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Abstract 

Objective: Outcome prognostication in comatose patients after cardiac arrest (CA) remains a 

major challenge. Here we investigated the prognostic value of combinations of linear and 

non-linear bivariate EEG synchronization measures.  

Methods: 94 comatose patients with EEG within 24h after CA were included. Clinical 

outcome was assessed at 3 months using the Cerebral Performance Categories (CPC). EEG 

synchronization between the left and right parasagittal, and between the frontal and parietal 

brain regions was assessed with 4 different quantitative measures (delta power asymmetry, 

cross-correlation, mutual information, and transfer entropy). 2/3 of patients were used to 

assess the predictive power of all possible combinations of these eight features (4 measures x 

2 directions) using cross-validation. The predictive power of the best combination was tested 

on the remaining 1/3 of patients. 

Results: The best combination for prognostication consisted of 4 of the 8 features, and 

contained linear and non-linear measures. Predictive power for poor outcome (CPC 3-5), 

measured with the area under the ROC curve, was 0.84 during cross-validation, and 0.81 on 

the test set. At specificity of 1.0 the sensitivity was 0.54, and the accuracy 0.81. 

Conclusion: Combinations of EEG synchronization measures can contribute to early 

prognostication after CA. In particular, combining linear and non-linear measures is important 

for good predictive power.  

Significance: quantitative methods might increase the prognostic yield of currently used 

multi-modal approaches.  

Highlights 

• Predicting neurological outcome after cardiac arrest remains a challenging task.

• Bivariate EEG synchronization measures can contribute to early prognostication.

• Further studies are needed to evaluate the place of quantitative EEG within multi-

modal prognostic algorithms.

Keywords 
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 quantitative EEG, synchronization, prognostication, anoxic-ischemic encephalopathy. 

Abbreviations 

AP = anterior-posterior axis, AUC = area under the ROC curve, CA = cardiac arrest, CC = 

cross-correlation, CPC = Glasgow-Pittsburg Cerebral Performance Categories, LR = left-right 

axis, MI = mutual information, qEEG = quantitative electroencephalography, RDP = relative 

delta power, ROC = receiver operating characteristic curve, TE = transfer entropy. TTM = 

targeted temperature management. 

1. Introduction

Prognostication in comatose patients after cardiac arrest (CA) remains one of the biggest 

challenges for a neurologist in the intensive care unit (Rossetti et al., 2016). Current clinical 

decisions are based on a multi-modal approach including several clinical and para-clinical 

tests, one of the most important being Electroencephalography (EEG; Horn et al., 2014; 

Rossetti et al., 2016; Sandroni et al., 2014). Several EEG patterns during hypothermia or 

controlled normothermia (summarized as targeted temperature management, TTM) have been 

associated with an unfavourable outcome (Hofmeijer et al., 2015, 2014; Sivaraju et al., 2015; 

Westhall et al., 2016), whereas an early, continuous and reactive EEG may herald a 

favourable outcome (Hofmeijer et al., 2015; Sivaraju et al., 2015; Tsetsou et al., 2013). 

However, clinical EEG also has several limitations. Firstly, it requires the assistance of a 

trained specialist for interpretation (Spalletti et al., 2016; Taccone et al., 2014). Secondly, it 

lacks objectivity as inter-rater agreement remains imperfect despite the attempt to propose 

standardized interpretations (Foreman et al., 2016; Halford et al., 2015; Hirsch et al., 2013; 

Ng et al., 2015; Westhall et al., 2016). In particular, the classification of visual EEG patterns 

into unfavourable, intermediate, or favourable categories varies between studies (Hofmeijer et 

al., 2015; Sivaraju et al., 2015; Westhall et al., 2016, 2015). Computer/ algorithm-based 

analysis of EEG (quantitative EEG; qEEG) appears as a promising approach to circumvent 

these limitations.  
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Several univariate qEEG methods were used to assist visual interpretation, providing for 

instance compact representations of amplitude or spectrum of EEGs, allowing for rapid 

identifications of segments where the EEG signal changes. These methods have been used 

successfully for prognostication after CA (Moura et al., 2014; Oh et al., 2015; Rundgren et al., 

2010). Various qEEG measures have been used to refine EEG patterns classifications, such as 

generalized periodic discharges (Ruijter et al., 2015), similarity of bursts in burst-suppression, 

burst-suppression ratio and epileptiform activity (Wennervirta et al., 2009), or reactivity 

(Noirhomme et al., 2014). Five different uni- and multivariate qEEG features were combined 

into a single index (“cerebral recovery index”) to mimic the way neurologists visually 

interpret EEG, serving as “surrogate electroencephalographers” (Tjepkema-Cloostermans et 

al., 2013).  

Bivariate synchronization measures are classical tools for quantitative EEG analysis in the 

context of epilepsy or neurodegenerative diseases, where they are often used to define 

functional networks (Bullmore and Sporns, 2009; Stam and van Straaten, 2012). However, 

they have only been applied in very few studies for prognostication after CA. Coherence, for 

instance, was one of the elements of the cerebral recovery index mentioned above. In another 

study, a bivariate measure based on similarity of the power spectrum of EEG signals was used 

to define a functional graph, the properties of which were different according to the clinical 

outcome (Beudel et al., 2014). A previous study has shown a potential value of combinations 

of bivariate measures for clinical assessment in a heterogeneous population of comatose 

patients due to various aetiologies (Zubler et al., 2016). Here we set out to investigate the 

value of combinations of bivariate quantitative EEG measures as an early prognostic marker 

in a prospectively collected cohort of comatose patients after CA, postulating that this 

approach would have a good performance in discriminating patients with good from those 

with unfavourable prognosis.  

2. Materials and Methods

2.1. Patients and Treatment 

This cohort was recruited at the Department of Intensive Care Medicine of the Lausanne 

University Hospital (CHUV), Switzerland, and is part of a prospective registry containing 

details of neurological examination (brainstem reflexes, motor reaction, and presence of 

myoclonus), electroencephalographic features (reactivity, continuity, epileptiform activity), 
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somatosensory evoked potentials, and neuron-specific enolase. For details, please see (Oddo 

and Rossetti, 2014). The study was approved by the Ethical Committee of the Canton of 

Vaud. Waiver of consent was granted since the EEGs and clinical information were recorded 

as part of clinical routine. Consecutive comatose patients admitted in the CHUV Intensive 

Care Unit from September 2012 to February 2016 after cardiac arrest (CA) and not deceased 

after 48 hours were included. The detailed treatment protocol has been described elsewhere 

(Oddo and Rossetti, 2014; Rossetti et al., 2010). In short, all patients received TTM, either 

hypothermia (target temperature 33 °C) or, increasingly since July 2014, controlled 

normothermia (target temperature 36°C). TTM was induced as soon as possible using ice 

packs and ice-cold isotonic solutions, followed by the application of a surface cooling device 

with automatic temperature control maintained for 24 hours. During this time, sedation with 

midazolam (0.1 mg/kg/h) or propofol (less frequently; 2-3 mg/kg/h), and fentanyl (1.5 

µg/kg/h) infusions was provided; vecuronium (0,1mg/kg), rocuronium (0.6-0.7 mg/kg) or 

cisatracurium (0.15-0.2 mg/kg) boluses were administered for shivering. Patients with 

myoclonus and/or electrographic status epilepticus were treated with intravenous seizure 

suppressive drugs (mainly levetiracetam and valproic acid). The decision to withdraw 

intensive care support was taken interdisciplinary after at least 72h, based on the occurrence 

of at least two of the following criteria: unreactive EEG background after TTM, treatment-

resistant myoclonus and/or electrographic status epilpeticus, bilateral absence of N20 in 

somatosensory-evoked potentials after NT/HT, absence from at least one of the three principal 

brainstem reflexes (pupillary, oculocephalic, and corneal, examined after sedation weaning) 

(Rossetti et al., 2010). In particular, the EEG during TTM was not taken into account for these 

decisions. 

The neurological outcome at 3 months was prospectively assessed through a semi-structured 

telephone interview using the Glasgow-Pittsburg Cerebral Performance Categories 

(CPC)(Booth et al., 2004). Good neurological outcome was defined as CPC 1 (complete 

recovery) or 2 (moderate disability); poor outcome was defined as CPC 3 (severe disability), 4 

(vegetative / unresponsive wakefulness) or 5 (deceased).   

2.2. EEG recordings 

Video-EEGs (Viasys Neurocare, Madison, WI) recording was performed for 20-30 minutes 

during TTM with 19 electrodes according to the international 10:20-system, with reference 
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placed near FpZ. The sampling rate of most EEGs was 250Hz; three recordings with original 

sampling rate from 1000Hz were down-sampled to 250Hz. From each recording, five minutes 

(the 30 first 10-second epochs without artifact or patient stimulation, and with closed eyes) 

were exported for quantitative analysis. Concerning muscular artefacts the following rules 

were applied: the EEG was excluded if the amplitude of the muscle artefacts after band pass 

filtering (0.5-20Hz, see below) exceeded 10 % of the averaged peak-to-peak amplitude, as 

judged by visual analysis. In case of burst-suppression pattern with superimposed muscular 

artefacts, the EEG was excluded if more than 20% of epochs contained no burst (because of 

the very low signal-to-noise ratio during suppression epochs). Epoch selection and EEG 

exclusion were performed prior to quantitative analysis and blind to clinical outcome by two 

board-certified electroencephalographers (FZ and RK). 

2.3 Quantitative EEG analysis 

We used four bivariate qEEG measures to characterize the synchronization between the left 

and right parasagittal (left-right axis, LR), and between the frontal and parietal brain regions 

(antero-posterior axis, AP) (Zubler et al., 2016). A bipolar derivation was used to represent 

each brain region: (F3-P3) for the left hemisphere, (F4-P4) for the right hemisphere, (F3-F4) 

for the anterior brain region, (P3-P4) for the posterior brain region (P3-P4). EEG 

synchronization was computed between the corresponding bipolar derivations (between F3-P3 

and F4-P4, and between F3-F4 and P3-P4), independently for each 10-second epoch, and then 

averaged over all epochs. Except for relative delta power, the EEG was band-passed filtered 

between 0.5 and 20 Hz prior to analysis, which was performed with Matlab 2014a and 2016a 

(Mathworks). 

 Relative Delta Power asymmetry. The first signal coupling measure was based on spectral 

analysis, namely on (the asymmetry of) relative delta power (RDP). RDP for each derivation 

was defined as the ratio of power in the delta band (0.5 - 4 Hz) to the total power in the 

frequency interval 0.5 - 20Hz, computed with the Matlab built-in function pwelsh.m. RDP 

was used to define two asymmetry indices in the left-right axis, RDPLR = |(RDPL-RDPR) / 

(RDPL+RDPR)|, and in the anterior-posterior axis, RDPAP = (RDPA-RDPP) / (RDPA+RDP).  

The vertical bar "|" denotes absolute value. In the LR-axis we considered the absolute value of 

the asymmetry, so that the hemisphere (left or right) with more delta power was not relevant. 

By contrast, in the antero-posterior axis, we considered the signed value, so that a frontal or 



7 

posterior delta dominance was not equivalent. This choice was motivated by the LR-

symmetry and AP-asymmetry of power spectrum that is found in healthy subjects (“posterior 

rhythm”).  

Cross-Correlation. The second measure was the (zero-lag) cross-correlation, which quantifies 

the similarity up to scaling factor of two signals. Cross-correlation between the left and right 

(CCLR) and between the anterior and posterior regions (CCAP) was computed for each 10-

second epoch with the Matlab function corrcoef.m. Since anti-correlation also implies 

synchronization mechanisms, we considered only absolute-valued CC (in both axes).  

Amplitude-discretization. The next two measures are information theoretical measures, the 

calculation of which is based on statistical properties of the EEG signals. In order to estimate 

these statistical properties, we considered a discretized version of the signal. An amplitude 

discretization with 6 bins was used to estimate the probability distributions of the signal 

(Steimer et al., 2015). The amplitude discretization chosen for the present study is more 

robust to noise (especially low-amplitude muscular artefacts) than the bitstring symbolization 

we used previously (Zubler et al., 2016). 

Mutual Information. Mutual information quantifies the uncertainty reduction about one signal 

if the value of another signal is known. Practically, normalized mutual information between 

signals x and y was computed as [H(x) + H(y) - H(x,y)]/H(x,y), where H(x) denotes the 

entropy of the probability distribution over the (6-bin) amplitude of signal x, and H(x,y) the 

entropy of the joint distribution. It was computed between the left and right (MILR), and the 

frontal and parietal regions (MIAP).  

Transfer entropy is a directed measure of the information flow between two time series, 

which quantifies the uncertainty reduction about the future state of a signal (based on its 

current state), if information about the current value of another signal is also taken into 

account. Transfer entropy from x to y was also computed from block entropies as [H(x,y) –

H(yf,x,y)+H(yf,y)-H(y)] / [H(yf,y)-H(y)] where yf is signal y taken with a negative delay 

(“future of y”). We chose a delay of 6 time steps = 0.024 seconds, because 1/0.024 s = 42 Hz 

is approximately two times the fastest frequency of our filtered signals. For justification of the 

denominator in the computation of transfer entropy see (Marschinski and Kantz, 2002). 

Transfer entropy was computed in both axis in two directions, and used to define two 

asymmetry indices TELR = |(TEL to R - TER to L) / (TEL to R+TER to L)|, and TEAP = (TEA to P - TEP 

to A) / (TEA to P+TEP to A). As for RDP, we considered the absolute value in the left -right axis, 
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and the signed value in the anterior-posterior axis. Here, also, the justification was the 

asymmetry observed in healthy subjects (Lee et al., 2009).  

2.4. Bayes classifier 

The primary aim was to discriminate between good (CPC 1 or 2) and poor (CPC 3-5) 

functional outcome at three months. 

These four synchronization measures computed along two axes provided us with a vector 

containing eight numerical values (in the following called “features”) for each EEG (Fig. 1). 

Equivalently, an EEG can be represented by a single data point in an 8-dimensional feature 

space. Our goal was to identify regions of this space associated with a good outcome, and 

regions associated with a poor outcome (the two “classes”). To this end, we used a generative 

model based on a mixture of two Gaussians, that is, a superposition of two multi-variate 

Gaussians approximating the repartition of EEGs of each class (Bishop, 2006). Typically, for 

this type of classification problem, part of the data (the training set) is used to adjust 

parameters of the Gaussians (“training the model”), whereas the predictive power of the 

trained model is tested on the rest of the data (the test set). However, taking all eight features 

into considerations is not necessarily the optimal solution, since inclusion of irrelevant or 

redundant features can potentially weaken the model. Therefore, the training set was used not 

only for training, but also for identifying the best feature combination, using leave-one-out 

cross-validation (Bishop, 2006).  That is, we selected randomly 2/3 of patients to form a 

training/cross-validation set. On these patients, the predictive power of all 28-1 (=255) 

possible feature combinations was assessed using the area under the ROC curve (AUC). The 

combination reaching the best AUC during leave-one-out cross-validation was then used in an 

“optimal” classifier. This classifier was trained on all patients of the training/cross-validation 

set, and then applied to the test set, namely to the 1/3 of EEGs that were never exposed to a 

classifier before. Of note, we used two Gaussians per classes because it is the smallest number 

allowing multimodal classification (for CCLR and MILR extreme high and low values were 

both associated with unfavourable outcome). For the implementation details of the Bayes 

classifier, see Supplementary Material in (Zubler et al., 2016). 

The mixture of Gaussians classifier attributed a probability of being associated with a good 

vs. bad outcome to each element. For practical use, however, a probability threshold for 

classifying a given subject as having a good or poor outcome has to be chosen, which 
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corresponds to a specific point (the so-called operating point) on the ROC curve(Noirhomme 

et al., 2015). Because of the unacceptable ethical cost of false positive prediction of poor 

outcome, we set the operating point to the highest threshold with specificity (and thus positive 

predictive value) of 1. At this point we computed the sensitivity, the negative predictive value 

and the accuracy with 95% confidence interval (CI) using bootstrapping (bias corrected and 

accelerated percentile method) with 1000 samples. 

2.5. Statistics 

Between groups comparisons were assessed with a Mann–Whitney U test for numerical data, 

and with a chi-squared test for categorical data (implemented in Matlab).   

3. Results

3.1 Demographic information 

Over the recruitment period, 114 consecutive patients were included in the CHUV registry; 18 

patients had to be excluded because of low signal-to-noise ratio due to muscle or ECG 

artefacts on the EEG, resulting in the inclusion of 94 patients for this analysis (34 females). 

The mean age (± sd) of the analysed cohort was 60.9 years ± 16.1; 46 patients (49%) patients 

had a poor functional outcome at three months, of whom 3 had CPC 3 and 43 died. 

Differences between the patients with favourable and unfavourable outcome are summarized 

in Table 1. Note that for 13 patients (14%), the sedation at recording time was not recorded. 

Excluded subjects had a higher proportion of EEGs with suppressed background (9/18 (50%) 

suppressed only, and 5/18 (18%) burst suppression vs. 5/94 (5%) and 10/94 (10.6%) in the 

included cohort respectively). They also differed significantly in term of functional outcome 

(15/18 = 83% patients had a poor outcome, p < 0.01). 

3.2 Feature selection with cross-validation 

To form the training/cross-validation set, 63/94 (67%) patients were randomly selected. The 

prognostic value (AUC) of all 255 possible features combinations was computed on this set 

using leave-one-out cross-validation. The 10 best feature combinations are listed in Table 2. 
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The best performance was obtained by the combination RDPAP , CCLR, MILR , and TEAP, 

which reached an AUC of 0.84 (Fig. 2A). Several other combinations reached an almost 

equally good prediction value.  

The feature CCLR appeared in all 10 best combinations (this feature was even part of the 27 

best combinations). CCLR was also the synchronization measure with the best predictive 

power when considered alone (AUC = 0.72).  

3.3 Performance on the test set 

The combination that reached the highest AUC during cross-validation (RDPAP, CCLR, MILR , 

and TEAP) was used to design a final classifier, which was trained on all 63 patients of the 

cross-validation group. This classifier was then applied to the remaining 31 (33%) patients 

forming the test set, i.e. the group of patients who were never involved in feature selection or 

classifier training. The ROC of the classifier applied to the test set is shown in (Fig. 2B); the 

AUC was 0.81.  

At the largest threshold with specificity and positive predictive value (PPV) of 1.0 for poor 

outcome, the sensitivity was 0.54 (CI: 0.27-0.83). The negative predictive value (NPV) was 

0.76 (CI: 0.54-0.88). This operating point also corresponded to the highest accuracy of all 

points on the ROC curve (0.81, CI: 0.65-0.94). 

To verify whether the results of the final classifier depended on the initial random partition of 

patients into cross-validation vs. test set, we tested the performance of the same feature 

combination on 100 different random partitions (63 patients for training, 31 for testing). The 

mean AUC (± sd) for these 100 trials was 0.82 ± 0.07. 

4. Discussion

In this study analysing a prospectively collected cohort, we demonstrate that combinations of 

four synchronization measures derived from EEG recorded during early postanoxic coma, 

under temperature management and sedation, and computed between two bipolar derivations 

(the left and the right hemisphere, and the anterior and posterior regions), represent early 

predictors of clinical outcome.  

In a previous study using a similar approach, but on a heterogeneous population not including 

the present cohort of patients, recorded in “real-world” conditions (EEG only upon request 
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from the treating physician, different timing of EEG, different sedation levels), the optimal 

feature combination for the subgroup of patients with post-hypoxic encephalopathy was very 

similar to the one found in the present study, namely CCLR, MILR , and TEAP (3rd best 

combination in the present study, Table 2). For the whole population (comatose patients with 

different aetiologies), by contrast, the best combination was different (Zubler et al., 2016). 

Even if the present study includes data from a single center, the reproducibility in feature 

selection between two different studies conducted in different hospitals, strongly supports the 

robustness of our method for prognostication in CA comatose patients.  

This result is relevant because it corroborates the potential role of quantitative methods in this 

setting. It also further supports the role of EEG in the early phase (during TTM, under 

sedation), for which there is a growing body of evidence (Hofmeijer et al., 2015, 2014; Oddo 

and Rossetti, 2014; Sivaraju et al., 2015; Tzovara et al., 2016), but which has not yet been 

incorporated in official recommendations (Sandroni et al., 2014).  

4.1. Sensitivity and specificity for practical application 

The similarity of the ROC-curves on the cross-validation and the test-set (Fig. 2) are 

suggestive for a good generalization ability of the classifier.  

Both curves had a segment along the x = 0 line (specificity of 1.0 for unfavorable outcome): 

for a sensitivity of 0.5, the specificity is 0.93 for the cross-validation set, 1.0 for the test set.  

By contrast, both ROC curves failed to reach the y = 1 line (100% sensitivity for poor 

outcome) before the last point. In the test set, this was due to a single subject who was 

incorrectly classified as having a good outcome. The EEG of this subject was continuous and 

reactive (Patient C, Fig. 1C), and the somatosensory evoked potentials were present, whereas 

the brainstem reflexes were absent, so that this case would have been be very challenging also 

for experienced clinicians.  

In summary, the specificity is better than the sensitivity (for poor outcome). For clinical 

application this property is reassuring, since it is of utmost importance to avoid false-positive 

predictions of poor prognosis. Of note, the ROC curves resulting from an early multimodal 

prognostication approaches on an overlapping cohort exhibited similar properties (Oddo and 

Rossetti, 2014). At least two reasons could explain this phenomenon. First, it could be that 

current diagnostic methods, including scalp EEG, fail to detect the gravity of post-hypoxic 
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encephalopathy in specific cases. Another possibility is that the death of patient occurs due to 

another cause than the first hypoxic brain damage (such as an infection, a multi-organ 

failure, or a second cardiac event), which might not be foreseeable at the time of the early 

EEG recording. 

Nevertheless, our approach has an overall good accuracy. On the test set, at specificity and 

PPV of 1.0 for poor outcome, 81% subjects of the test set were correctly classified (accuracy). 

Moreover, at this operating threshold, the NPV for poor outcome was 0.76, meaning that a 

little more than 3/4 subjects who were classified as good outcome did indeed have a good 

outcome (PPV for good outcome). By comparison, in the present cohort, the PPV for poor 

outcome for classical EEG features, namely absence of EEG reactivity and “highly malignant 

pattern” (Westhall et al., 2016) was 0.96 and 1.0 respectively, whereas the NPV for these 

features was 0.68 and 0.60. Our PPV for good outcome also compares favorably with other 

recently described good outcome predictors such as motor reaction to pain (Rossetti et al., 

2016). 

4.2. Linear vs. non-linear measures 

CCLR and MILR were the measures that appeared the most frequently in effective feature 

combinations (Table 2). CCLR was also the measure with best predictive power when 

considered alone (AUC 0.72).  Extreme high and low values of inter-hemispheric cross-

correlation were both associated with unfavourable outcome. The former (increased 

correlation) is found typically in burst suppressions and generalized periodic discharges 

(GPDs), which are associated with bad outcome (Westhall et al., 2016). On the other hand, 

one can postulate that very low inter-hemispheric correlation can be caused inter alia by 

severe diffuse neuronal lesions, which would also be associated with poor functional 

outcome.  

MILR can be viewed as the non-linear pendant of CCLR. Considered alone, it had a low 

predictive power, barely above chance level (AUC 0.56). It is commonly accepted that non-

linear measures are less effective than linear ones in detecting linear relations in non-

stationary signals (such as burst-suppression patterns) (Pereda et al., 2005). 

Nonetheless, MILR was associated to CCLR in 9/10, and in 24/27 best combinations. More 

generally, the best combination with exclusively linear or non linear measures was only found 
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at rank 53 (MILR and TEAP). The reason could be that taken together, these measures allow 

differentiating linear (detected by both type of measures) from non-linear (only detected by 

non-linear measures) effects. Interestingly, the presence of purely non-linear effects have been 

considered a marker of pathology in EEG activity (Andrzejak et al., 2011; Schindler et al., 

2016).  

An alternative explanation is that combining different measures better encompass the 

spectrum of lesions (bilateral hemispheric and/or impaired arousal system) resulting in coma 

in anoxic-ischemic encephalopathy. The best performance was obtained with a combination 

of all four measures, containing linear (RDP, CC) and nonlinear measures (MI, TE), along 

two different axes (left-right and anterior-posterior). That is, a large variety of information 

was used. It is thus likely that additional measures would further improve the prognostic 

yield. Also, incorporating univariate measures for assessing amplitude and continuity, as was 

done for the cerebral recovery index (Tjepkema-Cloostermans et al., 2013) would allow 

including more low-voltage EEGs.  

Another difference between the quantitative measures is that CC, MI, and TE are defined in 

the time domain, whereas RDP characterizes the signals in the frequency domain. RDP is a 

relatively “basic” measure (and more complex measures exist, such as coherence). We have 

nevertheless included RDP, first because of the importance of generalized or focal delta 

slowing in EEG, and second because it has been used successfully in hypoxic (vascular) brain 

lesions (Claassen et al., 2004). RDP is not a classical measure of synchronization implying a 

convergence of time series (Jiruska et al., 2013), but rather a reflection of the (a)symmetrical 

functioning of the brain. 

4.3. Strengths and Limitations 

This study was based on a relatively large cohort from a prospective registry, implying a high 

quality of ascertainment. Importantly, recordings were done on clinical, not on specifically 

performed high-density EEGs. In 13 patients the sedation amount was missing, this value is 

however unlikely to be systematically biased. As such, no significant differences in sedation 

or EEG timing between patients with favourable or unfavourable outcome can account for the 

present findings.  
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Excluded patients, by contrast, had a higher ratio of poor functional outcome. The reason was 

that EEGs with very low-voltage segments, which are more likely to be excluded because of 

low signal-to-noise ratio, are generally associated with unfavourable outcome . However, 

several EEGs with suppressed background (with or without superimposed discharges or 

bursts) were included in the analysis. One example is reproduced in (Fig. 1B). This subject 

was part of the test set, and was correctly attributed a maximal probability of 1.0 for 

unfavourable outcome. Of note, the exclusion of these recordings will not necessarily lessen 

the potential value of synchronization measures in future multi modal approaches. Since these 

patterns are easily recognized by visual analysis and straightforward to interpret (“highly 

malignant” EEG patterns (Westhall et al., 2016)), they are not those for which quantitative 

measures are most needed.  

“Self fulfilling prophecy” is always at play in clinical studies (Rossetti et al., 2010; 

Zandbergen et al., 2006). However, importantly, the present analysis was not available to 

clinicians at the time of patient management, strongly reinforcing the validity of the results. 

It is not excluded that some parameters of our model are sub-optimal. We tested 255 different 

features combinations, and therefore could not assess systematically several other parameters 

because of combinatorial explosion. 

Most EEGs have been recorded between the 12th and 24th hour after CA. We postulate that 

an earlier analysis would be less accurate, for outcome prediction, in the same way that 

“malignant” pattern such as burst-suppression are less specific for poor outcome if registered 

within 12 hours after CA (Cloostermans et al., 2012). However, the influence of timing on the 

results of the quantitative analysis remains open, and further studies (e.g. using continuous 

EEG ) are needed to clarify this point. 

4.4 Conclusion 

Our findings demonstrate that EEG bivariate synchronization measures are reliable predictors 

of neurological outcome in the very early phase after cardiac arrest. However, despite 

promising results, quantitative methods have not yet been included to the decision process 

concerning intensive care withdrawal in comatose patients after CA. To this end, 

computational approaches will have to demonstrate the utility of qEEG in addition to current 

clinical prognosticators, in particular its redundancy or complementarity with visual analysis 
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based on classifications such as the American Clinical Neurophysiology’s Terminology 

(Hirsch et al., 2013) . The growing usage of continuous EEG in the critically-ill patients 

initiated in the recent years, in view of the amount of data generated, and the time cost of 

classical frame-by-frame analysis, should represent an incentive to include quantitative EEG 

analysis in future large prospective studies.  
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Figure legends 

Figure 1: Three examples of EEGs from the test set, with their corresponding feature vectors. 

The analysed four bipolar derivations corresponded to the left, right, anterior and posterior 

brain regions. Scale bar corresponds to one second (horizontal) and 50 μV (vertical). The 

value of the eight synchronization measures is represented as a histogram, on a normalized 

scale, 1 representing the highest value observed within the 94 patients (1, RDPLR; 2, RDPAP; 

3, CCLR; 4, CCAP; 5, MILR; 6, MIAP; 7, TELR; 8, TEAP). (A) 62-year-old woman; the classifier 

(correctly) assigned a probability of 0.0 for poor outcome; the patient recovered (CPC 1). (B) 

56-year-old male; the classifier (correctly) assigned a maximum probability of 1.0 to poor 

outcome. The patient died at the hospital. (C) 60-year-old male. The classifier (wrongfully) 

associated a high probability for good outcome, whereas the patient deceased. However, the 

EEG was continuous and reactive, and the somatosensory evoked potentials were present, 

whereas the brainstem reflexes were absent, so that this case would have been very 

challenging even for experienced clinicians.  

Figure 2: Prognostic performance for clinical outcome at 3 months for the combination 

RDPAP, CCLR, MILR, and TEAP using a Bayes classifier with mixture of Gaussians. (A) 

Receiver operating characteristic (ROC) curve obtained on 63 patients using leave-one-out 

cross-validation. The area under the ROC curve (AUC) was 0.84. The gap between the first 

(0,0) and second (0,0.36) point of the ROC curve is due to the fact that 12 patients were 

(correctly) attributed a maximum probability of 1.0 for bad outcome. (B) ROC curve obtained 

by training the classifier on 63 patients, and testing it on the remaining 31 patients. The AUC 

was 0.81. Here also there is a gap between the first two points of the curve, due to 3 patients 

with (correctly) estimated probability of 1.0 for bad outcome. The classifier failed to reach the 

maximum sensitivity before the last point (1,1), due to a single patient being incorrectly 

attributed a very high probability for good outcome (Patient in Fig. 1C).  
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Tables 

Table 1: Clinical characteristics of patients. 

Good outcome 

(CPC 1,2) 

Poor outcome 

(CPC 3-5) 

p-value 

N 48 46 

Female gender 10 13 0.40 

Age (± sd) [y] 56.7 (± 16) 65 (± 15) 0.01 

Non-cardiac aetiology 6 16 0.01 

Asystole or pulseless electrical 

activity on site 

8 24 <0.01 

Latency of EEG recording 

(± sd) [h] 

18.8 (± 4.3) 20.5 (± 6.2) 0.07 

EEG pattern: 

non-reactive 

highly malignant pattern1 

1 (2%) 

0 

24 (52%) 

14 (30%) 

<0.01 

<0.01 

Patients sedated with propofol* 14/44 (32%) 12/37 (32%) 0.95 

Mean propofol dosis*(± sd)  

[mg/kg/h] 

1.79 (± 0.95) 1.80 (± 0.97) 0.98 

Patients sedated with 

midazolam* 

41/44 (93%) 31/37 (84%) 0.47 

Mean midazolam dosis* (± sd) 

[mg/kg/h] 

0.12 (± 0.04) 0.13 (± 0.04) 0.45 

Overview of the demographics and clinical information for patients with favourable and 

unfavourable outcome (* values concerning sedation are based on the 81/94 patients for 

whom they were documented). 1 as defined in (Westhall et al., 2016) 
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Table 2: Feature combinations with highest predictive power for outcome. 

RDPLR RDPAP CCLR CCAP MILR MIAP TELR TEAP AUC 

x x x x 0.8444 

x x x x x 0.8182 

x x x 0.8141 

x x x 0.8066 

x x x x x 0.8061 

x x x 0.8020 

x x x x 0.8010 

x x x x x 0.8005 

x x x x 0.7995 

x x x x x x 0.7980 

The table lists the 10 feature combinations with highest predictive power for clinical outcome, 

assessed with the area under the receiving operating characteristic curve (AUC) on 2/3 of 

patients using cross-validation. Rows represent individual combinations; a cross (x) indicates 

that the corresponding synchronization measure is included in the combination. 
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