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Acute Stroke Imaging Research Roadmap II

A full list of authors and affiliations appears at the end of the article.

The STroke Imaging Research (STIR) group, the American Society of Neuroradiology and

the Foundation of the American Society of Neuroradiology sponsored a series of working

group meetings over 12 months, with the final meeting occurring during the Stroke

Treatment Academy Industry Roundtable (STAIR) on March 9-10, 2013 in Washington,

D.C. This process brought together vascular neurologists, neuroradiologists, neuroimaging

research scientists, members of the National Institute of Neurological Disorders and Stroke

(NINDS), industry representatives, and members of the U.S. Food and Drug Administration

(FDA) to discuss stroke imaging research priorities, especially in the light of the recent

negative results of acute stroke clinical trials that tested the concept of penumbral imaging

selection. The goal of this process was to propose a research roadmap for the next 5 years.

STIR recommendations include: 1) the use of standard terminology, aligned with the

NINDS Common Data Elements (CDE); 2) a standardized imaging assessment of

revascularization in acute ischemic stroke trials, including a modified Treatment In Cerebral

Ischemia (mTICI) score; 3) a standardized process to assess whether ischemic core and

penumbral imaging methods meet the requirements to be considered as an acceptable

selection tool in acute ischemic stroke trials; 4) the characteristics of a clinical and imaging

data repository to facilitate the development and testing process described in

recommendation #3; 5) the optimal study design for a clinical trial to evaluate whether

advanced imaging adds value in selecting acute ischemic stroke patients for

revascularization therapy; and 6) the structure of a stroke neuroimaging network to

implement and coordinate the recommendations listed above. All of these recommendations

pertain to research, not to clinical care.

Stroke Imaging Terminology

STIR recommends the use of a standard terminology in compliance with the Common Data

Elements (CDE) developed by NINDS (http://www.commondataelements.ninds.nih.gov/

stroke.aspx#tab=Data_Standards).1 In addition, the following refinements are proposed.

Perfusion imaging with CT (CTP) or MRI (MRP) needs to be accompanied by an explicit

definition of the perfusion parameters that are going to be derived and used, e.g. cerebral
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blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), etc, and an

explicit definition of the modality specific imaging acquisition parameters, e.g. scan

techniques, scanner hardware, post-processing software and contrast agent characteristics.

Conceptually, “ischemic core” represents ischemic brain tissue that is irreversibly injured

and cannot recover and will proceed to infarction even in the presence of immediate

reperfusion. “Penumbra” represents functionally impaired ischemic brain tissue that has the

potential to recover with early reperfusion, but is at high risk for irreversible injury

(infarction) without early reperfusion.2,3,4 The penumbra does not include benign oligemia,

i.e., tissue with mild hypoperfusion unlikely to infarct even in the absence of reperfusion.

It is important to distinguish pathophysiological concepts from operational definitions that

use CT or MR imaging to assess these concepts as part of research studies or clinical trials.

CT and MR definitions of “ischemic core” and “ischemic penumbra” are probabilistic.

Therefore, when the terms of ischemic core and penumbra are employed, there should be an

explicit qualification in the publication as to the specific (i) imaging technique, (ii) perfusion

parameter(s) and (iii) threshold(s) under discussion.

The term “malignant” should be reserved for “malignant edema”, indicating rapidly

progressive edema, mass effect, midline shift, and finally herniation with midbrain or brain

stem compression. Use of the term “malignant” to refer to imaging features predictive of

poor outcome or low probability of favorable response to therapy is potentially confusing

and should be avoided.

Revascularization includes three separate concepts: 1) recanalization, which refers to arterial

patency; 2) reperfusion, which refers to antegrade microvascular perfusion; and 3)

collateralization, which refer to microvascular perfusion via pial arteries or other

anastomotic arterial channels that bypass the primary site of vessel occlusion.

Imaging in Acute Ischemic Stroke Clinical Trials

In stroke clinical trials, imaging can be used as an efficacy and/or safety biomarker for

patient selection or outcome assessment. Imaging in stroke clinical trials should be targeted

to the specific treatment, trial requirements and goals. The understanding of appropriate

imaging modalities, acquisition parameters, thresholds, and post-processing approaches is

evolving as experience accrues. No single imaging approach addresses all issues.

Regardless of the imaging techniques used, some general recommendations should be

incorporated in clinical trial design involving imaging (Table 1).

Treatment-Relevant Acute Imaging Targets (TRAITs)

Different imaging modalities may be optimal for different methods of treatment (intravenous

(IV) versus endovascular or intra-arterial (IA)) and in distinct time windows (early versus

late). Moreover, diverse modalities, perfusion parameters, and thresholds may have varying

roles for determining potential treatment risks (e.g., hemorrhage) versus potential treatment

benefits (e.g., functional recovery of ischemic brain tissue). “Treatment-Relevant Acute

Imaging Targets” (TRAIT) is meant to capture imaging elements needed for inclusion (or
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exclusion) into specific treatment protocols. TRAITs acts as a shorthand term to describe the

collection of specific imaging metrics used in protocols, and simultaneously reminds trial

designers to ensure imaging is directed to the key anatomic or physiologic targets of their

specific intervention. For revascularization therapies, the TRAIT could be an arterial

occlusion, a perfusion defect causing neurological deficits, a penumbral pattern or some

combination of these. In neuroprotective trials, the TRAIT might simply require CT or MRI

to confirm the diagnosis of stroke. Research studies and clinical trials should ensure that the

proposed imaging is aligned with the TRAITs and should be constant for both arms of the

clinical trial.

Imaging for Patient Selection in Stroke Clinical Trials

Potential uses of imaging for patient selection in stroke clinical trials include the approaches

listed in Table 2. These uses are not mutually exclusive.

Imaging Selection Biomarkers for Clinical Trials in the 0-4.5 Hour Time Window

The positive randomized placebo-controlled trials of IV alteplase have been based on risk-

minimization using noncontrast CT (NCT) to exclude intracranial hemorrhage and excessive

volume of established parenchymal hypoattenuation. There are many unresolved issues on

the potential role of advanced imaging selection, particularly in the 0-4.5 hour time window

(Table 3). When designing trials or studies to address the issues in this time window, the

potential value of advanced imaging in this time window must be balanced against the

detrimental impact of delaying treatment.

Imaging Selection Biomarkers in the Greater than 4.5 Hour Time Window

Reported and ongoing randomized acute stroke trials have been testing the benefit of

reperfusion and revascularization in the greater than 4.5h time window. Differential

treatment outcomes on different imaging selected subgroups have been shown in analyses of

DEFUSE and DIAS/DEDAS samples. However, a differential treatment effect in imaging-

selected subgroups compared to subgroups not undergoing imaging selection has not yet

been demonstrated. Imaging paradigms have included MRI diffusion-perfusion mismatch

(subgroups of MR RESCUE, DIAS 1&2, DEDAS, EPITHET, IST-3), CTA-confirmed

occlusion (subgroups of IMS-3, IST-3) and CTP (subgroups of DIAS-2, IST-3).

Ongoing randomized controlled trials of late revascularization are employing a range of

imaging selection criteria. In addition to proof of large artery occlusion (by CTA, MRA or

thrombus detection on thin slice CT), these criteria are based either on ischemic core size

assessment in the context of certain clinical deficits (clinical/ischemic core mismatch), on an

estimated mismatch between ischemic core and ischemic penumbra, or on specific imaging

findings that provide an estimate of the age of a given ischemic lesion (i.e. DWI-FLAIR

mismatch).

Clinical trial to test the added value of imaging in selecting patients for acute
revascularization therapy

Because there are several ongoing efforts to assess the optimal therapy for stroke in the

different time windows, it is a complex matter to test the added value of advanced imaging
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in addition to testing different interventions. Currently, it is reasonable to obtain the same

advanced imaging TRAIT in all arms of therapeutic clinical trials, which will allow

secondary analyses addressing the value of imaging, while the primary focus of the trial is

on therapy evaluation. Eventually, a clinical trial should be conducted to assess the added

value of advanced imaging compared to what could have been extracted just from clinical

information alone.

Imaging Biomarkers for Patients with TIAs and Minor Stroke

Imaging markers (including DWI positivity, intracranial and extracranial vessel occlusion)

identify a subgroup of patients with TIA and minor stroke at higher-risk of future stroke or

recurrent stroke and may represent trial enrichment selection criteria.5,6 Transcranial

Doppler (TCD) high-intensity transient signals (HITS) count has been used as a biomarker

for antithrombotic drugs in phase 2 trials.7

Imaging as a Biomarker for Efficacy Outcome in Stroke Clinical Trials

Proof-of-concept phase 2 trials are typically of small size and may use imaging to test a

mechanistic hypothesis or provide proof of therapeutic principle. Complete imaging data

capture needs to be strictly enforced, as missing imaging data may mask a hazard (e.g., if a

higher death or adverse event rate precluded follow-up scanning in this arm). The choice of

imaging outcome biomarkers will influence clinical and imaging selection criteria. More

restrictive selection criteria and greater complexity associated with pre-treatment imaging

may provide more specific pathophysiological information, reducing sample size

requirements and heterogeneity of the study population, but may reduce recruitment rate and

generalizability of the results. If additional imaging data that are hypothesized to be TRAITs

are used in trials primarily designed to test the efficacy of a therapeutic intervention, then

the TRAIT can be evaluated only if it is not used as a selection criterion. Phase 2 trials using

advanced imaging are optimally performed by collaborations among research centers with

expertise in specific types of acute stroke imaging.

Imaging biomarkers of potential value in phase 2 studies include imaging of macrovascular,

microvascular, and tissue outcomes (e.g. recanalization, reperfusion, ischemic core volume,

and combinations of these). Imaging biomarker selection should take into account inter-

observer reliability and measurement error for the selected technique.8 Moreover, validation

criteria for biomarker use in stroke trials should be established. Trials utilizing novel

imaging biomarkers should include reporting to a reference standard method such as the

STIR calibration described below.

Pivotal phase 3 trials with imaging selection aim at demonstrating effectiveness on a

primary clinical endpoint.9,10,11 As many of the treatments studied as well as imaging

assessments are associated with substantial cost, incorporating cost effectiveness analyses

into the design of acute stroke trials should be encouraged. Phase 3 trials with clinical

endpoints typically involve many centers that may have limited experience and resources for

acute specialized stroke imaging. Therefore, phase 3 trials must ensure that imaging

protocols are sufficiently simplified and standardized, so that image acquisition is efficient,

image interpretation for eligibility assessment can be performed by local investigators, and
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imaging is not an obstacle to enrollment. More sophisticated imaging selection criteria could

confer benefits that may be partly or wholly negated by the additional time for acquisition,

processing and interpretation. Local investigator certification should be required to insure

accurate determination of patient eligibility and outcome assessment. A central core lab

adjudication for imaging endpoints should be employed (local reading should also be

incorporated for generalizability). Timing of central adjudication should be as close as

possible to enrollment/imaging in order to allow for the timely detection of protocol

violations.

Significant relationships between imaging biomarkers of infarct volume, lesion growth and

penumbral salvage to clinical endpoints have been reported.12,13,14,15 However, imaging

biomarkers in stroke have not met criteria to be used as a surrogate of clinical outcome for

Phase III clinical trials according to the FDA recommendations.16

Imaging as a Biomarker for Safety Outcome in Stroke Clinical Trials

Intracranial hemorrhage on post-treatment CT is widely used as a safety outcome in trials of

revascularization therapies (drug or mechanical). Definitions are well established for CT,

and STIR will propose in a separate manuscript an extension of the CT definitions to MRI

that will accommodate differences between 1.5T and 3T MRI scanners, and between 2D

gradient recalled echo (GRE) and 3D susceptibility-weighted imaging (SWI). Also, the

definitions will be extended to include the patterns that can be seen on post-treatment CT

scans, obtained after contrast has been administered, either for acute CTA/CTP or DSA.

Hemorrhagic transformation should typically be assessed with imaging between 18 and 72

hours, or earlier if the patient demonstrates clinical deterioration. The timing of hemorrhagic

transformation routine assessment should be consistent between all trial arms.

Infarct swelling or edema is another cause of early neurological deterioration. The infarct

swelling generally peaks around three days after stroke onset, although it can produce

symptoms much earlier in patients with malignant pattern.17 Edema is a major confounder

for using early subacute infarct/lesion volume as a surrogate for final infarct volume as it

distorts actual infarct size substantially. Edema increases with infarct size (larger infarcts

have more edema).18 Visual scales that score the degree of infarct swelling separate from

the infarct extent19 appear to have good interobserver reliability.20,21,22

The role of blood-brain barrier (BBB) disruption as a risk factor for subsequent

complications in patients undergoing acute stroke treatment has not been clearly established.

Preliminary studies suggest that imaging markers of the BBB disruption are associated with

risk of hemorrhagic transformation and adverse outcome.23,24 Methods for measuring BBB

disruption include post contrast parenchymal imaging, delayed gadolinium enhanced

FLAIR, CTP, dynamic contrast-enhanced (DCE-MRP), and dynamic susceptibility contrast

(DSC-MRP) imaging. The sensitivity of post-contrast imaging to BBB disruption can be

enhanced using FLAIR instead of T1 weighted imaging. Post-contrast FLAIR imaging can

depict the Hyperintense Acute Reperfusion Marker (HARM), due to enhancement in CSF

spaces from contrast leak through the BBB associated with reperfusion.25,26,27 DCE-MRP is

the established measure of BBB disruption; however long acquisition times limit its use in

acute stroke. DSC-MRP offers potential for identifying acute BBB disruption as it uses a
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sequence that is already part of the recommended acute stroke imaging protocol. Future

research should focus on establishing reliable BBB permeability maps and assessing the

utility of BBB markers for prevention of symptomatic ICH. Pooling of existing data will

likely accelerate the development of this potential clinical tool.

Imaging Assessment of Revascularization

Standardization of vascular assessment in acute stroke research imaging

In trials of acute revascularization strategies, pathophysiology of acute ischemic stroke

should be routinely documented at baseline angiography using systematic description of

arterial occlusions and, ideally, collateral perfusion. In general, non-invasive vascular

imaging with sufficient sensitivity and specificity for cerebral artery pathology should be

performed prior to any invasive vascular imaging to limit the number of unnecessary

invasive procedures. The same angiographic or tissue perfusion imaging modality should be

used throughout the study design (i.e. baseline, post-treatment, next day), although more

flexible use of different modalities (e.g. CT at baseline, MRI for follow-up) helps to limit

radiation exposure.28

Revascularization imaging modalities

In ischemic stroke, early revascularization (which again encompasses both recanalization

and reperfusion) remains the most critical process to impact positively on clinical outcome

by restoring blood flow while salvageable brain still persists. A meta-analysis of 2,066

subjects with either spontaneous or therapeutic recanalization within 6 hours of symptom

onset was associated with a 4-5 fold increase in the odds of an independent functional

outcome and up to a 4 fold reduction in mortality.29 The magnitude of effect may directly

relate to the speed with which revascularization is achieved.30 Recent randomized data from

trials of endovascular treatment for acute ischemic stroke have confirmed that 3 month

clinical outcome, as well as attenuated infarct growth, was associated with greater

reperfusion and early revascularization.31,32

Arteriographic demonstration of revascularization has 3 important components (Table 4).33

Distal reperfusion is the primary determinant of tissue fate and ultimately clinical outcome.

Recanalization is necessary but not sufficient for tissue reperfusion (e.g., cases with distal

embolization or no-reflow, in which contrast does not enter the affected tissue bed even

though the parent artery may have reopened). Grading recanalization of the primary

occlusion may provide prognostic information distinct to or in addition to tissue reperfusion

in the setting of partial recanalization, where there may be a higher chance for reocclusion or

distal embolization. Several diagnostic tools are capable of evaluating these components of

revascularization.34

Conventional angiography with contrast injection in the extracranial arteries supplying the

brain tissue is the reference standard for assessment of recanalization of the primary

occlusion and restoration of blood flow into the distal arterial bed. It is available during and

immediately after intra-arterial or endovascular treatment. Although catheter angiography

has also been used to grade tissue reperfusion there are significant limitations. Prior trials

have not had a uniform approach to grading either the arterial or the tissue bed components,
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and there are inherent challenges to quantifying the volume of tissue reperfusion on

conventional angiography.

Non-invasive approaches are ideal for assessing revascularization after intravenous

thrombolysis. Non-invasive angiographic imaging using CT- and MR-angiography (CTA

and MRA) can assess recanalization but cannot accurately assess reperfusion which requires

tissue imaging with CTP or MRP. CTA is generally more accurate than time of flight MRA

for occlusion detection when compared to reference standard conventional angiography,

particularly for second-order intracranial arteries.35 However, the radiation exposure and

contrast load associated with CTA and CTP should be considered in choosing imaging

options. TCD evaluation is hampered by attenuation of energy through thick bone windows

in the elderly and limited to the assessment of more proximal arteries because of difficulty

distinguishing vessels on the cortical surface. However, it has been used for early diagnosis

of large intracranial artery occlusion and does offer the advantage of bedside real-time

monitoring of recanalization of large arteries for exact timing. CTP and MRP can assess

tissue reperfusion. Flat-panel detector angiographic systems and Xpert-CT or dyna-CT scans

have emerged as potential diagnostic tool for acute stroke patients. These systems might

avoid delay in imaging of candidates for IA or endovascular therapy but currently they do

not have enough spatial resolution to allow for the identification of early ischemic changes.

In some circumstances non-angiographic “thrombus imaging” may be an alternative to

angiographic imaging. CTA and MRA do not precisely define occluded segments. These are

displayed as gaps between contrasted non-occluded vessels and thus their shape is

ambiguous. Furthermore, non-occluded segments close to the thrombus often do not show

contrast due to slow flow or insufficient collaterals.36 The hyperdense middle cerebral artery

(MCA) sign on CT when clearly visible is highly predictive of an MCA main stem

occlusion.37 Hyperdense artery signs on CT involving other arteries have also shown high

specificity.38

Until recently, clot imaging using the MCA sign on CT was considered impractical due to

the sign’s low sensitivity. This problem can be overcome by reconstructing additional thin

NCT slices. These allow for visualizing clots in the MCA main stem.39,40 The length and

location of the hyperdense artery sign may also predict response to IV tPA.41,42 Length of

hyperdense sign should be measured using a standardized thin section NCT. Similarly, an

absent flow void or altered signal (susceptibility vessel sign (SVS) on GRE or SWI) on MRI

can signify an intracranial occlusion.43,44,45

Limited literature is available concerning the use of non-angiographic thrombus imaging to

assess revascularization. The disappearance of the hyperdense sign with IV tPA has been

described and is associated with improved outcome (versus persistence of the sign)46

although is not yet validated against angiographic imaging in a large population.

Timing of vascular assessments

Timing of assessments should be recorded and should be as closely matched in all arms of

the trial to avoid disparities in revascularization assessment between treatment arms, which
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could bias the conclusions. The number of assessments should be relevant to the trial

question to avoid unnecessary excess radiation/contrast load/disruption to patient care.

Timing should be relevant to assess re-occlusion where appropriate. Baseline (vascular

status) should be as close in time as possible to the administration of treatment. Post-

treatment assessment of revascularization should be early when “nutritional” reperfusion can

still lead to salvage of significant regions of brain. If a comparison to endovascular treatment

for revascularization is performed, this should take place within 2-6 hours of the treatment

initiation, as long as this can be achieved without disrupting or compromising patient care.

The timing of revascularization imaging could be later for systemic thrombolysis due to

more gradual revascularization seen with such therapy. A late revascularization endpoint

(next day/24 hour) could also be considered as a secondary revascularization endpoint. The

relationship of this late revascularization endpoint to tissue salvage is less clear.

Recanalization-arterial patency and grading

The primary target lesion evaluated for recanalization should be the most proximal

intracranial occlusive segment(s) that is likely to be the cause of recent stroke symptoms,

and the target of the intervention. ‘Occlusion’ should be defined to include both complete

and partial arterial obstruction. The primary target lesion should be described in detail:

terminal ICA occlusions (T, L, or I types), proximal or distal M1 (first half and second half,

respectively), M2 configuration. Of note, the M1 segment should be defined as the

horizontal segment before the MCA bifurcation, accessible to endovascular treatment. When

a large anterior temporal branch supplies brain tissue beyond the temporal pole, it is to be

considered as an M2 equivalent, and the MCA segment between the anterior temporal

branch and the MCA bifurcation is still M1. Secondary lesion(s) are occlusive segments

involving: a) extracranial arteries proximal to the primary lesion; b) arterial segments distal

to the primary lesion (i.e., M2/M3); or c) adjacent arteries involving other vascular

territories (i.e. ACA) with smaller thrombus burden than the primary lesion. Of note,

downstream territory for terminal ICA occlusions should be taken as the ACA and MCA

territory unless there is clear evidence of ACA filling from the contralateral side.

Pial collaterals with retrograde flow should be routinely evaluated and scored with the

ASITN/SIR grading system. 47 Other scoring systems, such as the Capillary Index Score,

which focuses on capillary staining in the venous angiographic phase, show promise in

predicting outcome prior to treatment, but have not been validated against the ASITN/SIR

grading system.48

Patients with no angiographic evidence of intracranial occlusion should not be pooled with

patients with angiographically-documented intracranial occlusion.

Normal variants of vasculature, such as hypoplastic or absent A1 ipsilateral to the occlusion,

should be documented.

One reference standard recanalization grading scale should be used for each imaging

modality (TCD, CTA, MRA, DSA) to assess patency of arteries. TCD recanalization

grading is best assessed with the Thrombolysis in Brain Ischemia (TIBI) flow grading
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system now used in a number of TCD based clinical trials.49,50 The TIBI score has also been

slightly modified to assess recanalization using TCD technologies (Consensus On Grading

Intracranial Flow obstruction, [COGIF] score).51 No CTA or MRA based grading systems

have been developed that are considered standard, although Thrombolysis in Myocardial

Infarction (TIMI)/TICI/arterial occlusion lesion (AOL) scores have been used. AOL score

has been applied to recanalization of the target arterial occlusive lesion. Such grading

systems are variably applied and may perform poorly when conflating the scoring of the

primary occlusion point, the distal arterial bed and the tissue level perfusion in one score.

This is a source of confusion and should absolutely be avoided.52 A STIR-revised version of

the TICI score is detailed below.

Reperfusion grading could be performed by a visual scale or by quantifiable methods.

Choice of method will depend on trial questions and trial phase.

Modified TICI score

DEFUSE 2 and IMS 3 provided data to support a correlation between modified TICI grades

and clinical outcome at 3 months.32,53 However, conventional TICI 2a and 2b grades, which

comprised the majority of recent trial results, span a wide spectrum from marginal antegrade

flow to substantial angiographic reperfusion, and the definition of the distinction between

the two may be unclear. Substantial variability in partial perfusion thresholds with TICI was

documented leading to different grading in approximately 20% of cases.54 A TICI 2c

grading has been proposed to further distinguish partial perfusion, but remains too new to

recommend.

There are operational definitions for what constitutes effective revascularization. STIR

recommends a modified TICI scale to measure the extent of capillary-level opacification

(i.e., parenchymal blush) in the downstream territory after successful intra-arterial treatment

on conventional angiogram (Table 5). This modified scale applies exclusivelyfor

conventional angiography and for revascularization assessment. STIR recommends using

the reperfusion scale without alteration for the location of the target arterial occlusive lesion.

The consensus definition of successful reperfusion is a mTICI score of 2b or 3, while mTICI

of 0, 1 and 2a indicates a lack of successful reperfusion.

Future collaborative research

Studies of mTICI scale performance (including intra- and inter-observer reliability, and

validity) should be conducted. The correlation between mTICI grades and clinical outcomes

should be studied, including comparisons between mTICI 2b versus mTICI 3. Similarly,

studies of the mTICI scale at distinct sites of target arterial occlusions (e.g. ICA vs M1 vs

M2) should be conducted. There should be correlation studies between the mTICI grades

and perfusion CT and MRI measurements, studies to correlate clot length, infarct size and

collateral status, as well as studies to determine whether incorporating a time to reperfusion

metric into the mTICI scale would further improve outcome prediction.
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STIR Calibration of Software Packages for Ischemic Core and Penumbral

Imaging

STIR recognizes that imaging techniques continuously evolve, and that there will always be

a newer, better ischemic core or penumbral imaging technique or processing software.

Therefore, it is desirable to find a balance between continued attempts to improve on

existing methods versus determining whether existing methods are good enough to be used

in current clinical trials. For this discussion software package refers to the combination of

imaging acquisition and post-processing algorithm.

STIR therefore has created a repository of shared stroke clinical and source imaging data

available to the field of stroke researchers.55,56 The STIR repository pools CT and MRI data

from large datasets and stroke clinical trials that can be used to compare head to head

different acquisition techniques and software packages in their attempts to define ischemic

core and penumbra, and determine acceptability criteria.

This STIR calibration process described below does not assess or recommend how to use

ischemic core and penumbra information for prognosis, prediction of response to treatment

and/or selection of patients for reperfusion therapy. These are better answered in well-

designed clinical trials or prospective validation studies. However, the data repository and

analyses may be used to generate hypotheses and ischemic core/penumbra predictive/

prognostic algorithms to be used in such clinical trials.

The clinical and imaging data to be included into the repository needs to meet specific

criteria in order to allow rigorous analyses of the validity of software performance in

defining ischemic core and penumbra. The selected data need to match the analyses

proposed as part of the calibration process. If the required data for the analyses cannot be

collected by compiling existing datasets (because of the strict criteria that the data need to

satisfy), then the repository will need to be populated from prospective data collection.

The first recommended analysis is to use existing digital phantoms to produce goodness-of-

fit metrics for perfusion maps created by CTP or MRP software.57,58,59,60 The goodness-of-

fit metrics will be evaluated against the digital reference object phantoms in terms of bias

and variance as a function of signal-to-noise and simulation conditions. For each software

package tested, the results of this analysis should be reported so that software users have

objective information to select a software package for their research.

The second recommended analysis is a calibration/comparison of acute CTP and DWI to

determine the optimal CTP parameter(s)/threshold(s) that produces a CTP abnormality that

best matches the DWI abnormality (Table 6). It is assumed that most/all patients will have

the CTP study done first, except perhaps in patients not eligible for reperfusion therapy. This

will lead to some bias in the comparisons between the two imaging methods (CTP and

DWI), such that CTP abnormality should, in general, underestimate the DWI abnormality.

Post-reperfusion DWI reversal is not relevant to this dataset as patients with

revascularization between the CTP and the MRI study will be excluded. Derivation and

validation datasets should be established to prevent overfitting of the perfusion data.
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The third recommended analysis is another calibration effort between software packages.

The goal of this calibration effort is that all acceptable software packages provide similar

volume of ischemic core and penumbra independently of the underlying algorithms. This

calibration step does not address the accuracy of the software packages for prediction of the

tissue fate. Also, as mentioned above, this calibration process does not assess or recommend

how to use ischemic core and penumbra information for prognosis, prediction of response to

treatment and/or selection of patients for reperfusion therapy.

This calibration process will involve acute CT and MRI datasets to determine optimal

parameters/thresholds to determine ischemic core and penumbra in two groups of patients:

one with no revascularization and one with early revascularization (Table 7). The baseline

dataset will include an advanced CT dataset: NCT (ideally with clot imaging), CTP, CTA

(ideally dynamic CTA), and an MRI dataset: DWI, MRP, FLAIR, GRE or SWI, MRA. In

the first group, patients should demonstrate persistent occlusion on follow-up CTA or MRA

or complete lack of revascularization (persistent CTP or MRP lesion of similar size to

baseline). In the second group (“early” revascularization), the issue is the timing of

documentation of revascularization. The ‘purest’ group is evidence of complete

revascularization on DSA after clot retrieval. But it is also important to assess and compare

ischemic core parameter(s)/threshold(s) after IV tPA lysis. It is therefore desirable to have a

second ‘almost pure’ group with evidence of complete revascularization between 2-8 hours

after IV tPA lysis initiation. Finally, a third ‘less pure’ group with evidence of complete

revascularization on CTA/MRA between 8 and 24 hours after revascularization initiation

would also be acceptable. Since the STIR calibration process will consist of comparing the

results of different software packages using the same dataset, the limitations of the ‘less

pure’ dataset will be the same for all the software packages, and the comparison will be fair.

Final infarct volume needs to be assessed in both groups of patients. Final infarct volume

assessment is a challenging issue because of the initial variation in the volumes of imaging

abnormalities, contributed to by the superimposed edema in the initial phase and atrophy in

the later phase, and because of logistic issues. Patients with persistent, complete, proximal

occlusion have a very poor outcome and may be deceased by day 7. STIR pragmatic

recommendation for the purpose of this calibration process is to use DWI (preferred) or

NCT obtained between 18 and 36 hours to define the lesion to be used as the reference for

the analyses described above. The 18-36 hour DWI is significantly associated with later

infarct volume and is much easier to obtain than very late imaging (e.g. day 30).61

The fourth recommended analysis aims at standardizing collateral assessment, whether it is

on angiographic data or noninvasive CTP/MRP data. Ideally, the collected dataset would be

identical to the ‘pure’ DSA group in the second recommended analysis. The underlying idea

is to define the ‘most accurate’ measure of collateral flow on non-invasive imaging datasets.

The reference standard would be the DSA, and the tested imaging modalities would be the

CTA or MRA performed prior and within 60 minutes of DSA, with confirmation of lack of

recanalization between DSA and CTA/MRA. For this analysis, patients with baseline CTA

and patients with baseline MRA will be analyzed as separate groups. Collateral assessment

may be more accurate from time-resolved (or at least multi-phase) CTA data compared to

static (single timepoint) CTA. This similarly applies to static MRA. Ideally, concurrent CTP
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or DWI/MRP should be obtained to assess quantitative perfusion measures against collateral

status on DSA and non-invasive angiography.

For all the above recommended analyses, we will need a combination of sensitivity and

specificity from receiver operator characteristic (ROC) curve analysis. At this time, we are

not recommending any specific level of sensitivity or specificity to be achieved. Rather, we

are recommending the four analyses detailed above be performed for all perfusion software

packages available and the results published so as to serve as the initial benchmark. It is

likely that the benchmark levels of sensitivity or specificity will increase over time,

reflecting continuous improvements in the perfusion software packages.

For all datasets, a spread of the baseline imaging is needed in various time windows after

stroke onset, e.g. - 0-3 hours, 3-4.5 hours, 4.5-6 hours, 6-12 hours. Similarly, a diverse

population is desired, with patients who were not treated, patients treated with IV

thrombolysis and patients treated with IA revascularization. All the datasets collected should

ideally have appropriate clinical information collected as part of the protocol. If possible,

NIH Stroke Scale scores at all imaging timepoints, mRS at day 90, time of onset, and acute

treatment should be collected.

In terms of the imaging protocols used, two approaches can be considered. One would be to

harmonize acquisition protocols as much as possible and for STIR to provide guidelines (as

done previously).62,63 However, a second, more pragmatic approach is to accept a broad

range of acquisition protocols. A ‘good enough’ software should be able to deal with a broad

range of image acquisition protocols. This makes the results more generalizable, but this

approach requires validation.

The data submitted to the STIR repository should be anonymized and undergo a rigorous

quality control process before being accepted into the repository, in order to ensure

compliance with minimum basic acquisition standards.

Stroke Neuroimaging Network and Coordinating/Data Center

Similar to continuously evolving software tools, STIR recognizes that imaging techniques

will continue to advance on the acquisition side as well. Promising emerging imaging

techniques for providing even greater understanding into stroke sequelae include non-

invasive measurement of cerebral blood flow (e.g. arterial spin labeling [ASL] MRI64,65,

oxygen extraction fraction MRI66, pH-weighted MRI67, vessel size imaging68,69, vascular

space occupancy (VASO) MRI70, cerebrovascular reactivity measured with MRI71,

diffusion kurtosis MRI72, diffusion-tractography73, resting-state fMRI74,75,76, dual-energy

CT77, and PET and SPECT tracers to assess inflammatory processes. New imaging

techniques offer practical benefits such as less invasive methods that allow for repeat

assessments or less motion sensitive approaches which are critical for imaging agitated and

non-compliant patients who make up the majority of the acute stroke population. New

contrast agents may offer practical benefits of patients’ exposure to less iodine or

gadolinium. Beyond the likely increased specificity and sensitivity of identifying patients

who may benefit from novel pathways for acute intervention, advanced imaging techniques

can also potentially be used for trials of stroke prevention to assess vulnerable carotid
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atherosclerotic plaque and identify patients at high risk of stroke. Advanced imaging has

also been posited to be potentially of use for monitoring functional changes in the brain

recovery process and therefore may be used to evaluate physical and neurocognitive therapy

after stroke.78,79

Although advanced neuroimaging techniques have the potential to impact all stages of

stroke patient management, the practical translation of these potentially transformative

techniques from research to clinical settings currently faces many challenges. Some of these

include limited support for developing advanced imaging techniques in clinical trial

environments and logistic issues regarding their feasibility in acute trial settings. Pragmatic

issues such as scan duration are important especially in the acute revascularization trials as

described above. For evaluating patients without pressing time constraints, e.g. chronic

stroke patients and TIA patients, longer acquisitions may be feasible, and automatic motion

correction would be extremely useful in this setting.

Critical to the acceptance of new techniques will be their performance. Depending on the

patient population under investigation, there are many possible criteria by which new

imaging techniques can be evaluated. As described above, for acute stroke patients, imaging

techniques are typically evaluated on their ability to predict lesion volumes on follow-up

imaging as a reference standard. The equivalent for at-risk patients would be prediction of

future strokes. For acute stroke or at-risk patients, additional evaluation criteria should

include prediction or measurement of clinical response to intervention or medication such as

gray matter volume measurement relative to the contralateral unaffected brain could be

evaluated against neurocognitive testing and be used for prediction of cognitive outcomes

and response to rehabilitation therapy.80 Ultimately, any new technique will need to impact

clinical management of these patients, whether by making the imaging study less invasive or

providing additional information on potential tissue salvage, tissue at risk or risk of

complication with treatment. In addition, the evaluation of the utility of new imaging

techniques for patient selection or as a biomarker of safety or efficacy of new treatments

should follow the recommendations described above.

For translating new techniques from research settings to clinical settings, several study

designs are possible. After the initial validation at a single site or small number of sites, the

consensus is that multi-center, multi-vendor studies would be the most appropriate for

successful translation of new techniques to non-academic hospital centers. There is still

debate on whether to limit evaluation of new techniques to current state of the art

technology, e.g. 3 Tesla scanners, or to emphasize generalizability, e.g. include 1.5 Tesla

MRI scanners. For evaluating the clinical utility of new advanced imaging techniques, both

acquisition and processing techniques, and contrast administration techniques will need to

be standardized by expert panels, as is currently done for ASL by the Perfusion Study Group

of the International Society for Magnetic Resonance in Medicine (ISMRM) and the

European consortium ‘ASL in Dementia (AID)’ (funded through a grant from the European

Union COST agency).

Mechanisms are therefore needed to translate and test advanced imaging methods across

centers, to encourage the use of advanced imaging in acute settings, to stimulate closer
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academic-industry collaborations (such as for the Alzheimer’s Disease Neuroimaging

Initiative http://www.adni-info.org/81) and to promote the retrospective and prospective

collection and pooling of imaging data, such as the one to create the STIR repository

described above.

The two logistic priorities for promoting translation of new imaging research are: (1)

population of the STIR imaging data repository with links to clinical metadata, and (2)

establishment of a stroke trial imaging network.

Regarding the first priority, STIR recommends that worldwide government agencies can

provide funding to centers to acquire a standard dataset using a common IRB-approved

imaging-based study protocol matching the description above in the section about the STIR

calibration process. Also, some government-funded acute stroke clinical trials could be

required to collect a minimal basic imaging dataset, in addition to the clinical CDE.

Promoting imaging as a required data element in some trials, and making these data

available to the stroke community through a repository, would accelerate testing of the

utility of advanced imaging for stroke research.

The second priority, an international stroke trial imaging network, will provide the

infrastructure that facilitates advanced neuroimaging-based studies. An imaging network

comprising international experts could track the clinical and imaging capabilities of potential

participating centers, i.e. contact information for neurologists, neuroradiologists,

interventionalists, imaging physicists and emergency physicians, ability to do acute CT,

CTA, MRI as well as the number of acute stroke patients seen per year. In addition, scanner

details (i.e. 1.5T MRI, 3T MR, manufacturer and software version) should be recorded.

Having this information readily available will provide an easy mechanism for identifying

potential centers that are capable of integrating advanced imaging into stroke clinical trials.

Currently, every imaging-based multicenter trial repeats the same process for identifying

eligible centers with the required technical capabilities to perform the study before startup.

Having a centralized, regularly updated database of center capabilities could streamline the

process and ultimately accelerate startup of these studies. Establishment of a stroke trial

imaging network with a central coordinating/data group has the potential of both immediate

and long-term impact on stroke research and public health by creating an infrastructure that

reduces redundancy and increases efficiency of stroke imaging research, thereby allowing

investigators to concentrate on clinical and scientific questions rather than implementation

issues. In addition, such centers can promote scientific collaboration and education in a

distributed fashion, and further advance software reuse, and data and model sharing.

Finally, worldwide governmental funding agencies can use their unique position to work

with industry and academia to promote public-private partnerships to facilitate the

distribution of proprietary techniques and software across multiple platforms and accelerate

standardization and translation of advanced imaging technologies.
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Conclusion

The two main achievements of the STIR II are to provide specific terminology for acute

stroke imaging, and a modified TICI scale. General guidance about the use of imaging in the

design of stroke clinical trials is also provided.

The three main recommendations of STIR II for stroke imaging research directions include:

• the establishment of a STIR calibration process for measuring ischemic core and

penumbral software,

• populate the STIR clinical and imaging data repository to facilitate the STIR

calibration process, and

• the creation of a stroke neuroimaging network able to keep track of the clinical and

imaging capabilities of centers, i.e. contact information for neurologists,

neuroradiologists, interventionalists, imaging physicists and emergency physicians,

ability to do acute CT, CTA, CTP, MRI, MRP, MRA as well as the number of

acute stroke patients seen per year.

Collaboration among academia, industry, and funding and regulatory agencies is integral to

the successful realization of these aims.
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Table 1
General requirements for imaging in stroke clinical trials

Speed: In therapeutic trials, the benefits of additional imaging should be balanced
against potential treatment delay; workflow should be optimised based on best practice.

Standardization: Acquisition parameters and perfusion post-processing should be
standardized (by common software processing at centers or centralized processing)
and should conform to minimum, protocol-defined, common standards.

Quality Control: A well-defined image quality control process should be implemented to
ensure that the pre-defined study imaging protocol is respected and to minimize the
number of protocol violations.

Reproducibility: If imaging is used to define patient selection then either a system for
standardized central image processing and automated analysis, or appropriate training
for neuroimaging raters at participating centers, should be undertaken. Imaging
methods should have demonstrated acceptable interobserver and across-center
reliability.

Centralization: Central analysis of imaging outcomes should be conducted as the
reference standard in multicenter trials. A system for standardized central image
processing and interpretation, blinded to clinical information and local investigator
decision, should be implemented.
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Table 2
Uses of imaging in stroke clinical trials

Selection of patients with imaging confirmed diagnosis of stroke

Selection of patients appropriate to a mechanistic hypothesis: Treatment-Relevant
Acute Imaging Target (TRAIT)

Exclusion of patients based on imaging defined risk of therapeutic intervention (e.g.
hemorrhage if testing thrombolytic)

Exclusion of patients based on imaging defined futility of therapeutic intervention

Sample enrichment - selection of a sample likely to maximize a treatment effect

Assessment of therapeutic intervention on TRAIT (e.g., recanalization, reperfusion,
infarct size/growth)
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Table 3
Unresolved issues with imaging selection biomarkers for clinical trials

Added value of vascular imaging

Added value of perfusion (penumbral) imaging

Whether additional imaging selects patients currently excluded from treatment

Whether additional imaging excludes patients from treatment who may otherwise
benefit

Whether the additional time related to additional imaging is justified

Whether the ‘optimal’ additional imaging modality varies depending on the time window
and the type of treatment

Clinical relevance of the signal intensity of the DWI abnormality

MRI versus CT in patient selection

Utility and use of extracellular contrast agents for CTP and MRP
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Table 4
Three components of revascularization

Recanalization or restoration of patency in the original or primary arterial occlusive
lesion

Reperfusion past the primary occlusion into the distal arterial bed

Reperfusion of the affected tissue
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Table 5
Modified Treatment In Cerebral Ischemia (mTICI) scale

This relates to capillary-level reperfusion as measured on catheter angiography.

0 no reperfusion

1 flow beyond occlusion without distal branch reperfusion

2a reperfusion of less than half of the downstream target arterial territory

2b reperfusion of more than half, yet incomplete, in the downstream target arterial
territory

3 complete reperfusion of the downstream target arterial territory, including distal
branches with slow flow

Stroke. Author manuscript; available in PMC 2014 September 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Wintermark et al. Page 34

Table 6
Required characteristics for the dataset to be used in analysis to calibrate acute CTP to
acute DWI abnormality

A maximum delay of 2 hours between the CTP and the DWI studies

Criteria for satisfactory data will be concurrent CTA (NCT assumed) and MRA to
confirm lack of recanalization between exams

For cases where no baseline occlusion can be detected on the initial CTA, then follow-
up MRP will be required to confirm the absence of reperfusion; ideally, MRI data should
contain both MRA and MRP
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Table 7
Summary of imaging data characteristics to be collected for software calibration and
collateral assessment

Baseline imaging study - NCT/CTP/(dynamic) CTA

or

- DWI, MRP, FLAIR, T2* GRE or SWI, MRA

Revascularization imaging
study, to confirm
revascularization for the
“ischemic core” calibration

- DSA after clot retrieval

or

- NCT/CTA (ideally dynamic/multiphase) and/or CTP between 2 and 24 hours after treatment

or

- DWI/FLAIR/GRE or SWI/MRA and/or MRP between 2 and 24 hours after treatment

Follow-up imaging study to
determine the infarct volume

- 18- to 36-hour DWI (preferred regardless of baseline imaging modality)

or

18-to 36-hour NCT
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