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Abstract: In this paper we consider the Sparre Andersen risk model that is perturbed by an inflated chi-

process with non-negative random inflator R. Under some conditions on the perturbation and the random

inflator, which allow for both small and large fluctuations, exact asymptotic behaviour of the finite-time ruin

probability is obtained when initial reserve tends to infinity.
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1 Introduction

Consider a claim counting process N(t) =
∑∞
i=1 I(τ1 + · · · + τi ≤ t), where τi, i ∈ IN , are the i.i.d. claim

inter-arrival times with distribution function Fτ and mean E (τ1) = 1/λ, λ > 0; here I(·) denotes the indicator

function. Let Xi, i ∈ IN , be i.i.d. non-negative random variables, representing the claim sizes. In risk theory,

for a given portfolio of risks, the insurer’s claim surplus process is defined by

S(t) =

N(t)∑
i=1

Xi − ct, t ≥ 0, (1.1)

where
∑N(t)
i=1 Xi is the aggregate claim process and c (> 0) is the premium rate assumed to be a constant.

Suppose further that {N(t), t ≥ 0} and Xi, i ∈IN, are independent, and c > λE (X1) yielding thus the net profit

condition.

The Sparre Andersen risk model introduced above has been investigated by numerous authors, see e.g., Gerber

and Shiu (2005) and references therein. In practice, the surplus is also influenced by some additional uncertain-

ties such as premium adjustments, legislation changes, cost of repairs, and other related expanses. Since various

influences on the loss amounts cannot be modeled, a possible adequate modification is to add to the claim pro-

cess another process which approximates all the unmodeled components of the aforementioned perturbations.
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Therefore, if {Y (t), t ≥ 0} is a real-valued stochastic process modeling the perturbation, the perturbed claim

surplus process can be simply given as

S̃(t) = S(t) + Y (t), t ≥ 0.

Most of the models encountered in the literature assume that Y is a standard Brownian motion (Bm) inde-

pendent of S; in such cases S̃ is a tractable jump-diffusion process. The motivation for choosing Bm as a

perturbation comes from statistics; another motivation for choosing Bm is simply related to the fact that cal-

culation of boundary crossing probabilities for Bm is straightforward when the boundary function is linear.

Since the introduction of the diffusion perturbed (Bm perturbed) risk model by Gerber (1970), the ruin prob-

ability of the perturbed risk model with various types of perturbations has become a popular theoretical topic

in ruin theory. A seminal paper on the infinite-time ruin probability of the diffusion perturbed risk model is

Dufresne and Gerber (1991), see also Yuen et al. (2005) and references therein.

Of course, instead of the Bm, general processes, including Lévy and Gaussian processes, can be considered as

candidates for the perturbation, see e.g., Schlegel (1998), Furrer (1998) and Frostig (2008). For choosing a

perturbation numerous processes can be considered, for instance one possible candidate could be an Ornstein-

Uhlenbeck process, another one could be a fractional Brownian motion (fBm) {Bα(t), t ≥ 0}, with parameter

α ∈ (0, 2], for which increments are positively correlated if α > 1, and negatively correlated if α < 1. However,

the replacement of the Bm by a more general process Y complicates the calculation of the ruin probability

drastically, rendering the explicit formulas impossible.

A major drawback of the classical risk model is that claims are assumed to be settled immediately after their

arrival. In practice this is clearly not the case: on one side claims are often reported with delay, such type of

claims is commonly referred to as IBNR or simply incurred but not reported claims. Even when claims are

reported, the case reserves might be over optimistic. Such claims are called incurred but not enough reserved

(for short IBNER). The loss amount related to both IBNR and IBNER cannot be negligible, especially for TPL

(third party liability) type covers. Accounting for those claims, a one-sided perturbation can be introduced

as an approximation for the missing (unknown) part of the total claim amount, i.e., the total amount of the

IBNR and IBNER claims. Furthermore, the insurers also do not know when IBNR and IBNER are ultimately

settled. Therefore, it is reasonable to consider a time-changed process or an inflated process as perturbation.

For instance, we can assume

Y (t) := |B1(R2t)| d= R|B1(t)|, t ≥ 0, (1.2)

where {B1(R2t), t ≥ 0} is a time-changed standard Bm, with some positive random variable R (here
d
= stands

for equality of distribution functions). Note further, in the light of the last expression, the random variable R
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can also be interpreted as a random inflator introduced due to the delay in the settlement of the IBNR and

IBNER claims.

Moreover, as previously mentioned, the additional perturbation process relates to different types of uncertainties

such as premium adjustments, legislation changes, cost of repairs, IBNR or IBNER, and probably they are

dependent, e.g., if there are more IBNR claims there will be more IBNER claims, and more expenses of dealing

with them will be needed. With motivation from Constantinescu et al. (2011), where the authors considered

a risk model with an Archimedean dependence structure modeling the dependence between claims, we model

d ∈IN types of dependent uncertainties by a random vector process

⇀

X(t) := R(|W1(t)|, · · · , |Wd(t)|), t ≥ 0,

where W1, . . . ,Wd are independent copies of a centered stationary Gaussian process {W (t), t ≥ 0}, with a.s.

continuous sample paths and covariance function r(t), t ≥ 0, and R is a non-negative random variable modeling

the dependence between different uncertainties. The model where {W (t), t ≥ 0} is a non-stationary Gaussian

process is much more involved and will be considered in a forthcoming paper.

Based on the discussions above, we shall assume in the sequel that all the uncertainties are captured by a

non-negative real-valued stochastic process given by

Z+(t) := Rχd(t) = R
√
W 2

1 (t) + · · ·+W 2
d (t), t ≥ 0,

which is independent of the claim surplus process {S(t), t ≥ 0}. Moreover, we assume the random inflator R is

independent of χd. It is worth noting that {Z+(t), t ≥ 0} is a generalization of the inflated absolute value process

(1.2), which gives us more degrees of freedom for modeling perturbations; also note that the perturbation by

Z2
+ can be studied with similar tools as those presented below for Z+.

In this paper we consider the risk process perturbed by an inflated chi-process given by

S̃(t) = S(t) + Z+(t), t ≥ 0. (1.3)

It turns out that the fluctuation caused by Z+ can be small or large depending on the distribution of R.

Specifically, for any positive constant T , define finite-time ruin probabilities for the models (1.1) and (1.3) by

ψ(u, T ) = P

(
sup
t∈[0,T ]

S(t) > u

)
and ψ̃(u, T ) = P

(
sup
t∈[0,T ]

S̃(t) > u

)
,

respectively, where u ≥ 0 is the initial reserve. Our main finding in this paper is that for certain models of the

inflation and claim sizes

lim
u→∞

ψ̃(u, T )

ψ(u, T )
= 1. (1.4)
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Further, we show that it is possible to specify both the distribution of the inflator and the distribution of claim

sizes such that the ruin probability explained by the perturbed model is much higher compared to that derived

by the classical (unperturbed) model, i.e.,

ψ(u, T ) = o
(
ψ̃(u, T )

)
, as u→∞.

The exact asymptotic behaviour of ψ̃(u, T ) is then derived in Theorem 2.1 below.

A nice review of early contributions on the finite-time ruin probability for the models without perturbation can

be found in Tang (2004). In general, calculation of the finite-time ruin probability is more difficult than the

infinite-time ruin probability. Therefore, often the aim of the analysis is to find adequate approximations for it

by relying on the asymptotic theory.

In next section, we shall present the main result of this paper and then give two examples illustrating the

applicability of our novel results. The proof of the main result together with some auxiliary lemmas will be

relegated to Section 3.

2 Main Result

In this paper, we shall consider the claim sizes from the class S of subexponential distributions. By definition,

a distribution function F supported on [0,∞) is said to be in S if

lim
x→∞

1− F ∗2(x)

1− F (x)
= 2,

where F ∗2 denotes the 2-fold convolution of F . It is known that the class S is in the class of heavy-tailed

distributions. Furthermore, if F ∈ S, then

lim
x→∞

1− F (x)

e−εx
= ∞ (2.5)

for any ε > 0; see Embrechts et al. (1997), Tang (2006), Li et al. (2010) and Foss et al. (2009,2011) for basic

properties of subexponential distributions.

For the classical risk model, i.e., {N(t), t ≥ 0} is a homogeneous Poisson process with intensity parameter

λ ∈ (0,∞), under the assumption F ∈ S, it is known that

ψ(u, T ) ∼ λT (1− F (u)). (2.6)

Here and in the following the symbol ∼ means that the quotient of both sides tends to 1 as the argument tends

to infinity. Under some additional asymptotic assumptions on the distribution functions of the heavy-tailed

claim sizes and of the inter-arrival times for the Sparre Andersen risk model defined in (1.1), Tang (2004) and
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Leipus and Šiaulys (2009) obtained novel asymptotic results for the finite-time ruin probabilities which hold

uniformly for T in some time interval. In addition, the finite-time ruin probabilities for some other non-standard

risk models were considered in Gao and Wang (2010) and Yang et al. (2012) and references therein.

Our key assumption on the random inflator R is that it has a Weibullian tail, i.e.,

P (R > x) ∼ Kxβ exp(−Lxp), x→∞, (2.7)

with some constants β ∈IR and K,L, p ∈ (0,∞). Further, we impose two standard constrains on the correlation

function r(t) of the Gaussian process {W (t), t ≥ 0}, namely,

(A1) r(t) = 1− atα + o(|t|α) as t→ 0, with α ∈ (0, 2] and some positive constant a, and

(A2) r(t) < 1 for all t > 0.

In the main result below we derive the exact asymptotics of the ruin probability for the perturbed risk model

introduced above. It is surprising that, for p ≥ 2 the claim of (1.4) can be confirmed, whereas the asymptotic

behaviour of ψ̃(u, T ) is different (depending on the perturbation) for p < 2, where additionally the well-known

Pickands constant (Pickands (1969)) defined by

Hα = lim
S→∞

S−1E

(
exp

(
sup
t∈[0,S]

(√
2Bα(t)− tα

)))
, α ∈ (0, 2] (2.8)

appears. Here {Bα(t), t ≥ 0} is a fBm with Hurst parameter α/2. Pickands theorem, where Pickands constant

first appears, plays a crucial role in the extremal behaviour of Gaussian processes. A rigorous proof of Pickands

theorem is given in the seminal paper Piterbarg (1972), see also Piterbarg (1996).

For u ≥ 0 set

G(u) := P

(
R sup
t∈[0,T ]

χd(t) ≤ u

)
and recall that in our framework the random inflator R is independent of the chi-process {χd(t), t ≥ 0}. Next,

we present the main result of this contribution.

Theorem 2.1. For the perturbed Sparre Andersen risk model (1.3) with assumptions (2.7), (A1) and (A2), if

there are two non-negative constants µ, ν such that µ+ ν > 0, and further for some distribution function H ∈ S

both ψ(u, T ) ∼ µ(1−H(u)) and 1−G(u) ∼ ν(1−H(u)) hold, then

max(µ, ν) ≤ lim inf
u→∞

ψ̃(u, T )

1−H(u)
≤ lim sup

u→∞

ψ̃(u, T )

1−H(u)
≤ µ+ ν. (2.9)

Furthermore,

(i) if p ≥ 2 and µ > 0, then (1.4) holds;

(ii) if 0 < p < 2 and µ = 0, then

ψ̃(u, T ) ∼
( 2π

p+ 2

)1/2
KTa1/α

2(2−d)/2Hα
Γ(d/2)

(pL)
2+α(d−1−β)
α(p+2) u

2β+p( 2
α

+d−1)

p+2
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× exp

(
−
(
L

2
p+2 p−

p
p+2 +

1

2
(pL)

2
p+2

)
u

2p
p+2

)
, (2.10)

where Γ(·) is the Euler Gamma function.

Next, we present two illustrative examples.

Example 2.2. Assume that the claim inter-arrival times τi, i ∈IN, are exponentially distributed with parameter

λ > 0, i.e., P (τ1 > x) = e−λx, x ≥ 0. Suppose further that the claim sizes Xi, i ∈ IN, are Weibull with

distribution function F (y) = 1 − exp(−yκ), y ≥ 0, and shape parameter κ ∈ (0, 1), R
d
= |N | with N being the

standard normal random variable, and W (t) = B(t+1)−B(t) with {B(t), t ≥ 0} a standard Bm. It follows that

{W (t), t ≥ 0} is a stationary Gaussian process (also referred to as Slepian process) with correlation function

r(t) satisfying

r(t) = 1− t+ o(t), as t→ 0

and r(t) < 1 for any t > 0. Moreover, we have p = 2 since

P (R > u) = (1 + o(1))

√
2

π
u−1e−

1
2u

2

.

Consequently, in view of (2.6) and Theorem 2.1 (i) we conclude that

ψ̃(u, T ) ∼ ψ(u, T ) ∼ λTe−u
κ

, as u→∞. (2.11)

Example 2.3. Assume that the claim sizes Xi, i ∈ IN, are exponentially distributed with parameter δ > 0, R

is exponentially distributed with parameter L > 0, and {W (t), t ≥ 0} is an Ornstein-Uhlenbeck process with

correlation function

r(t) = e−t, t ≥ 0.

It is known (e.g., Rolski et al. (1999) p.251) that the infinite-time ruin probability for the Sparre Andersen risk

model with exponential claims is given by

ψ(u,∞) =
δ − s+
δ

e−s+u, u ≥ 0,

where s+ is the unique positive root of

δ

δ − s
L̂τ (cs) = 1,

with L̂τ (s) =
∫∞
0
e−sx dFτ (x) the Laplace transform of the distribution Fτ . Therefore, by the fact that

ψ(u, T ) = P

(
sup
t∈[0,T ]

S(t) > u

)
≤ P

(
sup

t∈[0,∞)

S(t) > u

)
= ψ(u,∞)
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for any u > 0, we conclude that

ψ(u, T ) ≤ δ − s+
δ

e−s+u, u ≥ 0,

which means that µ = 0. Furthermore, we have

r(t) = 1− t+ o(t), as t→ 0,

and r(t) < 1 for any t > 0. In addition, p = 1 follows from

P (R > u) = e−Lu.

Consequently, Theorem 2.1 (ii) implies (note that H1 = 1)

ψ̃(u, T ) ∼
(2π

3

)1/2 2(2−d)/2

Γ(d/2)
T (Lu)

d+1
3 e−

3
2 (Lu)

2
3 , as u→∞. (2.12)

3 Further Results and Proofs

We first present a crucial theorem on the supremum of chi-process given in Corollary 7.3 in Piterbarg (1996).

Theorem 3.1. Suppose that the covariance function r(t) of the centered Gaussian process {W (t), t ≥ 0} satisfies

assumptions (A1) and (A2) with α ∈ (0, 2] and some positive constant a. If χd(t) =
√
W 2

1 (t) + · · ·+W 2
d (t) is

the chi-process generated from the i.i.d. copies W1, . . . ,Wd of W , then

P

(
sup
t∈[0,T ]

χd(t) > u

)
∼ Ta1/α

2(2−d)/2Hα
Γ(d/2)

u2/α+d−2 exp

(
−u

2

2

)
(3.13)

holds as u→∞, with Hα defined in (2.8).

The following result is given in Lemma 2.1 of Arendarczyk and Dȩbicki (2011).

Lemma 3.2. Let Ri, i = 1, 2 be two independent non-negative random variables. If for x→∞,

P (Ri > x) ∼ Cix
αi exp(−Lixpi), i = 1, 2,

with some constants αi ∈IR and Ci, Li, pi ∈ (0,∞), i = 1, 2, then we have

P (R1R2 > x) ∼
(2πp2L2

p1 + p2

)1/2
C1C2A

p2/2+α2−α1x
2p2α1+2p1α2+p1p2

2(p1+p2)

× exp(−(L1A
−p1 + L2A

p2)x
p1p2
p1+p2 ),

where A = (p1L1)/(p2L2)]1/(p1+p2).
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Lemma 3.3. Suppose that the random inflator R > 0 satisfies (2.7) with some constants β ∈IR and K,L, p ∈

(0,∞). If additionally R is independent of the chi-square process χd, then under the assumptions of Theorem

3.1, we obtain

1−G(u) = P

(
R sup
t∈[0,T ]

χd(t) > u

)
∼

( 2π

p+ 2

)1/2
KTa1/α

2(2−d)/2Hα
Γ(d/2)

(pL)
2+α(d−1−β)
α(p+2) u

2β+p(2/α+d−1)
p+2

× exp

(
−
(
L

2
p+2 p−

p
p+2 +

1

2
(pL)

2
p+2

)
u

2p
p+2

)
. (3.14)

Furthermore, if 0 < p < 2, then G is a subexponential distribution in the Gumbel max-domain of attraction.

Proof of Lemma 3.3 The exact asymptotics in (3.14) follows from Theorem 3.1 and Lemma 3.2. It is clear

that G is in the Gumbel max-domain of attraction, and for 0 < p < 2 it is also a subexponential distribution.

2

Proof of Theorem 2.1 For any u ≥ 0

ψ̃(u, T ) ≤ P

(
sup
t∈[0,T ]

S(t) + sup
t∈[0,T ]

Rχd(t) > u

)
= 1− (1− ψ(·, T )) ∗G(u)

∼ (µ+ ν)(1−H(u)),

where (1−ψ(·, T )) ∗G(u) is the convolution function of the functions 1−ψ(u, T ) and G(u). Hence we conclude

that

lim sup
u→∞

ψ̃(u, T )

1−H(u)
≤ µ+ ν

establishing thus the last inequality of (2.9). For the first inequality of (2.9), without loss of generality, we prove

the result for µ > 0. For any u ≥ 0 we have

ψ̃(u, T ) ≥ P

(
sup
t∈[0,T ]

S(t)− sup
t∈[0,T ]

(−Rχd(t)) > u

)

≥ P

(
sup
t∈[0,T ]

S(t) > u

)
∼ ψ(u, T )

∼ µ(1−H(u))

and thus

µ ≤ lim inf
u→∞

ψ̃(u, T )

1−H(u)
.

In view of (2.5) and Lemma 3.3 we see that ν = 0 when p ≥ 2. In fact, if we suppose that ν > 0, then

lim
u→∞

1−G(u)

e−εu
e−εu

1−H(u)
= lim
u→∞

1−G(u)

1−H(u)
= ν > 0
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for any sufficiently small ε > 0, which by (2.5) does not hold when p ≥ 2. Consequently, (1.4) follows immedi-

ately from (2.9). The claim in (2.10) follows from (2.9) and Lemma 3.3, and thus the proof is completed. 2
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[1] Arendarczyk, M., Dȩbicki, K., 2011. Asymptotics of supremum distribution of a Gaussian process over a Weibullian

time. Bernoulli 17, 194-210.

[2] Constantinescu, C., Hashorva, E., Ji, L., 2011. Archimedean copulas in finite and infinite dimensions - with

application to ruin problems. Insurance: Mathematics and Economics 49(3), 487-495.

[3] Dufresne, F., Gerber, H.U., 1991. Risk theory for the compound Poisson process that is perturbed by diffusion.

Insurance: Mathematics and Economics 10, 51-59.
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