-
consuming ribosome biogenesis to the appropriate time when
nutrients are plentiful, and involves regulatory cues from both

feeding (via TORC1-regulated 5′-TOP motifs) and from the clock
(Jouffe et al. 2013). As we observed increased TEs on these
mRNAs already at ZT10 (Fig. 5D), i.e., ∼2 h before the main surge
in food intake in ad libitum fed animals (Adamovich et al. 2014),
we consider it likely that the mechanism entails more than a sim-
ple, immediate reaction to nutrients. Moreover, the relatively var-
iable up-regulation seen across biological replicates (Fig. 5D, RPF-
seq error bars) is remarkable for genetically identical animals and
could point to a behavioral component contributing to the regula-
tory mechanism. Interestingly, and reminiscent of the timing in
the liver, increased ribosome association of mRNAs in Drosophila
occurs at phases of relative behavioral quiescence, just prior to
locomotor activity bouts (Huang et al. 2013). It remains to be ex-
plored whether this similarity is indicative of mechanistic paral-
lels. Another exciting open question concerns the possibility
that the rhythmic biosynthesis of components of the translational
apparatus contributes to daily changes in overall translation rate
that have been reported and that may involve mTOR signaling
and a noncanonical cytoplasmic role for ARNTL (Lipton et al.
2015).

Among the other cases of TE rhythmicity, only a few were
directly suggestive of an underlying mechanism, as was the case
for mRNAs encoding iron metabolic proteins that all contain
IREs. IREs are bound by iron regulatory proteins (IRPs) 1 and 2 (en-
coded by the genes Aco1 and Ireb2, respectively), which sense in-
tracellular iron levels by distinct mechanisms and respond to
other metabolic signals as well (for review, see Anderson et al.
2012). IRP1 assembles a 4Fe-4S cluster in response to increased
iron availability, which precludes IRE binding and permits transla-
tion. Other signals, such as NO, H2O2, and O2, also influence the
Fe-S cluster and IRP1 activity. IRP2 is regulated by protein degrada-
tion via FBXL5, an E3 ubiquitin ligase stabilized by iron and
oxygen. We did not observe high-amplitude rhythms in the ex-
pression of IRPs or their known regulators (Supplemental Fig.
S11; please note low amplitude rhythms for Ireb2), and it is con-
ceivable that rhythmicity occurs at the level of available, bioactive
iron in the hepatocyte (day/night changes in hepatic total iron
have been reported) (Unger et al. 2009), of O2 pressure/consump-
tion (Peek et al. 2013), or of reactive oxygen species (Khapre et al.
2011). Together with the oscillations inmRNA abundance seen for
multiple other iron metabolic genes, the rhythmic regulation of
IRE-containing transcripts uncovers a previously unappreciated
extent of temporal control in this physiologically important
pathway.

It is noteworthy that clock genes showed constant TEs, in-
dicating exclusion from time of day–dependent translational
control. The considerable delays between mRNA and protein
accumulation that have been reported for several core clock
components (e.g., Lee et al. 2001) must therefore have other,
post-translational origins. Nevertheless, our study has unveiled
important insights into how translation contributes to core clock
regulation. First, the CDS-mapping RPF-seq reads allow estimating
relative biosynthesis rates of core clock proteins, which will likely
add to a better quantitative understanding of the clock mecha-
nism. Moreover, the footprint profiles from several clock mRNAs
showed hallmarks of regulation that, however, may be operative
not in a temporal fashion but under other (e.g., environmental,
metabolic, cell-type–specific) conditions yet to be defined. In
this context, the high number of translated uORFs within the
core clock transcripts is particularly striking. uORF translation is
generally viewed as inhibitory for protein production from the
main ORF (Wethmar et al. 2014) and represents an attractive
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mechanism for how clock protein levels (and consequently clock
parameters) could be adjusted post-transcriptionally. It is tempting
to speculate that one or several of the identified core clock uORFs
are implicated in the short period phenotype observed in Denr-
depleted cells. Of note, there is growing evidence for cell-type–
specific uORF usage (e.g., Ingolia et al. 2011), and it is also largely
unexplained how certain core clock parameters can be strikingly
tissue specific (e.g., >2 h longer free-running period in kidney vs.
lung) (Yoo et al. 2004). It is conceivable that cell-type–specific dif-
ferences in clock protein concentration and/or stoichiometry are
involved (Lee et al. 2011) and that tissue-specific uORF usage
and translation rates contribute. Altogether, our results suggest
that the circadian system represents a particularly suitable para-
digm for future studies of uORF biology.

Methods

Animals

For time series experiments, 12-wk-old male mice (C57BL/6J;
Janvier Labs) were entrained for 2 wk to LD 12:12 with free access
to food and water and were euthanized at indicated Zeitgeber times
(ZT0 corresponding to “lights on”) by decapitation after anesthesia
(isoflurane). Livers were removed and processed either directly or
flash-frozen in liquid N2. All experimental procedures were ap-
proved by theVeterinaryOffice of theCantonVaud (authorization
VD2376).

Ribosome profiling and RNA-seq

RPF-seq and RNA-seq libraries were generated using Ribo-Zero and
ARTseq ribosome profiling kits (Epicentre) and sequenced on an
Illumina HiSeq 2500. Detailed protocols, including for lysate prep-
aration, are described in the Supplemental Material.

Bioinformatic analysis of ribosome profiling and RNA-seq

Adapter-trimmed, size-filtered sequencing reads (lengths 26–35 nt
and 21–60 nt for RPF-seq and RNA-seq, respectively) were mapped
sequentially tomouse rRNA, human rRNA,mt-tRNA,mouse tRNA,
mouse cDNA (Ensembl release 75), and, finally,mouse genomic se-
quences (GRCm38.p2). cDNA-mapping reads were counted to-
ward 5′ UTR, CDS, and 3′ UTR per gene basis. CDS counts were
normalized by the upper quantile method and transformed into
modified RPKM values. TEs were calculated as the ratio of RPF-
RPKM tomRNA-RPKM. For detailed information on bioinformatic
analysis, see the Supplemental Material.

Protein analyses

Total, nuclear, and mitochondrial protein extracts were prepared
from two to three individual mice per timepoint and analyzed
by SDS-PAGE and Western blotting according to standard pro-
tocols. Figures show one representative time series. Detailed
experimental protocols and antibodies are described in the
Supplemental Material.

Cloning

The generation of lentiviral luciferase reporter plasmids contain-
ing wild-type/mutant fragments of the Nr1d1 genomic region is
described in the Supplemental Material. For the generation of len-
tiviral shRNA expression vectors targeting Denr, sequences from
the TRC shRNA Library at the Broad Institute were cloned into
pLKO.1puro backbone vector (Addgene no. 10878) (Moffat et al.

2006); sequences/clones are listed in Supplemental Material.
Scramble shRNA (Addgene no. 1864) served as control.

Cell culture

Cell culture, lentiviral production/transduction, the recording of
circadian bioluminescence rhythms, and the dual luciferase assays
followed standard methods. Detailed experimental protocols and
additional references can be found in the Supplemental Material.

RT-qPCR

RNA was extracted with TriFast peqGOLD (PEQLAB), reverse-
transcribed with SuperScript II (Invitrogen), and amplified with
SYBR green rox master mix (Roche) and gene-specific primers
(Supplemental Material) on a Stratagene Mx3000P apparatus
(Agilent). Relative expression levels were determined using the
ΔΔCt method.

GO analysis

GO analysis was carried out on the footprints rhythmic set after
Babel analysis (Olshen et al. 2013) using theDAVIDbioinformatics
resource (Huang et al. 2009).

Data access

The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm
.nih.gov/geo/) under accession number GSE67305.
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