
Decoding Sequence Learning from Single-Trial
Intracranial EEG in Humans
Marzia De Lucia1,7*., Irina Constantinescu2,3., Virginie Sterpenich2,3, Gilles Pourtois4, Margitta Seeck5,

Sophie Schwartz2,3,6

1 Department of Radiology, Vaudois University Hospital Center and University of Lausanne, Lausanne, Switzerland, 2 Department of Neuroscience, University of Geneva,

Geneva, Switzerland, 3 Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland, 4 Department of Experimental Clinical and Health Psychology, University

of Ghent, Ghent, Belgium, 5 Department of Clinical Neurology, Geneva University Hospitals, Geneva, Switzerland, 6 Swiss Center for Affective Sciences, University of

Geneva, Geneva, Switzerland, 7 Electroencephalography Brain Mapping Core, Center for Biomedical Imaging, Lausanne, Switzerland

Abstract

We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial
electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model
(HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was
acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in
several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-
dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained
sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after
sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial
classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts
the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal
contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach
can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites
contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully
applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.
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Introduction

In functional neuroimaging studies, the application of machine

learning techniques has recently become a popular method for

decoding stimulus-related information at the level of the single

response to external stimuli [1,2]. Most of the machine learning

techniques applied to neuroimaging data are intrinsically multi-

variate and therefore particularly suitable when the main

differences between experimental conditions are not in the

strength of the activity at specific brain regions, but rather in the

configuration or relative spatial locations of simultaneously

activated areas (for reviews see [3–7]). Indeed, recent applications

of machine learning techniques in hemodynamic (e.g. [8–13]) and

electrophysiological (e.g. [14–17]) studies have emphasized the

role of widespread activation patterns underlying many human

cognitive functions, shifting the focus from the description of

specialized brain regions to a network perspective. In addition,

because these methods typically exploit high-dimensional data,

they often offer a valid alternative to the preselection of a subset of

the available data prior to the analysis. In particular, electrophys-

iological studies often involve the a priori selection of specific

electrodes prior to statistics, thus severely limiting the possibility to

reveal robust effects outside regions of interest and preventing the

investigation of spatially distributed effects. In intracranial

electroencephalography studies in humans, the use of a very small

subset of the data, i.e. highly localized recording sites, is preferred

because it gets around the problem of variations in the patterns of

surgical implantation across patients (e.g. [18–20]).

Here we propose a machine learning approach for the analysis

of human iEEG which takes advantage of multiple recording sites

and high temporal resolution of brain activity. Following a

classification scheme, we aim at demonstrating the feasibility of

this method in capturing learning-related changes during a visuo-

motor task performed over two sessions.

We recorded iEEG from distributed cerebral locations in two

epileptic patients to identify spatio-temporal changes in neural

activity related to visuo-motor learning. To characterize the neural

activity during the execution of a trained sequence (as compared to

an untrained sequence), we employed a decoding algorithm that

classifies single-trial data by exploiting learning-related changes in

distributed patterns of neural activity. We then estimated which

electrodes mostly contributed to the discrimination power in order
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to identify brain regions implicated in learning-related changes.

This approach is challenging because it aims at extracting

distinctive features of neural activity during a complex cognitive

paradigm at the single-trial level and with minimal a priori

constraints (for similar approaches in scalp EEG see [17,21–23]).

This effort is counterbalanced by the benefit of a statistical

assessment of datasets from single individuals, and by taking into

account unlocked activity that is overlooked when averaging peri-

stimulus epochs as in standard univariate approaches. This

approach would thus be particularly appropriate for the study of

clinical cases with heterogeneous anatomical and functional

characteristics.

The present results show that the proposed multivariate

algorithm can track learning-related changes, provides consistent

results in two distinct patients analyzed independently, and offers

the possibility to estimate in an unbiased way which neural

locations may critically contribute to motor sequence learning.

Materials and Methods

Experimental Paradigm
Ethics Statement. Patients provided written informed

consent to participate in this study, which was approved by the

ethical committee of the Geneva University Hospitals.

Patients description. We tested epileptic patients who had

depth-electrodes implanted in several brain regions for presurgical

evaluation purposes. Here we report the findings in two patients,

patient M.R. (male, left-handed, aged 35) and patient C.S. (female,

right-handed, aged 25) who completed the experimental protocol

without any major epileptic activity over the whole period of

recording (about 18 hours over 2 days, see Figure 1a). During the

whole experimental protocol, including one night of sleep, both

patients were free of any medication. The ictal semiology consisted

of generalized seizures alternating with partial seizures for patient

M.R and of complex partial seizures for patient C.S. None of the

patients had any detectable hippocampal damage (including

sclerosis): the magnetic resonance imaging (MRI) examination

was normal for patient M.R and showed bilateral occipital

periventricular heterotopia without any hippocampal abnormality

for patient C.S. Both patients had a good general clinical status, no

cognitive impairment, and no history of sleep disorders. None of

the patients had formerly exerted any activity that could influence

performance on the main experimental task (SRTT, see below),

such as playing a musical instrument or extensive practice with

typing on a keyboard. The patients could execute the task without

difficulty (see Results). Both patients judged the quality of the

night’s sleep during the experiment as good (St Mary’s Hospital

Sleep Questionnaire and verbal interview) and polysomnographic

sleep scoring showed good sleep efficiency (see Material S1).

Behavioral task and experimental procedure
The patients were tested on a serial reaction time task (SRTT)

[24,25]. During testing, the patients faced a computer screen (19

inches) displaying four grey rectangles (2.1564.30 degrees of visual

angle, each) arranged horizontally next to each other (2.15u gaps)

on a homogeneous, light blue background, with a fixation cross at

the center of screen (Figure 1b). The four rectangles and the

fixation cross remained on the screen throughout the experiment.

On each trial, one of the four grey rectangles briefly changed its

color to yellow for 200 ms. The patients had to react as quickly

and accurately as possible by pressing on a response-pad the key

that spatially corresponded to the flashed position within a

1000 ms interval. The patients responded with the four fingers of

their non-dominant hand (right for M.R. and left for C.S.).

Whenever they did not press the correct key or pressed no key

within the response interval, an error feedback was displayed

(background color turning to dark blue during 200 ms). The next

trial started 500 ms after the end of the response period. The inter-

stimulus interval was 1700 ms. On each trial in the sequence, the

reaction time (RT) and response accuracy were recorded. The

SRTT was programmed using the E-Prime software (Psychology

Software Tools, Inc., Pittsburg, PA) to allow high temporal

precision for stimulus presentation, RT data collection, and

marking of the events on the iEEG recording. Two types of

sequences were presented: a structured (S) sequence, requiring

eight keypresses in a specific pre-determined order and a control

(C) pseudo-random sequence. For both patients, the S-sequence

used was 2-4-3-1-4-2-1-3, where 1 refers to the left-most rectangle

and 4 to the right-most rectangle on the screen. The C-sequence

consisted of series of eight keypresses (as for the S-sequence)

formed by randomly shuffling two sub-sequences of the 1-2-3-4

positions. Hence, the two finger sequences differed but shared a

main global feature: the four distinct positions were flashed once in

each of the two successive quartets forming an 8-position

sequence. A short pause of 2500 ms was inserted after the last

trial of each sequence, i.e. after 8 keypresses. The patients were not

informed about the regularity of the S-sequence.

The patients were tested during two sessions on two successive

days, including one night of sleep between the sessions (Figure 1a).

On day 1, a training session started at 7.45 p.m. and lasted about

30 min. On day 2, a test session started at 9.30 a.m. and lasted

30 min. Each session consisted of three blocks of the S-sequence

(20 repetitions each) and one equivalent block of the C-sequence.

The C-sequence was introduced in both sessions to allow the

assessment of sequence-specific changes in behavior and neural

activity, independent of non-specific improvements in executing

the visuomotor task. The C-sequence was performed after two S-

blocks to ensure that the patients had acquired good practice with

the SRT task. The C-block was also followed by a last S-block to

limit the interference of the C-sequence on the consolidation of the

S-sequence. To obtain information about explicit knowledge of the

S-sequence, we asked the patients at the end of the second session

on day 2 whether they had noticed any regularity regarding the

succession of the positions (or key presses). We also invited them to

reproduce the motor sequence on the keypad.

Intracranial EEG recording
We tested both patients while they underwent continuous long-

term iEEG recordings. Electrophysiological activity was recorded

over arrays of depth electrodes surgically implanted to identify the

epilepsy focus. Intracranial EEG was recorded (Ceegraph XL,

Biologic System Corps.) using electrode arrays with 8 stainless

contacts each (AD-Tech, electrode diameter: 3 mm, inter-contact

spacing: 10 mm), orthogonally implanted in several brain regions.

Patient M.R. had 64 contacts (8 arrays), covering, bilaterally, the

anterior and posterior hippocampal regions, the amygdala, and

the fronto-orbital cortex. For patient C.S., a total of 88 contacts

(11 arrays) covered anterior and posterior hippocampal regions,

the amygdala, the frontal-caudate area, and the occipital cortex,

bilaterally, as well as the right fronto-orbital cortex (Figure 2a). For

each patient, we determined precise electrode location by the co-

registration of a post-operative computed tomography scan (CT)

with a high-resolution anatomical MRI. For the iEEG recordings,

the reference in both patients was a scalp electrode, subcutane-

ously implanted, located at position Cz and the ground was

another scalp electrode at position FCz of the 10–20 international

EEG system. We sampled the iEEG signal at 512 Hz and band-

pass filtered between 0.1–200 Hz. We applied DC correction and
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a 50 Hz notch filter to the data. Intracranial EEG was recorded

continuously during the training period on day 1 and testing

period on day 2, as well as during the night between the two

sessions. Electrooculography using two electrodes placed on the

eyes’ external canthi and electromyography using chin muscle

electrodes were also performed during the sleep periods. Sleep

data were scored manually by two trained sleep scorers on 30 s

epochs based on Rechtschaffen and Kales standard scoring criteria

[26].

Data analysis
We first analyzed iEEG data from all implanted regions using a

classification method based on single-trial responses. This

approach aims at classifying single trials of iEEG (epochs

corresponding to single key presses) in the S-sequence as belonging

to day 1 or to day 2. We then performed a localization procedure

to detect which areas contributed significantly to the classification

accuracy.

We implemented a multivariate approach to investigate the

consolidation of a sequential motor skill based on distributed brain

signals. This method presents several advantages for the analysis of

intracranial recordings with respect to classic average event-related

potentials. First, it exploits single-trial measurement of a different

duration therefore accounting for possible latency shifts in the

electrophysiological response to similar stimuli and that are not

time-locked to the visual cue or motor response. Second, it

provides classification estimations for different conditions, whose

accuracy can be tested statistically. Finally, by a recurrent

Figure 1. Illustration of the experimental procedure. (a) The experimental protocol included one training session on day one, followed by one
night of sleep, and a test session on day 2. Each session lasted about 30 min and comprised 60 S-sequence (3 blocks) and 20 C-sequences (1 block).
The task was performed with the non-dominant hand and the trained 8-item sequence is shown on the bottom: finger 1 corresponds to the index
and finger 4 to the little finger. (b) On each trial in the sequence, one of the four grey rectangles briefly flashed (yellow during 200 ms), indicating
which button to press next. One sequence in this serial reaction time task required 8 keypresses in a specific order.
doi:10.1371/journal.pone.0028630.g001

Figure 2. Classification procedure. (a) Representation of the implanted areas in patient C.S, lateral view of both hemispheres; (b) intracranial EEG
(iEEG) recorded over the N contacts at each time-frame form an N-dimensional vector; (c) iEEG measures are pooled together within an N-dimensional
space irrespective of their temporal order and a GMM is used to estimate Q Gaussian parameters (here Q = 3); (d) a Hidden Markov Model with Q
hidden states, initialized by the GMM parameters, is used to update the Gaussian estimations as well as the transition matrix between the hidden
states.
doi:10.1371/journal.pone.0028630.g002
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procedure it allows to assess the contribution of each measurement

site to the classification accuracy. The distinctive features of this

method are particularly appropriate for the study of single-patients

datasets, whose measurement quality can be affected to a different

degree and at different site locations, making it difficult to

statistically assess group-level effects. Moreover, in the context of

intracranial data, the averaging of iEEG epochs rarely generates

classical ERP components, thus preventing a straightforward use

of the knowledge derived from scalp EEG studies. While it

provides a stringent test for the classification of single-trial data

together with an identification of anatomical sites for condition-

dependent changes, this method also takes advantage of several

single-trial features simultaneously, including signal amplitude and

spatio-temporal pattern of activity (see Hidden Markov Model of

single-trial iEEG section for details).

In the following, we first describe in details the HHM model

estimation of single-trial iEEG and the accuracy estimation. We

then systematically investigate the relation between the classifica-

tion performance and the electrodes locations, as well as its

relation with the parameters of the HMM models.

Hidden Markov Model of single-trial iEEG
To model the neural response in the S-sequence, we used a

selection of contacts for each of the two patients, choosing the most

distant contacts on each electrode array. This data selection

procedure was motivated by the need to reduce the computational

time in training the model and is justified by the observation that

close contacts measure highly correlated brain activity. The

number of selected contacts N was 16 for M.R. and 22 for C.S. (for

Talairach coordinates of these contacts, see Table S1). To achieve

faster RTs, motor learning should predominantly modulate the

electrical activity preceding the key press. We therefore defined

each individual trial (corresponding to iEEG epochs) as starting

from the fixation cross and ending when the key press was

recorded. Because we aimed at characterizing neural responses

when the patients performed the S-sequence, irrespective of the

specific finger used, we pooled all the trials from the S-sequence in

separate datasets, one for each of the two days. This approach of

pooling together all the events corresponding to different fingers

was also essential for allowing the use of the same model when

classifying single trials of the C-sequence. Obviously, the model

was not informed by any feature of the sequence order.

For each patient, we therefore considered two datasets one for

day 1 and one for day 2 including a set of single trials (epochs)

from the S-sequence. Each of these epochs comprises a set of

voltage measurements Mtf at each time-frame tf, with Mtf = [v1(tf),

v2(tf),…,vN(tf)] (Figure 2b,c). The aim of the HMM algorithm is to

model the time series of vectors Mtf within each epoch {M1,

M2,…, ML}, where L is the length of one epoch. Previous

applications of HMM on electrophysiological data aimed at

characterizing the sequential pattern of specific features extracted

from the signal [27–29]. In our study we applied the HMM on the

raw signal directly in order to characterize the sequence of voltage

configuration across multiple sites of recordings that can subtend

sequence learning.

In an HMM, one considers a probabilistic model of two sets of

random variables {H1,…, HQ } and {M1, M2,…, ML} [30]. The

variables {H1,…, HQ }, called hidden states, represent a stochastic

process whose evolution over time cannot be observed directly.

The property of this process can only be inferred through the

realizations of the variables {M1, M2,…, ML}, that is to say, in our

case, the EEG signal recorded from several electrodes. The HMM

is characterized by the initial state probability vector p of elements

pi = P(H1 = i); the state transition matrix A, with aij = P(Htf =

i|Htf–1 = j) and the set of emission probability density function

B = {bi(Mtf) = p(Mtf|Htf = i)}, which is, in our case, modeled by a

Gaussian mixture (Gaussian mixture model; GMM). The choice of

a GMM for this probability density function is standard when

HMM is applied to a continuous variable [30].

The first step of the algorithm is a GMM estimation of the set of

voltage measurement for a given condition. Thus, the N-

dimensional vectors {Mtf}, representing the instantaneous voltage

measurement across the entire set of electrodes (Figure 2b), were

extracted and pooled together regardless of the timing at which

they were observed and of the trial to which they belonged

(Figure 2c). We initialized the GMM estimation itself by a K-

means clustering method [31], which provided a first guess of the

mean of each cluster, the prior probability for each of the clusters,

and associated covariance. The latter were calculated considering,

for each of the Q Gaussians, the set of vectors {Mtf} closest (on the

basis of Euclidean distance) to each mean. We estimated the

GMM parameters by an expectation-maximization algorithm for

mixture of Gaussians [32]. We used the resulting GMM

parameters to initialize an HMM model with Q hidden states.

In this second step we aimed at characterizing the temporal

structure of the response as a series of states. The HMM model

was estimated using Baum-Welch algorithm [33], an expectation-

maximization procedure which estimates the HMM parameters

by maximizing the probability of observation sequence given the

model. Both steps in the model estimation were computed using a

toolbox for Matlab written by Kevin Murphy (http://www.cs.ubc.

ca/,murphyk/Software/HMM/hmm.html).

In order to select the number of clusters Q providing the best

classification between the trials on day 1 and day 2, we considered

a range of possible values of Q between 3 and 8. We therefore

obtained six HMM (one model for each of the Q values

considered) for each of the two datasets and each of the patients.

Accuracy estimation
To select which HMM provided the best discrimination power

between day 1 and day 2, we tested the models ten times. Each

time, the S-sequence data was randomly divided into two parts:

one training set, which was nine tenths of the data, and one testing

set, which was the remaining one tenth. For each test, we

computed a Receiver Operating Characteristic (ROC), whose

underlying area provides an unbiased measure of the classification

accuracy [34]. After selecting the parameters corresponding to the

largest area lying beneath the ROC curve, we validated the

models on a set of single trials belonging to the S-sequence that

had not been previously used for the parameter selection

(validation dataset). Moreover, we used the same models to

compute the ROC curve as resulted from classifying single trials of

the C-sequence as belonging to day 1 or day 2. A significantly

lower performance in classifying trials belonging to the C-sequence

would confirm that the classification performance between day 1

and day 2 for the S-sequence was attributable to sequence-specific

effects related to learning and neural plasticity, and not to non-

specific task adaptation effects (e.g. more efficient visuomotor

mapping with practice) nor to general differences in measurement

conditions (e.g. different levels of fatigue or motivation of the

patient). For testing the model on the C-sequence, we considered

ten splits of the whole set of single trials and ran a test for each

split. It is worth noting that classifying isingle trials belonging to

the C-sequence based on models estimated on the S-sequence is a

sensible test because these models do not contain any information

about the grammar of the sequence itself.

As an additional estimation of the quality of the trained model,

we assessed the accuracy obtained for new test data by measuring
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the ratio of trials correctly classified and the total number of trials

when keeping the same priors as those obtained during the

training. Finally, to exclude that the discrimination power reached

when classifying the S-sequence could trivially be due to shorter

trial duration on day 2 compared to day 1, we performed a control

test by classifying the two datasets based on the reaction times

(RTs) only (i.e. based on the single-trial duration).

We compared the ROC curve areas based on reaction times

and those based on the HMM models using the ten estimations in

the cross validation procedure (t-tests; p,0.01). To further assess

any possible relation between the estimated model accuracy and

the RTs, we computed the Pearson correlation between the

difference of the logarithm of the likelihoods of each of the two

models (hereafter called discrimination function) and the RTs on a

trial-by-trial basis in the test dataset.

Estimating contacts with higher classification power
We aimed at testing whether the classification performance was

equally driven by all the recording sites across the available

electrode arrays or whether some sites might contribute more to

the classification. We therefore dropped in turn each of the

available electrode arrays, one at a time, and in each of the two

subjects separately, and we recomputed the HMM models and the

corresponding classification accuracy. At this stage, we considered

each couple of electrodes together because they can reflect

correlated activity along the strip. For each of the electrode

selections, we estimated the parameters providing the highest

classification accuracy for the S-sequence as we did above. We

then compared the resulting classification performance with that

obtained previously when keeping all the contacts. The same

analysis was carried out with the data from the C-sequence based

on the models estimated in the structure sequence.

A further analysis was carried out focusing on those couple of

electrodes that produced a significant drop of the classification

accuracy. In the following we refer to the string of contacts

including this couple of electrodes as target string. In this further test,

we trained two set of new models for day 1 and day 2 taking into

account the same number of initially chosen selected contacts (i.e.

16 for M.R. and 22 for C.S.) but replacing one contact within the

target string with another contact in the same string. The goal was

to test how robust is the drop in classification accuracy against the

different choice of the electrodes along the strip and the critical

contribution of each single contact while keeping the same number

of total electrodes.

Relation between classification accuracy and parameters
of the HMM models

One important step of multivariate decoding in neuroimaging

studies is the identification of the features that the classifier exploits

for achieving a good classification performance. We therefore

investigated which parameter(s) from the HMM models was most

informative in classifying single-trials from day 1 and day 2 and

what signal properties did the relevant parameter(s) reflect. For

each patient, we considered the set of HMM models (one model

for each training dataset) estimated during day 1 and day 2. We

considered here only the selected values of hidden variables

providing the best accuracy (i.e. Q1 = 3, Q2 = 4 for patient M.R.

and Q1 = 6, Q2 = 7 for patient C.S.). We investigated which

parameters (i.e. priors, means, covariances, and transition

probabilities), for each model was crucial for achieving a good

classification performance. We ran an exhaustive analysis by

considering all possible combinations for each set of parameters.

For example for testing whether the means estimated from day 1

or day 2 were carrying critical information for classification

performance, we swapped the values of the means of the first

model with those of the second model considering all the possible

permutation between the first and the second set. For each swap

we assessed the accuracy and we evaluated whether there was a

significant drop. The same analysis and the same tests for accuracy

assessment (as described in the ‘Accuracy estimation’ section) were

repeated for each set of parameters (i.e. priors, means, covariances,

and transition probabilities).

Finally we aimed at finding a neurophysiological interpretability

of the relevant parameters revealed by this procedure.

Results

Behavior
For each patient, we first averaged the reaction times (RT) over

the 8 key presses of each sequence in each block (i.e. 20 sequences in

each block). Note that only hits were included in the analysis and

that the patients made very few errors (incorrect key pressed or

misses) in each block (% of all key presses 6SD; Patient M.R.: 262;

Patient C.S: 162). The data were then subjected to an ANOVA

with Day (day 1, day 2) and Blocks (3 blocks for the S-sequence, 1

block for the C-sequence) as factors. Additional t-tests were

performed whenever interactions were significant. Both patients

showed a main effect of Day (patient M.R.: F(1,152) = 4.89,

p,0.05; patient C.S.: F(1,152) = 15.72, p,0.001) due to the RTs

being faster on the second than the first day (mean 6SD; M.R. Day

1: 597 ms666 ms, Day 2: 575 ms666 ms, T(158) = 2.11, p,0.05;

C.S. Day 1: 401 ms638 ms, Day 2: 379 ms642 ms, T(158) = 3.38,

p,0.001). Critically, the analysis revealed a Day by Block

interaction (M.R.: F(3,152) = 3.62, p,0.05; C.S.: F(3,152) = 2.72,

p,0.05) due to greater performance improvement for the S-

sequence blocks than the C-sequence blocks on day 2 (RT

difference between day 1 versus day 2 for M.R. S-sequence:

24 ms, T(118) = 2.21, p,0.05, C-sequence: 15 ms, T(38) = 0.72,

p = 0.49; for C.S. S-sequence: 29 ms, T(118) = 5.16, p,0.001, C-

sequence: 21 ms, T(38) = 20.07, p = 0.95). Consistent with

previous studies [35,36], none of the patients exhibited any explicit

knowledge of the S-sequence or of fragmentary rule knowledge (i.e.

three successive positions in the sequence). They reported that they

did not notice any regularity in the succession of the yellow

rectangles or key presses.

Results from the multivariate decoding approach to
single-trial iEEG

Classification accuracy results. For patient M.R., the best

classification performance was obtained for Q = 3 on day 1 and

Q = 4 on day 2. The ROC area was 0.8060.07 (mean 6SD;

Figure 3a). For patient C.S., the selected parameters were Q = 6

and Q = 7 for day 1 and day 2, respectively. The average ROC

curve area was 0.9060.06 (Figure 3b). Importantly, we obtained

the same results (indistinguishable ROC curves) when classifying

single trials of the validation dataset which was not used for

parameters selection. The accuracy obtained when keeping the

same priors as those obtained in the training, measured as the ratio

of the number of trials correctly classified to the total number of

trials, was 0.7060.06 and 0.8160.05 respectively. In both

patients, the accuracy for classifying the S-sequence was

significantly higher than that for classifying the control sequence

(p,0.01), because the average ROC curve area for the C-

sequence was 0.6660.04 and 0.6660.04 for day 1 and day 2,

respectively. The corresponding accuracy when keeping the same

bias as in the training was 0.6060.06 and 0.6360.04. When

classifying the trials in the S-sequence based on their reaction

times only, we obtained a classification accuracy considerably
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lower than that for the S- and C-sequences in both patients

(Figure 3). Note that, because both S- and C-sequences were

recorded during the same sessions, we can exclude that the

classification relied on other factors than sequence learning (such

as simple visuomotor mapping, motivation, fatigue, etc.), which

would have then resulted in a high accuracy for both sequences,

instead of a high accuracy selectively for the S-sequence as found

here.

In addition, the correlation between the discrimination function

and the RTs evaluated at single-trial level and on each of the ten

test datasets was also negligible and never exceeded 0.37 (n.s.).

Contribution of the recording sites to the classification
The accuracy for classifying the S-sequence was significantly

(p,0.01) affected when we did not consider one electrode array in

patient M.R. This array corresponded to left posterior hippocam-

pus (Figure 4a and Figure 5a). We also found a significant drop in

the accuracy for patient C.S. when we excluded the electrodes

corresponding to either the right anterior hippocampus or the one

corresponding to the right frontal-caudate array (Figure 4b and

Figure 5b,c). We did not obtain a significant drop in the

classification accuracy when excluding any of the other arrays.

We report the results using model parameters that provided the

highest classification performance for the S-sequence. Importantly,

for none of the parameter values we obtained higher classification

accuracy when excluding any of these areas. This last result

provides a quality check on the contribution from each electrode

included in the present analysis, because dropping an electrode

with noisy signal might improve the classification accuracy.

When applying the same procedure on the data from the C-

sequence, we found that, in both patients, many areas were

associated with a significant drop in the accuracy when they were

not included in the model estimation (Figure 4a,b) but, critically,

the accuracy for the C-sequence always remained significantly

lower than that of the S-sequence. Again, as for the S-sequence,

removing one electrode never resulted in any increase in the

discrimination power and this was true for any of the parameter

sets chosen.

We further analyzed how specific was the contribution of the

hippocampus for classifying single trials belonging to the S-

sequence. We estimated two new sets of models for day 1 and day

2 by considering all the initially chosen contacts (i.e. 16 for M.R.

and 22 for C.S.) but replacing the one in the hippocampus (LPH1

and RAH1 for M.R. and C.S. respectively) with one external to

the hippocampus within the same target string. For patient M.R.,

the ROC area dropped to 0.7860.07 which was significantly

lower than the area obtained using all the initially chosen contacts

(p,0.05). For patient C.S., the ROC curve area dropped to

0.8860.04, significantly lower than when including the hippo-

campus (p,0.05).

We could conclude that for both patients within the string that

included the hippocampus, the contact placed within the

hippocampus was contributing more to the classification perfor-

mance than other contacts on the same string. Note also that these

effects were found for the hippocampal contacts in the hemisphere

contralateral to the executing hand in both patients.

Parameters of the HMM model underlying classification
accuracy

We found that the values of the covariances were the most

informative for discriminating day 1 and day 2 and that none of

the other parameters did significantly impact the classification

accuracy.

The next step was to gain a better insight on the neurophysio-

logical interpretability of the HMM models’ parameters estimated

during day 1 and day 2. As mentioned above (section ‘Hidden

Markov Model of single-trial iEEG’), the HMM model can be used

to characterize the sequence of voltage configuration across multiple

sites of recordings. Specifically, we used this model to segment single

trials into series of momentary states, i.e. stable voltage configura-

tions (Figure 6). We therefore investigated how differences in the

covariance matrices (which were found above to play a significant

Figure 3. Classification results. ROC curves for M.R. (a) and C.S. (b) representing the classification results when taking into account all contacts,
comparing the iEEG data from S-sequence (plain red line) and those from the C-sequence (plain blue line). The same model was used to classify
reaction times from the S-sequence (dotted red line) and from the C-sequence (dotted blue line). Accuracy for classifying single-trials belonging to S-
sequence was always significantly higher than that for the C-sequence and for the reaction times, suggesting that the classification algorithm
captured information in the signal that was specific for the trained visuomotor sequence.
doi:10.1371/journal.pone.0028630.g003
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role in the classification) may be reflected in the spatio-temporal

pattern of these momentary states. We applied the two models

providing the best classification results to each trial belonging to day

1 or day 2. We found that the average duration of these states was

longer during day 2 and in comparison to day 1 only for those trials

belonging to the S-sequence in both patients. It is worth noting that

we always compared mean duration of the momentary states for

each single trial obtained by applying the same model, and therefore

the difference in mean duration was not due to different values of Q

between the two sessions. The average duration of these momentary

states for subject M.R. significantly differed between day1 and day2

(97 ms and 111 ms respectively; p,0.05; Figure 6). The average

duration for subject C.S. was 63 ms and 71 ms during day 1 and

day 2 (significantly different, p,0.05; Figure 6). Importantly, this

difference in the average duration was no longer significant when

considering single trials belonging to the random sequence in both

subjects (during day 1 and day 2 average duration was 75 ms and

75 ms for M.R.; 60 ms and 64 ms for C.S.). We could conclude that

the pattern of momentary states during the motor task and their

typical temporal duration were modulated by the learning stage of

the subject. In addition, when omitting the hippocampus contribu-

tion, for patient M.R. the difference in the average duration for the

S-sequence was not anymore significant (61 ms and 64 ms during

day 1 and day 2 respectively; p.0.05), and for patient C.S.,

although this difference was still significant, it was significantly lower

than when including all the contacts (58 ms and 62 ms during day 1

and day 2 respectively; p.0.05).

Discussion

Intracranial EEG recordings in humans provide spatially-

localized measurements of brain activity with a high temporal

resolution. In this study, we proposed an HMM-based multivariate

algorithm that takes advantage of the distributed neural signals

Figure 4. Localization results. ROC areas for M.R. (a) and C.S. (c), comparing classification performance when taking into account all implanted
areas versus after dropping in turn one area. Red bars refer to the S-sequence, blue bars to the C-sequence (b and d). Significant differences between
keeping all the contacts and dropping in turn couples of electrodes were observed for the S-sequence only for the string including the hippocampus
and right frontal caudate contact for C.S. By contrast for the C-sequence, a significant drop in the classification accuracy was evident for many areas.
Importantly single-trial classification remains always lower in the C-sequence than in the S-sequence. Abbreviations: LA = left amygdala; RA = right
amygdala; LAH = left anterior hippocampus; LPH = left posterior hippocampus; RAH = right anterior hippocampus; RPH = right posterior
hippocampus; LFO = left fronto-orbital area; RFO = right fronto-orbital area; LO = left occipital; RO = right occipital; RFC = right frontal-caudate.
Standard errors are shown.
doi:10.1371/journal.pone.0028630.g004
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measured by iEEG at multiple recording sites. Although this

approach can in principle be used to characterize the neural

correlates of any cognitive functions, in this study we show that it

can be successfully applied to track a visuo-motor learning effect.

This dataset included recordings from two subjects who performed

the task before and after a night of sleep. Without the subjects

being aware of it, the two sessions included both a structured

sequence (S-sequence) and a pseudo-random control sequence (C-

sequence). Behavioral results from both patients showed that

motor performance improved selectively for the S-sequence after a

delay that included one night of sleep. These results are similar to

what has been shown with previous SRTT and motor learning

studies in normal subjects [37,38,39], and provide a strong

indication that patients underwent learning-related neural changes

in response to the structured sequence.

Consistently with the behavioral results, we showed that a

multivariate classification algorithm can accurately assign single-

trial iEEG responses to either the initial training phase (day 1) or to

the later consolidated phase (day 2), i.e. after sequence-specific

improvement occurred. Importantly, this classification result relied

on activity patterns selectively associated to the learning of the

regularity of the 8-item sequence (S-sequence), as evidenced by the

comparatively low classification accuracy obtained for single-trials

from the C-sequence. In addition we found that the classification

failed when applied to the single-trial reaction-times, thus

indicating that the learning-related changes captured by the

decoding algorithm cannot be trivially explained in terms of

speeding of motor response. Finally, while the localization of these

learning-related changes involved a distributed pattern of neural

activity, we identified the hippocampus as providing a major

contribution to the reliable classification of the trained sequence,

independently in each patient, with an additional contribution

from frontostriatal regions for the patient implanted with

electrodes in these brain areas.

Taken together, these results demonstrate the feasibility of the

application of a multivariate approach for the analysis of learning-

related changes in intracranial recordings in humans. This is

mainly supported by the accurate performance of the classifier in

tracking sequence learning at the level of single trials and by the

highly consistent pattern of results obtained in the two patients

analyzed independently. More specifically, independently in both

patients (i) we could classify single trials based on distributed

activity and only in relation to the S-sequence; (ii) the

hippocampus provided the highest contribution to the classifica-

tion accuracy compared to all the other sites; (iii) the distinct

learning stages were paralleled by a difference in the average

temporal duration of momentary neural states (see next section).

Learning-related changes the stability of momentary
neural states

The present study provides evidence of learning-related changes

of intracranial electrical activity corresponding to single events

(individual keypresses) belonging to a visuomotor sequence. The

analysis of the features used by the classifier showed that the

discrimination between different stages of the learning process

relies on differences of the spatio-temporal patterns of the raw

signal in relation to the learning stage. Specifically we showed that

responses to single visual cues can be represented as a sequence of

‘momentary states’, whose duration changed as a function of

learning, i.e. when comparing day 1 to day 2.

Indeed, this change in duration was observed only for trials

belonging to the S-sequence, and critically related to the presence

of the hippocampus in both subjects. The existence of short

periods of stability of voltage configurations (often referred to as

functional microstates) is a well-established empirical observation

at the level of the scalp electroencephalography [40–43]. Their

spatio-temporal properties have been extensively used to analyze

both event-related potentials [44,45] as well as resting state EEG

[46]. Our findings demonstrate that the statistical properties of

distributed voltage configurations are also detectable in intracra-

nial responses at the single-trial level. The significant change in

average duration of these momentary states suggests that the

temporal properties rather than the actual amplitude values of

these states are critically related to the learning stage. Variation of

microstates’ temporal duration has been reported at the level of

scalp EEG in relation to functional deficits in specific clinical

populations [47–49]. Very recently, it has been shown that resting

state in humans is characterized by a multi-fractal temporal

organization of the miscrostates whose degree of complexity is

Figure 5. Visualization of the areas most contributing to the classification. (a) Left posterior hippocampus for patient M.R. (b) Right anterior
hippocampus and (c) right frontal-caudate region for patient C.S. Electrodes localized by the CT scan were coregistered to the MRI T1-weighted brain
volumes.
doi:10.1371/journal.pone.0028630.g005
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related to the temporal duration of the microstates [50]. These

studies together with our current findings suggest that the temporal

scale of momentary states carries crucial information about

cognitive states emphasizing the importance of investigating the

dynamics of brain activity together with its spatial distribution.

Distributed versus localized neural correlates underlying
sequence learning

Our results show that the underlying neural correlates of

sequence learning is distributed within a large network, involving

activities from multiple locations. However, in both subjects we

found a significant drop in the performance only when activity

recorded from the hippocampus (and from a frontostriatal region

for the patient implanted with electrodes in these brain areas) was

not included in the classification. These results suggest a major

contribution in sequence learning of these regions, among the

multiple sites at which electrodes were implanted. A more general

conclusion about the specific role of the hippocampus and fronto-

striatal activities is that sequence learning may require a larger

population of patients. At present, these results speak in favor of

the feasibility of the proposed algorithm; first in relation to the

high consistency of these results across the two patients analyzed

independently; second because the role of the hippocampus in

sequence learning is consistent with similar findings in associative

processes, including the integration of temporally- or spatially-

organized information [51–58]. Also consistent with the present

results, it has been suggested that the PFC may participate in the

extraction of regularities based on internal representations, so as to

improve behavioral control [59,60]. Finally, in support of the role

of hippocampal-prefrontal interactions in memory processes,

Peyrache and al. (2009) [61] recently demonstrated that following

the acquisition of new rules, PFC activity patterns reflected the

neural patterns that occurred during the training phase [62], and

that this reactivation occurred predominantly when hippocampal

and cortico-hippocampal interaction was enhanced [63–69].

While this could only be observed in one patient, the present

finding of a contribution of both the hippocampus and PFC

activity to the classification of learning stages would be consistent

with these findings.

Figure 6. Segmentation of single-trials belonging to the structured sequence into voltage configurations (‘momentary states’). Each
of these states is labeled in a gray scale gradation. The trials length (right-padded in black) is marked by a vertical line. For each subject (panel a and
panel b), and each day (from left to right, day 1 and day 2 respectively), we show a series of exemplar single trials and the segmentation provided by
the HMM algorithm. It should be noted that during day2 the average duration of these states is comparably longer that that during day 1 in both
subjects. This observation was confirmed statistically in both subjects. The difference in duration length between day 1 and day 2 was highly
significant and only during the structured sequence. This evidence provides new insight about spatio-temporal properties of neural activity
underlying sequence-learning.
doi:10.1371/journal.pone.0028630.g006
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Advantages and limitations of multivariate decoding
approach to single-trial iEEG

The present study demonstrates that the proposed multivariate

decoding approach to single-trial iEEG datasets from individual

patients offers an important methodological alternative to group

studies of averaged data. Indeed, grouping iEEG data from

different patients can be extremely challenging because the

configuration of electrode placement varies across individuals

and pathological conditions (e.g. epilepsy, Parkinson disease), and

because iEEG data quality is often contaminated by artifacts at

different recording sites. The restricted availability of such iEEG

recordings is an additional factor motivating the development of

methods that fully exploit individual patient datasets. Following a

classification scheme, we made use of non-overlapping splits of the

available data to validate differences in the temporal and spatial

configuration of the signal. Such classification analysis exploits

stimulus-related information extracted from distributed activity

patterns (i.e. ‘pattern information analysis’) and avoids biases that

may arise when hypotheses and inferential analyses are not

independent [70] (e.g. selection of few electrodes in ERP studies).

Pattern information analysis has predominantly been developed

for neuroimaging studies based on fMRI [3–6]. Classification

analysis of electrophysiological data has been predominantly

developed in the context of Brain Computer Interface [71–74]

studies while less effort has been devoted to its application in

neuroimaging studies [7]. As illustrated by the present study, one

main advantage of this methodological framework is that it does

not require any a priori selection of the relevant neural sites or time-

window of activity measurements. We complemented our

approach by a localization procedure and showed that we can

identify the regions contributing most to the performance of the

classifier. Our results demonstrate that this methodological

strategy is particularly adapted to test the effect of learning-related

changes capturing task-related effects at the single-trial level, that

are not time-locked to the visual cue or motor response, and do

not require a fixed trial length.

The present findings could benefit from the simultaneous

recording of scalp EEG which could allow a useful comparison

with existing literature on the same topic [24,75]. This will be the

focus of future studies including a larger set of patients.

Conclusions
Intracranial EEG recordings in humans provide a unique

opportunity to investigate spatially localized neural activity with a

high temporal resolution, in particular for deep regions that

cannot be easily accessible to surface EEG recordings. These data

can thus provide an intermediate level of observation linking

animal cell-recording data and human neuroimaging findings.

However, much like cell-recordings in animals, iEEG studies have

a sparse distribution of recordings sites. In this study, we propose a

multivariate decoding strategy to optimize the use of such

distributed neural signals by allowing the full analysis of datasets

from individual patients at the single-trial level and by offering an

unbiased test for the contribution of individual electrodes to the

observed effects.
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