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ABSTRACT  (245 words) 

Purpose: 
18

F-fluorodeoxyglucose (FDG) PET/CT and MRI are used for detecting liver 

metastases from uveal melanoma. The introduction of new treatment options in clinical 

trials might benefit from early response assessment. Here, we determined the value of 

FDG PET/CT with respect to MRI at diagnosis and its potential for monitoring therapy. 

Material and Methods: Ten patients with biopsy-proven liver metastases of uveal mel-

anoma enrolled in a randomized phase III trial (NCT00110123) underwent both FDG-

PET coupled with unenhanced CT and Gadolinium-DTPA-enhanced liver MRI within 4 

weeks. FDG PET and MRI were evaluated blindly and then compared using the ratio of 

lesion to normal liver parenchyma PET-derived standardized uptake value (SUV). The 

influence of lesion size and response to chemotherapy were studied.  

Results: Overall, 108 liver lesions were seen: 34 (31%) on both modalities (1–18 

lesions/patient), 4 (4%) by PET/CT only and 70 (65%) by MRI only. SUV correlated 

with MRI lesion size (r=0.81, P<0.0001). PET/CT detected 26/33 (79%) MRI lesions 

≥1.2cm, while it detected only 8/71 (11%) lesions <1.2-cm (P<0.0001). MRI lesions 

without PET correspondence were small (0.6±0.2cm vs. 2.1±1.1cm, P<0.0001). During 

follow-up (6 patients, 30 lesions), the ratio lesion-to-normal-liver SUV diminished in 

size-stable lesions (1.90±0.64 to 1.46±0.50, P<0.0001), while it increased in enlarging 

lesions (1.56±0.40 to 1.99±0.56, P=0.032). 

Conclusion: MRI outweighs PET/CT for detecting small liver metastases. However, 

PET/CT detected at least one liver metastasis per patient and changes in FDG uptake 

not related to size change, suggesting a role in assessing early therapy response.  

Keywords: Uveal Melanoma; PET/CT; FDG; MRI; Liver Metastasis. 
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INTRODUCTION 

Uveal melanoma is the most common primary intraocular malignancy in Caucasians, 

representing 70 % of all ocular tumors [1]. Median age at presentation is about 60 years 

and reported annual incidence ranges from 5.3–10.9 cases per million in the USA and 

2–8 cases per million in Europe [2, 3]. Due to the lack of lymphatics in the eye, meta-

static spread of uveal melanoma is exclusively hematogenous, predominantly to the 

liver (≥95% of metastatic patients) [4]. Around 1% of patients have demonstrable liver 

metastases at presentation, and up to 50% will ultimately develop hepatic metastases 

within 10-15 years, suggesting the presence of subclinical disease at the time of initial 

diagnosis [1]. The mechanisms for this liver tropism is not yet understood [4]. Other 

less common sites of metastasis are lungs, bones, skin, lymph nodes, pancreas, heart, 

spleen, adrenal glands, gastro-intestinal tract, kidneys, ovaries and thyroid. Several 

clinical, histopathological and cytogenetic characteristics are associated with poor 

prognosis including chromosomal abnormalities, the most important of which are 

monosomy 3, isochromosome 6p, trisomy 8, and isochromosome 8q [5].  

Currently, there are no effective treatments to prevent, delay or treat liver me-

tastases of uveal melanoma and median survival after diagnosis of liver metastasis is 2–

7 months in historical series [6]. Several regional therapies are clinically used or under 

investigation in clinical trials to control liver progression, such as hepatic arterial chem-

otherapy, chemoembolization [6], radioembolization [7], thermoablation [8] or targeted 

therapies showing potential benefit on overall survival or response rate, even without 

objective tumor response [4, 9]. For instance, using intra-arterial hepatic fotemustine 

chemotherapy, median survival of up to 15 months has been observed in association 

with a 36% response rate and 33% survival rate at 2 years [10].  
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Positron emission tomography (PET) with 
18

F-fluorodeoxyglucose (FDG) is a 

sensitive and an accurate method for the detection of metastases from cutaneous mela-

noma. Of limited value for the diagnosis of ocular melanoma, it was found to be sensi-

tive for the detection of hepatic and extra-hepatic metastases [11-14]. Servois and co-

workers compared the performance of FDG-PET and MRI for staging liver metastasis 

and concluded that MRI was superior to FDG-PET [15], but the respective value of 

FDG PET and MRI imaging have not been fully assessed in intra-patient comparison 

for the diagnosis and monitoring of liver metastasis from uveal melanoma [12]. Tumor 

uptake of FDG is highly reproducible and decrease is known to occur before change in 

size [16]. Whether this remains true for liver metastases from uveal melanoma is not 

known.  

Early diagnosis of liver metastasis may be important for therapeutic manage-

ment [17]. Furthermore early response assessment may benefit the introduction of new 

treatment options as key oncogenic processes leading to uveal melanoma have been 

recently identified [18]. Our purpose was to determine the respective value of FDG PET 

and MRI imaging in patients with liver metastases of uveal melanoma.  

 

 

METHODS  

Patient Selection 

From 2004 to 2008, 10 patients with known uveal melanoma and at least one histologi-

cally-proven liver metastasis were enrolled in a randomized phase III multicentric trial 

from the Uveal Melanoma Group of the European Organization for Research and 

Treatment of Cancer (EORTC) comparing the effect on overall survival of hepatic intra-
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arterial to systemic intravenous administration of fotemustine in patients with liver me-

tastases from uveal melanoma (EORTC-18021, NCT00110123). This trial was initiated 

after a phase II trial at our center showed evidence for improved survival after intra-ar-

terial hepatic fotemustine chemotherapy [19]. Eligibility criteria were age ≥18 years, 

surgically incurable or unresectable disease and no extrahepatic metastases; exclusion 

criteria were previous chemo or radiotherapy, abnormal hematopoiesis, abnormal kid-

ney or liver function, uncontrolled angina pectoris, myocardial infarction <6 months, 

intracranial hypertension, other severe cardiac disease, other malignancy <5 years. Pa-

tients not having recovered from prior major surgery or with performance status not 

WHO >2 were also excluded.  The protocol was approved by the local ethics committee 

and the Swiss regulatory authorities, and patients signed informed consent forms before 

inclusion. 

At our center, this protocol included an imaging study comparing MRI imaging 

and FDG PET that is presented here. Ten patients (6 women, 4 men; 20–74 years at 

diagnosis) were studied by MRI and PET/CT within 4 weeks (range 0–25 days). Of 

them, 6 patients were studied at baseline and 4 early during chemo-induction (after 3–4 

cycles of fotemustine). During follow-up, a subgroup of 6 patients repeated both 

PET/CT and MRI imaging studies within 4 weeks after a variable time on therapy (7–28 

weeks). 

MRI 

Abdominal MRI images were acquired on a 1.5T (n=5) and 3T (n=5) scanner 

(Symphony, Siemens Healthcare, Erlangen, Germany) with a maximum gradient 

strength of 40 mT/m using a 4-channel phased-array body coil with a 35×25-cm FOV. 
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Bandwidth was 1346 Hz. The liver protocol encompassed a breath-hold, T2-weighted 

transverse half-Fourier single-shot turbo spin echo sequence (HASTE, repetition 

time/echo time=1100ms/59ms, echo train length=256, matrix=256×148, slab thick-

ness/gap=3mm/0.9mm), a T1-weighted transverse spoiled gradient-echo (GE) sequence 

(in-phase: 167/4.8, out-phase: 167/2.4, 256×134, 6/2, flip angle 70°), a respiratory-trig-

gered T2-weighted transverse fat-suppressed fast spin echo sequence (6361.3/121, echo 

train length=23, 512×188, 6/1.8) and a breath-hold T1-weighted transverse fat-sup-

pressed GE sequences (VIBE, 3.7/1.6, 256×192, 4/0.8, flip angle 12°, 1 NEX). The lat-

ter was performed before and after intravenous Gd-DTPA injection (arterial, portove-

nous, and equilibrium phases; 0.1mmol/kg Omniscan, GE Healthcare). Liver lesions 

were considered suspicious for metastases when presenting a short T1 pattern (high sig-

nal intensity) without injection, an arterial Gd-DPTA enhancement and a short T2 pat-

tern (low signal intensity) as compared to adjacent normal liver; solitary lesions with 

short T1 pattern and a long T2 pattern were also considered as suspicious [20]. 

FDG PET/CT 

Whole-body PET/CT (Discovery LS scanner, GE Medical System) was acquired 67±15 

min after intravenous bolus injection of FDG (5 MBq/kg) using standard PET/CT ac-

quisition protocols. Patients had been fasting for ≥6 hours and blood glucose at injection 

was <8.3mmol/L. Attenuation correction was performed using an unenhanced CT (140 

keV, 80 mA, 0.8s per rotation, table speed of 15 mm/rotation, slice thickness 5mm). 

Liver lesions were considered suspicious for metastases when FDG uptake was focally 

increased compared to surrounding liver on at least 2 consecutive 5-mm slices. 
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Image Analysis 

An experienced radiologist evaluated the MRI images and an experienced nuclear 

medicine specialist evaluated the PET images. Each reader was blinded to the results of 

the other modality. For MR, hepatic lesions were numbered, evaluated and their largest 

diameter measured. For each suspicious liver lesion, maximal standardized uptake 

values (SUV) corrected for body weight were obtained. To facilitate result comparison 

with other PET centers, we expressed the lesion SUV normalized to normal liver 

parenchyma SUV (“lesion-to-liver SUV ratio”) by dividing the lesion SUV by liver 

SUV averaged in a volume of ≥27 cm
3
 in a region with uniform activity on PET distant

from areas with abnormally increased or decreased FDG uptake. In a second reading, 

MRI and PET images were subsequently compared to each other to classify each lesion 

as being detected by both (MR+PET) or a single modality (MRI or PET). The 

intrinsically low resolution of PET scanners and the 3-D voxel sampling contribute to 

the “partial volume effect”, which significantly diminishes the apparent SUV in lesions 

smaller than twice the PET scanner resolution [21]. Therefore, referring to the known 

spatial resolution of our scanner of about 6 mm [22], a subgroup analysis was 

performed according to lesion size <1.2 and ≥1.2 cm diameter. 

Statistical Analysis 

Results are presented as mean ± standard deviation (SD), if not specified otherwise. 

Group comparisons were made using unpaired Student’s t-tests for continuous variables 

and the χ
2
-test for categorical variables. Lesion changes from baseline to follow-up used

paired Student’s t-test, and associations were sought using Pearson’s correlations. Sig-

nificance was considered for P values <0.05. 
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RESULTS 

Patient Characteristics 

Table 1 summarizes patient and tumor characteristics: no patient presented with a T1 

tumor, 1 with a T2 (10%), 7 with a T3 (70%) and 2 with a T4 (20%) tumor, according 

to the TNM-AJCC (American Joint Cancer Committee) classification [23] and three 

patients already had liver metastasis at primary diagnosis (M1). The median interval 

between the primary diagnosis of uveal melanoma and the detection of hepatic metasta-

sis was 3.0 years (range: 0–10 years). No significant correlation was found between 

SUV on one hand and the total number of lesions, tumor height, largest basal diameter 

or TNM-AJCC classification on the other hand (all P>0.44). 

Lesion Detection According Imaging Modality 

Overall, 108 suspicious liver lesions were seen by MRI or PET (Table 2). Of these le-

sions, 34 (31%) were seen on both PET and MRI imaging, 4 (4%) only on PET and 70 

(65%) only on MRI imaging among which 41 were seen in one patient (Figure 1 and 

Figure 2). On a per patient basis, at least one liver metastasis (range 1–18) was detected 

with PET in all patients. 

Influence of Lesion Size 

As expected, MRI more often detected small-sized lesions, while most lesions ≥1.2 cm 

could be seen on both modalities. Twenty-six out of 33 (79%) lesions ≥1.2 cm on MRI 

imaging were visualized by PET, while this was the case for only 8 out of 71 (11%) 

lesions <1.2 cm (P<0.0001). Moreover, lesions <1.2 cm had significantly lower SUV 

than larger ≥1.2 cm lesions (3.1±0.5 vs. 4.7±1.8 g/mL, P<0.0001) (Figure 3). 
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FDG PET Standardized Uptake Value 

For lesions detected by both modalities, there was a strong correlation between SUV 

(SUV [g/mL]= 2.9 + 1.06 · MRI size [cm], r = 0.76, P<0.0001), as well as between the 

lesion-to-liver SUV ratio (r = 0.81, P<0.0001) and MRI lesion size (Figure 4). Of note, 

there were 8 subcentimetric lesions detected by PET with SUV significantly increased 

above liver background (3.8±0.5g/mL vs. 3.0±0.4g/mL, P<0.0001) (Figure 4). PET 

lesions with no corresponding MRI lesion presented significantly elevated SUV as 

compared to liver background (4.0±0.5g/mL vs. 3.0±0.4g/mL, P<0.0001) (Figure 5). 

MRI lesions without corresponding PET lesion were significantly smaller (0.6±0.2cm 

vs. 2.1±1.1cm, P<0.0001) (Figure 6). 

Lesion Monitoring During Chemotherapy 

Median time between baseline and follow-up imaging was 2.6 months (range 1.5–6.5) 

in the group of 6 patients imaged twice (n=30 lesions in total). As any change in lesion 

size can influence the measured SUV, a subgroup analysis was performed for lesions 

detected on both MRI and PET/CT according to change in lesion size (no significant 

change in size vs. increase in MR-measured largest lesion diameter). The mean SUV of 

liver did not change significantly from baseline to follow-up (2.93±0.46 vs. 2.81±0.25, 

P=0.7). In 5 patients, lesion size (26 lesions) did not change significantly, while 1 

patient (4 lesions) progressed rapidly after 3.9 months, as illustrated in Figure 7. In 

stable lesions (n=26), lesion-to-liver SUV ratio significantly decreased (from 1.90±0.64 

to 1.46±0.50, P<0.0001), while in growing lesions (n=4) lesion-to-liver SUV ratio 

increased (1.56±0.40 to 1.99±0.56, P=0.032). 
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DISCUSSION 

Our study on 10 patients with hepatic metastases from uveal melanoma, totaling over 

100 liver lesions observed on MRI and PET, only 31% of the secondary lesions were 

seen on both modalities whereas most lesions inferior to 1 cm were missed on FDG-

PET. Our data therefore confirm the findings of Servois [15], showing that MRI out-

weighs PET/CT performance for detecting small-sized liver metastases. In consequence, 

MRI appears to be the preferred method for evaluating number and topography of liver 

metastases potentially treatable by local therapy such as surgery, radiofrequency abla-

tion, chemo- or radioembolization. The partial volume effect and artifacts from respira-

tory movements during acquisition prevented detection of most small sized metastases. 

Nevertheless, a few infracentimetric lesions (11%) expressed increased FDG uptake. 

When considering larger sizes (≥1.2 cm), 79% of the lesions were visualized by both 

modalities. On a per-patient basis, FDG-PET proved to be a sensitive investigation, as it 

detected the presence of at least one liver metastasis in every patient of our population. 

This allowed observing changes in the metabolic activity of lesions between baseline 

and follow-up examinations, even in the absence of a change in lesion size on MRI. 

Our study compared MRI imaging to FDG PET in the same patient. Francken et 

al. evaluated the detectability of liver metastasis by PET in a cohort of 22 patients, 

which showed a high sensitivity (10/10), a moderate specificity (67%) and positive and 

negative predictive values of 88% and 100% respectively [13]. They concluded that 

FDG-PET was particularly useful in the detection of isolated, potentially resectable 

liver metastases. The present work does not confirm these initial results, as many more 

liver lesions were detected by MRI imaging alone (PET detection rate 33%) whereas 

only 4 lesions were shown by FDG-PET and not by MRI. These lesions were of limited 
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extension (<3 pixels or <1.2cm) and of unknown origin (no histopathological proof was 

available, as it was deemed not clinically necessary for patient management). Thus an 

artifact at PET or a false negative MRI cannot be excluded. MRI should therefore be 

considered the method of choice for detecting liver metastases of uveal melanoma and 

characterizing liver involvement potentially amenable to local therapy. Our findings are 

in line with recent results by Strobel et al. showing limited value of FDG PET in the 

detection of liver metastasis from uveal melanoma as compared to cutaneous melanoma, 

with a PET detection rate of only 41% (11/27 metastases) [24]. 

Importantly, serial PET was able to detect short-term changes in the metabolic 

activity of lesions despite the absence of size change. This has significant implications 

for the early assessment of therapy response and FDG PET assessment of metastases 

has been proposed both as a surrogate marker of treatment response and as a prognostic 

factor for overall survival [25]. Identifying responders and non-responders might im-

prove clinical management in term of side effects and costs [26]. 

Baseline SUV was found to be proportional to MRI size, including lesions with 

dimensions well above those where the partial volume effect is no longer expected to 

play a role. In fact, larger SUV values reflect increased rate of glycolysis and have been 

strongly associated with increased tumor aggressiveness and poorer outcome in a num-

ber of cancers such as lung cancer, esophageal cancer or thyroid carcinoma [25, 27]. 

Whether baseline SUV remains an independent prognostic marker in addition to the 

largest dimension of liver metastases needs to be verified in an outcome study following 

published guidelines [28]. 

Obviously, the small size and heterogeneity of our patient population does not 

allow to evaluate the effect of treatment response according to the administration route 
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or chemotherapeutic regimen, which is the aim of the multicentric EORTC-18021 

study, but with over 100 lesions, comparisons between MRI and PET can be considered 

valid. Four patients had already started chemotherapy at first PET, which may diminish 

PET sensitivity. Another potential limitation is that the diagnosis of metastatic liver 

lesions was based on their characteristic MRI appearance, as it is obviously not possible 

to biopsy all liver lesions. Thus, false positive lesions at MRI cannot be excluded, but 

the combination of T1- and T2-weighting, and behavior after Gd-DTPA injection in-

crease specificity. For a few patients, a dual-phase PET/CT was performed with a late 

phase taken after ≥90 min, which seemed to improve lesion detectability by increasing 

lesion SUV and lesion-to-liver SUV ratio (data not shown); delayed FDG-PET acquisi-

tion might therefore improve the detection of small metastases, as has been demon-

strated for several other tumors as well as primary uveal melanomas [14]. Diffusion-

weighted MRI was not performed in this study, but might be valuable in assessing re-

sponse to therapy, if preliminary results showing treatment related changes in the appar-

ent diffusion coefficient are confirmed [29]. Finally, our pilot study was not designed to 

determine the predictive value of PET or MRI for therapy response. 

CONCLUSION: 

In this pilot study, MRI outweighs FDG PET performance for detecting small-sized 

liver metastases and is therefore the preferred method for diagnosing the number and 

the topography of liver metastases. However, PET/CT showed decreased FDG uptake in 

absence of MRI change under chemotherapy and increased FDG uptake in lesions in-

creasing in size at follow-up suggesting a possible role for monitoring treatment re-



13 

sponse. This underlines the need of determining the value of FDG-PET/CT in predicting 

long-term response to therapy in patients with liver metastases from uveal melanoma in 

a prospective study. 
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TABLES 

Table 1. Patients and tumors characteristics 

Patient 

# Gender 

Age*

(years) 

Eye 

side 

Tumor size† (mm) 

TNM-AJCC‡ 

(Stage) 

Primary tumor 

therapy Height 

Largest basal 

diameter 

1 Man 73 Right   2.9 13.1 T4N0M1 (IV) Proton therapy 

2 Woman 69 Left   3.1 14.2 T2N0M0  (II) Proton therapy 

3 Woman 30 Left   5.8 16.3 T3N0M0 (III) Proton therapy 

4 Man 39 Left  5.8 23.5 T3N0M0 (III) Proton therapy 

5 Woman 20 Left   6.8 15.6 T3N0M0 (III) Proton therapy 

6 Man 74 Right   7.0   7.0 T3N0M0 (III) Enucleation 

7 Man 56 Left   9.0 19.0 T3N0M0 (III) Proton therapy 

8 Woman 72 Right 11.4 19.1 T3N0M1 (IV) Proton therapy 

9 Woman 57 Right 12.7 23.3 T3N0M1 (IV) Proton therapy 

10 Woman 71 Left 16.0 15.0 T4N0M0 (III) Enucleation 

*At diagnosis of primary tumor.

†Tumor size of tumors treated by proton therapy cannot be compared to tumor size of 

enucleation, as the height and largest basal diameter were measured by ultrasound and 

preoperative transillumination respectively in the former and derived from the histo-

pathology report in the latter. 

‡AJCC = American Joint Cancer Committee Classification. 
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Table 2. PET and MRI imaging findings. 

Patient 

Number of 

MRI lesions 

Number of 

PET lesions 

Number of lesions seen 

both on PET & MRI  (%) 

Number of small-sized* 

lesions (mean [range], cm) 

1 2 1 1 (50%)   2 (0.9 [0.8–1.0]) 

2 4 3† 2 (50%)   3 (0.8 [0.5–1.0]) 

3 2 2   2 (100%) 0 (–) 

4 41 18 18 (44%)  20 (0.7 [0.3–1.1]) 

5 2 2† 1 (50%)   2 (0.9 [0.8–0.9]) 

6 26 4 4 (15%) 21 (0.5 [0.5–1.1]) 

7 3 3   3 (100%)   2 (0.8 [0.8–0.8]) 

8 4 2† 1 (25%)   3 (0.4 [0.4–0.4]) 

9 8 2† 1 (13%)   7 (0.5 [0.3–0.8]) 

10 12 1 1 (8%)  11 (0.5 [0.4–1.0]) 

Total 104 38 34 (33%) 71 ([0.3–1.1]) 

*Defined as size < 1.2 cm, which corresponds to twice the PET/CT spatial resolution

[22]. 

†One PET lesion not visible on MRI. 
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FIGURE CAPTIONS 

Figure 1. Lesion detectability according to imaging modality and lesion size. The vast 

majority of small lesions <1.2 cm, were only visualized by MRI imaging, while the 

larger lesions ≥1.2 cm were mostly visualized by both, MRI and PET. A few lesions 

were only detected on PET 

Figure 2. FDG PET, PET/CT fusion, unenhanced CT and MRI transaxial images of two 

patients: (A) A 78-year-old man with several lesions detected on both PET and MRI 

(arrows) and several smaller lesions detected on MRI only (arrowhead) showing hyper-

signal on T1-weighted fat-suppressed gradient-echo (TR 3.7ms, TE 1.6ms, flip angle 

12°); (B) A 33-year-old woman with one 8-mm lesion detected on both PET and MRI 

(arrow) showing an hypersignal on unenhanced T1-weighted spoiled gradient-echo in-

phase (TR 167ms, TE 4.8ms, flip angle 70°) and out-phase (TR 167ms, TE 2.4ms, flip 

angle 70°) 

Figure 3. Boxplot of the lesion to liver standardized uptake value (SUV) ratio, which is 

significantly lower for smaller lesions (<1.2 cm) as compared to larger lesions (≥1.2 

cm) (P<0.0001) 

Figure 4. Plot of the standardized uptake value (SUV) of the lesion-to-liver SUV ratio 

vs. MRI lesion size for lesions visible on both modalities. There was a significant cor-

relation between lesion-to-liver SUV ratio and lesion size, even above twice the 

PET/CT resolution (y=0.79+0.44·x, r = 0.81, P<0.0001). Note that 8 lesions smaller 

than twice the PET/CT resolution (1.2 cm, dashed line) were also detected on PET/CT 
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Figure 5. Boxplot of the ratio of lesion standardized uptake value (SUV) to liver paren-

chyma SUV according to visualization by MRI+PET or PET alone. The lesion-to-liver 

SUV ratio of lesions visible by both modalities (MRI+PET) was significantly higher 

than unity (P<0.0001) 

Figure 6. Boxplot of the lesion size according to visualization by MRI+PET or MRI 

alone. The diameter of lesions visible by both modalities (MRI+PET) was significantly 

larger than lesions visible only by MRI (P<0.0001) 

 Figure 7. Variation in lesion-to-liver standardized uptake value (SUV) ratio between 

baseline (PET 1) and follow-up study (PET 2) according to change in lesion size as 

measured by MRI (no change vs. increase in size) for patients with lesions visible on 

both FDG-PET and MRI at baseline (6 patients, 30 lesions in total) 
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