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Abstract: Normal comparison lemma and Slepian’s inequality are essential tools for the analysis of extremes

of Gaussian processes. In this paper we show that the Normal comparison lemma for Gaussian vectors can be

extended to order statistics of Gaussian arrays. Our applications include the derivation of mixed Gumbel limit

laws for the order statistics of stationary Gaussian processes and the investigation of lower tail behaviour of

order statistics of self-similar Gaussian processes.
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1. Introduction

In the recent contributions [11, 12, 13] order statistics of Gaussian and stationary processes are studied. Given

a random process {X(t), t ≥ 0} with almost surely (a.s.) continuous trajectories, and X1, . . . , Xn, n ∈ N
independent copies of X we define Xr:n(t) generated by X as the rth lower order statistics of X1(t), . . . , Xn(t)

for any fixed t ≥ 0, and thus X1:n(t) ≤ · · · ≤ Xn:n(t), t ≥ 0. The calculation of the so-called r-th conjunction

probability

pr:n(u) = P

{
sup
t∈[0,T ]

Xr:n(t) > u

}
(1)

for fixed r, T and large u is of both theoretical and applied interest; see e.g., [3, 4, 25, 35].

Order statistics processes play a crucial role in various statistical applications, for instance in models concerned

with the analysis of the surface roughness during all machinery processes and functional magnetic resonance

imaging (FMRI) data. Given the fact that pr:n(u) cannot be in general calculated explicitly, asymptotic expan-

sions as u → ∞ and the so-called Gumbel limit results (with u = uT → ∞ as T → ∞) are derived in [11, 13].

Indeed, such limit theorems have been in the focus of many theoretical and applied contributions, see e.g.,

[5, 7, 8, 29, 30] and the recent contributions [14, 20]. The crucial tool for establishing Gumbel limit theorems

is the so-called Normal comparison lemma, which has been shown to be one of the most important tools in

the study of Gaussian processes and random fields, see e.g., [7, 8, 21, 22, 23, 29]. The lack of a comparison

lemma for order statistics processes has already been noted in [11]; therein some results are derived only for the

minimum process.

In the simpler framework of two d-dimensional Gaussian distributions ΦΣ(1) and ΦΣ(0) with N(0, 1) marginal

distributions, the normal comparison inequality gives explicit bounds for the difference

∆(u) := ΦΣ(1)(u)− ΦΣ(0)(u), ∀u = (u1, . . . , ud) ∈ Rd

in terms of the covariance matrices Σ(k) = (σ
(k)
ij )d×d, k = 0, 1. The derivation of the bounds for ∆(u), by

Slepian [33], Berman [6, 8] and Piterbarg [29, 31] relies strongly on Plackett’s partial differential equation; see

[32]. The most elaborate version of the normal comparison inequality is due to Li and Shao [22]. Specifically,
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Theorem 2.1 therein shows that

∆(u) ≤ 1

2π

∑
1≤i<j≤d

(
arcsin(σ

(1)
ij )− arcsin(σ

(0)
ij )
)

+
exp

(
−

u2
i + u2

j

2(1 + ρij)

)
, ∀u ∈ Rd,

where ρij := max(|σ(0)
ij |, |σ

(1)
ij |) and x+ = max(x, 0). Clearly, if σ

(0)
ij ≥ σ

(1)
ij , 1 ≤ i, j ≤ d, then

ΦΣ(1)(u) ≤ ΦΣ(0)(u),

which is the well-known Slepian’s inequality derived in [33]. Based on the results of Li and Shao [22], Yan [36]

showed that for W an N(0, 1) random variable

1 ≤ ΦΣ(1)(u)

ΦΣ(0)(u)
≤ exp

 1√
2π

∑
1≤i<j≤d

e−(ui+uj)
2/8

E {(W + (ui + uj)/2)+}
ln

(
π − 2 arcsin(σ

(0)
ij )

π − 2 arcsin(σ
(1)
ij )

) , u ∈ (0,∞)d,(2)

provided that 0 ≤ σ
(0)
ij ≤ σ

(1)
ij ≤ 1. Recent extensions of the normal comparison inequalities are presented in

[9, 11, 17, 18, 19, 26].

Our principal goal of this paper is the derivation of comparison inequalities for order statistics of Gaussian

arrays, which are useful in several applications. In order to fix the notation, we denote by X = (Xij)d×n

and Y = (Yij)d×n two d× n random arrays with N(0, 1) components and jointly Gaussian (hereafter referred

to as standard Gaussian arrays), and let Σ(1) = (σ
(1)
ij,lk)dn×dn and Σ(0) = (σ

(0)
ij,lk)dn×dn be the covariance

matrices of X and Y, respectively, with σ
(1)
ij,lk := E {XijXlk} and σ

(0)
ij,lk := E {YijYlk}. Furthermore, define

X(r) = (X1(r), . . . , Xd(r)), 1 ≤ r ≤ n to be the rth order statistics vector generated by X as follows

Xi(1) = min
1≤j≤n

Xij ≤ · · · ≤ Xi(r) ≤ · · · ≤ max
1≤j≤n

Xij = Xi(n), 1 ≤ i ≤ d.

Similarly, we write Y (r) = (Y1(r), . . . , Yd(r)) which is generated by Y. Clearly, in case of independent rows of

Gaussian arrays, the study of X(r) reduces to that of the component-wise order statistics X ′i(r)s for Gaussian

random vector, see [9]. Our principal results, stated in Theorem 2.1 and Theorem 2.4, derive bounds for the

difference

∆(r)(u) := P
{
X(r) ≤ u

}
− P

{
Y (r) ≤ u

}
, u ∈ Rd.(3)

Two applications of those bounds are discussed in Section 3, including the study of the mixed Gumbel limit

theorems for order statistics of stationary Gaussian processes and the lower tail probability of order statistics

of self-similar Gaussian processes.

We organize this paper as follows. In Section 2 we display our main results. Section 3 is devoted to the

applications. The proofs are relegated to Section 4 and Appendix.

2. Main Results

This section is concerned with sharp bounds for ∆(r)(u) defined in (3), which go in line with Li and Shao’s [22]

normal comparison inequality. For notational simplicity we set below

Qij,lk =
∣∣∣arcsin(σ

(1)
ij,lk)− arcsin(σ

(0)
ij,lk)

∣∣∣ , Q+
ij,lk = (arcsin(σ

(1)
ij,lk)− arcsin(σ

(0)
ij,lk))+.

Theorem 2.1. If X and Y are two standard d× n Gaussian arrays, then for any 1 ≤ r ≤ n we have

∣∣∆(r)(u)
∣∣ ≤ 1

2π

 ∑
1≤i≤d

1≤j<k≤n

Qij,ik exp

(
− u2

i

1 + ρij,ik

)
+

∑
1≤i<l≤d
1≤j,k≤n

Qij,lk exp

(
− u2

i + u2
l

2(1 + ρij,lk)

) , ∀u ∈ Rd,(4)
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where ρij,lk = max(|σ(0)
ij,lk|, |σ

(1)
ij,lk|). If further

σ
(1)
ij,ik = σ

(0)
ij,ik, 1 ≤ i ≤ d, 1 ≤ j, k ≤ n,(5)

then

∆(r)(u) ≤ 1

2π

∑
1≤i<l≤d
1≤j,k≤n

Q+
ij,lk exp

(
− u2

i + u2
l

2(1 + ρij,lk)

)
, ∀u ∈ Rd.(6)

Remark 2.2. For r = 1 and r = n the claims in (4) reduce to Lemma 11 in [10]. Note that for 1 < r < n our

results are derived using a different technique. Furthermore, using in addition similar arguments as in Theorem

1.2 in [29], one can establish for any [a, b] ⊂ [−∞,∞]d the following comparison inequality∣∣P{X(r) ∈ [a, b]
}
− P

{
Y (r) ∈ [a, b]

}∣∣
≤ 1

π

 ∑
1≤i≤d

1≤j<k≤n

Qij,ik exp

(
− u2

i

1 + ρij,ik

)
+

∑
1≤i<l≤d
1≤j,k≤n

Qij,lk exp

(
− u2

i + u2
l

2(1 + ρij,lk)

) ,

with ui = min(|ai|, |bi|), 1 ≤ i ≤ d.
A direct consequence of Theorem 2.1 is the following Slepian’s inequality for the order statistics of Gaussian

arrays, which for r = 1 is, however, weaker than Theorem 1.1 in [16].

Corollary 2.3. Suppose that (5) is satisfied and σ
(0)
ij,lk ≥ σ

(1)
ij,lk holds for 1 ≤ i < l ≤ d, 1 ≤ j, k ≤ n. Then

P
{
∪di=1 {Xi(r) > ui}

}
≥ P

{
∪di=1 {Yi(r) > ui}

}
, ∀u ∈ Rd.(7)

Note that the bounds in Theorem 2.1 do not depend on r, which indicates that in some cases they may not be

sharp enough. Below we present a sharper result which holds under the assumption that the columns of both

X and Y are mutually independent and identically distributed, i.e.,

σ
(κ)
ij,lk = σ

(κ)
il I{j = k}, 1 ≤ i, l ≤ d, 1 ≤ j, k ≤ n, κ = 0, 1,(8)

with some σ
(κ)
il ∈ (−1, 1), 1 ≤ i, l ≤ d, κ = 0, 1, where I{·} stands for the indicator function. This result is useful

for establishing mixed Gumbel limit theorems; see Section 3.

In order to simplify the presentation, we shall define

cn,r =
n!

r!(n− r)!
, 0 ≤ r ≤ n, ρil = max(|σ(0)

il |, |σ
(1)
il |), 1 ≤ i, l ≤ d

and

A
(r)
il =

∫ σ
(1)
il

σ
(0)
il

(1 + |h|)2(n−r)

(1− h2)(n−r+1)/2
dh, 1 ≤ i, l ≤ d, 1 ≤ r ≤ n.

Theorem 2.4. Under the assumptions of Theorem 2.1, if further (8) is satisfied, then for any u ∈ (0,∞)d

∆(r)(u) ≤ n(cn−1,r−1)2

(2π)n−r+1
u−2(n−r)

∑
1≤i<l≤d

(
A

(r)
il

)
+

exp

(
− (n− r + 1)u2

1 + ρil

)
(9)

and ∣∣∆(r)(u)
∣∣ ≤ n(cn−1,r−1)2

(2π)n−r+1
u−2(n−r)

∑
1≤i<l≤d

∣∣∣A(r)
il

∣∣∣ exp

(
− (n− r + 1)u2

1 + ρil

)
hold with u = min1≤i≤d ui.

As in Theorem 2.4 we also have the following bounds, without introducing u = min1≤i≤d ui.
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Proposition 2.5. Under the assumptions of Theorem 2.1, if further (8) is satisfied, then for any u ∈ (0,∞)d

∆(r)(u) ≤ n(cn−1,r−1)2

2(
√
π)n−r+2

∑
1≤i<l≤d

(
B

(r)
il

)
+

1

(ui + ul)n−r
exp

(
− (n− r)(ui + ul)

2 + 2(u2
i + u2

l )

4(1 + ρil)

)
,(10)

with

B
(r)
il =

∫ σ
(1)
il

σ
(0)
il

(1 + |h|)(n−r)/2

(1− h2)1/2
dh, 1 ≤ i < l ≤ d, 1 ≤ r ≤ n.

If additionally Dil = min(ui − ρilul, ul − ρilui) > 0 for all 1 ≤ i < l ≤ d, then

∆(r)(u) ≤ n(cn−1,r−1)2

(2π)n−r+1

∑
1≤i<l≤d

(
Ã

(r)
il

)
+

(
ui + ul

2
Dil

)−(n−r)

exp

(
− (n− r + 1)(u2

i + u2
l )

2(1 + ρil)

)
,(11)

where

Ã
(r)
il =

∫ σ
(1)
il

σ
(0)
il

(1 + |h|)2(n−r)(1− |h|)(n−r)

(1− h2)(n−r+1)/2
dh, 1 ≤ i < l ≤ d, 1 ≤ r ≤ n.

Motivated by, e.g., [22, 26, 36], we obtain next an upper bound for Θ(r)(u):= P
{
X(r) ≤ u

}
/P
{
Y (r) ≤ u

}
.

Proposition 2.6. Under the assumptions of Theorem 2.1, if further (5) holds and 0 ≤ σ
(0)
ij,lk ≤ σ

(1)
ij,lk < 1 for

1 ≤ i < l ≤ d, 1 ≤ j, k ≤ n, then for any u ∈ [0,∞)d

1 ≤ Θ(r)(u) ≤ exp

 1√
2π

∑
1≤i<l≤d
1≤j,k≤n

Cij,lke
−(ui+ul)

2/8

E {(W + (ui + ul)/2)+}

 ,(12)

with W an N(0, 1) random variable and

Cij,lk = ln

(
π − 2 arcsin(σ

(0)
ij,lk)

π − 2 arcsin(σ
(1)
ij,lk)

)
, 1 ≤ i < l ≤ d, 1 ≤ j, k ≤ n.

3. Applications and Discussions

3.1. Limit theorems for stationary order statistics processes. When dealing with supremum of Gaussian

processes on large intervals, the so-called Gumbel limit theorems are of interest for statistical applications, see

e.g., [7, 8, 29, 30] and the recent contributions [14, 20]. Let {Xn−r+1:n(t), t ≥ 0} be the rth upper order statistics

process generated by a centered stationary Gaussian process {X(t), t ≥ 0} with a.s. continuous sample paths,

unit variance and correlation function ρ(·) satisfying

ρ(t) = 1− |t|α + o(|t|α), t→ 0 for some α ∈ (0, 2] and ρ(t) < 1, ∀t 6= 0.(13)

From Theorem 1 in [11] or Theorem 2.2 in [12] for any T > 0 we have

P

{
sup
t∈[0,T ]

Xn−r+1:n(t) > u

}
= TAr,αcn,r(2π)−

r
2 u

2
α−r exp

(
−ru

2

2

)
(1 + o(1)), u→∞,(14)

where Ar,α ∈ (0,∞) is given explicitly as a limit. As a continuation of [11] we establish below a limit theorem

for the rth upper order statistics process Xn−r+1:n.

Theorem 3.1. Let {Xn−r+1:n(t), t ≥ 0} be the rth upper order statistics process generated by X, a cen-

tered stationary Gaussian process with a.s. continuous sample paths. Suppose that (13) holds and further

limt→∞ ρ(t) ln t = γ ∈ [0,∞].

a) If γ = 0, then

lim
T→∞

sup
x∈R

∣∣∣∣P
{
ar,T

(
sup
t∈[0,T ]

Xn−r+1:n(t)− br,T
)
≤ x

}
− exp

(
−e−x

)∣∣∣∣ = 0,
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where, with D = cn,rAr,α(r/2)r/2−1/α(2π)−r/2

ar,T =
√

2r lnT , br,T =
√

(2/r) lnT +
1√

2r lnT

((
1

α
− r

2

)
ln lnT + lnD

)
, T > e.(15)

b) If γ =∞, and α ∈ (0, 1], ρ(t) is convex for t ≥ 0 with limt→∞ ρ(t) = 0 and further ρ(t) ln t is monotone for

large t, then with Φ(·) the df of an N(0, 1) random variable

lim
T→∞

sup
x∈R

∣∣∣∣P
{

1√
ρ(T )

(
sup
t∈[0,T ]

Xn−r+1:n(t)−
√

1− ρ(T )br,T

)
≤ x

}
− Φ(x)

∣∣∣∣ = 0.

c) If γ ∈ (0,∞), then, with W an N(0, 1) random variable

lim
T→∞

sup
x∈R

∣∣∣∣P
{
ar,T

(
sup
t∈[0,T ]

Xn−r+1:n(t)− br,T
)
≤ x

}
− E

{
exp

(
−e−(x+γ−

√
2γrW )

)}∣∣∣∣ = 0.

The proof of Theorem 3.1 is presented in Appendix.

3.2. Lower tail probability for order statistics processes. The seminal contributions [23, 24] show that

the investigation of the lower tail probability of Gaussian processes is of special interest in many applied fields,

including the study of real zeros of random polynomials, the study of Gaussian pursuit problem, and the study

of the first-passage time for the Slepian process. In this section, we aim at generalizing some results in [23, 24],

by considering order statistics processes instead of Gaussian processes.

Our first result is concerned with extension of the celebrated Slepian inequality for order statistics processes.

Let {Y (t), t ≥ 0} and {Z(t), t ≥ 0} be two centered Gaussian processes with a.s. continuous sample paths,

and {Yr:n(t), t ≥ 0}, {Zr:n(t), t ≥ 0} be the corresponding rth lower order statistics processes. Applying

the standard discrete-continuous approximation technique (cf. [1]) to Corollary 2.3 one can easily verify the

following proposition.

Proposition 3.2. If for all s, t ≥ 0

E
{
Y (t)2

}
= E

{
Z(t)2

}
and E {Y (s)Y (t)} ≤ E {Z(s)Z(t)} ,

then for any T > 0 and u ∈ R we have

P

{
sup
t∈[0,T ]

Yr:n(t) > u

}
≥ P

{
sup
t∈[0,T ]

Zr:n(t) > u

}
.

Remark 3.3. A straightforward application of Proposition 3.2 yields that, for any x ∈ R (cf. [23])

pr(x) := lim
T→∞

1

T
lnP

{
sup

0≤t≤T
Yr:n(t) ≤ x

}
= sup
T>0

1

T
lnP

{
sup

0≤t≤T
Yr:n(t) ≤ x

}
(16)

exists and pr(x), x ∈ R is left-continuous, provided that {Y (t), t ≥ 0} is a centered stationary Gaussian processes

with E {Y (0)Y (t)} ≥ 0 for all t ≥ 0.

Next, let {X(t), t ≥ 0} be a centered self-similar Gaussian process with a.s. continuous sample paths and index

α/2 for some α > 0, i.e.,

X(0) = 0, E
{
X(1)2

}
= 1, {X(λt), t ≥ 0} d

= {λα/2X(t), t ≥ 0}, ∀λ > 0,

where
d
= denotes equality of the (finite-dimensional) distribution functions. It is well-known that, by Lamperti’s

transformation a dual stationary Gaussian process {X∗(t), t ≥ 0} can be defined as

X∗(t) = e−αt/2X(et), t ≥ 0.
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Proposition 3.4. Let {X(t), t ≥ 0} be the self-similar Gaussian process with self-similarity index α/2 ∈ (0,∞)

defined above. Suppose that E {X(s)X(t)} ≥ 0 for all s, t ≥ 0, and ρ(t) := E {X∗(0)X∗(t)} is decreasing. If

further for any h ∈ (0,∞) and θ ∈ (0, 1)

a2
h,θ = inf

0<t≤h

ρ(θt)− ρ(t)

1− ρ(t)
> 0,(17)

then

lim
x↓0

lnP
{

sup0≤t≤1Xr:n(t) ≤ x
}

lnx
=

2

α
πr,α,(18)

where

πr,α = − lim
T→∞

1

T
lnP

{
sup

0≤t≤T
X∗r:n(t) ≤ 0

}
≥ 0

is the Li-Shao type constant.

The proof of Proposition 3.4 is presented in Appendix.

Remark 3.5. a) As discussed in [24], two examples of {X(t), t ≥ 0} that satisfy all conditions of Proposition

3.4 are the standard fBm Bα and the centered Gaussian process {Xβ(t), t ≥ 0}, β > 0 with

E {Xβ(s)Xβ(t)} =
2β(st)(1+β)/2

(s+ t)β
, s, t > 0.

b) The positivity of the constants in the right-hand side of (18) is still an open problem. For the case r = n

and X is a standard fBm Bα, α ∈ (0, 2), in view of Theorem 3.1 in [23] we have

πn,α = n
(

1− α

2

)
> 0.

4. Proofs

Hereafter, we write
d
= for equality of the distribution functions. A vector z = (z1, . . . , zdn) will also be denoted

by

z = (z1, . . . ,zd), with zi = (zi1, . . . , zin), 1 ≤ i ≤ d,

where zij = z(i−1)n+j , 1 ≤ i ≤ d, 1 ≤ j ≤ n. Note that for any p = (i− 1)n+ j, q = (l− 1)n+ k, 1 ≤ i, l ≤ d, 1 ≤
j, k ≤ n

{p < q} = {i < l, or i = l and j < k}.

Denote

z/zi = (z1, . . . ,zi−1, zi+1, . . . ,zd), 1 ≤ i ≤ d.

Furthermore, for any x ∈ Rn we denote

x/xi = (x1, . . . , xi−1, xi+1, . . . , xn),

dx

dxi
= dx1dx2 · · · dxi−1dxi+1 · · · dxn, 1 ≤ i ≤ n,

and for 1 ≤ i < j ≤ n
dx

dxidxj
= dx1dx2 · · · dxi−1dxi+1 · · · dxj−1dxj+1 · · · dxn.

Proof of Theorem 2.1: We shall first establish (4) by considering r = 1, r = 2 and 2 < r ≤ n separately.

Case r = 1. Note that X d
= −X for the standard Gaussian array X . It follows from Theorem 2.1 in [26] that∣∣∆(1)(u)

∣∣ =

∣∣∣∣P{ ∪di=1 ∩nj=1{−Yij < −ui}
}
− P

{
∪di=1 ∩nj=1{−Xij < −ui}

}∣∣∣∣
≤ 1

2π

∑
(i−1)n+j<(l−1)n+k

Qij,lk exp

(
− u2

i + u2
l

2(1 + ρij,lk)

)
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establishing (4) for r = 1.

Next, by a standard approximation procedure we may assume that both Σ(1) and Σ(0) are positive definite. Let

further Z = (Zij)d×n be a standard Gaussian array with covariance matrix

Γh = hΣ(1) + (1− h)Σ(0) = (δhij,lk)dn×dn,

where by our notation δhij,lk = E {ZijZlk}. Clearly, Γh is also positive definite for any h ∈ [0, 1]. Denote below

by gh(z) the probability density function (pdf) of Z. It is known that the Plackett’s partial differential equation

holds as (see e.g., [21], p. 82, or [26])

∂gh(z)

∂δhij,lk
=
∂2gh(z)

∂zij∂zlk
, 1 ≤ i, l ≤ d, 1 ≤ j, k ≤ n, (i, j) 6= (l, k).(19)

Case r = 2. Hereafter, we write λ = −u and set

Q(Z; Γh) = P
{
Z(n−1) > λ

}
=

∫
∩di=1∪nj,j′=1;j 6=j′{zij>λi,zij′>λi}

gh(z) dz.(20)

Since X(2)
d
= −X(n−1) we have

∆(2)(u) = Q(Z; Γ1)−Q(Z; Γ0) =

∫ 1

0

∂Q(Z; Γh)

∂h
dh.(21)

Note that the quantities Q(Z; Γh) and gh(z) depend on h only through the entries δhij,lk of Γh. Hence we have

by (19)

∂Q

∂h
(Z; Γh) =

∑
(i−1)n+j<(l−1)n+k

∂Q(Z; Γh)

∂δhij,lk

∂δhij,lk
∂h

=
∑

(i−1)n+j<(l−1)n+k

(σ
(1)
ij,lk − σ

(0)
ij,lk)Eil(j, k),(22)

with

Eil(j, k) :=

∫
∩ds=1∪nt,t′=1;t6=t′{zst>λs,zst′>λs}

∂2gh(z)

∂zij∂zlk
dz, (i− 1)n+ j < (l − 1)n+ k.(23)

Next, in order to establish (4) we shall show that

|Eil(j, k)| ≤ ϕ(λi, λl; δ
h
ij,lk), (i− 1)n+ j < (l − 1)n+ k,(24)

where ϕ(·, ·; ·) is the pdf of (Zij , Zlk), given by

ϕ(x, y; δhij,lk) =
1

2π
√

1− (δhij,lk)2
exp

−x2 − 2δhij,lkxy + y2

2
(

1− (δhij,lk)2
)
 , x, y ∈ R.

We consider below two sub-cases: a) i = l and b) i < l.

a) Proof of (24) for i = l. Let

A′i = ∩ds=1;s6=i ∪nt,t′=1;t 6=t′ {zst > λs, zst′ > λs}(25)

:= {z/zi ∈ R(d−1)n : for any 1 ≤ s(6= i) ≤ n there exist 1 ≤ t, t′ ≤ n : zst > λs, zst′ > λs},

Ai = ∪nt,t′=1;t6=t′{zit > λi, zit′ > λi}(26)

:= {zi ∈ Rn : there exist 1 ≤ t, t′ ≤ n : zit > λi, zit′ > λi}.

We can rewrite Eii(j, k) as

Eii(j, k) =

∫
A′i

∫
Ai

∂2gh(z)

∂zij∂zik
dz, 1 ≤ i ≤ d, 1 ≤ j < k ≤ n.(27)

Next, we decompose the integral region Ai according to

a1) {zij > λi, zik > λi} := {zi ∈ Rn : zij > λi, zik > λi};
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a2) {zij > λi, zik ≤ λi} := {zi ∈ Rn : zij > λi, zik ≤ λi};
a3) {zij ≤ λi, zik > λi} := {zi ∈ Rn : zij ≤ λi, zik > λi};
a4) {zij ≤ λi, zik ≤ λi} := {zi ∈ Rn : zij ≤ λi, zik ≤ λi}.
For case a1) we have∫

Ai∩{zij>λi,zik>λi}

∂2gh(z)

∂zij∂zik
dzi =

∫
Rn−2

gh(zij = λi, zik = λi)
dzi

dzijdzik
,(28)

where gh(zij = λi, zik = λi) denotes a function of dn−2 variables formed from gh(z) by putting zij = λi, zik = λi.

Similarly, for cases a2) and a3)∫
Ai∩{zij>λi,zik≤λi}

∂2gh(z)

∂zij∂zik
dzi =

∫
Ai∩{zij≤λi,zik>λi}

∂2gh(z)

∂zij∂zik
dzi

= −
∫
∪nt=1;t 6=j,k{zit>λi}

gh(zij = λi, zik = λi)
dzi

dzijdzik
,(29)

where

∪nt=1;t 6=j,k{zit > λi} := {zi/(zijzik) ∈ Rn−2 : it exists 1 ≤ t(6= j, k) ≤ n such that zit > λi}.

Finally, for case a4)∫
Ai∩{zij≤λi,zik≤λi}

∂2gh(z)

∂zij∂zik
dzi =

∫
∪n
t,t′=1;t,t′ 6=j,k;t 6=t′{zit>λi,zit′>λi}

gh(zij = λi, zik = λi)
dzi

dzijdzik
,

where

∪nt,t′=1;t,t′ 6=j,k;t6=t′{zit > λi, zit′ > λi}

:= {zi/(zijzik) ∈ Rn−2 : there exist 1 ≤ t, t′( 6= j, k) ≤ n such that zit > λi, zit′ > λi}.

This together with (27)–(29) yields

Eii(j, k) =

∫
A′i

∫
Rn−2−∪nt=1;t6=j,k{zit>λi}

gh(zij = λi, zik = λi)
dz

dzijdzik

−
∫
A′i

∫
∪nt=1;t 6=j,k{zit>λi}−∪

n
t,t′=1;t,t′ 6=j,k;t 6=t′{zit>λi,zit′>λi}

gh(zij = λi, zik = λi)
dz

dzijdzik

= ϕ(λi, λi; δ
h
ij,ik)

(
P
{

(∩ds=1,s 6=i{Zs(n−1) > λs}) ∩ {Z ′′i ∈ {w′′i1 =∞}}
∣∣∣{Zij = λi, Zik = λi}

}
−P
{(
∩ds=1,s6=i {Zs(n−1) > λs}

)
∩ {Z ′′i ∈ {w′′i1 ≤ n,w′′i2 =∞}}

∣∣∣{Zij = λi, Zik = λi}
})

,(30)

with Z ′′i the (n− 2)-dimensional components of Zi obtained by deleting Zij and Zik, and w′′i1, w
′′
i2 given by

w′′i1 = inf{t : 1 ≤ t( 6= j, k) ≤ n, zit > λi}, w′′i2 = inf{t : w′′i1 < t(6= j, k) ≤ n, zit > λi}.(31)

Hereafter we use the convention that inf{∅} =∞. For instance,

{w′′i1 =∞} = {zi/(zijzik) ∈ Rn−2 : zit ≤ λi for all 1 ≤ t(6= j, k) ≤ n},

{w′′i1 ≤ n,w′′i2 =∞} =
{
zi/(zijzik) ∈ Rn−2 : it exists 1 ≤ l(6= j, k) ≤ n such that

zil > λi, and zit ≤ λi for all 1 ≤ t( 6= j, k, l) ≤ n
}
.

Consequently, it follows thus from (30) that (24) holds for i = l.

b) Proof of (24) for i < l. Denote A′′il = ∩ds=1;s6=i,l ∪nt,t′=1;t 6=t′ {zst > λs, zst′ > λs} ⊂ R(d−2)n parallel to (25)

and recall Ai in (26). We have

Eil(j, k) =

∫
A′′il

∫
Al

∫
Ai

∂2gh(z)

∂zij∂zlk
dz.(32)
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Next, we decompose the integral region Ai according to {zi ∈ Rn : zij > λi} and {zi ∈ Rn : zij ≤ λi}. We have∫
Ai∩{zi∈Rn:zij>λi}

∂2gh(z)

∂zij∂zlk
dzi +

∫
Ai∩{zi∈Rn:zij≤λi}

∂2gh(z)

∂zij∂zlk
dzi

= −
∫
∪nt=1;t 6=j{zit>λi}−∪

n
t,t′=1;t,t′ 6=j;t 6=t′{zit>λi,zit′>λi}

∂gh(zij = λi)

∂zlk

dzi
dzij

= −
∫
{w′i1≤n,w′i2=∞}

∂gh(zij = λi)

∂zlk

dzi
dzij

,

where w′i1, w
′
i2 are defined by (similar notation below for w′l1, w

′
l2 with respect to k instead of j)

w′i1 = inf{t : 1 ≤ t(6= j) ≤ n, zit > λi}, w′i2 = inf{t : w′i1 < t(6= j) ≤ n, zit > λi}.(33)

Using similar arguments for the integral with region Al, we have by (32)

Eil(j, k) =

∫
A′′il

∫
{w′i1≤n,w′i2=∞}

∫
{w′l1≤n,w

′
l2=∞}

gh(zij = λi, zlk = λl)
dz

dzijdzlk

= ϕ(λi, λl; δ
h
ij,lk)P

{
∩ds=1;s6=i,l{Zs(n−1) > λs} ∩ {Z ′i ∈ {w′i1 ≤ n,w′i2 =∞}}

∩{Z ′l ∈ {w′l1 ≤ n,w′l2 =∞}}
∣∣∣{Zij = λi, Zlk = λl}

}
,(34)

where Z ′i and Z ′l are the (n − 1)-dimensional components of Zi and Zl obtained by deleting Zij and Zlk,

respectively. Consequently, by (30) and (34) the validity of (24) follows.

Next, by combining (21)–(24), the claim in (4) for r = 2 follows by the fact that (see [22])∫ 1

0

ϕ(λi, λl; δ
h
ij,lk) dh ≤

arcsin(σ
(1)
ij,lk)− arcsin(σ

(0)
ij,lk)

2π(σ
(1)
ij,lk − σ

(0)
ij,lk)

exp

(
− λ2

i + λ2
l

2(1 + ρij,lk)

)
.(35)

Case 2 < r ≤ n. Letting Q̃(Z; Γh) = P
{
Z(n−r+1) > λ

}
we have

∆(r)(u) =

∫ 1

0

dh

 ∑
(i−1)n+j<(l−1)n+k

(σ
(1)
ij,lk − σ

(0)
ij,lk)Ẽil(j, k)

 ,(36)

where

Ẽil(j, k) :=

∫
∩ds=1∪nt1,...,tr=1;tl 6=tj

{zst1>λs,...,zstr>λs}

∂2gh(z)

∂zij∂zlk
dz.

With the aid of (35), it suffices to show that∣∣∣Ẽil(j, k)
∣∣∣ ≤ ϕ(λi, λl; δ

h
ij,lk), (i− 1)n+ j < (l − 1)n+ k.(37)

Similarly as above, two sub-cases : a) i = l and b) i < l need to be considered separately.

a) Proof of (37) for i = l. Similarly to Eii(j, k), we rewrite Ẽii(j, k) as

Ẽii(j, k) =

∫
Ã′i

∫
Ãi

∂2gh(z)

∂zij∂zik
dz,(38)

with

Ã′i = ∩ds=1;s6=i ∪nt1,...,tr=1;tl 6=tj {z/zi ∈ R(d−1)n :zst1 > λs, . . . , zstr > λs},

Ãi = ∪nt1,...,tr=1;tl 6=tj{zi ∈ Rn : zit1 > λi, . . . , zitr > λi}.

Next, we decompose the integral region Ãi according to the four cases a1)–a4) as introduced for Ai (see the

lines right above (28)).

For case a1) ∫
Ãi∩{zij>λi,zik>λi}

∂2gh(z)

∂zij∂zik
dzi =

∫
{w′′i,r−2≤n}

gh(zij = λi, zik = λi)
dzi

dzijdzik
,(39)
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where w′′i1 is given by (31) and (notation: w′′i,t = w′′it)

w′′it = inf{s : w′′i,t−1 < s(6= j, k) ≤ n, zis > λi}, 2 ≤ t ≤ r, 1 ≤ i ≤ d.

Next, for cases a2) and a3) ∫
Ãi∩{zij>λi,zik≤λi}

∂2gh(z)

∂zij∂zik
dzi =

∫
Ãi∩{zij≤λi,zik>λi}

∂2gh(z)

∂zij∂zik
dzi

= −
∫
{w′′i,r−1≤n}

gh(zij = λi, zik = λi)
dzi

dzijdzik
.(40)

Finally, for case a4)∫
Ãi∩{zij≤λi,zik≤λi}

∂2gh(z)

∂zij∂zik
dzi =

∫
{w′′ir≤n}

gh(zij = λi, zik = λi)
dzi

dzijdzik
.

This together with (38)–(40) yields that

Ẽii(j, k) =

∫
Ã′i

∫
{w′′i,r−2≤n,w′′i,r−1=∞}

gh(zij = λi, zik = λi)
dz

dzijdzik

−
∫
Ã′i

∫
{w′′i,r−1≤n,w′′ir=∞}

gh(zij = λi, zik = λi)
dz

dzijdzik

= ϕ(λi, λi; δ
h
ij,ik)

×
(
P
{
∩ds=1,s6=i {Zs(n−r+1) > λs} ∩ {Z ′′i ∈ {w′′i,r−2 ≤ n,w′′i,r−1 =∞}}

∣∣∣{Zij = λi, Zik = λi}
}

− P
{
∩ds=1,s6=i {Zs(n−r+1) > λs} ∩ {Z ′′i ∈ {w′′i,r−1 ≤ n,w′′i,r =∞}}

∣∣∣{Zij = λi, Zik = λi}
})

(41)

establishing (37) for i = l.

b) Proof of (37) for i < l. By Ã′′il = ∩ds=1;s6=i,l ∪nt1,...,tr=1;tl 6=tj {z/(zizl) : zst1 > λs, . . . , zstr > λs} and Ãi as in

(38) we have

Ẽil(j, k) =

∫
Ã′′il

∫
Ãi

∫
Ãl

∂2gh(z)

∂zij∂zlk
dz.(42)

By decomposing the integral regions Ãi and Ãl according to zij >,≤ λi and zlk >,≤ λl in Rn, respectively, we

obtain by similar arguments as for Eil(j, k) that

Ẽil(j, k) = ϕ(λi, λl; δ
h
ij,lk)P

{
∩ds=1;s6=i,l {Zs(n−r+1) > λs} ∩ {Z ′i ∈ {w′i,r−1 ≤ n,w′ir =∞}}

∩(Z ′l ∈ {w′l,r−1 ≤ n,w′lr =∞})
∣∣∣{Zij = λi, Zlk = λl}

}
,(43)

where w′i1 is introduced in (33) and (similar notation for w′lt)

w′it = inf{s : w′i,t−1 < s( 6= j) ≤ n, zis > λi}, 2 ≤ t ≤ r, 1 ≤ i ≤ d.

It follows then from (43) that (37) holds. Consequently, the desired result (4) follows for 2 < r ≤ n.

Finally, in view of (5) we see that the indices over the sum in (22) and (36) are simplified to 1 ≤ i < l ≤ d, 1 ≤
j, k ≤ n. Then the claim in (6) follows immediately from (34), (35) and (43). This completes the proof of

Theorem 2.1. �

Proof of Theorem 2.4: It is sufficient to prove (9) since it implies the second result of Theorem 2.4. It follows

from the argument of Lemma 12 in [10] that (9) holds for r = 1. We shall present next the proofs for a) r = 2

and b) 2 < r ≤ n.

a) Proof of (9) for r = 2. It follows from (8), (21) and (22) that

∆(2)(u) = n
∑

1≤i<l≤d

(σ
(1)
il − σ

(0)
il )

∫ 1

0

Eil dh,(44)
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where Eil := Eil(1, 1); Eil(1, 1) is defined in (23). Further, by (8) and (34) we have, with δhil := δhi1,l1 (recall

λi := −ui, 1 ≤ i ≤ d)

0 ≤ Eil
ϕ(−ui,−ul; δhil)

≤ P
{
Z ′i ∈ {w′i1 ≤ n,w′i2 =∞},Z ′l ∈ {w′l1 ≤ n,w′l2 =∞}

}
.(45)

Note that hereafter w′i1, w
′
i2 and w′l1, w

′
l2 are defined as in (33) with respect to j = k = 1.

Next, let (Z̃i, Z̃l) be a bivariate standard normal random vector with correlation
∣∣δhil∣∣ and u = min1≤i≤d ui > 0.

It follows by Slepian’s inequality in [33] and Lemma 2.3 in [28] that

P
{
Zij < −ui, Zlk < −ul

}
≤ P

{
Z̃i < −ui, Z̃l < −ul

}
≤ P

{
−Z̃i > u,−Z̃l > u

}
≤

(1 +
∣∣δhil∣∣)2

u2
ϕ(u, u;

∣∣δhil∣∣), j, k ≤ n,(46)

implying thus

P
{
Z ′i ∈ {(w′i1, w′i2) = (2,∞)},Z ′l ∈ {(w′l1, w′l2) = (2,∞)}

}
= P

{
Zi2 > −ui, Zl2 > −ul

} n∏
j=3

P
{
Zij ≤ −ui, Zlj ≤ −ul

}
≤
( (1 + |δhil|)2

u2
ϕ(u, u; |δhil|)

)n−2

and

P
{
Z ′i ∈ {(w′i1, w′i2) = (3,∞)},Z ′l ∈ {(w′l1, w′l2) = (2,∞)}

}
= P

{
Zi2 < −ui, Zl2 > −ul, Zi3 > −ui, Zl3 < −ul

} n∏
j=4

P
{
Zij < −ui, Zlj < −ul

}
≤
( (1 + |δhil|)2

u2
ϕ(u, u; |δhil|)

)n−2

.

Similarly, we may consider all (n− 1)2 cases in (45) for w′i1 = w′l1 and w′i1 6= w′l1. Therefore, using further (4.6)

in [22] we have

Eil ≤ (n− 1)2
( (1 + |δhil|)2

u2
ϕ(u, u; |δhil|)

)n−2

ϕ(−ui,−ul; δhil)

≤ (n− 1)2

(2π)n−1
u−2(n−2) (1 + |δhil|)2(n−2)

(1− |δhil|2)(n−1)/2
exp

(
− (n− 1)u2

1 + |δhil|

)
.

Consequently, by (44) we have

∆(2)(u) ≤ n
∑

1≤i<l≤d

(σ
(1)
il − σ

(0)
il )+

∫ 1

0

Eil dh

≤ n(n− 1)2

(2π)n−1
u−2(n−2)

∑
1≤i<l≤d

(σ
(1)
il − σ

(0)
il )+ exp

(
− (n− 1)u2

1 + ρil

)∫ 1

0

(1 + |δhil|)2(n−2)

(1− |δhil|2)(n−1)/2
dh

=
n(n− 1)2

(2π)n−1
u−2(n−2)

∑
1≤i<l≤d

(A
(2)
il )+ exp

(
− (n− 1)u2

1 + ρil

)
.

The last step follows since for δhil = h(σ
(1)
il − σ

(0)
il ) + σ

(0)
il we have ρil = max(|σ(0)

il |, |σ
(1)
il |) ≥ δhil and∫ 1

0

(1 + |δhil|)2(n−2)

(1− |δhil|)2)(n−1)/2
dh =

1

σ
(1)
il − σ

(0)
il

∫ σ
(1)
il

σ
(0)
il

(1 + |h|)2(n−2)

(1− h2)(n−1)/2
dh.(47)

b) Proof of (9) for 2 < r ≤ n. By (8) and (36)

∆(r)(u) = n
∑

1≤i<l≤d

(σ
(1)
il − σ

(0)
il )

∫ 1

0

Ẽil dh,
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where Ẽil := Ẽil(1, 1). Clearly, from (43) we have Ẽil ≥ 0. Further, similar arguments as for Eil (consider the

number of w′it = w′ls, s, t < r) yield that

Ẽil
ϕ(−ui,−ul; δhil)

≤ P
{
Z ′i ∈ {w′i,r−1 ≤ n,w′ir =∞},Z ′l ∈ {w′l,r−1 ≤ n,w′lr =∞}

}
≤ (cn−1,r−1)2

( (1 + |δhil|)2

u2
ϕ(u, u; |δhil|)

)n−r
.

Consequently, the claim in (9) for 2 < r ≤ n follows, establishing the proof. �

We give next a result which extends Lemma 2.3 in [28] needed for the proof of Proposition 2.5.

Lemma 4.1. Let (X,Y ) be a bivariate standard normal random vector with correlation ρ ∈ (−1, 1). For any

x, y > 0, if ρ < max(x/y, y/x), then

P {X > x, Y > y} ≤ 2(1 + ρ)2(1− ρ)

(x+ y) min(x− ρy, y − ρx)
ϕ(x, y; ρ).(48)

Proof of Lemma 4.1: The proof follows with similar arguments as in [28]. By a change of variable x′ =

x+ u/x, y′ = y + v/y, we have

P {X > x, Y > y} =

∫ ∞
x

∫ ∞
y

ϕ(x′, y′; ρ) dx′dy′

=
ϕ(x, y; ρ)

xy

∫ ∞
0

∫ ∞
0

exp

(
−u(1− ρy/x) + v(1− ρx/y)

1− ρ2

)
exp

(
− (u/x)2 − 2ρ(u/x)(v/y) + (y/v)2

2(1− ρ2)

)
dudv

≤ ϕ(x, y; ρ)

xy

∫ ∞
0

∫ ∞
0

exp

(
− (u/x)(x− ρy) + (v/y)(y − ρx)

1− ρ2

)
exp

(
− (u/x− y/v)2

2(1− ρ2)

)
dudv

=:
ϕ(x, y; ρ)

xy
J(x, y, ρ).

Next, let s =
(
(u/x)(x− ρy) + (v/y)(y − ρx)

)
/(1− ρ2), t = (u/x− v/y)/

√
1− ρ2. Clearly,∣∣∣∣∣∂s(u,v)

∂u
∂s(u,v)
∂v

∂t(u,v)
∂u

∂t(u,v)
∂v

∣∣∣∣∣ = − x+ y

xy(1 + ρ)
√

1− ρ2
.(49)

Further, since ρ < max(x/y, y/x), we have

s(1− ρ2)

min(x− ρy, y − ρx)
≥ u

x
+
v

y
≥ |t|

√
1− ρ2, −∞ < t <∞.

Consequently, with mx,y := min(x− ρy, y − ρx)/
√

1− ρ2

J(x, y, ρ) ≤ xy(1 + ρ)
√

1− ρ2

x+ y

∫ ∞
−∞

e−t
2/2

∫ ∞
|t|mx,y

e−s dsdt

=
2xy(1 + ρ)

√
1− ρ2

x+ y

∫ ∞
0

exp

(
− t

2

2
−mx,yt

)
dt

=
2xy(1 + ρ)

√
1− ρ2

x+ y

[1− Φ(mx,y)]

ϕ(mx,y)
,

where ϕ(x) and Φ(x) are the pdf and df of the standard normal random variable, respectively. Hence the

well-known inequality

1− Φ(x) ≤ ϕ(x)/x, x > 0(50)

establishes the proof. �



COMPARISON INEQUALITIES FOR ORDER STATISTICS 13

Proof of Proposition 2.5: We adopt the same notation as in Theorem 2.4. We have by Slepian’s inequality

P
{
Zij < −ui, Zlk < −ul

}
≤ P

{
Z̃i < −ui, Z̃l < −ul

}
≤ P

 Z̃i + Z̃l√
2(1 + |δhil|)

>
ui + ul√

2(1 + |δhil|)


≤

√
2(1 + |δhil|)
ui + ul

ϕ

 ui + ul√
2(1 + |δhil|)

 .(51)

Furthermore, it follows from Lemma 4.1 that

P
{
Zij < −ui, Zlk < −ul

}
≤ P

{
−Z̃i > ui,−Z̃l > ul

}
≤ 2(1 + |δhil|)2(1− |δhil|)

(ui + ul) min(ui − |δhil|ul, ul − |δhil|ui)
ϕ(ui, ul; |δhil|)

≤ 2(1 + |δhil|)2(1− |δhil|)
(ui + ul) min(ui − ρilul, ul − ρilui)

ϕ(ui, ul; |δhil|).(52)

Hence (10) and (11) are established by replacing (46) with (51) and (52), respectively, and utilising similar

arguments as in the proof of Theorem 2.4. �

Proof of Proposition 2.6: The lower bound follows directly from Corollary 2.3. Next we focus on the upper

bound. We present below the proof for r = 2. Hereafter, we adopt the same notation as in the proof of Theorem

2.1. Further, define

f(h) = exp

 ∑
1≤i<l≤d
1≤j,k≤n

1

H
(
(ui + ul)/2

)Chij,lk
 , h ∈ [0, 1],

where

Chij,lk = ln

(
π − 2 arcsin(σ

(0)
ij,lk)

π − 2 arcsin(δhij,lk)

)
, H(x) =

√
2πex

2/2E {(W + x)+} ,

with W an N(0, 1) random variable. It suffices to show that Q(Z; Γh)/f(h) is non-increasing in h, i.e.,

∂Q(Z; Γh)/∂h

Q(Z; Γh)
≤ ∂f(h)/∂h

f(h)
, h ∈ [0, 1].(53)

We have

∂f(h)/∂h

f(h)
=

∑
1≤i<l≤d
1≤j,k≤n

2(σ
(1)
ij,lk − σ

(0)
ij,lk)(

π − 2 arcsin(δhij,lk)
)√

1− (δhij,lk)2

1

H
(
(ui + ul)/2

)(54)

and by (22)

∂Q(Z; Γh)

∂h
=

∑
1≤i<l≤d
1≤j,k≤n

(σ
(1)
ij,lk − σ

(0)
ij,lk)Eil(j, k).(55)

Therefore, by the assumption that 0 < σ
(0)
ij,lk ≤ σ

(1)
ij,lk < 1 for 1 ≤ i < l ≤ d, 1 ≤ j, k ≤ n, it is sufficient to show

that

Eil(j, k) ≤ 2Q(Z; Γh)(
π − 2 arcsin(δhij,lk)

)√
1− (δhij,lk)2

1

H
(
(ui + ul)/2

) , 1 ≤ i < l ≤ d, 1 ≤ j, k ≤ n.(56)
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From (34) we have (recall u = −λ)

Eil(j, k)

ϕ(ui, ul; δhij,lk)
≤ P

{
∩ds=1,s 6=i,l{Zs(n−1) > λs} ∩ {Z ′i ∈ {w′i1 ≤ n}} ∩ {Z

′
l ∈ {w′l1 ≤ n}}

∣∣∣{Zij = λi, Zlk = λl}
}

= P
{
∩ds=1,s 6=i,l{Zs(2)<us} ∩ {Z ′i ∈ {v′i1 ≤ n}} ∩ {Z

′
l ∈ {v′l1 ≤ n}}

∣∣∣{Zij = ui, Zlk = ul}
}
,(57)

where v′i1, v
′
l1 are defined by

v′i1 = inf{t : 1 ≤ t(6= j) ≤ n, zit < ui}, v′l1 = inf{t : 1 ≤ t(6= k) ≤ n, zlt < ul}.

Define next

Tij =
(Zij − ui)− δhij,lk(Zlk − ul)

1− (δhij,lk)2
, Tlk =

(Zlk − ul)− δhij,lk(Zij − ui)
1− (δhij,lk)2

.

Since (Zij , Zlk) is a bivariate Gaussian random vector with N(0, 1) marginals and correlation δhij,lk, we have

E {TijZij} = E {TlkZlk} = 1, E {TijZlk} = E {TijZlk} = 0.

Then it follows that the random vectors

Z∗v = (Zvw − δhvw,ijTij − δhvw,lkTlk, 1 ≤ w ≤ n), 1 ≤ v(6= i, l) ≤ d,

Z ′∗i = (Zit − δhit,ijTij − δhit,lkTlk, 1 ≤ t( 6= j) ≤ n)

and

Z ′∗l = (Zlt − δhlt,ijTij − δhlt,lkTlk, 1 ≤ t( 6= k) ≤ n)

are independent of (Zij , Zlk) and further independent of (Tij , Tlk). Thus, by (57) and the fact that 0 ≤
δhij,lk<1, 1 ≤ i < l ≤ d, 1 ≤ j, k ≤ n, h ∈ [0, 1], we have as in Lemma 2.1 in [36]

Eil(j, k)
P {Tij < 0, Tlk < 0}
ϕ(ui, ul; δhij,lk)

≤ P
{
∩ds=1,s6=i,l{Z∗s(2) < us} ∩ {Z ′∗i ∈ {v′i1 ≤ n}} ∩ {Z

′∗
l ∈ {v′l1 ≤ n}} ∩ {Tij < 0} ∩ {Tlk < 0}

}
≤ P

{
∩ds=1,s 6=i,l {Zs(2) < us} ∩ {Z ′i ∈ {v′i1 ≤ n}} ∩ {Z

′
l ∈ {v′l1 ≤ n}} ∩ {Zij < ui} ∩ {Zlk < ul}

}
= Q(Z; Γh).(58)

Moreover, by Lemma 2.2 in [36]

P {Tij < 0, Tlk < 0}
ϕ(ui, ul; δhij,lk)

≥
π − 2 arcsin(δhij,lk)

2

√
1− (δhij,lk)2H

(
ui + ul

2

)
,

which together with (58) implies (56), hence the proof for r = 2 is complete.

For 2 < r ≤ n, we need to show that (56) holds for Ẽil(j, k). This follows by similar arguments as for r = 2,

using the inequality (43) instead of (34). �

5. Appendix

In the appendix we give detailed proofs of Theorem 3.1 and Proposition 3.4. Before proceeding to the proofs

we present two lemmas which will be used in the proof of Theorem 3.1. For notational simplicity, we set

q = q(u) = u−2/α, u > 0 and write [x] for the integer part of x∈ R.

Lemma 5.1. Under the assumptions of Theorem 3.1 with γ = 0, for any a, T > 0 we have

lim sup
u→∞

[ε/P{Xn−r+1:n(0)>u}]∑
j=[T/(aq)]

P
{
Xn−r+1:n(aqj) > u

∣∣∣Xn−r+1:n(0) > u
}
→ 0, ε ↓ 0.(59)
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Proof of Lemma 5.1: By Lemma 2 in [11] (see the proof of (3.5) therein), for sufficiently large u

au(t) := P
{
Xn−r+1:n(t) > u

∣∣∣Xn−r+1:n(0) > u
}
≤ 2P

{
X1:r(t) > u

∣∣∣X1:r(0) > u
}
.

Since further X(t)− ρ(t)X(0), t > 0 is independent of X(0), we have for some constant K > 0 (below the value

of K might change from line to line)

au(t) ≤ 2r+1
(
P
{
X(t) > X(0) > u

∣∣∣X(0) > u
})r

≤ 2r+1
(
P
{
X(t)− ρ(t)X(0) > u(1− ρ(t))

∣∣∣X(0) > u
})r

= 2r+1

(
1− Φ

(
u

√
1− ρ(t)

1 + ρ(t)

))r

≤ Ku−r
(

1− |ρ(t)|
1 + |ρ(t)|

)−r/2
exp

(
−ru

2

2

1− |ρ(t)|
1 + |ρ(t)|

)
,(60)

where the last inequality follows by (50).

Next, let g(u) be a function such that limu→∞ g(u) = ∞, |ρ(g(u))| = u−2. It follows from u−2 ln g(u) = o(1)

that g(u) ≤ exp(ε′u2) for some (recall that |ρ(T )| < 1; see [21], p. 86)

0 < ε′ < r/2(1− |ρ(T )|)/(1 + |ρ(T )|)

and sufficiently large u. Next, we split the sum in (59) at aqj = g(u). The first term is

[g(u)/(aq)]∑
j=[T/(aq)]

P
{
Xn−r+1:n(aqj) > u

∣∣∣Xn−r+1:n(0) > u
}

≤ Kg(u)

aq
u−r

(
1− |ρ(T )|
1 + |ρ(T )|

)−r/2
exp

(
−ru

2

2

1− |ρ(T )|
1 + |ρ(T )|

)
≤ Ku2/α−r exp

(
ε′u2 − ru2

2

1− |ρ(T )|
1 + |ρ(T )|

)
→ 0, u→∞.

For the remaining term, it follows by Lemma 1 in [11] and (60)

[ε/P{Xn−r+1:n(0)>u}]∑
j=[g(u)/(aq)]

P
{
Xn−r+1:n(aqj) > u

∣∣∣Xn−r+1:n(0) > u
}

≤ K ε

P {Xn−r+1:n(0) > u}
u−r

(
1− u−2

1 + u−2

)−r/2
exp

(
−ru

2

2

1− u−2

1 + u−2

)
≤ Kε exp

(
−ru

2

2

(
1− u−2

1 + u−2
− 1

))
≤ Kε, u→∞.

Therefore, the claim follows by letting ε ↓ 0. �

Next, with the notation as in (14) we set

T = T (u) =
1

cn,rAr,α
(2π)

r
2 ur−

2
α exp

(
ru2

2

)
, u > 0.(61)

Lemma 5.2. Let T = T (u) be defined as in (61) and a > 0, 0 < λ < 1 be given constants. Under the

assumptions of Lemma 5.1 for any 0 ≤ s1 < · · · < sp < t1 < · · · < tp′ in {aqj : j ∈ Z, 0 ≤ aqj ≤ T} with

t1 − sp ≥ λT ∣∣∣P{∩pi=1{Xn−r+1:n(si) ≤ u},∩p
′

j=1{Xn−r+1:n(tj) ≤ u}
}

−P
{
∩pi=1 {Xn−r+1:n(si) ≤ u}

}
P
{
∩p
′

j=1{Xn−r+1:n(tj) ≤ u}
} ∣∣∣→ 0, u→∞.(62)
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Proof of Lemma 5.2: Denote

Xij = Xj(si)I{i ≤ p}+Xj(ti−p)I{p < i ≤ p+ p′}, 1 ≤ i ≤ p+ p′, 1 ≤ j ≤ n

and {Yij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} d
= {Xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n}, independent of {Yij , p + 1 ≤ i ≤ p + p′, 1 ≤ j ≤

n} d
= {Xij , p+ 1 ≤ i ≤ p+ p′, 1 ≤ j ≤ n}. Applying Theorem 2.4 with

Xi(n−r+1) = Xn−r+1:n(si)I{i ≤ p}+Xn−r+1:n(ti−p)I{p < i ≤ p+ p′}

and

Yi(n−r+1) = Yn−r+1:n(si)I{i ≤ p}+ Yn−r+1:n(ti−p)I{p < i ≤ p+ p′},

it follows that, the left-hand side of (62) is bounded from above by

Ku−2(r−1)

(
T

q

) ∑
λT≤tj−si≤T

exp

(
− ru2

1 + |ρ(tj − si)|

)∫ |ρ(tj−si)|
0

(1 + |h|)2(r−1)

(1− h2)r/2
dh

≤ Ku−2(r−1)

(
T

q

) ∑
λT≤aqj≤T

|ρ(aqj)| exp

(
− ru2

1 + |ρ(aqj)|

)
for u large,(63)

where K is some constant. The rest of the proof consists of the similar arguments as that of Lemma 12.3.1 in

[21]. Indeed, letting γ(t) = sup{|ρ(s)| ln s : s ≥ t}, t > 1, we have that |ρ(t)| ≤ γ(t)/ ln t and γ(t) ≤M for some

positive constant M and all sufficiently large t. Recalling (61), we have

u2 =
2

r
lnT +

(
2

rα
− 1

)
ln lnT + ln

((
r

2

)1−2/(rα)
(cn,rAr,α)2/r

2π

)
(1 + o(1)), u→∞,

which implies that

exp

(
− ru2

1 + |ρ(aqj)|

)
≤ exp

(
−ru2

(
1− γ(λT )

ln(λT )

))
≤ K exp

(
−ru2

)
≤ KT−2(lnT )r−2/α

for all T large. Consequently, the right-hand side of (63) is bounded from above by

Ku−2(r−1)

(
T

q

)2
 1

T/q

∑
λT≤aqj≤T

|ρ(aqj)| ln(aqj)

 1

ln(λT )
T−2(lnT )r−2/α

≤ K 1

T/q

∑
λT≤aqj≤T

|ρ(aqj)| ln(aqj),

which tends to 0 as T →∞ since ρ(t) ln t = o(1). Hence the proof is complete. �

Below W denotes an N(0, 1) random variable which is independent of any other random element involved.

Proof of Theorem 3.1: a) Note that (14) and Lemmas 5.1 and 5.2 hold for the rth upper order statistics

process {Xn−r+1:n(t), t ≥ 0}. In view of Theorem 10 in [2] we have for T = T (u) defined as in (61)

lim
u→∞

P

{
sup

t∈[0,T (u)]

Xn−r+1:n(t) ≤ u+
x

ru

}
= exp

(
−e−x

)
, x ∈ R.

Expressing u in terms of T using (61) we obtain the required claim for any x ∈ R, with ar,T , br,T given as in

(15); the uniform convergence in x follows since all functions (with respect to x) are continuous, bounded and

increasing.

b) The proof follows from the main arguments of Theorem 3.1 in [27] by showing that, for any ε > 0 and x ∈ R

Φ(x− ε) ≤ lim inf
T→∞

P
{
MX(T ) ≤ cT br,T +

√
ρ(T )x

}
≤ lim sup

T→∞
P
{
MX(T ) ≤ cT br,T +

√
ρ(T )x

}
≤ Φ(x+ ε),(64)
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where

MX(T ) := sup
t∈[0,T ]

Xn−r+1:n(t), cT :=
√

1− ρ(T ).

We start with the proof of the first inequality. Let ρ∗(t), t ≥ 0 be a correlation function of a stationary Gaussian

process such that ρ∗(t) = 1− 2 |t|α + o(|t|α) as t→ 0. There exists some t0 > 0 such that for T large

ρ∗(t)c2T + ρ(T ) ≤ ρ(t), 0 ≤ t ≤ t0.(65)

Denote by {Yk(t), t ≥ 0}, k ∈ N independent centered stationary Gaussian processes with a.s. continuous sample

paths and common covariance function ρ∗(·), and define {Y (t), t ≥ 0} by

Y (t) =

∞∑
k=1

Yk(t)I{t ∈ [(k − 1)t0, kt0)}, t ≥ 0.(66)

It follows from (65) that for T sufficiently large

E {X(s)X(t)} ≥ E
{(
cTY (s) +

√
ρ(T )W

)(
cTY (t) +

√
ρ(T )W

)}
, s, t ≥ 0.

Therefore, by Proposition 3.2

P
{
MX(T ) ≤ cT br,T +

√
ρ(T )x

}
≥ P

{
cTMY (T ) +

√
ρ(T )W ≤ cT br,T +

√
ρ(T )x

}
≥ Φ(x− ε)

(
P

{
sup

t∈[0,t0]

Yn−r+1:n(t) ≤ br,T + ε
√
ρ(T )

})[T/t0]+1

.

Noting that a = inf0<t≤t0(1− ρ∗(t)) |t|α > 0, we have by Theorem 1.1 in [11] (see also (14))

lim
T→∞

P
{

supt∈[0,t0] Yn−r+1:n(t) > br,T + ε
√
ρ(T )

}
t0cn,rb

2/α
r,T

(
1− Φ(br,T + ε

√
ρ(T ))

)r = 21/αAr,α.

Consequently, since γ =∞ we have

lim
T→∞

([T/t0] + 1) lnP

{
sup

t∈[0,t0]

Yn−r+1:n(t) ≤ br,T + ε
√
ρ(T )

}

= − lim
T→∞

T

t0
P

{
sup

t∈[0,t0]

Yn−r+1:n(t) > br,T + ε
√
ρ(T )

}
= − lim

T→∞
Tcn,r2

1/αAr,αb2/αr,T

(
1− Φ(br,T + ε

√
ρ(T ))

)r
= 0

establishing the first inequality in (64).

Next, we consider the last inequality in (64). Note that, by the convexity of ρ(·), there exists a separable

stationary Gaussian process {Y (t), t ∈ [0, T ]} with correlation function given by (using the well-known Polya

criteria, see e.g., [15])

ρ̃(t) =
ρ(t)− ρ(T )

1− ρ(T )
, t ∈ [0, T ].(67)

We have the equality in distribution

MX(T )
d
=cTMY (T ) +

√
ρ(T )W

implying

P
{
MX(T ) ≤ cT br,T +

√
ρ(T )x

}
=

∫ ∞
−∞

P

{
MY (T ) ≤ br,T +

√
ρ(T )

cT
(x− u)

}
ϕ(u) du

≤ Φ(x+ ε) + P

{
MY (T ) ≤ br,T − ε

√
ρ(T )

cT

}
.(68)
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Consquently, we only need to prove that

lim
T→∞

P
{
MY (T ) ≤ br,T − ε

√
ρ(T )

}
= 0.

To this end, using again the convexity of ρ̃(·), we construct a separable stationary Gaussian process {Z(t), t ∈
[0, T ]} with the correlation function (recall ρ̃(·) in (67))

σ(t) = max
(
ρ̃(t), ρ̃

(
T exp

(
−
√

lnT
)))

, t ∈ [0, T ].(69)

Again by Proposition 3.2, we have

P
{
MY (T ) ≤ br,T − ε

√
ρ(T )

}
≤ P

{
MZ(T ) ≤ br,T − ε

√
ρ(T )

}
.(70)

Next, we construct a grid of intervals as follows. Let I1, . . . , I[T ] be [T ] consecutive unit intervals with an interval

of length δ removed from the right-hand side of each one with δ ∈ (0, 1) given, and

GT =
{
k(2 lnT )−3/α, k ∈ N

}
∩
(
∪[T ]
i=1 Ii

)
.

It follows from Theorem 10 in [2] and Theorem 1.1 in [11] that, supt∈[0,T ] Zn−r+1:n(t) and supt∈GT Zn−r+1:n(t)

have the same asymptotic distribution and thus we only need to show that

lim
T→∞

P
{

sup
t∈GT

Zn−r+1:n(t) ≤ br,T − ε
√
ρ(T )

}
= 0.

Let {Z ′n−r+1:n(t), t ≥ 0} be generated by {Z ′(t), t ∈ [0, T ]} which is again a separable stationary process with

the correlation function (recall σ(·) in (69))

σ∗(t) =
σ(t)− σ(T )

1− σ(T )
, t ∈ [0, T ].

Analogously to the derivation of (68) we obtain

P
{

sup
t∈GT

Zn−r+1:n(t) ≤ br,T − ε
√
ρ(T )

}
= P

{√
1− σ(T ) max

t∈GT
Z ′n−r+1:n(t) +

√
σ(T )W ≤ br,T − ε

√
ρ(T )

}
≤ Φ

(
−1

2
ε

(
ρ(T )

σ(T )

)1/2
)

+ P

{
max
t∈GT

Z ′n−r+1:n(t) ≤ br,T +
br,Tσ(T )√

1− σ(T )(1 +
√

1− σ(T ))
−

ε
√
ρ(T )

2
√

1− σ(T )

}
,

which tends to 0 as T → ∞. The proof of it is the same as that of Theorem 3.1 in [27], by using instead

Theorem 1.1 in [11] and our Theorem 2.4. Consequently, the last inequality in (64) follows by (68) and (70).

We complete the proof for γ =∞.

c) Given δ ∈ (0, 1), take I1, . . . , I[T ] as in b). For {Yk(t), t ≥ 0}, k ∈ N independent copies of X define

Y (t) :=

∞∑
k=1

Yk(t)I{t ∈ [k − 1, k)}, t ≥ 0

and

X∗(t) :=
√

1− ρ∗(T )Y (t) +
√
ρ∗(T )W, t ∈ ∪[T ]

k=1Ik,

where ρ∗(T ) = γ/ lnT . The rest of the proof is similar to that as of Theorem 2.1 in [34] by using our Theorem

2.4 instead of Berman’s inequality. We omit the details.

Combining all the arguments for the three cases above, we complete the proof of Theorem 3.1. �

Proof of Proposition 3.4: First note that by (16) we have πr,α(x), x ∈ R defined by (with Yi(t) := X∗i (t) for

simplicity)

πr,α(x) = − lim
T→∞

1

T
P
{

sup
0≤t≤T

Yr:n(t) ≤ x
}
, x ∈ R
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exists and is left-continuous. Next, we show that πr,α(x) is right-continuous, which will be crucial for our proof.

As in Theorem 3.1 in [24] we first show that, for all x ∈ R, y > 0,m ≥ 1, θ ∈ (0, 1) and h ∈ (0,∞)

P
{

sup
0≤t≤mh

Yr:n(t) ≤ x+ y

}
≤ Φ−m

(−y + x
(√

1 + a2
h,θ − 1

)
ah,θ

)
P
{

sup
0≤t≤θmh

Yr:n(t) ≤ x
}
.(71)

Let therefore Wk, 1 ≤ k ≤ m be independent N(0, 1) random variables which are further independent of X∗i ,

1 ≤ i ≤ n, and write, for simplicity, a = ah,θ. We have

ph,θ(x, Y ) := P

{
max

1≤k≤m
sup

(k−1)h≤t≤kh

Yr:n(t, aWk)√
1 + a2

≤ x

}

≥ P

{
max

1≤k≤m
sup

(k−1)h≤t≤kh
Yr:n(t) ≤ x+ y

}
P
{

max
1≤k≤m

aWk ≤ −y + x
(√

1 + a2 − 1
)}

= P

{
max

1≤k≤m
sup

(k−1)h≤t≤kh
Yr:n(t) ≤ x+ y

}
Φm
(−y + x

(√
1 + a2 − 1

)
a

)
,

where {Yr:n(t, aWk), t ∈ [(k − 1)h, kh]} is the rth order statistics process generated by {Yi(t) + aWk, t ∈ [(k −
1)h, kh)}, 1 ≤ i ≤ n. Furthermore, it follows by (17) and the monotonicity of ρ(·) that (set Ik = [(k − 1)h, kh))

E
{

(Y1(t) + aW[t/h]+1)(Y1(s) + aW[s/h]+1)
}

1 + a2
− E {Y1(θt)Y1(θs)}

=


1−ρ(|t−s|)

1+a2

(
a2 − ρ(θ|t−s|)−ρ(|t−s|)

1−ρ(|t−s|)

)
, t, s ∈ Ik,

ρ(|t−s|)
1+a2 − ρ(θ |t− s|), t ∈ Ik, s ∈ Il, k 6= l

≤ 0,

which by Proposition 3.2 implies that

ph,θ(x, Y ) ≤ P

{
max

1≤k≤m
sup

(k−1)h≤t≤kh
Yr:n(θt)≤ x

}

establishing (71). Now, let f(s, x) := lnP
{

sup0≤t≤s Yr:n(t) ≤ x
}
, s > 0, x ∈ R. We have from (71) that, for

any y > 0

f(mh, x)

mh
≤ f(mh, x+ y)

mh
≤ θ f(θmh, x)

θmh
−

ln Φ
(
−y
ah,θ

+Ah,θx
)

h
,

with Ah,θ =
ah,θ√

1+a2h,θ+1
. Letting first m→∞ and then y ↓ 0 in the above we have

πr,α(x) ≥ lim
y↓0

πr,α(x+ y) ≥ θπr,α(x) +
ln Φ (Ah,θx)

h
.(72)

Furthermore, since

a2
h,θ = inf

0<t≤h

ρ(θt)− ρ(t)

1− ρ(t)
≤ inf

0<t≤1

ρ(θt)− ρ(t)

1− ρ(t)

holds for any h > 1, we conclude that limθ↑1Ah,θ = 0. Thus, letting θ ↑ 1 and h → ∞ in (72) we obtain the

right-continuity of πr,α(x).

To complete the proof, it suffices to show that

− 2

α
πr,α ≤ lim inf

x↓0

lnP
{

sup0≤t≤1Xr:n(t) ≤ x
}

ln(1/x)

≤ lim sup
x↓0

lnP
{

sup0≤t≤1Xr:n(t) ≤ x
}

ln(1/x)
≤ − 2

α
πr,α.(73)
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By the self-similarity of process {Xr:n(t), t ≥ 0}, we have for any x ∈ (0, 1)

P

{
sup

0≤t≤2/α ln(1/x)

Yr:n(t) ≤ 0

}
= P

{
sup

x2/α≤t≤1

Xr:n(t) ≤ 0

}

≤ P

{
sup

x2/α≤t≤1

Xr:n(t) ≤ x

}

≤
P
{

sup0<t≤1Xr:n(t) ≤ x
}

P
{

sup0<t≤x2/α Xr:n(t) ≤ x
}

=
P
{

sup0<t≤1Xr:n(t) ≤ x
}

P
{

sup0<t≤1Xr:n(t) ≤ 1
} ,

where the second inequality follows from Proposition 3.2 and the fact that E {X(s)X(t)} ≥ 0 for all s, t ≥ 0.

Consequently, the lower bound in (73) follows. Next, we establish the upper bound in (73). It follows that, for

y > 0 sufficiently small

1

(α/2)h
lnP

{
sup

0≤t≤h
Yr:n(t) ≤ y

}

=
1

αh/2
lnP

{
sup

e−h≤t≤1

(t−α/2Xr:n(t)) ≤ y

}

≥ 1

αh/2
lnP

{
sup

e−h≤t≤1

Xr:n(t) ≤ ye−αh/2
}

≥ 1

αh/2
lnP

{
sup

0≤t≤1
Xr:n(t) ≤ ye−αh/2

}
=

αh/2− ln y

αh/2

1

ln(1/(ye−αh/2))
lnP

{
sup

0≤t≤1
Xr:n(t) ≤ ye−αh/2

}
.

Letting h→∞ in the above we obtain that

lim sup
x↓0

lnP
{

sup0≤t≤1Xr:n(t) ≤ x
}

ln(1/x)
≤ − 2

α
πr,α(y)→ − 2

α
πr,α, y ↓ 0,

where the last step follows by the right-continuity of πr,α(x) at 0. Consequently, (73) holds and thus the proof

is complete. �

Acknowledgements

We are thankful to the Editor-in-chief and the referees for several constructive suggestions which greatly im-

proved the manuscript. L. Ji and C. Ling were supported by SNSF grant (200021-140633/1). K. Dȩbicki
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[5] A. Aue, L. Horváth, and M. Hušková. Extreme value theory for stochastic integrals of Legendre polynomials. J. Multivariate

Anal., 100(5):1029–1043, 2009.

[6] S.M. Berman. Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist., 35:502–516, 1964.



COMPARISON INEQUALITIES FOR ORDER STATISTICS 21

[7] S.M. Berman. Sojourns and extremes of stationary processes. Ann. Probab., 10(1):1–46, 1982.

[8] S.M. Berman. Sojourns and extremes of stochastic processes. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific

Grove, CA, 1992.

[9] V. Chernozhukov, D. Chetverikov, and K. Kato. Comparison and anti-concentration bounds for maxima of Gaussian random

vectors. Probab. Theory Related Fields, 162(1-2):47–70, 2015.
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