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Abstract

With the aim of producing a 3D representation of tumors, imaging andmolecular annotation of xenografts and tumors
(IMAXT) uses a large variety of modalities in order to acquire tumor samples and produce a map of every cell in the
tumor and its host environment. With the large volume and variety of data produced in the project, we developed
automatic data workflows and analysis pipelines. We introduce a research methodology where scientists connect to a
cloud environment to perform analysis close to where data are located, instead of bringing data to their local
computers. Here, we present the data and analysis infrastructure, discuss the unique computational challenges and
describe the analysis chains developed and deployed to generate molecularly annotated tumormodels. Registration is
achieved by use of a novel technique involving spherical fiducial marks that are visible in all imaging modalities used
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within IMAXT. The automatic pipelines are highly optimized and allow to obtain processed datasets several times
quicker than current solutions narrowing the gap between data acquisition and scientific exploitation.

Impact Statement
Challenges of the increasing amount of data produced by current and future instrumentation include the need of
available pipelines that can process these data routinely in a timely fashion and data accessmechanisms thatmake
working with large datasets achievable. This article addresses these two challenges by describing highly parallel
fully automated pipelines that perform image stitching, image registration and image segmentation, and
designing a data analysis infrastructure where data analysis takes place close to where data are located using
on demand remote resources.

1. Introduction

Single-cell analysis providing a detailed genomic and proteomic breakdown of tissues is now well
established. Hitherto, spatial information has been lost. Recognizing the importance of understanding the
detailed environments of tumors, the Cancer Grand Challenge identified a key challenge to map the
molecular and cellular tumor microenvironment (https://cancergrandchallenges.org/challenges/3d-
tumour-mapping) in order to define new targets for therapy and prognosis. The imaging and molecular
annotation of xenografts and tumors (IMAXT) project is adopting an integrated approach to study tumors
and their environment by building a 3D representation that can be explored using virtual reality, and show
every single fully annotated cell type in the tumor and surroundings.

The project uses a large variety of technologies and instrumental modalities gathering multi-
disciplinary expertise frommany international groups including sequencing,molecular biology, statistics,
medicine, astronomy, and virtual reality experts.

Serial Two-Photon Tomography(1) (STPT) is the fastest and most high-throughput of the IMAXT data
acquisition modalities. It is the only modality capable of processing sample numbers in the range of
hundreds of full-size (centimeter-level) tumors, or thousands of biopsies, and provides full 3D models at
single-cell resolution. It also serves as the starting point and sectioning step for our deeper analysis
pipelines, including imaging mass cytometry(2) (IMC), and, in the near future, Expansion Sequencing(3)

(ExSeq) and Multiplexed error-robust fluorescence in situ hybridization(4) (MERFISH) (which are
typically performed on frozen sections). These are complemented by single-cell RNA and DNA
sequencing.

Figure 1 shows the IMAXT data acquisition and analysis workflow. A tumor sample is collected
(via biopsy or resection from a mouse implant) and embedded in agarose in order to maintain the
sample integrity and allow for sectioning. At the same time, fluorescent spherical agarose beads of
about 90 μm in diameter are inserted in the cube in the areas not covered by the sample. These beads
will be especially useful during image registration (see Section 4). The size of the final block is around
1 cm3. Slices as thin as 15 μm are sectioned using a vibratome of the TissueCyte 2000 instrument
(TissueVision Inc., Newton, MA) and imaged through a variety of instruments. STPT performs two-
photon fluorescence imaging in four channels a fewmicrons below the surface of the cube. The cube is
then cut and each slice is subsequently imaged with fluorescence scanning (Zeiss Axioscan slide
scanner) at several wavelengths, allowing for additional fluorescent markers. The slice is then
transferred to the IMC device, which provides information on up to 40 individual metal-conjugated
antibodies.

Note that there is a bit of abrasion at the cut interface but STPTalways images below the surface so the
abrasion is not captured. The minor abrasion damage is not an issue for the other modalities as the
antibody staining is still effective. Other issues related to deterioration of cell health are not applicable here
since there is no live tissue.

Slices are registered using the beads inserted in the agarose cube and all data is resampled to the STPT
reference frame. Together with sequencing data, all data is then federated to make an annotated 3Dmodel
with each cell having tens to hundreds of descriptors.
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Many of these technologies produce large quantities of data that need to be processed before any
scientific analysis can be performed. As the technologies mature, rates of data production also increase.
As an example, STPT alone generates between 2 and 3 TB of imaging data per sample. A sample can be
imaged in about a day. Analysis of these large volumes of data, that are available at high data rates, calls for
automatic processing pipelines that can optimally run with high a level of parallelism and produce results
in a timely fashion.

Figure 1. IMAXT pipeline. Once a tumor has been extracted it is embedded in an agarose cube together
with spherical beads. The sample is then analyzed in the STPT instrument where it is imaged and cut into
thin slices and a multichannel 3D data cube is produced. The slices are then imaged with an Axioscan
fluorescencemicroscope and an IMCmass cytometer. The spherical beads are used for alignment of slices
within each sample and for registration between all samples. All imaging is resampled to the STPT

reference. All data, including sequencing, is then federated to build an annotated 3D model.

Biological Imaging e11-3



IMAXTalso presents a number of unique computational challenges, where approaches developed for
data handling and image analysis of multi-wavelength survey data in astronomy (e.g., Ref. (5) for initial
concepts) have been adapted for use here. In particular, the requirement to register multi-modal image data
into a common reference frame to subcellular precision, has led to the development of an image
registration technique based on astrometric methods commonly used in astronomy. For instance, large
sky surveys require accurate registration and stitching, where the astrometric calibration relies on
matching to a well-known defined set of reference marker stars (e.g., stitching thousands of sky images
to form a map of the Milky Way’s inner disk(6), or a multi-epoch, multi-wavelength atlas of the Milky
Way’s Bulge(7)). The technique developed here of embedding a “star field” surrounding each tissue
sample, allows for efficient and accurate registration across all image data sets, as the embedded “star
field” beads are visible in each imaging modality and provide a fixed reference against which positional
registration and corrections for image deformations can be made.

From the scientist’s point of view, the traditional scenario where users connect to an archive or
repository and download data to their own computers to perform an analysis are bound to be unfeasible.
We favor instead a model where users connect to a cloud-based remote system close to where the data are
and having available tools to further carry out an analysis using the full power of the “IMAXTcloud.”This
model changes the way scientists interact with data, how they solve problems and share results with
colleagues. Similar endeavors are also starting across many other scientific fields. Such as the Pangeo
project(8,9) and the Planetary Computer (https://planetarycomputer.microsoft.com) in earth sciences, and
the LSST project in astronomy(10). In Biology and Biomedical Image Analysis, similar aims are being
pursued by, for example, Cytomine (https://cytomine.com) or Renku (https://renkulab.io). There is
however no one solution that fits all and here we describe the architecture that best fits our purposes in
terms of large data volume analysis, type of datasets to analyze, flexibility, and interoperability between
different tools.

The move to cloud-based analyses, however, comes with its own challenges. Analysis pipelines are
required which perform tasks with high parallelism, as well as new tools and data formats that allow
chunked parallel reads and writes and are cloud storage efficient. In the next sections, we describe our
approach to these and other challenges and introduce some of the analysis pipelines and methods used.

This technical report focuses on the data analysis infrastructure and methods used to produce datasets
that are ready for further scientific analysis. The pipelines described here generate three-dimensional,
molecularly annotated models of breast cancer.

2. Results

Efficient processing and analysis of samples acquired by imaging techniques becomes a challenge due to
increasingly large data volumes for each modality, increased rate at which these are produced and the
variety of modalities that can be used to obtain a complete picture.

In this report, we introduce the infrastructure that we have developed to address these challenges. Data
analysis pipelines in the cloud allow for those pipelines to utilize resources as needed and scale when
required as they run close to where the data are located. In the same vein, scientists can access the full
power of the cloud to perform their analysis and share results with colleagues without having to transfer
large amounts of data and with dedicated software tools readily available.

Using this infrastructure we build high throughput automatic pipelines for stitching, registration, and
segmentation of the datasets generated by themultiple modalities that are at a later stage federated to build
a complex 3D model of a tumor.

Creating a 3D STPT cube from the data obtained by the microscope is a two-step process. In the first
instance, we stitch all the fields of view (tiles) that make each slice. In order to do so, we correct the tiles
from instrumental effects and compute the offsets between all adjacent tiles using their overlap areas.
Using these offsets as free parameters we find the position of each tile in the stage by minimizing the
overlap residuals. Once a slice is stitched, we run it through a neural networkmodel trained to segment the
beads. The detected beads are then fitted using a high-order Gaussian function to determine the center and
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diameter. Since the bead diameter is larger than the thickness of the slice, there will be quite a few beads in
common between consecutive slices (they will have different diameters but their centers will be accurate).
Using these common beads we register consecutive slices pairwise assuming a rigid transformation.

Figure 2 shows two aligned 3D STPT cubes with a different number of physical and optical sections.
The multi-modality registration software is fully compatible with STPT, IMC, and low-magnification

fluorescence imaging data (i.e., whole slide scanning). The software has been tested over a sample for
which STPT and IMC data have been collected over 20 physical slices, using an Axioscan fluorescence
scanning microscope as an intermediate step to simplify slide identification.

We implemented an embedding chemistry based on rigid hydrogels developed by Tissuevision Inc.,
reaching bead densities up to 10 times higher, and have increased the overlap between the individual
image tiles forming the STPT data cube, improving the bead identification. This allowed us to improve the
realignment precision on individual (i.e., not belonging to a 3D sample) STPTsections and their matching
IMC datasets. Resolutions allowing single-cell realignment are now attainable.

Computing times for registration between datasets are 2 min per slice per core, and the typical fiducial
matching error is of 5 μm between STPTand Axioscan and of 8 μm between IMC and Axioscan. Figure 3
shows the result of the full registration and reprojection.

The nuclear segmentation pipeline achieves a good performance on IMC images using thresholding-
based segmentation. Using the iridium DNA intercalator as a marker of the nuclear channel, the pipeline

Figure 2. 3D visualizations of two stitched STPT cubes with different properties. (a) Volumetric
reconstruction from 99 sections of 15 μm This sample was processed by an orthotopic injection of the
fluorescent 4 t1-E subclone(11) shown in channel 3 (green) which is known to undergo vascular mimicry.
In addition, this sample was perfused with the DiI lipophilic dye seen in channel 2 (red) to highlight vessel
structures. (b) Volumetric reconstruction from 100 sections of 25 μm, each with 5 optical sections of 5 μm
from a 4 T1 tumor in a BalbCmouse with the tdTomato marker. The fluorescence beads are clearly visible

in the medium outside the biological tissue and prove to be crucial for all stages of registration.
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extracts cell locations and relevant areas in this channel and then measures the integrated intensity over
each cell’s segmented area in every channel. Our results show a high correlation of detections when
compared to manual count. Some 89% of cells are correctly detected while we estimate a false positive
detection rate of � 10%. Figure 4 shows the cell distribution and classification obtained from the
segmentation results in a representative section of the sample. Results from the IMC segmentation
method described here have also been validated scientifically elsewhere(12).

Our baseline IMAXT infrastructure and analysis system release includes the following instrument-
specific pipelines:

• STPT mosaic pipeline. Performs stitching of individual tiles for each slice, taking into account
overlaps between tiles and geometric distortions followed by 3D registration of all slides in a sample.

• STPT tissue segmentation pipeline. A tailored pipeline optimized for segmentation and reconstruc-
tion of stroma and vascular structures in STPT datasets.

• Axioscan mosaic pipeline. Similar to the STPT pipeline but optimized for the fluorescence scanning
datasets.

AXIO STPT IMC

Figure 3. Multi-modality image registration. Registration across different modalities is achieved using
the spherical fiducial beads. These are automatically detected on single-channel images, and a meas-
urement of their geometric center is obtained. The top row of images shows the location of detected beads
in an Axioscan, STPT, and IMC slide. A first coarse alignment is carried out using 32� downsampled
images, and with this and the fiducial center coordinates, an affine transformation matrix is calculated.
With this, we can reproject between modalities. The result can be seen in the bottom panel, an inset of the
box outlined in the STPT image once registration has finished; here Axioscan occupies the red channel,

IMC the green, and STPT the blue.
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Figure 4. Analysis of IMC data segmentation of the 3D sample. (a) Marker abundance plots for a
representative 2D section of the sample. Each dot is a segmented cells and signal intensity corresponds to
the normalized abundance of the marker in the cell. We show GFP and TdTomato (tumor cell popula-
tions), proliferation (Ki67), and Hypoxia markers (Car9). (b) UMAP dimensional reduction plot for the
dataset. (c) Spatial plot of a representative 2D section of the dataset. Each color corresponds to a different

cell type predicted by leiden clustering on the data.
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• IMC nuclear segmentation. Performs nuclear segmentation, currently using a watershed
segmentation-based algorithm, and produces a catalogue of cell positions, shapes, intensities, and
image-derived properties.

• MERFISH mosaic and decoding. This pipeline performs stitching, segmentation, and decoding of
genes(4).

We provide a detailed description of the algorithms involved in stitching, registration, nuclear segmen-
tation, volume segmentation, and data federation in Section 4, including the final coregistration of the IMC
segmented images into the STPT ground truth reference frame where registration errors of �7 μm are
achieved (median error across the sample).

3. Discussion

New imaging technologies and techniques are opening the possibility to explore fully molecularly
annotated tissue samples at the subcellular level. The full discovery potential is realized by successfully
federating the multi-pathway input data streams, such that the accurately registered three-dimensional
model of the tissue sample can be realized.

IMAXT is taking a holistic approach, in order to meet one of the current Cancer Grand Challenges,
generating detailed maps at the single cell level of all cells and cell types in a tumor, creating 3D
renderings of tumor models in which both the tumor cells and cells of the tumor microenvironment are
annotated using a fluorescent code. The 3D renderings are created from samples placed in a STPT
microscope. Alternating optical and physical sections, producing overlapping 3D plates are stitched
back together to create the full rendering of the original sample. The physical sections then are available
for further analysis; here we introduce the use of IMC to provide proteomic annotation of the tissue
cells.

The challenge that has been overcome here is the creation of a robust and efficient analysis pipeline
to take the digitized information from each imaging modality, and successfully integrating and
aligning the various modalities. The registration is derived from techniques developed in astronomy,
where a ground truth reference frame is defined by the marker beads embedded in the sample block.
The visibility of the beads in all image modalities enables their use in several areas. The bead signature
for each image section allows for the sorting of physical slices in silico and removes the requirement
for the manual sorting of the STPT slice taken from the collection bath. By having the same beads
visible in overlapping data segments, allows for effective stitching of large image mosaics. The STPT
images provide a ground truth image reference frame into which all other imaging modalities can be
reprojected.

The IMAXT processing infrastructure is able to integrate data from a range of image sources. The
IMAXT Data Model is constructed to allow a full representation of the data to be captured in the
associatedmetadata. Tracking of all processing steps is ensured through processing history updates to this
metadata. The complete data processing software analysis infrastructure has been deployed on the
IMAXTcloud, centralized on underlying hardware at the IMAXT Data Processing Centre in Cambridge.
This cloud-based model enables the IMAXT collaborators to interact with the processed data products
through a sophisticated science platform. The basic analysis pipelines generating the instrumentally
calibrated science data products are essentially fully automated and able to process the large data sets
generated by the IMAXT instrumentation suite. The federated data catalogues are provided as flat files,
and also through a relational database. Subsets of the full data set are seamlessly streamed to the IMAXT
Virtual Reality suite of tools(13) for rich immersive visualization.

Future developments of the IMAXT analysis system will focus on the integration of additional
modality-specific processing pipelines to allow the integration of additional transcriptomic and
proteomic measurements, for instance from MERFISH and HiFi. Currently, the dissociated single-
cell analysis informs the definition of the gene and protein panels used in the spatial imaging
modalities. In the near future, the integrated 3D annotated tumor models will also allow feedback to
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single-cell studies, for instance, relating spatial clonal evolution in time-sampled Patient-derived
xenograft (PDX) models with tracking of allele- and haplotype-specific copy number aberrations at
single-cell resolution.

This will lead to richer annotated tissue samples at the sub-cell level and provide the underpinning data
for spatial “omics” studies where the understanding of not only the biological make up at the cell level, but
also the spatial context is required. The IMAXT analysis infrastructure represents a significant step
forward in underpinning experimental imaging advances, and coupled with IMAXT’s novel
VR-enhanced visualization and data immersion tools, will lead to paradigm shifts in our understanding
of tumors and their environments.

In summary, we present the IMAXT data architecture including detailed descriptions of the analysis
chains developed to enable the construction of accurate (to subcellular precisions), molecularly annotated,
breast cancer models constructed from high spatial resolution STPT and IMC imaging.

4. Methods

4.1. Data analysis infrastructure

The requirements of a data analysis infrastructure able to process and analyze the vast amounts and variety
of data for this project are: (a) being able to run noninteractive data pipelines specific to each modality in
an automatic fashion, that is, as soon as data become available; (b) running user analysis batch jobs with
specific resources allowing for resource scaling; (c) being able to perform interactive analysis that runs
close to where the data are, and (d) running highly parallel optimized workflows. Together with these we
also need in place on demand user storage, as well as data access processes and policies. The architectural
approach taken has heritage in systems developed to handle optical and near-infrared imaging and
spectroscopic data in astronomy, for example, VISTA(14) and WEAVE(15).

4.1.1. IMAXT Cloud
The aim of the IMAXT Cloud is to allow users to run data analysis pipelines remotely and to work and
analyze data interactively close to where the data are located, using already available software packages
and utilizing computer resources as required. The core of our analysis platform is a Kubernetes (https://
kubernetes.io) cluster that runs on premises. This cloud architecture allows for the flexibility required to
allocate resources and scale jobs as needed. It allows us to treat all physical computers of the cluster as one
unit as well as trivially scale up new hardware, deploy isolated applications, provide dynamic resource
provisioning, and crucially maintain as good degree of stability and availability.

The IMAXTCloud is deployed in our own dedicated hardware. However, it is worth noting that we use
similar approaches to commercial Clouds. The system could be deployed with a few configuration
changes in the Google Computing Platform, Amazon WebServices, Microsoft Azure, or any cloud that
provides access to a Kubernetes cluster.

4.1.2. Interactive analysis
The main language used for data pipelines, analysis, and infrastructure (archive, notebooks, background
scripts, web services) across the project is Python(16). Python has been acquiring great popularity across
all modalities of industry and is indeed one of the main programming languages used in data science.
Additionally, R(17) and RStudio(18) are offered for interactive analysis and user batch jobs. Interactive
analysis is powered by Jupyter Notebooks(19) which are spawned in our cloud on demand using
JupyterHub (https://jupyter.org/hub). By navigating to a website the user will be taken to a live Jupyter
notebook session from where they can run interactive analyses and visualizations. For ease of use, the
environments have a large selection of the most widely used packages already installed.

It is worth noting that software environments are the same for all users, which improves shareability
and reproducibility of analysis.
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4.1.3. Remote desktop environments
In order to facilitate different types of data access and analysis, we also provide access to on demand
remote desktop environments. This allows the user to use the cluster as a remote machine with a user-
specified request of resources, and access to preinstalled analysis and visualization tools (Ilastik,
Cellprofiler, QuPath, Fiji, etc.).

4.1.4. Batch jobs
Batch jobs are powered by a custom job scheduler that powers automatic data pipelines and allows users to
submit their own analysis to the cluster. Data analysis jobs can be submitted using a command line from
anywhere (i.e., users do not need to connect to a login node) and require no experience or technical skills.

4.1.5. Parallel and distributed computing
We use Dask(20) for parallel and distributed jobs. This allows for worker nodes that are provisioned on
demand and can scale up or down depending on the workload needs. Dask also allows us to distribute
large datasets across many nodes and perform efficient computations in parallel. Coupled with efficient
data formats that can read and write chunks of data in parallel and independently allows for highly
efficient analysis tasks to be performed on larger than memory datasets. These analysis tasks can
automatically scale from a single computer to a 100-node cluster.

4.1.6. Data model and data formats
The IMAXT project involves a large number of different data formats used across different modalities,
some of which are created ad hoc for some instruments. Among the most common data formats, we find
TIFF (Tagged Image File Format), HDF5 (Hierarchical Data Format), and CZI (Carl Zeiss Imaging
format). This file format fragmentation is a real issue, as demonstrated by the fact that the Bio-Formats(21)

software tools incorporate plugins to read more than 150 proprietary file formats.
As for any large-scale multi-modality project, it is necessary to standardize the data model

and format(s) to control and streamline data handling, bookkeeping, and to make it accessible to all
users.

The other component of the datamodel is themetadata.We definemetadata as any information relating
to the biological image/data that is potentially required for its scientific analysis. That is not only image-
related data like the dimensions and pixel scale of the image, but also the information on the instrument/
microscope, the biological sample, and preparation/processing of the sample. Storing all metadata
together with the data is necessary for proper bookkeeping and preventing any related human error.
The metadata from different IMAXT modalities are included in separate files and/or not stored in a
standard format. More importantly, the information on the sample or related preprocessing is often
missing and only stored by the lab users in different formats and media.

Early in the development of our infrastructure, we identified that we needed a data format that allows
for parallel reading and writing of different chunks of a dataset. This data format should also be able to
contain both image data and metadata, to avoid any user misidentifications as data moves from one node
to the other. It needed also to be flexible on metadata it can hold, as we have different modalities and
instruments with a different range of metadata. These reasons lead us to choose a new emerging data
format called Zarr (https://zarr.readthedocs.io). In Zarr datasets, the arrays are divided into chunks and
compressed. These individual chunks can be stored as files on a filesystem, as objects in a cloud storage
bucket or even in a database, making it efficient for clusters of CPUs to access the data in parallel. The
metadata are stored in lightweight .json files and allows all the metadata to be in a single location which
requires just one read.

All input data are then converted to Zarr, and all the metadata available stored within the dataset. All
our pipelines work exclusively on Zarr datasets. We also welcome more recent developments where Zarr
is the base specification for storing bioimaging data in the cloud(22). We do as well provide custom
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converters from Zarr to pyramidal OME-TIFF(23) since this is a widely supported format of many external
tools. Our data conversion tools are available as open-source Python packages.

Information about the available data, data products, and their metadata are ingested into a relational
database that allows interrogation via the IMAXT Web Portal (https://imaxt.ast.cam.ac.uk). Any future
user updates to the metadata are tracked using versioning.

4.1.7. Image and processing parameters
The typical size of a final data cube at the original resolution is around 2 TBmade from 100 slices each of
them made stitching 100 tile images. The largest samples we have processed are about 1:6�1:8 cm2 and
up to 3 TB. Typical imaging parameters are summarized in Table 1. The time that it takes to run the full
stitching and registration pipeline and produce the final cube varies depending on the number of CPU
cores allocated for the process, and the speed of the disks. The choice of resources is given by the
requirement to process a sample in about the same time it takes to acquire it. Using a typically 100 cores
and 3 GB of RAM per core we get a processing time of 8 hr for a sample of 100 slices. Disk I/O
performance is important since we compute a few intermediate files that we save to disk. Using solid-state
disk storage reduces the overall time by a factor of two.

4.1.8. Automatic data analysis pipelines
As discussed above, many of the imaging data requires an extra level of processing to make them
scientifically usable and to extract relevant information from them, from stitching to registration to
segmentation. One of our main aims has been to build data pipelines that run in a fully automatic way, that
is, once a dataset arrives to our storage it is processed without human intervention and without delay.

The IMAXT data flow diagram is shown in the Supplementary Information. Data taken with different
microscopes are manually transferred to a specific storage location monitored by an uploader application.
The uploader automatically transfers the data to the IMAXT cloud storage using Amazon simple storage
protocol where they are converted to Zarr format. The metadata is also written into the IMAXT database
with a versioning system that makes it possible for future updates. Once the conversion is done, the
relevant data analysis pipeline is triggered automatically.

The results includemetadata that allow their traceability, that is, among others, versions of the software
and pipelines used, data provenance, parameters used in the processing, and so forth. All this information
is ingested into the IMAXT database.

4.2. Stitching pipelines

STPT is a high-throughput 3D fluorescence imaging technique. It is similar to blockface imaging with the
advantage of the images being relatively well aligned after acquisition, with measured slice-to-slice
relative alignments below 20 μm. Note however that acquiring multiple slices introduces a drift in the
microscope and the overall alignment between the first and last slice can be up to a few hundred microns.
However, STPT has various advantages over standard blockface imaging. The tissue is imaged a few

Table 1. Typical imaging parameters.

Instrument No. of slices
Slice

thickness (μm) Pixel size (μm) Sample size (cm) Cell size (μm)

STPT 100–200 5–25 0.56 10–15
Axioscan 100–200 0.65–1.3 1–2
IMC 10–100 15–25 1
MERFISH 1–5 0.08–0.11 0.5

Note. Typical physical slice thickness is 15 μm but STPT is able to acquire optical slices with a step of 5 μm.
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microns below the block surface, thereby limiting tissue deformations resulting from the cutting
process(1). Furthermore, by using a blade vibrating microtome instead of a milling machine, the sections
can be used for further processing downstream using additional imaging modalities. The scanning
operation is that of a regular two-photon microscope. A laser beam is used to excite one point in the
sample, and the fluorescent photons are collected by the optics into a photomultiplier. The measured
voltages are digitized and stored. Following the standard notation in astronomy, we will refer to one of
these digital units as a count, measured in analog-to-digital units (ADU). Knowing the gain of the
instrument allows to transform back from ADU to electrons, and from there given a quantum efficiency
into incident photons(24).

An image of the field of view of the microscope, hereafter a tile, is constructed by scanning with the
laser across the sample andmeasuring the excitation intensity produced by the laser at each point, encoded
by the microscope as a pixel, with a typical resolution of 0.56 μm per pixel and a size of 2,080 � 2,080
pixels. Different points in the focal plane are scanned by changing the angle of the incident beam. Because
sample sizes are larger (typically, by a factor of a hundred) than the field of view of the microscope, we
need to acquire several tiles in order tomap the full staging area. Once a tile is acquired, the stage is moved
in order to image consecutive tiles at the same optical depth. Tiles are acquired with an overlap of�10%
(this is a configurable parameter) to allow for stitching (see below). Once the whole sample has been
scanned, the microtome cuts the top slice and the process is repeated at a deeper surface into the sample.
For a typical sample used in IMAXT, 100 to 300 � 15 μm thick slices are acquired in this fashion.

These sectioned slices fall into a bath and are collected manually and deposited onto a glass slide once
the sectioning/imaging process is complete. Because this effectively randomizes the order of acquisition,
each slide is then imaged using an Axioscan and labeled. Federating each of these Axioscan images with
the STPT image cube ensures traceability and the ability to reconstruct 3D volumes from the data from
other modalities. This Axioscanmicroscope uses a CMOS detector to acquire fluorescence imaging of the
slice (again using a tiling pattern to map the full slice) in a range of channels at different wavelengths. The
Axioscan however images the top surface of the sample as it is deposited on the glass slide. This
introduces some degree of complication in the Axioscan to STPT matching, as the latter images are of a
thin optical layer some microns deep into the sample, and furthermore, when depositing the slice onto the
glass slide this will be randomly done “bottom-up” or “face-up.”

Despite the differences between both modalities, from a data processing point of view the software
needs are quite similar and thus we bundle them together in this section. In order to produce science-ready
images, we need to stitch all the single tiles into a mosaic that encompasses the whole stage. Before doing
this, though, we will try to remove the instrumental effects present in the images, namely: dark current,
flat-field correction, and optical distortion. Figure 5 shows the steps involved in the image data stitching
pipeline.

4.2.1. Dark current correction
Strictly speaking, dark current is associated with thermal noise generated in the detector itself that is added
to the recorded signal. Measuring dark current on-sample is difficult, and dark frames are usually
generated by taking images under similar conditions (exposure time, temperature, etc.) but with no light
reaching the detector. When these calibration frames are not accessible, statistical approaches allow for
disentangling dark current and signal (e.g., BaSiC(25)).

In the case of STPT, since the detector is a single-pixel photomultiplier, thermal noise is just an additive
constant to the images (we have found no evidence of thermal drift within a single tile). Background
illumination and stray light are a bigger source of contamination and can be seen inmedian-stacked frames
(Figure 6). This contamination is only relevant in the borders of each tile, and since we always use
overlapping tiles, we can get rid of pixels with high background without loss of information. For the
Axioscan, background and thermal signals are very low. We, therefore, do not apply dark current
subtraction to these modalities, although our pipeline has the capability of measuring and correcting
these additive terms.
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4.2.2. Flatfield correction
In the case of most 2D detectors, the quantum efficiency is not constant across all pixels, and inhomo-
geneities in the lenses and other factors (like dust particles) result in a transmissivity that is a function of
position in the field of view of the instrument. The standard way to measure these effects is to take the
image of an uniform light source. By normalizing this image, we measure the per-pixel response function
for the system at a given wavelength. Our experimental design leads to �100 tiles per slice, and several
tens of slices per sample. If we stack all these tiles, each pixel sees a random intensity distribution that,
given enough tiles, should be homogeneous over the field of view. Therefore, any variation of a location
statistic like the median or the mean across the field is a measure of the different response of the system at
each pixel.

Correction

Tile o sets
(when overlaps)

Stitch tiles

Bead detection

Co-registration
(using beads)

AXIO

Mosaic

STPT

3D registration

Sections

Image cube

Dark Correction

Geometric distortion
correction

Figure 5. Processing pipeline steps applied to both STPTand Axioscan raw image data. Note that in the
experimental flow the STPTacquires the images of the slides and does the sectioning after which they are

acquired with Axioscan.

Figure 6. Average intensity per pixel. Normalized intensity averaged over columns (I xð Þ, blue) and rows
(I yð Þ, orange) over the first tenth of the detector. The effect of background illumination is evident here. The
first� 70pixels are already truncated by themicroscope software to eliminate themost contaminated areas.
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Applying this correction to Axioscan tiles is straight-forward. STPT uses an unidimensional detector,
so there are no pixel-to-pixel differences in response, but as the laser systematically illuminates different
parts of the field of view, if effectively maps different light-paths along the optical system that can have
different throughput, leading to the need to intensity correct each tile to homogenize the overall response.

It should be noted that, for a given wavelength and objective, this correction should remain relatively
constant over times of days or weeks. This allows us to use this procedure with samples that may not reach
enough tiles to offer reliable statistics (Figure 7).

4.2.3. Distortion correction
Most optical systems are subject to optical distortions. These manifest as a change of scale (resulting in a
change in the shape of cells) in the field of view, being normally negligible in the center and increasing
with the distance to the center of the field of view. This effect is particularly notorious when comparing
overlapping tiles, as can be seen in Figure 8: while toward the center of the field of view the undistorted

Figure 7. STPT flatfield correction. Left: Relative difference of overlapping pixels before (blue) and after
(orange) flatfield correction. Right: Example of normalized flatfield frame.

Figure 8. Effects of the distortion correction as applied to STPT tiles. Both panels show the same patch
(500 px across in the Y direction) of two overlapping tiles. The ellipses highlight areas where distortion

effects are most visible. Top: Distortion-corrected overlap. Bottom: Uncorrected overlap.
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tiles align well, as we move toward the corners, features start to blur, to the point that they appear to
duplicate close to the corners of the array.

In order to calculate the optical distortion of the STPT optical system, we acquired a calibration
sample consisting of 10 slices in which the overlap between tiles was 50% of the field of view both in X
and Y. In this configuration, each point of the sample is mapped by at least two pixels, and using
feature-rich parts we can minimize intensity differences between these pixels in order to fit the optical
distortion of the system. The best model is a polynomial of grade 3 with different magnifications in X
and Y.The resulting distortion (see Figure 9) is a stable characteristic of the instrumental setup and used
to correct the tiles for all scans of the same instrument, although it needs to be recalibrated for each
focal lens.

In the case of our Axioscan, the optical distortion is small and is left uncorrected.
One issue worth noting is that the microscope produces square tiles, and after processing, the pipeline

uses rectangular tiles. Because applying the distortion map in Figure 9 effectively “squeezes” the pixels
close to the corners of each tile, distortion-corrected tiles have some empty pixels. In order to keep account
of this, we use a construct common in astronomy called a confidencemap. This is just a weight imagewith
the same size of a tile that encodes the provenance of each pixel. In this case, this will be a value of 0.0 for
these empty pixels and a value of 1.0 for all the other ones.

4.2.4. Registration between tiles
Because the STPTmicroscope sees the biological samples before slicing and after minimal manipulation,
imagery coming from this modality constitutes the stepping stone of much of our analysis. It is crucial that
the science-grade images produced by our pipeline are the best possible andmost precise representation of
the sample. The control software of the microscope records the absolute position of each tile within the
stage and uses this to reconstruct a raw full-stage image, but we have found that there are small positioning
errors that lead to a poor reconstruction of the full image. This, coupled with the fact that the microscope
software does not correct for flatfield or optical distortion, merits an improvement of the full-stage
reconstruction from individual tiles. We refer to this process as stitching.

Figure 9. STPT geometric distortion correction. Field of view optical distortion for STPT produced by the
optics of the microscope. Maximum distortion in the corners of the image is of the order of 20 μm. This is
corrected before the registration between tiles by resampling the images to an undistorted pixel space.
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As we have discussed before, in our configuration, STPT tiles always overlap by � 200 px. Starting
with the recorded position provided by themicroscope, we can findwhich tiles are neighboring each other.
Once tiles have been distorted and flatfielded, we can use overlapping pixels and find the displacement
that minimizes intensity differences, using as weights the confidence maps generated in the previous step.
In order not to do subpixel resampling at this stage we also assume that the displacements are integer pixel
values. This method achieves similar results as the commonly used phase correlation methods using
Fourier transform(26) but correctly taking into account masked arrays(27). Typical differences between
displacements coming from the microscope and the ones calculated on-sample are of 5–10 μm for STPT,
and of around 1 μmforAxioscan. Because these differences are of the order of the expected crossmatching
error, in the case of the Axioscan we use the displacements provided by the microscope.

Once we have the pairwise offsets between adjacent tiles, we need to compute the absolute position of
the tiles in the full stage. We do this by using as reference the tile with the highest average intensity. This
tile is always one that sits within the biological sample. Using the relative displacements we lay its four
neighboring tiles, and compute their absolute position. We now use each of these as reference and repeat
the process iteratively until all tiles have a calculated absolute position. Because in this way there is more
than one tile-laying sequence for most tiles, we average the absolute positions weighted with the
positioning error.

It should be noted that this method (as any other intensity-based registration) only works where there is
enough information in the overlapping regions. For pairs of tiles that have empty overlaps (either because
there are no visible beads or sample tissue in this region), we retain the displacements coming from the
microscope. This is directly related with bead density in the sample substrate. For low-density samples, a
high fraction of tiles will have empty overlaps. By starting the stitching from the sample outwards, we
reduce this effect: all the tile overlaps in the sample will have enough information for a good matching,
and this extends to beads that are up to 1,000μm from the sample (as an STPT tile is roughly 1,000�
1,000μm).

With these new absolute positions, we calculate the stage size, in pixels, and fill this image by adding
intensity values from each pixel of the individual tiles. We also generate a full-stage confidence map by
projecting individual confidencemaps in a similarmanner. Dividing the intensity image by the confidence
map takes care of averaging overlapping regions, and the final science ready image is stored (Figure 10).
Note that thanks to the flatfield correction, there is no need of additional nonlinear intensity blending in
order to remove tile border effects.

Figure 10. Example final stitched STPT stage mosaic (left) with associated confidence map (right).
Images are padded so that all slices from a sample have the same size, hence explaining the pixels with

zero confidence at the right and lower ends of the confidence map.
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4.2.5. Registration between slices
In theory, the serial sections produced by STPTare inherently aligned. In reality, for each microtome pass
the entire stage may shift, and some misalignment may be introduced. This can be also be due to the fact
that we stitch each slice independently. Becausewe need to reconstruct the 3D sample as seen by the STPT
microscope, we need tomake sure that the relative alignment of the slices is consistent. Naively, one could
think that intensity-matching slices could solve this problem, but because each microtome cut removes
15 μm of sample and the STPT focuses a few microns below the sample surface, this is not possible, as
images are far apart in sample depth. In order to solve this (and allow for registration across modalities
further down the data processing), we introduce spherical beads in the sample. These beads have a typical
diameter of 90 μm (Figure 11) and therefore can be clearly seen in several consecutive slices. While the
outline of the beads changes between slices, their center remains constant with depth (within the natural
experimental limitations of sample manipulation, microtome blade sharpness effects, etc.) and can be
used as fiducial marks. This effectively transforms the circular cutouts of the spherical beads into point
sources, and opens the problem to the application of a wide library of algorithms inherited from
astronomy, as locating and crossmatching the position of point sources is a problem underlying many
astronomical applications.

The first step in our registration algorithm is to segment the beads. We use for this a U-Net neural
network(28), trained over a set of manually segmented images.1 This network produces a bead detection
mask, and we use watershed segmentation to differentiate between individual beads, and produce a label
mask (Figure 12). This label mask still contains a small number of false positives, in particular for small
fragments of sample. These will be filtered out downstream when fitting the bead profile, as they offer
poor fits to functions with polar symmetry, and often end with fitted radii that are too large for a
realistic bead.

We have processed around 200 samples in total each with 100 to 200 slices. The number of false
positives beads in each slice is about 1–3% (Table 2). False positives give unrealistic fitted radius
(i.e., larger than 5σ the average).

Although there are simpler ways to separate isolated spherical beads from a large, continuous
biological sample, our U-Net based algorithm has several advantages. Firstly, it is a relatively simple

Figure 11.Histogram of projected radius of a sample of randomly selected beads. The projected radius is
the apparent radius of a bead in an slice image.

1We currently use 270 images that are split and augmented to 600 batches of 128 annotated images each.
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architecture that does not add much overhead in the way of code compared to other mathematically
simpler segmentation algorithms. Secondly, to extend the pipeline to a newmodality, we just need to train
a new network (in case beads appear significantly different) without having to alter any code at all.
Thirdly, for fragmented samples or those with complex tissue distributions that lead to spotty images, the
network offers better segmentation than contrast-based algorithms. This is also true for beads that are

Figure 12. Example of the bead detection and profiling for an STPT mosaic. Panel (a) contains the
original STPT image, (b) depicts the bead detection mask produced by the U-Net network, and (c) depicts

the original image plus the fitted radius for each detected bead.

Table 2. Statistics on number of beads for some random STPT slices.

Slice no. No. of beads Average radius (μm) Dispersion (μm) False positives (%)

1 332 47 11 0.90
2 327 49 11 0.61
3 401 46 10 1.75
4 327 48 12 0.31
5 406 47 10 1.48
6 348 45 11 1.15
7 360 46 10 1.67
8 347 46 10 1.73
9 360 46 10 2.78
10 354 46 9 3.67
11 330 47 10 1.52
12 333 44 10 1.20
13 352 46 11 0.57
14 377 46 10 2.12

Note. For each slice, we show the total number of beads detected, their average radius, the dispersion of the radius values (standard deviation) and the
percentage of false positives defined as the beads with radius larger than 5σ the average.
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almost adjacent to the sample. It should also be noted that this segmentation does not require any manual
intervention or supervision, making it ideal for a fully automated pipeline like ours.

In order to derive the coordinates for the bead centers, we build a simple but physically realistic model
of the beads consisting of:

• A sphere of constant emissivity and radius R centered in coordinates X ,Y ,Zð Þ as measured with
respect to the 3D sample block.

• The STPT laser excites a layer of thickness t of the bead at a given depth l into the sample, so that the

emission from this layer in local coordinates x,yð Þ is I0 x,y; lð Þ ¼ R lþt
l I s x,y,zð Þdz. In this case, as we

assume emissivity is constant over the sphere, I s x,y,zð Þ is just the density profile of a sphere with
constant density in Cartesian coordinates.

• The depth l can either be in the interval Z�R, ZþR,½ � and so the optical surface intersects the bead,
or l ≤ Z�R in which case we have a fully embedded bead emitting just under the optical surface. If
l ≥ ZþR, the bead is between the optical surface and the observer and therefore not visible.

• The sample substrate has an optical depth τ , and the emission from the optical surface decays as

I x,yð Þ ¼ R 0
l I0 x,y; lð Þ10�l=τdl.

• By integrating this last expression we obtain the 2D brightness profile as a function of
X ,Y ,Z,R, l, t,τð Þ that we fit to the observed profile assuming Poisson statistics.

Although this prescription may seem too complicated, it accommodates well the variety of bead
brightness profiles observed in our samples (Figure 13). For the purposes of registration, themost relevant
parameters are X ,Y ,Rð Þ. The coordinates of the bead center are the basis of our registration, and the bead
radius is a simple threshold to use when finding the best matching beads between slices.

Figure 13. Examples of the profiling function applied to measured STPT beads.
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Once we have the X ,Y ,Rð Þ catalogue for all beads and all slices, we can proceed to the slice-to-slice
registration. Because inter-slice displacements are expected to be small, for each pair of consecutive slices
we find the best bead matches by using a simple nearest-neighbor search. With all the matched beads, we
identify unique beads. Normally, due to their thickness, each bead will appear in a handful of slices. For a
bead detection to be considered, we require that it appears in at least two physical slices (and the associated
optical slices). This filtering of single detections removes the vast majority of spurious contaminants left,
as in can be seen in the third panel of Figure 12.

With all the detections of a single bead iover all slices, we can compute the matrix with all the pairwise

differences in coordinates, s ið Þ
x ¼ x ið Þ

1 �x ið Þ
2 ,x ið Þ

2 � x ið Þ
3 ,x ið Þ

1 � x ið Þ
3 ,…

� �
, with x ið Þ

0 being the fitted X

coordinate for the center of bead i in the first slice, and so on. Accumulating all beads and all slices,
we build the vector Sx. We can relate this sample vector with the vector containing the absolute offsets for

the slices Dx ¼ ΔX 1,ΔX 2, ::ð ÞT by means of a coefficient matrix C:

Sx ¼
1 �1 0 …

1 0 �1 …

⋮ ⋱

0
B@

1
CA �

ΔX1

ΔX2

⋮

0
B@

1
CA

Sx ¼ Cx �Dx

And

dx ¼ Sx�Cx �Dx

We can obtain the absolute displacements ΔX by minimizing the equation

εx ¼ dx �dTx
� � �Wx

withWx being a set of weights derived from the error vector for the pairwise differences in X coordinate
for the centers. Although C can be a relatively large matrix, it is sparse, and therefore this minimization is
computationally efficient. The same scheme is applied to ΔY (we assume displacements in both axes are
independent) and from Dx,Dy

� �
we can obtain the full 3D registration of the STPT cube. An example of

Figure 14. Evolution of Dx,Dy

� �
with slice number (i.e., depth along the sample). Dashed lines mark the

1σerror boundary. As can be seen, there is a drift in one of the directions, likely to be related to the effect of
the microtome blade pushing into the sample cube. The scale for this sample is 0.56 μm per pixel.
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derived Dx,Dy

� �
can be seen in Figure 14; while Dx remains more or less constant, a clear drift can be

observed forDy. This is likely related to the effect of the microtome that always sections the sample along
the same direction, possibly causing small displacements.

The Dx,Dy

� �
translation values are stored in the metadata of the Zarr file and are read when processing

the STPT images.
The accuracy of this registration depends strongly on the number of available beads. The modalities

discussed here have pixel scales between 0:5and 1:0μm=px, and so the typical bead will be sampled over
many pixels. It follows that the detection and profiling are robust with signal to noise: centering errors
below 0:1μmcan be achieved down to S/N�2 (Figure 15), but the quality of registration decays strongly
for low bead density.While this slice-to-slice registration only fits for two free parameters, more generally
(as will be discussed later) 6 free parameters are needed. For this more complex model, at least 20 beads
per slice are required (equivalent to about 3beads=mm3) in order to achieve precision below 5μm, as can
be seen in Figure 16.

4.3. Axioscan and MERFISH cell segmentation pipeline

In recent years convolutional neural networks (CNNs) have become a popular method to segment cells. A
common problem here is the separation of touching cells. Cellpose(29) provides a solution to this problem
by generating and predict a gradient in the horizontal and vertical direction for each cell. This results in

Figure 15. Top panel: Error in the recovered center coordinates for beads simulated at different S/N, as a
fraction of the bead radius. The orange line represents a running median. At S=N� 10 the median error
reaches the asymptotic value denoted by the horizontal red line. Bottom panel: histogram of the measured

S/N for a random sample of beads.
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clear borders between cells. Another way to distinguish separate objects is the use of nonmaximum
suppression (NMS) of bounding boxes to select those regions with a higher confidence when they
overlap. In the case of cells, a box shape would not suffice. Therefore, StarDist(30) was proposed which
instead uses star-convex polygons.

Both Cellpose and StarDist come with pretrained models for fluorescent images. However, these
models do not generalize well to the Axio andMERFISH imaging data.We, therefore, opted to generate a
new dataset of the imaging modalities used in the IMAXT project, in order to train new Cellpose and
StarDist models. Images were acquired from 18 tissue samples of various healthy organs and tumor types
of mouse models. From 13 of these samples, images had been acquired using Axio, while the remaining
5 samples had been imaged using MERFISH. Representative image regions were manually selected to
generate a dataset that captures the wide range of variation in appearance of various tissue and cell types,
including the particular challenging cases. The MERFISH images were furthermore down-sampled to
accommodate the receptive field of StarDist.

For themanual segmentation of the cell nuclei, we recruited 8 volunteers. Each of these annotators was
subsequently assigned one image from each of the 18 tissue samples, which have on average 305 cells per
image. The annotations were performed using QuPath v0.3.x. Using this software, the annotator was able
to have the annotations of the cells overlap. These were converted to images with nonoverlapping cells by
generating a distance map for each cell mask and assigning pixels to a cell only when they have a larger
value in the distance map compared to the other cells. The resulting manually annotated dataset of
144 images was split randomly into 128 for training and 16 for testing, while making sure the test set
includes all modalities and tissue types.

For the training of the model, we additionally added publicly available datasets of fluorescent images
with annotated cell nuclei to further enhance the generalizability of themodel. These public datasets include
BBBC020, BBBC038v1, and BBBC039v1 from the Broad Bioimage Benchmark Collection(31–33).
For BBBC038v1 we used the fluorescent images of “stage1 train” only, from the unofficial fixes by
Konstantin Lopuhin (https://github.com/lopuhin/kaggle-dsbowl-2018-dataset-fixes). We also used the
images from Coelho et al.(34), which consists of hand-segmented nuclear images of 3 T3 and U20S cells.

4.3.1. Performance
To evaluate the segmentation accuracy we calculate a pixel-wise and object-wise F1 score as previously
proposed (33,35). Here, we consider a predicted and ground truth cell to match when their Intersection over
Union is greater than 0.5. The mean � standard deviation of these measures are presented for our newly

Figure 16. Registration error as a function of the average number of beads on each slice. The high S/N
regime corresponds to S=N> 3, while low S/N stands for S=N� 1.
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trained models (IMAXTCellpose and IMAXT StarDist), as well as for the pretrained Cellpose model and
the two pretrained StarDist models, in Table 3. These results indicate a clear performance increase of the
newly trained Cellpose and StarDist models, compared to the pretrained models, with have a similar
accuracy between them.

4.4. IMC segmentation pipeline

IMC is an approach to high-multiplex imaging and single-cell protein analysis(2). The method delivers
unprecedented insight into the tissue microenvironment with single-cell resolution. It helps to deeply
characterize the complex and diverse tissue microenvironment by gaining an unparalleled understanding
of the spatial relationships between a multitude of cell types and the role of cell phenotypes in the context
of disease. It also helps to uncover novel therapeutic targets through the discovery of new biomarkers. In
IMC, tissues are stained with a panel of isotope-labeled antibodies. Stained sections are laser ablated at
200Hz at subcellular resolution, and liberated isotopes are detectedwith amass cytometer to yield images
quantifying the abundance and location of the proteins of interest at 1-micron resolution simultaneously.
The output of this process is a data cube consisting of several layers where each layer is associated with a
protein. In addition, all layers are aligned. Thus image registration as part of a preprocessing step is not
necessary. The name of each protein and the order of its corresponding image layer is stored in the data
cube metadata. In addition, there are few extra image layers related to the instrument calibration.

4.4.1. Method
There are several approaches to segment cells in microscopic images. These include unsupervised,
supervised, or a hybrid method. An example of unsupervised method is watershed algorithm which
can be run by setting a few initial parameters associated with the size and configuration of the cells to be
segmented. Watershed algorithm is fast and can be robust if dealing with high signal to noise image of
cells where cells are not closely packed. However, it is less accurate in segmenting low signal-to-noise cell
images or segmenting patterns such as cell’s cytoplasm or membrane. Such pattern are presented as
separate channels multiplexed imaging data such as IMC. An accurate segmentation of cell’s nuclear and
cytoplasm/membrane channels is necessary to correctly perform the cell/tissue type identification. With
this regards, supervised methods achieve a better segmentation results in segmenting cell’s nuclei and
cytoplasm/membrane, specially where cells are in compact configurations, by using pixel-level annotated
masks to train a segmentation classifier. For instance, Ali et al.(36) uses a hybrid workflow, that is, a
combination of supervised and unsupervisedmethods to properly segment cells in IMCdata. Their hybrid
workflow uses Ilastik(37) to create probabilitymaps, frommanually annotated data, and uses thosemaps as
input to CellProfiler(38) to perform water-shed segmentation of the probability maps. The creation of
probability maps in Ilastik (supervised method) requires user inputs for model training. This is a time-
consuming manual task which is usually done by experienced biologists or pathologists. This process
becomes even more time-consuming when dealing with multiplexing imaging data such as IMC where

Table 3. Quantitative evaluation of the cell nuclei segmentation accuracy of the pretrained Cellpose
and two pretrained StarDist models, as well as the new model Cellpose and StarDist models trained on

the IMAXT and public datasets.

Method Model Pixel-wise F1 Object-wise F1

Cellpose Nuclei 0.68 � 0.24 0.59 � 0.28
IMAXT Cellpose 0.86 � 0.04 0.79 � 0.12

StarDist 2D paper dsb2018 0.73 � 0.17 0.51 � 0.29
2D versatile fluo 0.80 � 0.06 0.59 � 0.22
IMAXT StarDist 0.85 � 0.03 0.76 � 0.08
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the manual annotation needs to be done in more than one channel to capture the full extent of cells. In
IMAXT, our aim is to create an automated end-to-end pipeline to analyze IMC data. Therefore to take full
advantage of the hybrid approach, as discussed above, and to avoid performingmanual annotation, we use
the Deep Learning-Based Cell Segmentation for IMCDICE-XMBD(39) CNNmodel to create probability
maps. It is shown that a combination of probability maps produced by Dice-XMBD CNN model and
watershed segmentation outperforms other methods for segmenting cells in the IMC data(39).

4.4.2. Creating probability maps
The first stage to segment IMC imaging data in the IMAXT IMC pipeline is to create probability maps
using Dice-XMBD trained model. The input to this model is a 512�512 μm2 (IMC pixel resolution is
1.0 μm per pixel) 2-channel IMC image data cube where the first channel represents nuclear marker and
the second channel is either cytoplasmic or membrane channel. Therefore, as a preliminary step, and to
prepare the input data for the CNNmodel, the IMC image is divided into a series of tiles, each having a size
of 512�512 μm2, with a stride of 50 pixels along X and Y axes. In addition, during the preparation of
IMC tiles, each channel is preprocessed and normalized. The reason is that the IMC data consists of 16-bit
images enabling the instrument to map a high dynamic range of pixel values. However, the distribution of
pixel values associated with the observed tissue mostly populates the low-intensity domain of the
available dynamic range, that is, not taking full advantage of the dynamic range for a 16-bit depth image.
Therefore, it is necessary to enhance IMC channels to be used with the CNN model. This is done by
applying a linear scaling function to the image pixel values to improve their contrast by stretching the
range of intensity values to span the desired values for a 16-bit image. This technique is called image
normalization and is different from histogram equalization, where the scaling is nonlinear. For each input
tile (2-channels), the CNN model outputs a 3-channels probability map (see Figure 17). Channels in the
probability map are associated with background, cell nuclei, and cell cytoplasm.

4.4.3. Segmenting probability maps
The second stage, in the IMC pipeline, is to segment modeled cells in the probability map. Since
probability maps represent both cell’s nucleus and its boundary, they can be used to segment not only
the nucleus but also the whole cell. To do so, a probability map is split into three channels, that is,
background, nucleus, and cytoplasm. During the whole segmentation process of cells in the probability
map, nuclear channel serves as a reference image. Thus, we initially segment nuclei in nuclear (reference)
channel. First (a) a Gaussian filter, with an appropriate kernel size, is applied to remove individual high
signal-to-noise pixels in the reference channel. Then (b) we separate nuclei from background pixels by
applying a global thresholding method (e.g., Otsu). The output is a binary image where pixels belong to

CNN model

A two-channel IMC tile A three-channel probability map

Figure 17. Dice-XMBD CNN model is used to convert a sample two-channel IMC tile (left) into a
probability map (right). In both panels, red color is associated with nuclear marker and green represents

the cytoplasm. The size of each tile is 512�512 μm2.
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the regions of interest (nuclei) are white and consist of either individual cells or those having overlaps with
one another. To deblend overlapping (touching) cells, (c) we find the coordinates of local peaks (maxima)
in the binarized reference image by using distance transform algorithm. Then, (d) we use a watershed
algorithm to segment the image(40). Main outputs of this process are positions of nuclei in the probability
map as well as nuclear masks (see Figure 18).

Next, to segment the whole cell, we repeat the same procedure (a) to (d) as discussed above but this
time on a combination (addition) of nuclear and cytoplasmic channels. One very important difference
however is that during watershed segmentation, that is, step (d), we feed nuclei positions as initial seeds to
the watershed algorithm. This ensures that we find as many segmented cells as nuclei while both sharing
the same centroids. Having said that, the main output of this step is the cell masks.

4.4.4. Feature extraction and output products
Following the segmentation of probability maps, we create two sets of imagemasks for each detected cell.
One is associated with the segmented cells and the other with the cell’s nuclei. For each detected pair of
cell/nucleus, the pipeline uses associated masks to compute mean pixel intensities inside the area of the
cell/nucleus across all available IMC channels. Next, image moments are estimated for each set of cell/
nucleus to find corresponding areas. Finally, the pipeline exports a table where each row represents a cell
with all extracted parameters as feature columns. In addition, the code exports a mask images of all
detected cells/nuclei for the followed-up single-cell analysis.

4.4.5. Performance
The performance of a segmentation algorithm depends on several factors. For instance, the tissue
preparation method (e.g., frozen vs. Formalin Fixed Paraffin Embedded), its type and thickness and
the scanning resolution all affect the accuracy and performance of a segmentation algorithm. These are
apart from other factors such as fine-tuning the input parameters of an algorithm or hyper-parameters of
neural-net based models. Therefore, the best way to assess the performance of an algorithm is to test it on
specific data that is subject to the segmentation analysis. For the current IMC pipeline, we measure the
conventional pixel-wise F1 and object-wise F1 scores. For this, we selected 10 IMC image tiles regions
(512�512 μm2) with varying morphology and cell counts, and performed a manual annotation of all the
cell nuclei. This resulted in an average of 829 segmented cells per tile. Comparing the automatic cell
segmentation with these manual annotations provided amean�standard deviation pixel-wise F1 score of
0:72�0:16and object-wise F1 score of 0:41�0:26. Finally, as a preliminary test, we run the pipeline on a
sample of breast cancer patient-derived tumor xenograft (PDTX) that was previously analyzed with mass
cytometry (MC). Results as analyzed using the current IMC pipeline, successfully reveal the spatial
distribution of cell phenotypes in xenografts as observed with MC data. The study finds that centroids of
each cell cluster computed per PDX model on the MC training data shows a high correlation (ρ¼ 0:67)
with the corresponding centroid following cell segmentation and classification using the IMCpipeline(12).

A three-channel probability map

Background             Cytoplasm                Nucle

Splitting the probability map Cells / nuclei masks

Figure 18. A probability map (left panel) is split into 3-channels associated with background, nuclear,
and cytoplasmic channels (middle panel). The outcome of the segmentation of probability map is cells/

nuclei masks (right panel). The size of each tile is 512�512 μm2.
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4.5. STPT tissue segmentation pipeline

While IMC is suitable for cell segmentation, the STPTmodality is particularly suitable for visualizing the
various tissue structures, such as the stroma and vasculature. To be able to quantify these structures,
several tool have been developed.

4.5.1. Section resampling
The STPT images are loaded at the level corresponding to a 4 times downsampling. They are subsequently
resampled to a pixel size of half the slice spacing, that is, 7.5 μm, while applying the x- and y-translations
which were calculated during stitching and registration.

4.5.2. Upsampling
In the current setup, 15 μm sections are acquired. This may cause some discontinuity between sections for
oblique tissue structures, as is the case with blood vessels. To resolve this we can apply an up-sampling
based on an intensity-based deformable registration. With a pixel size set to half the slice spacing, a linear
interpolation is performed between each pair of neighboring sections along the direction calculated by the
registration. In this way, we generate interpolated slices throughout the volume. This increases the out of
plane resolution and improves the overall resolution when converting to a volume with an isotropic voxel
spacing, which is required for some of the measurements.

4.5.3. Segmentation
Segmenting the tissue structures is done using a manually defined threshold value resulting in a binary
segmentation. This is followed by a smoothing, which is performed separately for the in-plane and out-of-
plane direction due to differences in the signal to noise ratio between the two. Finally, a connected
component filter is applied to remove the small structures, which can be considered noise.

4.5.4. Quantification
Once the tissue is segmented, several structural parameters are extracted. These include the tissue ratios,
the tissue thickness, the fractal dimension, and the connectivity density.

4.6. Data federation

While STPT process, the whole sample sequentially, other modalities like Axioscan or IMC work over
single slices. This implies that slice-to-slice registration may not be possible for these modalities, and in
order to recover the 3D position of data from them it is required to relate them to the STPT data.

As discussed previously, physical slices are recovered from the STPTmicroscope in random order and
deposited onto glass slides that then go through the Axioscan. The first step then in our multimodal
registration is to find the best Axioscan-STPT pairs, so that we can assign a Z coordinate (i.e., depth in the
sample) to each Axiocan slide image.

A comprehensive review of multi-modality image registration methods is out of scope here. In general,
most methods can be divided into classic methods(41) and methods based on deep learning(42). Classical
methods rely ondetecting a set of common features on the images that need to be registered in order to find the
best feature matches and determine a transformation. Methods based on deep learning techniques are varied
across the literature but their use is limited in our case due to the varied image modalities and the need of
training sets. Themain problemwithmulti-modal images is that of detecting andmatching features in images
that look different because they are observed by different instruments that highlight different features of the
tissue and image different parts of the sample (e.g., STPT signal comes from a thin section of a few microns
while Axioscan images the whole 15 micron slice). Other issues that we need to have into account include:

• The slices can suffer mechanical deformation when being deposited onto the glass slides, leading to
imperfect matches between Axioscan and STPT.
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• The orientation of the slice on the glass slide is random, leading to possible left/right and top/bottom
inversions.

• Not all Axioscan images may have a good STPT match. Because the first STPT image will be taken
at some depth into the sample, themicrotomemay cut above this layer, leading to an orphan physical
slice.

Fiducial beads provide an ideal set of common features that are detected in all the images independ-
ently on which modality they have been acquired. Even if the characteristics of the beads like size or
illumination vary across the different modalities, their center can be calculated with high level of accuracy
(best than a quarter of a pixel).

The problem is then to find the best correspondence between the catalogue of X ,Y ,Rð Þ for a given
Axioscan image and the X ,Y ,Rð Þi for all the STPT slices.

Firstly we will search for a more complex transformation than the simple displacements used when
registering STPT slices. We settle for an affine transformation:

XAxio

YAxio

� �
¼ Cxx Cxy Cx0

Cyx Cyy Cy0

� �
�

XSTPT

YSTPT

1

0
B@

1
CA

Secondly, we jumpstart the algorithm with a coarse intensity match between a 32� downsampled
Axioscan image and the median STPT image for all the slices, also downsampled. This will give
us the left/right and top/bottom relative orientations, and an initial estimation of the matrix of
coefficients CAS. For each STPT slice, we refine this matrix by finding the coefficients that maximize
the number N of bead matches X ,Yð ÞSTPT ! X ,Yð ÞAxio within RAxio. N should increase monotonically
with STPT Z until it reaches a maximum for the most similar slice, and then onwards it should
decrease as we move away from this slice. In reality (Figure 19), N is a noisy function of Z, and so we
fit a smooth function (a simple Gaussian) and find the Z value closest to the function maximum.

The result from this algorithm is the best matching STPT slice along with the corresponding
affine transform between both pixel coordinates. The algorithm is summarized below and in
Figure 20.

Figure 19. Number of common beads between an Axioscan and all the STPTslices taken from the parent
sample cube. The red line is the best Gaussian fit to the evolution of N with Z, and the vertical line marks

the predicted Z for max Nð Þ.
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Once the slices are scanned they are given an identifier that simplifies further registration. Some of
these slices will go to IMC, and these need to be registered back to STPT too.We use Axioscan as a sort of
man-in-the-middle between IMC and STPT. Because once the slices are deposited onto the glass slides
they are more or less stable,2 IMC to Axioscan registration is quite easy, despite the fact that normally, due
to the time cost involved, the portion of slice sampled with IMC tends to be small (and therefore to have
few beads). Beads are detected on the IMC data in a similar manner as detailed before, and because we
know which Axioscan slice corresponds to which IMC, we just need to find the nearest coordinates
matches between bead positions X ,Yð ÞAxio to X ,Yð ÞIMC and obtain the coefficients CIA associated with
this transformation.

With this new matrix, we can compound the transformation

X,Yð ÞIMC ! X,Yð ÞAxio ! X,Yð ÞSTPT

For each STPT slice

Axioscan slice STPT sample

Find initial 
transformation

Read Axio Bead
Catalogue

Read STPT Bead
Catalogue

Find rigid 
alignment

Compute 
common beads

Apply initial 
transformation

Find best STPT 
match

Best STPT 
match

Average slices

Figure 20. Axioscan to STPT slide matching algorithm.

2 Prior to IMC, there is a high-temperature drying process that we have found does not deform the sample slices appreciably.
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and obtain a first estimation of CIS; with this first crossmatch between IMC and STPT through this route,
we can refine the transformation and refine the coefficients ofCIS. We estimate the error of this procedure
through the Cartesian distances between STPT beads and the respective reprojected modalities. The
results are summarized in Figure 21; median error for the IMC to STPT registration is of 6 μm, while this
figure is of 7 μm forAxioscan to STPT. These differences aremediated by the number of visible beads and
the native pixel size in each modality.

Amodel with 6 degrees of freedom like the one we propose here may appear to be simple, but it works
to sub-cellular precisions over samples with sizes of 1 cm3 . These affine transforms have the added
advantage that are easy to encode, all the coefficients have physical interpretation (rotation, scale, shear)
and once we have the CAS, CIS and CIA matrixes, it is possible to reproject segmentation catalogues and
masks from information-dense modalities like IMC over time efficient imagers like STPT.

As with STPT slice-to-slice registration, the algorithm for bead detection and profiling works well
when recovering bead centers down to very low S/N, but the accuracy of the registration depends
strongly on the number of available beads. As can be seen in Figure 19, this is unlikely to be a
difficulty for STPT-Axio registration, but it will be a bigger issue when dealing with IMC data; as
discussed earlier, the field-of-view in this modality tends to be small, and therefore only beads close to
the sample are likely to be captured. But since physical deformations between Axio and IMC are
negligible, in case of critically low number of beads, the transformation matrix between these
modalities could be simplified without a significant loss of precision, and the compounded with
the better determined Axioscan to STPT transformation in order to obtain an indirect IMC to STPT
registration.

An underlying assumption for this registration is that the biological sample and the beads behave in a
similar way. As can be seen in Figures 10 and 12, the beads surround the sample, but there are no fiducial
marks inside the sample itself. One of the implications of this is that the errors in Figure 21 are likely a
higher envelope of the real registration errors. The STPT mosaic is built by intensity-matching tile
overlaps. Because as we move away from the sample the information in these overlaps decreases, the
outer areas of the sample, where a large fraction of the beads sit, will be relatively worse stitched (as often
we will need to rely on the default microscope displacements) than those near the sample, and therefore
the former may dominate the registration error budget.

Figure 21. Cumulative distribution for the registration errors as measured through the reprojected
center coordinates.
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