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Abstract 
Context  Human-induced changes in landscape 
structure are among the main causes of biodiversity 
loss. Despite their important contribution to biodiver-
sity and ecosystem functioning, microbes—and par-
ticularly protists—remain spatially understudied. Soil 
microbiota are most often driven by local soil proper-
ties, but the influence of the surrounding landscape is 
rarely assessed.

Objectives  We assessed the effect of landscape 
structure on soil protist alpha and beta diversity in 
meadows in the western Swiss Alps.
Methods  We sampled 178 plots along an elevation 
gradient representing a broad range of environmen-
tal conditions and land-use. We measured landscape 
structure around each plot at 5 successive spatial 
scales (i.e. neighbourhood windows of increasing 
radius, ranging from 100 to 2000  m around a plot). 
We investigated the changes of protist alpha and beta 
diversity as a function of landscape structure, local 
environmental conditions and geographic distance.
Results  Landscape structures, especially percentage 
of meadows, forests, or open habitats, played a key 
role for protist alpha and beta diversity. The impor-
tance of landscape structure was comparable to that 
of environmental conditions and spatial variables, and 
increased with the size of the neighbourhood window 
considered.
Conclusions  Our results suggest that dispersal from 
neighbouring habitats is a key driver of protist alpha 
and beta diversity which highlight the importance of 
landscape-scale assembly mechanisms for microbial 
diversity. Landscape structure emerges as a key driver 
of microbial communities which has profound impli-
cations for our understanding of the consequences of 
land-use change on soil microbial communities and 
their associated functions.
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Introduction

With about 75% of the global land area being 
impacted by human activities (Ellis and Ramankutty 
2008), land-use change is one of the main causes of 
terrestrial biodiversity loss (Sala et  al. 2000; Cardi-
nale et  al. 2012; Mace et  al. 2018; Brondizio et  al. 
2019). Land-use changes have modified landscape 
structure through destruction, degradation, and/or 
fragmentation of natural habitats with negative con-
sequences on local biodiversity and the associated 
ecosystem functions and services (Brondizio et  al. 
2019). Anthropogenic modifications of landscape 
structure are likely to continue in the future to meet 
the increasing need of a growing human population 
(Tilman et al. 2011; Mace et al. 2018). In this context, 
understanding the impact of changes in landscape 
structure on ecosystems is required to maintain land-
scape biodiversity and services.

Microbes represent the dominant part of biodiver-
sity on Earth (Locey and Lennon 2016). They are also 
central actors to key ecosystem functions and ser-
vices including carbon sequestration (Shakoor et  al. 
2020), litter decomposition (Jackson et  al. 2017), 
nutrient turnover (Wagg et al. 2014), food production 
(Nosheen et al. 2021), water quality supply (Sagova-
Mareckova et  al. 2021) or regulation of biologi-
cal populations (Kibblewhite et  al. 2008). However, 
despite their important contribution to biodiversity 
and ecosystem functions, microbes are rarely consid-
ered in spatial studies assessing the impact of envi-
ronmental conditions on biodiversity (e.g. Seppey 
et  al. 2020; Mod et  al. 2020; 2021: Malard et  al. 
2022), and landscape structure is considered even less 
frequently (Mennicken et al. 2020; Mony et al. 2020). 
As a result, microbial assembly processes and, espe-
cially, the importance of landscape structure for local 
microbial diversity and functionality remains unclear. 
This is a major knowledge gap in microbial ecology 
as well as in our understanding of the consequences 
of land-use changes.

Studies analysing the drivers of microbial diversity 
have primarily focused on local processes assuming 
that microbial community composition results from 
the effect of the local abiotic environment and from 
biotic interactions (Louca et  al. 2018; Yashiro et  al. 
2018; Mod et  al. 2020; Malard et  al. 2022) These 
studies have shown the importance of environmental 
conditions such as temperature (Fierer et  al. 2006; 

Mod et al. 2020), pH (Chu et al. 2010; Yashiro et al. 
2016), and soil moisture (Sofi et  al. 2016). Other 
studies have focused on biogeographical processes 
revealing patterns of microbial diversity (reviewed 
by Martiny et  al. 2006), such as continental divide 
(Glaeser and Overmann 2004; Louca 2021), latitu-
dinal gradient (Schwalbach and Fuhrman 2005), or 
distance-decay relationships (Hanson et  al. 2019; 
Schwob et  al. 2021). However, these studies have 
mostly ignored the impact of regional-scale processes 
on local community composition (Leibold et al. 2004; 
D’Amen et  al. 2017). Because landscape structure 
modulates the strength and type of impact of regional 
processes on local communities (Fournier et al. 2017, 
2020), modern landscape ecology approaches (e.g. 
Riitters 2019) have the potential to shed new light on 
the processes driving microbial community assembly, 
and particularly on the importance of dispersal from a 
regional pool of potential colonists.

Despite their potential, landscape ecology 
approaches applied to microbial communities remain 
scarce (Mony et  al. 2020, 2022), mostly due to the 
difficulty to observe these organisms. Progress in 
DNA-based characterization of community composi-
tion now makes it easier to conduct landscape-scale 
surveys of microbial diversity (Kibblewhite et  al. 
2008). However, the few landscape ecology studies 
focusing on microbes are taxonomically and function-
ally biased towards parasitic organisms and patho-
gens, mostly fungi or bacteria (Mony et  al. 2020; 
Cruz-Paredes et al. 2021). This line of research dem-
onstrated the importance of landscape structures such 
as roads for the dispersal and distribution of patho-
gens (e.g. Holdenrieder et  al. 2004; Laine and Han-
ski 2006; Bousset et al. 2018). Yet, to our knowledge, 
the effect of landscape structure on microbial alpha 
and beta diversity at large taxonomic scale (here, 
protists) has never been assessed. Because of the key 
functional importance of soil protists (Geisen, 2016; 
Seppey et al. 2017; Xiong et al. 2018), this gap lim-
its our understanding of the consequences of land-use 
change on ecosystem structure and function.

The present study evaluates the effect of landscape 
structure on local soil protist alpha and beta diver-
sity across 178 non-forested open vegetation plots 
(mostly meadows) in the western Swiss Alps. We 
assess the effect of descriptors of landscape composi-
tion (i.e. the relative proportion of land cover types 
in the landscape, regardless of spatial distribution) 
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and configuration (i.e. the spatial arrangement of land 
cover types in the landscape) on local microbial alpha 
and beta diversity and compare it to environmen-
tal and spatial descriptors. We hypothesise that the 
structure of the landscape around a focal plot influ-
ences alpha and beta protist diversity highlighting the 
importance of regional processes for local community 
assembly. We also expect that protist community dis-
similarity (beta diversity) correlates positively with 
geographic distance (distance-decay relationship) and 
that landscape, environmental and spatial descriptors 
contribute to this correlation. In addition, we examine 
the importance of scale for landscape effects on pro-
tist diversity by explicitly analysing the effect of land-
scape descriptors calculated at 5 successive spatial 
scales (neighbourhood window from 100 to 2000 m 

around a plot). If our analyses confirm our hypothesis, 
it would suggest that landscape-scale processes are 
key to understanding microbial community assembly 
and biodiversity patterns, as observed in larger-sized 
organisms (Betts et al. 2019; Martin et al. 2019).

Material and methods

Study site and sampling design

We focus primarily on alpine meadows in the western 
Swiss Alps (Fig.  1). As in most Western European 
mountain systems, meadows are threatened by both 
urbanisation and agricultural abandonment allowing 
forests to take over. As a result, the area occupied by 

Fig. 1   Map of the western 
Swiss Alps study area with 
the 178 selected plots’ 
locations (yellow dots). 
The lower panel shows 
the selected neighbour-
hood windows around each 
plot (100, 200, 500, 1000, 
2000 m) used to calculate 
the different landscape 
metrics (see Table 1)
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meadows is decreasing and remains are increasingly 
fragmented (Dengler et  al. 2014). These changes 
in landscape structure impact plants (Dengler et  al. 
2014) and, expectedly, protist diversity, and are likely 
to increase in the future (Pellissier et  al. 2013). For 
these reasons, alpine meadows in the study area con-
stitute a useful model ecosystem to study the impact 
of landscape structure on soil microbial communities.

A total of 178 non-forest open vegetation plots 
(each of 2 m by 2 m) were sampled in the study area 
from July 4th to September 1st 2013 according to a 
sampling design stratified by altitude. For each sam-
ple, five soil cores of 100  g each were taken (from 
the four corners and centre of the plot, respectively, 
i.e. one ‘sample’). The soil cores were then mixed 
and kept below 4 °C until further processing. For 
more details, see Yashiro et al. (2016) and Buri et al. 
(2020).

Environmental descriptors

For each sample, 33 edaphic descriptors were meas-
ured (Table  S1). Relative humidity (rh) and soil 
organic carbon (LOI) have been measured gravi-
metrically. Percentages of sand, silt, and shale were 
measured by laser granulometry. Electroconductiv-
ity (EC) and pH were measured in a soil and Milli-
Q water slurry. Total phosphorus was measured by 
colorimetry after decarbonization. C/N ratio was cal-
culated from total carbon and nitrogen content meas-
ured from spectroscopy (Carlo Erba CNS2500 CHN 
elemental analyzer). Total organic carbon (TOC) and 
mineral carbon (MINC) were measured by pyrolysis. 
The mineralogy was determined by X-Ray powder 
diffraction and fluorescence. A description of these 
analyses can be found in Yashiro et  al. (2016) and 
Buri et al. (2020).

Topo-climatic descriptors were derived from 
data of the Swiss Meteorological Network (resolu-
tion 25 m; average trends for the period 1961–1990; 
https://​www.​meteo​swiss.​admin.​ch) and Swisstopo 
(resolution 25  m https://​www.​swiss​topo.​admin.​ch/). 
The descriptors were elevation (mnt25), slope steep-
ness (slope), slope orientation (asp25) and the sinus 
of the orientation (aspvar), topographic position 
(topo), topographic wetness index (twi25), site water 
balance (swb), shortwave radiation per month (sum-
radyy), monthly mean precipitation sum (precyy), 
number of precipitation days per growing season 

(pday), monthly moisture index (mmind68), monthly 
average temperature (taveyy), annual degree-day 
above 0 °C (ddeg0), and number of frost days during 
the growing season (sfroy) (Pradervand et  al. 2014; 
Yashiro et al. 2016, 2018; Buri et al. 2020; Mod et al. 
2020, 2021). In addition to these descriptors, biocli-
matic descriptors were added from the Chelsa data-
base (Karger et al. 2017) (Table S1).

For each environmental descriptor, the few miss-
ing values (1 rh, 4 spectroscopy, 3 mineralogy, 6 C/N 
when nitrogen content was below the detection limit) 
were inferred by nearest neighbour averaging (func-
tion preProcess, method  ’knnImpute’, package caret 
v. 6.0-86 Kuhn 2020). The dimensionality of the 
environmental descriptor dataset was reduced using a 
principal component analysis. In order to capture 80% 
of the total variance in each dataset, we retained the 
first eleven PCA axes (Figure S1).

Landscape descriptors

The landscape descriptors have been calculated based 
on the 10  m resolution land cover raster derived 
from Sentinel-2 imagery (Malinowski et  al. 2020) 
(http://​s2glc.​cbk.​waw.​pl/). This raster includes 13 
land cover categories such as coniferous forest (rep-
resenting 27.2% of the study area), herbaceous veg-
etation (25.6%), moors and heathlands (16.2%), and 
broadleaf tree forest (11.0%). A total of 13 descrip-
tors commonly used in landscape ecology studies and 
representing different aspects of landscape configura-
tion and composition were computed (see Table 1 for 
details). To explore the spatial scale at which land-
scape structure impacts soil protists diversity, each 
descriptor was calculated in various circular areas 
of different radius around the sampling coordinate 
(neighbourhood window size = 100, 200, 500, 1000, 
and 2000 m; Figure S2).

Protist community

DNA extraction, PCR, sequencing

DNA was extracted from 0.25  g of soil samples in 
triplicates with the MoBio PowerSoil DNA extraction 
kit (Mo Bio Laboratories, Carlsbad, CA, USA) fol-
lowing the manufacturer’s instructions. The V4 region 
of the 18S rRNA gene was then amplified using the 
general eukaryotic primers TAReuk454FWD1 and 

https://www.meteoswiss.admin.ch
https://www.swisstopo.admin.ch/
http://s2glc.cbk.waw.pl/
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TAReukREV3 (Stoeck et  al. 2010). PCR amplifi-
cation details can be found in Seppey et  al. (2020). 
Paired-end reads (2  ×  300  bp) were then sequenced 
from an Illumina MiSeq sequencer at the Univer-
sity of Geneva (Molecular Systematics & Environ-
mental Genomics Laboratory) as in Seppey et  al. 
(2020). Sequences are available on the European 
Nucleotide Archive under the project PRJEB30010 
(ERP112373).

Bioinformatic pipeline

Taken together, all samples provided 128,581,740 
raw reads that were analysed with a pipeline based 
on VSEARCH v. 2.15.2 (Rognes et  al. 2016). The 
reads were first merged with Flash v. 1.2.11 (Magoc 
and Salzberg 2011) before removing the sequences 
shorter than 250 nucleotides. Reads with a quo-
tient between expected error and sequence length 
below 0.01 as well as chimaeras were discarded. The 
23,486,785 reads left (18%) were then clustered into 
1,215,009 OTUs with the Swarm algorithm using the 
fastidious option (v. 3.1.0 Mahé et al. 2021).

The taxonomic assignment of the OTUs was per-
formed in two steps. The first part was aiming to iden-
tify and remove the OTUs not belonging to protists 
(i.e. Prokaryotes, Metazoa, Embryophyta and Fungi). 

This was done by using the best alignment from a 
pairwise local alignment (blastn v. 2.9.0; Camacho 
et al. 2009) of the OTUs dominant sequences on the 
pooled PR2 4.12.0 (Guillou et al. 2013) and Silva v. 
138 (non-redundant at 99% Pruesse et al. 2007) data-
bases. The second part consisted of the final assign-
ment of the remaining OTUs by aligning their domi-
nant sequences against the PR2 database v. 4.12.0 
using the best alignment of a global pairwise align-
ment (ggsearch36 v. 36.3.8, (Pearson 2000)). Prior 
to the global pairwise alignment, the PR2 database 
was trimmed according to the primers used for the 
sequencing after a multiple sequence alignment per-
formed with ClustalW v. 2.1 (Larkin et al. 2007).

From the 178 plots, 4 were sampled twice and 13 
three times during the sampling period. For each of 
these plots, OTUs abundance was estimated as the 
median of the number of sequences retrieved from 
the different samples. In addition, 16 plots with a 
low number of sequences were removed by using 
the breaking point of a piecewise linear model on 
the sorted log of the number of sequences per sam-
ple (observed threshold = 6047 sequences) (Figure 
S3). In total, 162 plots were kept for further analyses. 
We then discarded the OTUs with near-zero variance 
(ratio between the two most frequent OTU abundance 
below 95/5, and unique number of sequences within 

Table 1   List of the selected landscape descriptors

Abbreviation Descriptor Level Explanation (units)

area Sampling patch area Patch Hectares
area_mn Average size of meadow patches Class Hectares
%_meadow % of meadows Class % of herbaceous vegetation within the neighbourhood window
%_anthro % of artificial habitat Class % of artificial surfaces i.e. constructed and cultivated areas within 

the window
%_forest % of forests Class % of broadleaf and coniferous tree cover within the window
%_open % of open vegetated habitat Class % of herbaceous vegetation, moors, heathland, sclerophyllous 

vegetation, marshes, and peat bogs within the window
frac Fractality Patch Complexity of the sampling patch
cai Core area index Patch Area of the sampling patch minus the pixel touching another patch 

(percentage)
ed Edge density Class Sum of all meadow edges divided by the area of the raster (metres 

per hectare)
iji Interspersion and juxtaposition index Class Intermixing of meadows within other habitat classes (percent)
clumpi Clumpiness Class Calculate the disaggregation of the meadows
division Division Class Probability that two meadow points are not in the same patch
shdi Shannon diversity index of habitat Landscape Descriptor increasing according to the number of landscape 

classes and evenness of these classes
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an OTU below 10% of the number of samples; func-
tion nearZeroVariance, package caret v. 6.0-86 Kuhn 
2020). The final dataset included 162 plots and 3992 
protist OTUs.

Statistical analyses

To assess local alpha diversity, the Shannon diver-
sity index was calculated for each community. To test 
the importance of landscape structure for soil protist 
alpha diversity, a random forest algorithm was used 
to model the response of soil protist Shannon diver-
sity to landscape and environmental descriptors. Prior 
to the modelling, all landscape and environmental 
descriptors were scaled to a standard deviation of 1 
and centred to a mean of 0. Several runs of random 
forest were conducted within a tenfold cross-vali-
dation stratified according to the response variable, 
repeated three times. The models used 500 trees and 
a maximum depth of 125 nodes (default parameters 
of the function train, package caret v. 6.0-86 Kuhn 
2020). The number of variables per split (mtry = 2, 
14, 27; hyperparameter tuning) was selected to opti-
mise model performance (based on the best R2). The 
importance of each descriptor was estimated as the 
mean decrease in accuracy after permuting the target 
descriptor (function varImp, package caret v. 6.0-86 
Kuhn, 2020). To allow comparisons among models, 
the importance of each descriptor was weighted by 
the R2 of the model. To assess the directions of the 
effect, partial dependence plots (Goldstein et al. 2015, 
function partial, package pdp v. 0.7.0 Greenwell, 
2017) were computed for each descriptor. Partial 
dependence plots summarise the marginal effect that 
an environmental or landscape descriptor has on the 
predicted values of each diversity metric (i.e. effect of 
a target descriptor when all others are kept constant). 
This procedure was repeated for each neighbourhood 
window.

Changes in protist community composition among 
sites (beta diversity) were measured using abun-
dance-based Bray–Curtis dissimilarity following the 
approach of Baselga et  al. (2013). We assessed the 
rate of distance-decay of the protist communities as 
the slope of a linear regression on the relationship 
between protist Bray–Curtis dissimilarity and geo-
graphic distance, both log-transformed. Because of 
the non-independence of pairwise comparisons, we 
used a matrix permutation test to assess the statistical 

significance of the distance-decay slope. Specifically, 
the rows and columns of the protist Bray–Curtis dis-
similarity matrix were permuted 1000 times, and the 
observed slope was compared with the distribution 
of values in the permuted datasets. We also tested 
whether the environmental and landscape descriptors 
(for each of the five neighbourhood windows) were 
responding to geographic distance using the same 
permutation procedure.

To test whether landscape structure drives changes 
in protist community composition, we first performed 
an RDA on the protist community dissimilarity 
matrix using landscape, environmental and spatial 
descriptors. The spatial descriptors consisted of a 
selection of 16 principal coordinates of neighbour-
hood matrix (PCNM) calculated from the Euclid-
ean distances between plots (Borcard and Legendre 
2002). The PCNM descriptors showing the strongest 
correlations to the protist Bray–Curtis dissimilarities 
were selected by stepwise selection (function ordis-
tep, package vegan v2.6-2; Oksanen et al. 2022). We 
used a PERMANOVA (function anova.cca, package 
vegan v2.6-2; Oksanen et al. 2022) to test the signifi-
cance of marginal effect of each variable included in 
the RDA. Secondly, we tested the variation explained 
by each of the three sets of variables through varia-
tion partitioning (Borcard et  al. 1992, function var-
part, package vegan v.2.6-2; Oksanen et al. 2022).

The bioinformatic pipeline and all statistical analy-
ses can be found on https://​gitlab.​com/​csepp​ey/​milan. 
All statistical analyses were performed in R 4.2.2.

Results

Protist community composition

Soil protist diversity was dominated by Alveolata 
and Rhizaria, which represented 37% and 33% of the 
sequences, respectively. Figure S4 provides further 
information about protist community composition.

Influence of landscape structure on soil protist 
diversity

Landscape structure had a significant effect on protist 
Shannon diversity. The amount of variation in protist 
Shannon diversity explained by landscape descriptors 
was greater than the one explained by environmental 

https://gitlab.com/cseppey/milan
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descriptors when using larger neighbourhood win-
dows (500 m to 2000 m around plot centre) and lower 
when using smaller neighbourhood windows (100 and 
200  m: Fig.  2A). The percentage of open vegetated 
habitats around a plot explained the highest amount 
of variation in protist Shannon diversity among all 
landscape descriptors (Fig. 2B), whereas patch level 
descriptors (patch area, patch core area, and patch 

fractality) explained the lowest amount. The three 
landscape descriptors that explained the largest part 
of soil protist Shannon diversity were the percentage 
of open vegetation in 500 m neighbourhood windows, 
the percentage of meadows (1000 m) and edge den-
sity (1000 m). Specifically, protist alpha diversity was 
positively correlated with the percentage of open veg-
etation (500 m) and followed a unimodal relation with 

Fig. 2   Effect of landscape structure on soil protist Shannon 
diversity. A) Difference between the variation in total pro-
tist diversity explained by landscape descriptors versus envi-
ronmental descriptors in random forest models (R2

landscape−
R2

environment). B) Variability in the importance of landscape and 
environmental descriptors for the description of overall soil 
protist Shannon diversity in random forest models. The impor-
tance has been weighted by the R2 of the model to allow com-
parisons among models. Landscape descriptors are shown in 
black, and environmental descriptors in grey. The three land-
scape descriptors with the highest importance are highlighted 

(percentage of open vegetated habitats, edge density, and 
percentage of meadows). C) Partial dependence plots show-
ing the trends of soil protist Shannon diversity along the three 
most important landscape descriptors. For each sub-figure, the 
y-axis reflects the effect that the target landscape descriptor has 
on the predicted values of the response variable while keeping 
all other descriptors constant. The x-axis represents the centred 
and scaled values of the three landscape descriptors that best 
explain protist Shannon diversity. Colours indicate the most 
important (importance * R2) neighbourhood window sizes
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the percentage of meadows (1000 m) and edge den-
sity (1000 m) (Fig. 2C). The importance and direction 
of the effect of each landscape descriptor on Shannon 
diversity can be found in Figure S5.

Changes in protist community composition

We found a significant positive relationship between 
protist community dissimilarity and geographic dis-
tance among plots (slope = 0.015, P < 0.01: Fig. 3A). 
In addition, we found significant positive relation-
ships between the dissimilarity of environmental or 

landscape descriptors and geographic distance among 
plots (Fig.  3B). It is noteworthy that the slopes of 
environmental descriptors (slope = 0.106) were less 
steep than the ones calculated for landscape descrip-
tors. The slopes of the landscape-based DDR were 
also steeper for larger neighbourhood window sizes 
(100 m: 0.111; 200 m: 0.133; 500 m: 0.180; 1000 m: 
0.194; 2000 m: 0.269).

Redundancy analyses showed that landscape, envi-
ronmental and spatial descriptors jointly influenced 
protist beta diversity (Fig.  4). The amount of varia-
tion in protist beta diversity explained by landscape 
descriptors was comparable to the one explained by 
environmental or spatial descriptors. It is also notice-
able that the landscape effect increased with the 
size of the neighbourhood window, even explaining 
a slightly higher portion of the variation in protist 
community composition than spatial or environmen-
tal variables when calculated in larger neighbour-
hood windows (2000  m, Fig.  4). In addition, PER-
MANOVA analyses showed that the landscape 
variables which significantly contribute to explain 
changes in protist beta diversity varied among scales 
(Table 2). For instance, the percentage of anthropic, 
forested or vegetated open area played a major role 
at the smaller scales (100  m and 200  m windows) 
while landscape descriptors such as clumpiness or 
the Shannon diversity index of habitat were only sig-
nificant when calculated in larger windows (500 m to 
2000 m windows). 

Discussion

We showed the importance of landscape struc-
ture in explaining protist alpha and beta diversity. 
This adds to the body of evidence showing the 
importance of spatial environmental factors such 
as topography, and climate (Seppey et  al. 2020) in 
structuring protist communities and provides new 
insights on the potential effects of land-use change. 
Landscape descriptors show comparable importance 
to environmental and spatial ones, which establish 
them as a promising tool for a wide range of spatial 
analyses. As expected, the effect of landscape struc-
ture on both protist alpha and beta diversity was 
scale-dependent and maximal for neighbourhood 
windows between 500 and 2000  m. These results 

Fig. 3   Distance-decay curves for the A) protist communities 
and B) landscape and environmental descriptors. All distance-
decay curves are shown in log–log scale for optimal visualisa-
tion. B) The different lines correspond to distance-decay rela-
tionships for environmental (black) and landscape descriptors 
calculated in neighbourhood windows of 100 m (blue), 200 m 
(brown), 500 m (orange), 1000 m (green) and 2000 m (cyan). 
All slopes were significantly different from a null model 
obtained by permuting 1000 times the samples of the depend-
ent variable with p-values <= 0.001
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Fig. 4   Redundancy 
analyses showing the 
effect of landscape (lscp), 
environmental (env), and 
spatial variables (PCNM, 
spat) on protist communi-
ties. The panels on the left 
show the full RDAs with 
arrows representing the 
contribution of significant 
variables (see Table 2). 
The five RDAs were done 
using landscape variables 
calculated in different 
neighbourhood sizes (A: 
100 m; B: 200 m; C: 500 m; 
D: 1000 m; E: 2000 m). 
The variance on the two 
first axes range between 
0.066 and 0.068, and 0.037 
and 0.040, respectively. The 
total variance explained by 
the RDAs range between 
0.14 and 0.15 (adjusted-
R2). The panels on the right 
show the partitioning of the 
variation in protist com-
munities among landscape, 
environmental and spatial 
variables. The significance 
of the different fractions is 
given in Table S3
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confirm that local protist community composi-
tion strongly depends on landscape-scale assembly 

processes such as dispersal from the regional pool 
of taxa.

Table 2   Summary 
statistics of permutation-
based analysis of variance 
(PERMANOVA). The 
significance of the marginal 
effect of each variable 
included in the RDA is 
shown. Variables are 
grouped in three categories: 
landscape, environmental, 
and spatial descriptors. 
Stars indicate significant 
p-values: “***” ≤ 0.001, 
“**” ≤ 0.01, “*” ≤ 0.05, 
“.” ≤ 0.1

100 200 500 1000 2000

Landscape area
area_mn
pland *
pland_anthro  . *  .
pland_forest * *
pland_open *  . *
ed  .
frac
cai
iji
clumpi  . *  . *
division
shdi *

Environment env_PC1 * * *  .
env_PC2 *
env_PC3 ** * * * *
env_PC4
env_PC5 ** ** ** *** **
env_PC6
env_PC7
env_PC8
env_PC9
env_PC10 * * * * *
env_PC11

Space PCNM5 *  .  .  .
PCNM2  .  . *  . *
PCNM8
PCNM1
PCNM6 * * ** ** **
PCNM12  .
PCNM4
PCNM3 * *  .  .
PCNM11
PCNM9
PCNM7
PCNM17 *  .  . *  .
PCNM16  .  . *
PCNM14  .  .  .
PCNM10
PCNM13  .  .  .  .
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Landscape structure influences local protist alpha 
diversity

Our results highlight the key role of landscape struc-
ture for soil protist alpha diversity in alpine meadows. 
Landscape composition descriptors (e.g. percentage 
of open vegetated habitats or meadows around each 
plot) had the most important effect on soil protist 
diversity. On the contrary, landscape configuration 
descriptors (e.g. division, interspersion and juxtapo-
sition index), although important, contributed less. 
Interestingly, patch-scale descriptors had a consist-
ently low influence on soil protist diversity and, there-
fore, cannot explain the observed changes in protist 
diversity. Overall, these results agree with the ‘habitat 
amount hypothesis’ that suggests that the proportion 
of habitat type in the landscape is more important 
than its spatial distribution (Laine and Hanski 2006; 
Fahrig et al. 2015). These conclusions are similar to 
those of previous works on the distribution of fungi 
in old forests (Mennicken et al. 2020), suggesting that 
similar mechanisms impact protists and fungi follow-
ing land-use change. While these convergent lines of 
evidence suggest that these conclusions are valid for 
all soil microbes, they are in strong contradiction with 
studies focusing on plants and animals, where patch 
size and shape have strong effects on local population 
dynamics (Reed 2004; Prevedello and Vieira 2010). 
This difference between macro- and microorgan-
isms can be explained by differences in population 
size. Indeed, for the same area, the population size 
of microbes is larger by several orders of magnitude 
than that of macroorganisms. As such, population 
size fluctuations and genetic drift (and other popula-
tion processes) are less likely to be problematic for 
microbes at the scale of a meadow.

In our study, a high proportion of open vegetated 
habitats around the plot had a positive effect on 
local diversity whereas a high proportion of artifi-
cial habitats (built-up and cultivated) had a nega-
tive one (Figure S5). Maximal protist diversity was 
observed for intermediate proportions of forest in 
the surrounding landscape (Figure S5). This can be 
explained by three different processes. First, pro-
tist communities in forests have been shown to be 
less diverse than those in meadows (Seppey et  al. 
2017). Then, open vegetated habitats are not homo-
geneous and include a large variety of ecosystem 
types (herbaceous vegetation, moors, heathland, 

sclerophyllous vegetation, marshes, and peat bogs), 
each one having its specific protist communities. 
For this reason, open vegetated habitats as a whole 
are more likely to host a higher diversity than forests 
(more homogeneous) or artificial habitats. Assum-
ing similar niche-based filtering or dispersal among 
habitats, these differences in protist diversity among 
habitats are sufficient to explain the observed pat-
terns. However, another potential explanation is that 
the closed structure of forest and artificial habitats 
hampers protist dispersal, which is likely caused 
by wind (Wilkinson et al. 2012). If true, fewer taxa 
should be able to colonise a meadow plot from the 
forest or artificial habitats than from open vegetated 
habitats. It follows that differences in dispersal 
alone could explain the observed patterns. Finally, 
the different environmental conditions such as soil 
type and moisture can hamper species from the 
forest or artificial habitat to colonise the meadow 
which would suggest a stronger filtering through 
niche processes of species adapted to forest or artifi-
cial habitats. These three potential explanations are 
not mutually exclusive and interactive effects are 
likely.

Despite the higher influence of landscape compo-
sition on protist alpha diversity, our results also point 
towards strong edge effects (Fig. 2C). Edges are hot-
spots of biodiversity because of the presence of spe-
cies associated with different habitats alongside eco-
tonal species (Descombes et al. 2017). They are also 
an important source of dispersal to neighbouring hab-
itats (Molnar et al. 2001). In microbial ecology, only 
a few studies have investigated community composi-
tion in transition zones between habitats. For exam-
ple, Boeraeve et al. (2019) showed that both distance 
to the forest edge and edge orientation to the south 
influence mycorrhizal communities of trees (Alnus 
glutinosa). In our study, soil protist diversity was 
maximal at intermediate edge density. A low edge 
density means a lower likelihood that colonists from 
adjacent habitats settle down in the meadow. Ecotonal 
specialists might also be lacking when edge density is 
too low. The lower local protist diversity at high edge 
density can tentatively be explained by two mecha-
nisms. On the one hand, high edge density might 
favour a few generalist species over specialist taxa. 
Generalists can survive in various habitats and are 
more likely to benefit from highly mixed landscape 
habitat mosaics. On the other hand, edge density was 
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positively correlated with the area of urban habi-
tat (Spearman correlation p < 0.001, rho = 0.44). As 
these habitats have a negative contribution to local 
diversity, soil protist diversity is lower than when 
only habitats with positive contributions to diversity 
are present. In this case, edge density would reflect a 
compositional effect rather than a true edge effect.

Altogether, protist alpha diversity in the Alps is 
favoured by a diversified landscape, containing equili-
brated amounts of meadows and forests, but also to 
some extent artificial habitats. This stands in contrast 
with current tendencies towards increasing urbanisa-
tion and meadow recolonisation by forests as a result 
of agricultural abandonment (Spiegelberger et  al. 
2006). Diversified protist communities are key in 
many soil ecosystem services, such as carbon storage 
and plant production (Geisen et al. 2019). The disap-
pearance of traditional lifestyles in the Alps (Spiegel-
berger et  al. 2006) can be expected to modify the 
structure and functioning of the soil microbial food-
web. Such modifications can lead to more negative 
impacts on Alpine meadows than previously assessed 
based on macroorganisms alone (Spiegelberger et al. 
2006). Overall, maintaining sufficient landscape 
diversity in the Alps while avoiding excessive frag-
mentation is thus likely to have a positive effect on 
meadow soil protist diversity and functionality as 
observed in macroorganism groups such as Orthop-
tera (Essl and Dirnboeck, 2012), or plants and polli-
nators in general (Jones et al. 2019).

Landscape structure modulates the rate of 
distance‑decay in protist beta diversity

We found a significant distance-decay relationship in 
protist community dissimilarity (Fig. 3A) as already 
observed in different environmental contexts (Len-
tendu et al. 2018; Macingo et al. 2019). This distance-
decay can in part be explained by changes in environ-
mental conditions (niche-based processes), especially 
soil moisture (env_PC5) and organic carbon content 
(env_PC3) which were the most significant envi-
ronmental descriptors in the RDAs (Fig.  4) and by 
dispersal effect due to a decrease in propagule flow 
among habitats with distance. Importantly, our results 
highlight that landscape structure has a key effect on 
the rate of distance-decay. Landscape structure indeed 
explained a similar portion of the variation in protist 
community composition as environmental and spatial 

variables (Fig. 4). Landscape distance-decay was also 
significant, showing that two plots far apart tend to 
have more different landscape structure than two plots 
close to each other (Fig. 3B). Furthermore, the effect 
of landscape structure on the rate of distance decay 
was dependent on the size of the neighbourhood win-
dow used to calculate landscape descriptors. Indeed, 
the slopes of the DDRs (Fig.  3B) and the impor-
tance of landscape effects increased with the size of 
the neighbourhood window (Fig. 4). In addition, dif-
ferent landscape descriptors correlate with protist 
dissimilarity depending on the size of neighbour-
hood window considered (Table 2) suggesting scale-
dependent effects of landscape structure on the rate of 
distance-decay.

Overall, our results suggest that landscape struc-
ture modulates the rate of distance-decay by influenc-
ing niche-based and dispersal processes. Three main 
mechanisms can be evoked here: dispersal excess 
(mass effect, Leibold et al. 2004), environmental fil-
tering (species sorting), and dispersal limitations. 
Dispersal excess or mass effect can be expected 
over short distances (where dispersal limitations are 
unlikely) and among habitats having different envi-
ronmental characteristics (source and sink habitats) 
(Mouquet and Loreau 2003; Leibold et  al. 2004; 
Urban 2006; Logue et al. 2011). This fits with the sig-
nificant effect of percentage of forest and anthropic 
habitats in neighbourhood windows of 100  m or 
200 m radii on protist community dissimilarity. Under 
mass effects, two meadows surrounded by similar for-
est habitats will host an important number of forest 
species even if those species are maladapted to local 
conditions. This will result in a lower beta diversity 
than expected based on local environmental differ-
ences or geographic distance alone. Species sorting 
results in a matching between the environmental con-
ditions and community composition and is expected 
in the absence of dispersal limitation or excess. Land-
scape structure determines the taxonomic composi-
tion and size of the landscape pool of taxa that can 
potentially colonise a focal plot. Two plots with simi-
lar environmental conditions will impose a similar 
filtering on the landscape pool of potential colonists. 
However, if the composition of those pools differs 
(e.g. because of different landscape structure), envi-
ronmental filtering will select or filter different spe-
cies thereby impacting beta diversity. In agreement 
with this idea, the observed effect of the percentage 
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of open habitats (1000 m) and meadows (2000 m) can 
be related to changes in the composition of the land-
scape pool of potential colonists. Finally, landscape 
structure has been shown to influence the rate of 
organism dispersal among habitat patches in several 
taxonomic groups such as plants (Auffret et al. 2017), 
mammals (Hämäläinen et  al. 2019), and arthropods 
(Bonte et  al. 2006). In our case, low clumpiness of 
meadows can increase inter-patch distances thereby 
increasing dispersal risks and reducing movements 
among patches (Fahrig 2007). Furthermore, land-
scape composition can facilitate or hamper disper-
sal rates among habitat patches. For instance, large 
patches of low vegetation such as in moors and heat-
lands or sclerophyllous vegetation can facilitate dis-
persal by wind whereas the closed structure of forest 
patches might hamper dispersal by wind. However, 
how landscape structure influences the dispersal of 
protists likely depends on the dispersal mode of spe-
cific taxa, where important differences between free 
living taxa (expected to disperse by wind) and para-
sites (depending on host movement) can be expected. 
Generally, the precise mechanisms responsible for the 
patterns observed in this study need to be confirmed 
by experimental studies.

Overall, our results highlight the importance of 
dispersal from surrounding habitats for protist com-
munity composition. Microbial community dynam-
ics should thus be considered at the landscape-scale 
using a metacommunity perspective (Leibold et  al. 
2004; Beisner et  al. 2006; Cadotte 2006) which has 
important consequences for land-use management in 
the Alps and in general. Indeed, changes in landscape 
structure are likely to modify assembly processes, 
thereby impacting the composition, functionality and 
resilience of soil protist communities (Saleem et  al. 
2019). As soil protists are key players in soil food 
webs (Xiong et  al. 2018), these changes can poten-
tially have a cascading impact on ecosystem function-
ing and services such as fertility as well as carbon 
sequestration and storage (Jassey et  al. 2022). It is 
thus likely that the ongoing agricultural abandonment 
and urbanisation in the Alps (Vannier et al. 2016) will 
lead to local and regional decreases in protist diver-
sity in meadow soils with potentially important con-
sequences for the functioning of these ecosystems.

Future developments of microbial landscape ecology

While the present study and several other recent 
works (Mennicken et  al. 2020; Mony et  al. 2021, 
2022) provide a strong basis to further develop the 
field of microbial landscape ecology, much remains to 
be done. One of the most important questions arising 
from our work is the actual rate of dispersal (excess 
or limitations) of protists and microbes in general 
from surrounding habitats (Frey 2015). The influence 
of barriers to dispersal across different microbial taxa 
(Wilkinson and Mitchell 2010; Paz et al. 2021) needs 
to be investigated in the future. Likewise, questions 
arise about the generalisability of our results. Would 
we observe a similar relationship linking landscape 
and protist diversity in other habitats or regions (e.g. 
tropical areas)? Would other microbial groups show 
similar patterns (e.g. bacteria, fungi, archaea)? This 
last question is worth investigating, as, for instance, 
Mennicken et  al. (2020) showed that bacteria and 
fungi responded differently to landscape composition. 
Finally, while our results highlight the importance of 
landscape structure for local protist community diver-
sity and composition, the functional consequences of 
those changes and their magnitude remain unclear. 
Similarly, the extent to which these changes influence 
other taxa, including other microorganisms and mac-
roorganisms, needs to be investigated.

Conclusion

Our results highlight the importance of landscape 
structure, especially changes in the composition of 
neighbouring habitats, in structuring soil microbial 
diversity in alpine meadows. Landscape structure in 
the larger neighbourhood windows (radii of 500  m 
to 2000 m) was as important as the commonly used 
edaphic parameters in describing protist alpha and 
beta diversity. We showed that, like macroorgan-
isms, soil protists are strongly impacted by changes in 
landscape structure, which is likely to have important 
consequences on ecosystem structure and function-
ing. Using landscape ecology approaches in microbial 
ecology studies can improve our understanding of the 
drivers of and capacity to predict spatial patterns of 
microbial diversity. Microbial landscape ecology is 
a promising avenue to improve our understanding of 
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the impact of land-use changes on biodiversity and 
ecosystem functions.
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