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ABSTRACT: Geophysical techniques can help to bridge the inherent gap that exists with regard to 

spatial resolution and coverage for classical hydrological methods. This has led to the emergence of a 

new and rapidly growing research domain generally referred to as hydrogeophysics. Given the differ-

ing sensitivities of various geophysical techniques to hydrologically relevant parameters, their inherent 

trade-off between resolution and range, as well as the notoriously site-specific nature of petrophysical 

parameter relations, the fundamental usefulness of multi-method surveys for reducing uncertainties in 

data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is 

the quantitative integration of the resulting vast and diverse database into a unified model of the 

probed subsurface region that is consistent with all available measurements. To this end, we present a 

novel approach toward hydrogeophysical data integration based on a Monte-Carlo-type conditional 

stochastic simulation method that we consider to be particularly suitable for high-resolution local-scale 

studies. Monte Carlo techniques are flexible and versatile, allowing for accounting for a wide variety of 

data and constraints of differing resolution and hardness, and thus have the potential of providing, in a 

geostatistical sense, realistic models of the pertinent target parameter distributions. Compared to more 

conventional approaches, such as co-kriging or cluster analysis, our approach provides significant ad-

vancements in the way that larger-scale structural information contained in the hydrogeophysical data 

can be accounted for. After outlining the methodological background of our algorithm, we present the 

results of its application to the integration of porosity log and tomographic crosshole georadar data to 

generate stochastic realizations of the detailed local-scale porosity structure. Our procedure is first 

tested on pertinent synthetic data and then applied to a field dataset collected at the Boise Hydrogeo-

physical Research Site. Finally, we compare the performance of our data integration approach to that 

of more conventional methods with regard to the prediction of flow and transport phenomena in highly 
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heterogeneous media and discuss the implica-
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INTRODUCTION 
Traditionally, aquifer characterization is based on 

the analysis of drill cores as well as the results of 
tracer and pumping experiments (e.g., Hubbard and 
Rubin, 2005). Core studies can provide detailed local 
information but are inherently 1D in nature, whereas 
tracer and pumping tests tend to capture the gross av-
erage properties of a probed region. Without comple-
mentary information, these techniques may thus be 
inadequate for reliably characterizing laterally hetero-
geneous aquifers. The inherent gap in spatial resolu-
tion and coverage between core analyses and   
pumping/tracer tests, which generally amounts to sev-
eral orders of magnitude, can be bridged by high-    
resolution geophysical techniques. As a result, the 
corresponding new field of research, generally re-
ferred to as hydrogeophysics or groundwater geo-
physics, has been evolving strongly, as proven, for 
example, by the recent publication of several review- 
type textbooks on the subject (e.g., Kirsch, 2006; 
Vereecken et al., 2006; Rubin and Hubbard, 2005a). 

Given the gaps in resolution and coverage be-
tween traditional hydrological techniques on one hand 
and the widely differing sensitivities to hydrologically 
relevant parameters as well as the notorious trade-off 
between resolution and range of the various geo-
physical techniques on the other hand, it is clear that 
optimal results are most likely obtained through the 
use of multiple methods. To obtain a detailed and in-
ternally consistent aquifer model, the geophysical data 
need to be integrated with all other hydrological data 
as well as any other kind of relevant a priori informa-
tion. The quantitative integration of such a diverse da-
tabase represents a major challenge due to the widely 
varying physical nature and hardness of the data, their 
differing scales of resolution and their deterministic or 
stochastic quantification (e.g., Paasche et al., 2006; 
Rubin and Hubbard, 2005b; Hyndman et al., 2000).  

In recent years, significant progress regarding the 
quantitative characterization of hydrocarbon reservoirs 
has been made by integrating wide ranges of geo-
physical, petrophysical, and production data through 
geostatistical interpolation, classification, and simula-
tion techniques (e.g., Deutsch, 2002; Kelkar and Perez, 
2002). There are close analogies between hydrocarbon 
reservoirs and aquifers in general, and their geophysi-

cal characterization in particular (e.g., Szerbiak et al., 
2001). However, an important difference between the 
two disciplines is that high-resolution crosshole to-
mographic methods, which are widely used in hydro-
geophysical studies, are generally unavailable for the 
geophysical characterization of hydrocarbon reser-
voirs. It is therefore reasonable to assume that the in-
tegration of geophysical and hydrological data through 
suitably adapted geostatistical techniques will eventu-
ally prove to be at least as successful as their more es-
tablished applications in the hydrocarbon industry. 
Given the rapidly growing need for managing and 
protecting groundwater resources, this clearly is an 
interesting and exciting prospect, which should be 
systematically explored (e.g., Tronicke and Holliger, 
2005; Hubbard et al., 2001; Hyndman et al., 2000).  

In this article, we pursue the above objective. 
After a brief review of commonly used geostatistical 
data integration techniques, we present a novel Monte- 
Carlo-type conditional simulation approach that we 
consider to be particularly promising for hydrogeo-
physical data integration. This approach is first tested 
on a realistic synthetic database and then applied to a 
pertinent observed dataset. Finally, we explore and 
discuss the potential implications arising for the pre-
diction of hydrological flow and transport phenomena 
by comparing the results obtained with our approach 
with those obtained by more conventional techniques.  

 
DATA INTEGRATION  

The potential of multi-method geophysical sur-
veys to reduce uncertainties in data analysis and inter-
pretation is widely recognized (e.g., Garambois et al., 
2002; Hubbard et al., 2001; Dannowski and Yara-
manci, 1999). A common way to integrate multiple 
and diverse geophysical surveys is by deriving inde-
pendent subsurface property models, which are then 
jointly interpreted to obtain a single integrated model 
of the probed region. This approach is, however, 
largely qualitative in nature, and hence the outcome 
depends heavily on the background, experience, and 
preconceptions of the interpreter. Most importantly, 
this approach also largely excludes a rigorous quanti-
tative assessment of the overall quality and internal 
consistency of the inferred integrated models.  

A more quantitative approach to this problem is 
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to link multiple datasets during the inversion and 
model generation process. As is the case for essen-
tially all quantitative data integration procedures, an 
important advantage of such joint inversion ap-
proaches is that the inherent ambiguity of each dataset 
is reduced due to the additional constraints offered by 
the other datasets. However, joint inversion techniques 
tend to require far-reaching a priori assumptions on 
the relations between the various parameters involved 
(e.g., Linde et al., 2008, 2006; Kowalsky et al., 2005; 
Bosch, 2004; Gallardo and Meju, 2003). The quality 
and consistency of the resulting multi-parameter mod-
els thus depends critically on the reliability of these 
assumptions and on the way they are accommodated 
in the inversion procedure. Unfortunately, many, if not 
most, of these parameter relations tend to be non-
unique, site-specific, spatially variable, and/or scale- 
dependent (e.g., Schoen, 1996). Nevertheless, ongoing 
algorithmic and computational improvements can be 
expected to further enhance the attractiveness and ap-
plicability of joint inversion approaches.  

An entirely different class of approaches to quan-
titative data integration, which we consider in this 
study, is based on geostatistical principles. In its 
original definition, geostatistics refers to the interpola-
tion or extrapolation of sparsely sampled data based 
on the observed or inferred covariance structure of 
these data. The corresponding techniques are referred 
to as kriging or, if multiple datasets and their interre-
lations are considered, co-kriging. For convenience 
and consistence, we adopt the considerably broader 
definition of the term “geostatistics” as practiced in 
hydrocarbon reservoir characterization, which essen-
tially comprises all multi-variate statistical and sto-
chastic techniques that can be used for spatial data 
analyses (e.g., Deutsch, 2002; Kelkar and Perez, 
2002).  

Probably the simplest geostatistical approach 
sensu stricto to integrate multiple datasets is through 
classical co-kriging based on the auto- and crossco-
variances of the various parameters and observations 
(e.g., Gloaguen et al., 2001; Cassiani et al., 1998). 
This approach can be quite effective for providing 
smoothed reconstructions of the spatial distributions 
of the target parameters. An inherent shortcoming is, 
however, that autocovariance functions of the inferred 

models differ substantially from those of the actual 
data. Moreover, co-kriging assumes the relationships 
between the various datasets to be linear and unique, 
which in practice is often not the case.  

Bayesian statistics is another approach for the 
quantitative integration of multiple and/or diverse 
datasets (e.g., Gelman et al., 2003). This approach re-
quires an initial estimate of the probability distribution 
of the target parameter, as could be obtained, for ex-
ample, by kriging or co-kriging of the hydrological 
database alone. This prior distribution is comple-
mented through estimates of the joint probability dis-
tribution of collocated hydrological and geophysical 
data, which is then used to update the prior distribu-
tion into a posterior distribution of the hydrological 
target parameter given additional constraints provided 
by the geophysical data. Bayesian approaches for the 
integration of hydrogeophysical and/or hydrological 
data have been successfully used in a number of stud-
ies (e.g., Chen et al., 2001; Ezzedine et al., 1999). A 
recent comprehensive review of this topic is provided 
by Rubin and Hubbard (2005b). 

In many cases, an important objective of hydro-
logical and geophysical data integration is to detect 
relevant zoning within the probed aquifer, for example, 
to distinguish between gravelly or sandy and clay-rich 
deposits. An effective approach to achieve this objec-
tive is to compare collocated data and use multi-  
variate statistical data classification techniques, such 
as cluster analysis, support vector engines, or neural 
networks, to divide them into a lithologically and/or 
hydrologically meaningful number of groups (e.g., 
Tronicke et al., 2004; Hoeppner et al., 1999; Hyndman 
and Harris, 1996; Kaufman and Rousseeuw, 1990). 
These data groups can then be mapped back into the 
probed aquifer region to define zones characterized by 
some mutual correlation of the various inferred pa-
rameters as well as by corresponding mean values and 
standard deviations (e.g., Paasche et al., 2006).  

Finally, conditional stochastic simulations aim at 
finding models that reproduce all available data, con-
straints and a priori information by randomly drawing 
from an ensemble of models that fulfill the “condi-
tioning” deterministic and/or stochastic constraints. 
There are basically two avenues in conditional simula-
tion: sequential Gaussian co-simulations and Monte- 
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Carlo-type approaches (e.g., Deutsch, 2002; Kelkar 
and Perez, 2002; Sen and Stoffa, 1995). Sequential 
Gaussian cosimulations have been successfully used 
by Hyndman et al. (2000) to integrate crosshole seis-
mic and hydrological data. An important limitation of 
Gaussian cosimulations is, however, that due to their 
close relation to the classical co-kriging mentioned 
above, they are based on the assumption of linear rela-
tionships between the various parameters. Conversely, 
Monte-Carlo-type approaches, which will be dis-
cussed in more detail in the following, are character-
ized by a very large degree of flexibility and allow for 
accounting for nonlinear and/or nonunique parameter 
relations. 
 
Monte-Carlo-Type Conditional Simulations: A 
Novel Approach Based on Simulated Annealing 

Monte-Carlo-type conditional stochastic simula-
tions aim at producing models that reproduce all 
available data and constraints, as well as the inferred 
geostatistical characteristics where no data or deter-
ministic constraints are available (e.g., Deutsch, 2002; 
Kelkar and Perez, 2002; Sen and Stoffa, 1995). Monte 
Carlo approaches are essentially guaranteed to find the 
optimal solution but tend to be computationally im-
practical for multi-method data integration. Instead, 
directed Monte-Carlo-type approaches, such as ge-
netic algorithms or simulated annealing, which are 
more efficient but more prone to getting stuck in local 
minima of the solution space, are being used. While 
for most intents and purposes genetic algorithms and 
simulated annealing seem to be largely equivalent, the 
latter is clearly the preferred approach for conditional 
stochastic simulations as it is conceptually considera-
bly simpler and easier to parameterize.  

The central idea behind simulated annealing is 
adapted from the thermodynamics of a cooling metal-
lic melt (e.g., Sen and Stoffa, 1995). Atoms can move 
freely throughout a melt at high temperatures, but as 
the temperature is lowered, their mobility progres-
sively decreases. Eventually, the system reaches its 
minimum energy state, and the atoms assume fixed 
positions within a crystal lattice. In simulated anneal-
ing, we therefore begin with a very large number of 
possible initial states for the target parameter distribu-
tion, but during the cooling or annealing process, all 

possible states converge to a few acceptable final 
states. When applying this idea to conditional stochas-
tic simulation, we require a suitable global objective 
function O that quantifies the overall closeness of the 
modeled data to the observed data. A common way to 
achieve this is to formulate the global objective func-
tion as a weighted sum of several different compo-
nents Oi 

i i
i

O w O=∑                           (1) 

where wi denote the weights of the various compo-
nents. A typical objective function could, for example, 
have three components O1, O2, and O3 : O1 controlling 
the reproduction of a specified geostatistical model, 
O2 controlling the reproduction of the conditioning 
borehole data, and O3 controlling the correlation be-
tween the target parameter and the conditioning geo-
physical data, for example, seismic and/or georadar 
crosshole tomographic images (e.g., Tronicke and 
Holliger, 2005). The composite nature of the global 
objective function is a key characteristic of Monte- 
Carlo-type optimization approaches and contributes 
substantially to their flexibility and versatility. That 
said, it is, however, also important to note that 
multi-component objective functions of the form 
given in equation (1) are associated with a number of 
drawbacks and inconveniences. In our experience, the 
most important of these are (i) the inherently subjec-
tive choice of the weights attributed to the various 
components and (ii) the increasing width and flatness 
of the region in the vicinity of the global minimum. 
Moreover, the computational effort naturally increases 
with the complexity of the global objective function 
and the number of its components.  

In simulated annealing, the global objective func-
tion is then gradually minimized following the ther-
modynamic analogy mentioned above. In doing so, 
the acceptance probability P for a new parameter dis-
tribution is calculated as 

new old

old new

1, if

exp , otherwise

O O
P O O

T

≤⎧
⎪= −⎨ ⎛ ⎞

⎜ ⎟⎪ ⎝ ⎠⎩

          (2) 

where Oold and Onew denote the global objective 
functions before and after the perturbation of the 
model parameters, respectively, and T, in reference to 
the Boltzmann distribution in thermodynamics, is 
often referred to as the temperature parameter. Thus, 
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all favorable perturbations are accepted, whereas 
unfavorable ones are accepted according to the 
exponential probability distribution controlled by T. 
For deciding whether an unfavorable perturbation is 
accepted or not, we generate a uniform random 
number 0≤r≤1 and compare it with P. The 
perturbation is accepted if r<P; otherwise, it is 
rejected. Lowering T results in lower probabilities for 
the acceptance of unfavorable perturbations (Fig. 1). 
How and when T is lowered is controlled by the 
annealing scheme or “cooling path”, the choice of 
which may have a significant impact on the 
computational efficiency and/or convergence 
characteristics of the simulation process (e.g., Deutsch, 
2002; Sen and Stoffa, 1995). Unfortunately, there are 
no universally valid recipes regarding the optimal 
choice of starting value of T and the subsequent 
cooling path, and hence these parameters have to be 
constrained empirically for any given problem. 
Clearly, setting the initial value of T too high and/or 
lowering T too slowly has a negative impact on the 
computational efficiency, whereas a too low initial 
value of T and/or a too rapid lowering of T will not 
allow for adequate model perturbations.  

Traditionally, simulated-annealing-based condi-
tional simulations start off with a random field of 
 

 

Figure 1. Flowchart illustrating the overall concept 
of simulated annealing for conditional stochastic 
simulation. 

values based on the inferred/assumed probability den-
sity function of the target parameter. This initially 
uncorrelated structure is then gradually “organized” 
by repeated random swapping of values to meet the 
structural and/or petrophysical constraints imposed by 
the available geophysical data. Although this conven-
tional approach is quite robust and flexible, it also 
suffers from a number of shortcomings. In particular, 
deterministic information with regard to the lar-
ger-scale structure as provided, for example, by geo-
physical data, is difficult to incorporate into the con-
straints imposed on the stochastic simulation process, 
and hence, the lateral continuity tends to be system-
atically underestimated by the resulting models (e.g., 
Tronicke and Holliger, 2005). Moreover, such swap-
ping-based approaches tend to be computationally 
expensive. These problems can be alleviated by (i) 
linking each value of the larger-scale geophysical 
models, as provided, for example, by crosshole geo-
radar and/or seismic tomography, to a conditional dis-
tribution of the target parameter, as provided, for ex-
ample, by borehole logging data and (ii) fitting an 
autocovariance function based on an inferred paramet-
ric model only at shorter lags while leaving the struc-
tural information contained in the geophysical data at 
larger lags untouched (Dafflon et al., 2009). It is also 
important to note that this approach reduces the num-
ber of components of the objective function to one, 
and hence we have O = O1, with O1 denoting the re-
production of the target autocovariance structure at 
short lags. It should be noted that the choice of the 
cut-off lag, that is, the lag beyond which we do not 
constrain the realization based on the parametric co-
variance model, is based on the estimated resolution 
of the geophysical image in the vertical and horizontal 
directions. This, in turn, implies that we naturally 
avoid all the potential inconveniences and problems 
associated with a multi-component objective function 
of the form given by equation (1), such as the question 
of the weights and the potentially poor definition of 
the global minimum. Reducing the number of com-
ponents of the objective function also comes along 
with a significant reduction of the computational cost 
by a factor of two to three. 

The potential of our approach is illustrated on a 
realistic porosity model for a heterogeneous alluvial 



Quantitative Integration of High-Resolution Hydrogeophysical Data 585

aquifer, which is characterized by a scale-invariant 
layered structure with a horizontal-to-vertical aspect 
ratio of ~10 and a power spectrum decaying as ~1/f 
with f denoting the spatial frequency (Fig. 2a). This 
aquifer model represents a particularly challenging 
test case, as it is statistically non-stationary, exhibiting 
pronounced structural complexity at both the small 
and large scales. It is probed by crosshole georadar 
data and porosity logs with boreholes located at 0, 10, 
20, and 30 m lateral distance from the left-hand edge 
of the model. Synthetic crosshole georadar data are 
generated using a finite-difference solution of Max-
well’s equations (Ernst et al., 2006). After picking the 
traveltimes of the first arrivals, these data are then to-
mographically inverted for the spatial distribution of 
the electromagnetic velocity (Fig. 2b). Together with 
the synthetic porosity logs, this represents the basis for 
the reconstruction of the detailed porosity structure 
using our novel conditional simulation approach out-
lined above. To this end, we first infer the relation 
between the porosity logs and the georadar velocity 
along the boreholes to establish a probability distribu-
tion of possible porosity values for each georadar ve-
locity present in the tomogram (Fig. 3). Next, we need 
to determine the horizontal and vertical target autoco-
variance functions. We use the porosity logs to infer a 
parametric covariance model at shorter lags. Assum-
ing that the parametric form of the covariance function 
is the same in all directions, the horizontal covariance 
function is then constrained by estimating the struc-
tural aspect ratio, that is, the ratio between the hori-
zontal and vertical correlation lengths, from the tomo-
grams. The cut-off lags, below which we constrain the 
realizations to the covariance model, were set to 2 and 
5 m in the vertical and horizontal directions, respec-
tively. The corresponding results are shown in Fig. 4 
and compared with porosity models based on simple 
kriging interpolation of the porosity logs and the to-
mographic inversion of the crosshole georadar data. 
The conditional simulation does indeed compare quite 
favorably with the original porosity model in terms of 
its small- and large-scale structures and their lateral 
continuity, as well as with regard to the overall distri-
bution of the porosity values (Figs. 4a and 4d), 
whereas the models resulting from crosshole georadar 
tomography alone and kriging interpolation bear only 

a faint resemblance with the overall character of the 
original porosity structure and definitely fail to ade-
quately capture its inherent heterogeneity and com-
plexity (Figs. 4a–4c). 

 

 

Figure 2. (a) Synthetic porosity model representing 
a heterogeneous alluvial aquifer; (b) result of to-
mographic inversion of three synthetic crosshole 
georadar datasets simulated between boreholes lo-
cated at 0, 10, 20 and 30 m lateral distance from 
the left-hand edge of the model. 
 

 
Figure 3. Scatter plot of the near-borehole geora-
dar velocity v versus porosity φ for all four bore-
holes for our synthetic example shown in Fig. 2. 
The thicker central line denotes the conditional 
expectation E(φ|v), estimated assuming a linear re-
lationship and minimizing the squared error. The 
two finer peripheral lines indicate the conditional 
standard deviation σ(φ|v). 
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Figure 4. (a) Synthetic porosity model from Fig. 2a; (b) conversion of the crosshole georadar velocity image 
shown in Fig. 2b to porosity; (c) porosity distribution obtained by kriging interpolation of porosity logs; (d) 
stochastic realization of the porosity distribution constrained by the tomographic georadar data, porosity 
logs, and target covariance function at short lags. The vertical target autocovariance function, which also 
served as a basis for the kriging interpolation of the porosity logs, was inferred from the porosity logs and 
the structural aspect ratio was estimated from the tomographic image.  

 
APPLICATION TO OBSERVED DATA 

We now show the application of our new   
simulated-annealing-based conditional stochastic 
simulation approach to the integration of crosshole 
georadar and porosity log data collected at the Boise 
Hydrogeophysical Research Site (BHRS) near Boise, 
Idaho, USA, with the objective of constraining the 
detailed porosity distribution in this heterogeneous al-
luvial aquifer (e.g., Tronicke et al., 2004). The sub-
surface at the site is characterized by an approximately 
20-m-thick alluvial layer consisting predominantly of 
gravel and sand with minimal fractions of silt and clay 
and underlain by a layer of red clay with a thickness 
of at least 3 m. At the time of the geophysical meas-
urements (October 1998), the water table was at a 
depth of 2.96 m. Figure 5 shows the tomographic in-
version of the considered crosshole georadar dataset 
together with neutron porosity logs acquired along the 
boreholes (Tronicke et al., 2004). The velocity tomo-
gram is distinguished by predominantly subhorizontal 
structures, which is consistent with stratigraphic lay-
ering in the gravel and sand deposits at the BHRS 
(Barrash and Clemo, 2002).   

The integration of the porosity log data with the 
crosshole georadar velocity tomograms then 

 
Figure 5. Crosshole georadar tomogram and po-
rosity logs acquired at the Boise Hydrogeophysical 
Research Site (BHRS) near Boise, Idaho. 

 
proceeded in the same fashion as outlined above for 
the synthetic data. Due to lacking constraints regard-
ing the ratio between the horizontal and vertical cor-
relation lengths, we, however, decided to generate 
conditional stochastic simulations for a range of as-
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pect ratios. A selection of the corresponding results is 
shown in Fig. 6. For each of the realizations shown, 
the target parameters are well fitted, and the realiza-
tions can be considered, in terms of its appearance, as 
representative of a large number of identically con-

strained conditional stochastic simulations. Moreover, 
it is important to note that, despite their clearly 
non-Gaussian nature, the histograms of the porosity 
logs are faithfully reproduced by those of the resulting 
porosity models (Fig. 7).   

 

 
Figure 6. Stochastic realizations of the aquifer porosity distribution at BHRS constrained by the georadar 
tomogram and porosity logs shown in Fig. 5. The parametric form of the target autocovariance function at 
short lags was inferred from the porosity logs. The only difference between the two realizations is the  
horizontal-to-vertical aspect ratio, which was assumed to be (a) 7 and (b) 20. 

 

 

Figure 7. Histogram of the porosity log data shown 
in Fig. 5 (solid black line) and the stochastic models 
shown in Fig. 6a (dotted grey line) and Fig. 6b 
(solid grey line). 

 
The general structure of the conditional simula-

tions is also consistent with information that we have 
about the true structure of the BHRS aquifer. In par-
ticular, we have the presence of three major geological 

units in depth having low, high, and medium poros-
ities, respectively. In addition, all of the results show a 
striking degree of structural resemblance with a re-
cently published full-waveform inversion of the 
crosshole data that have an expected resolution of less 
than half a meter in both the vertical and horizontal 
directions (Ernst et al., 2007). Based on this compari-
son, it appears that the models characterized by inter-
mediate aspect ratios around 10 are likely to be more 
realistic than those characterized by the end members 
of the considered range shown in Fig. 6. Albeit cir-
cumstantial, this evidence is consistent with informa-
tion on the ratios of the horizontal-to-vertical correla-
tion lengths in alluvial aquifers compiled by Gelhar 
(1993), which also tend to cluster around a value of 
10. 

 
IMPLICATIONS FOR THE PREDICTION OF 
LOCAL-SCALE FLOW AND TRANSPORT 
PHENOMENA 

Unfortunately, geophysical data are in general 
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not directly sensitive to hydraulic conductivity, which 
arguably represents the key parameter of interest to 
hydrologists. As illustrated by the synthetic and ob-
served data examples above, some geophysical data 
do, however, have a pronounced sensitivity to the  
water-saturated porosity. Porosity represents a prereq-
uisite for hydraulic conductivity, and hence, these two 
key hydrogeological properties are in general system-
atically and causally linked, albeit on a site-specific 
basis. Still, more and more commonly, such relations 
can be reliably established provided that coincident 
high-resolution hydraulic conductivity and porosity 
measurements are available. To conclude this study, 
we explore the potential hydrological value of our 
novel data integration approach by assuming perfect 
knowledge of the underlying relation between porosity 
and hydraulic conductivity.  

To this end, we return to the original porosity 
model (Fig. 4a), the porosity model based on the 
crosshole georadar tomography alone (Fig. 4b), the 
kriging interpolation of the porosity logs (Fig. 4c), and 
the conditional stochastic simulation based on the ap-
proach outlined above (Fig. 4d). The relation between 
porosity and hydraulic conductivity we employed is of 
the form (e.g., Schoen, 1996)  

10 log K a bφ= +         (3) 
where φ is the porosity; K is hydraulic conductivity in 
m/s; and a = -4.97 and b = 6.66 are constants. In prac-
tice, such a relation could, for example, be established 
through flowmeter logging and/or densely sampled 
slug tests along the boreholes and comparing the re-
sulting hydraulic conductivity profiles with the coin-
cident neutron porosity logs. Alternatively, direct- 
push permeameter measurements could be acquired 
anywhere between the boreholes. In this case, recon-
structed stochastic porosity models of the type shown 
in Fig. 4d, or corresponding averages of multiple sto-
chastic realizations, would serve as a basis for estab-
lishing a meaningful relationship between porosity 
and hydraulic conductivity.  

After converting the porosity distributions shown 
in Fig. 4 to their corresponding hydraulic conductivity 
values, we model propagation of a conservative tracer 
through these models assuming a constant hydraulic 
gradient. The tracer is continuously injected along the 
entire length of the borehole along the left-hand model 

edge and recovered in an integrative manner through 
pumping at the borehole at the right-hand model edge. 
Figure 8 shows the resulting breakthrough curves cor-
responding to the tracer concentration recovered as a 
function of time. We see that the model based on the 
novel Monte-Carlo-type data integration approach 
presented in this study does indeed result in a break-
through curve that is remarkably close to that of the 
underlying model, whereas the hydraulic conductivity 
models based on the kriging of borehole logs or 
crosshole georadar tomography alone produce break-
through curves that differ markedly from that of the 
underlying model. It should, however, also be noted 
that the superior results obtained with Monte Carlo 
approach come at a computational cost that is roughly 
three orders-of-magnitude higher than that of the more 
conventional techniques. 

The above results illustrate that, provided that a 
meaningful relation between the hydrogeophysical 
target parameter and the hydraulic conductivity can be 
established, the novel Monte-Carlo-type data integra-
tion approach presented in this study does indeed pro-
vide a formidable basis for the construction of detailed 

 

 

Figure 8. Breakthrough curves for the porosity 
models shown in Fig. 4 assuming a known and   
error-free relation between porosity and hydraulic 
conductivity of the form given in equation (3). 
Black solid line: underlying stochastic hydraulic 
conductivity model (Fig. 4a); dashed line: model 
based on crosshole georadar tomography only (Fig. 
4b); dotted line: model based on kriging interpola-
tion of porosity logs (Fig. 4c); grey solid line: model 
based on Monte-Carlo-type data integration ap-
proach presented in the study (Fig. 4d). 
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hydrological models that allow for a reliable predic-
tion of contaminant transport at the local scale. In 
practice, however, the highly resolved hydraulic con-
ductivity measurements required to build a relation-
ship between porosity and hydraulic conductivity of 
the form given by equation (3) are often not available. 
In this case, the question arises as to whether we could 
estimate such a relation based on the porosity model 
inferred through our Monte-Carlo-type data integra-
tion approach (Fig. 4d) and trying to match the ob-
served breakthrough curve (Fig. 8). We have found 
that this is indeed the case that the estimated coeffi-
cients of a = -4.75 and b = 5.85, inferred through a 
grid search approach, are indeed very close to those of 
underlying petrophysical model, and that, thus, the in-
ferred empirical relationship between porosity and 
hydraulic conductivity was valid for different realiza-
tions of the considered stochastic model. The latter 
implies that as long as there are no fundamental hy-
drogeological facies changes, the inferred relation 
between porosity and hydraulic conductivity is likely 
to hold throughout the entire aquifer. Interestingly, we 
have found that similarly adequate and generic field 
relations can also be developed for the porosity dis-
tributions inferred from crosshole tomography (Fig. 
4b) and kriging interpolation of the borehole logs (Fig. 
4c). Having said this, it is important to note that an 
inherent prerequisite for the successful kriging of 
borehole data is that the horizontal correlation lengths 
of the underlying structures are larger than the spacing 
between the individual boreholes. Here, although the 
coefficients a and b constraining the considered rela-
tion between porosity and hydraulic conductivity 
(equation (3)) differ fundamentally from the underly-
ing petrophysical relation, such “field-scale relations” 
are found to hold remarkably well for different reali-
zations of the considered stochastic model and thus 
can also be expected to hold throughout the consid-
ered aquifer. On the one hand, these observations 
point to the inherently diffusive nature of flow and 
transport phenomena, as well as the integrative nature 
of conventional hydrological observation techniques. 
On the other hand, these admittedly preliminary re-
sults indicate that, even in the presence of very strong 
heterogeneity, viable field relations between a perti-
nent and highly resolved hydrogeophysical target pa-

rameter and hydraulic conductivity can be obtained, 
which allows for the reliable prediction of contami-
nant transport at the local scale. 

 
CONCLUSIONS 

We have presented a novel Monte-Carlo-type 
approach to conditional stochastic simulation based on 
a simulated annealing concept that demonstrates sig-
nificant potential for generating highly detailed and 
realistic aquifer models integrating a variety of hy-
drogeophysical data and prior information. The major 
advantage of our approach compared with related pre-
vious efforts is that deterministic information with re-
gard to the larger-scale subsurface structure, as pro-
vided, for example, by tomographic geophysical im-
ages, is incorporated into the resulting realizations in 
an efficient and effective manner. An additional bene-
fit of this approach is that, because of a dramatically 
simplified global objective function consisting essen-
tially of the parametric autocovariance model at short 
lags, our algorithm exhibits very favorable character-
istics with regard to convergence and computational 
efficiency compared to more conventional methods.  

Our new algorithm is defined by two key features. 
First, instead of swapping values within the simulation 
grid, we perturb the target field during the stochastic 
simulation procedure by drawing from a probability 
distribution for the output parameter conditioned to 
the geophysical data. For the synthetic and observed 
data sets considered in this study, we estimated these 
conditional distributions using collocated georadar 
velocity and porosity measurements at the borehole 
locations. Clearly, any appropriate alternative analysis 
technique could be used. Second, instead of con-
straining the stochastic simulations to match a para-
metric geostatistical model over a wide range of lags, 
we release this constraint at large lags and only en-
force adherence to the covariance model at short lags 
that are not resolved by the geophysical data. In doing 
so, we let drawing from the conditional distribution 
correctly incorporate the larger-scale deterministic 
structure contained in the geophysical data. 

We found that the deterministic information with 
regard to the larger-scale subsurface structure, as pro-
vided by geophysical data, was properly incorporated 
into the output realizations, while the smaller-scale 
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stochastic fluctuations were realistically represented 
by the parametric autocovariance models employed at 
short lags. Indeed, it can be argued that the resulting 
conditional stochastic simulations are characterized by 
an unprecedented degree of realism at all scales, 
which in turn is indicative of the fact that the proposed 
method has the potential of optimally capitalizing on 
the complementarities of the various data and con-
straints. The results obtained by applying our new al-
gorithm to both synthetic and observed data sets are 
quite encouraging and should allow for faithful pre-
dictions of hydrological transport phenomena in 
highly complex and heterogeneous aquifers provided 
that the relation between porosity and hydraulic con-
ductivity is known and well constrained. Finally, it is 
important to note that the new conditional stochastic 
simulation approach presented here is quite generic 
and highly flexible and hence can be expected to be 
equally applicable to the quantitative integration of 
data from a wide range of geophysical, hydrological, 
and environmental techniques.  

When exploring the potential implications arising 
for the local-scale prediction of flow and transport 
phenomena in highly heterogeneous media, we found, 
not surprisingly, that our algorithm provides the 
greatest benefits to the prediction of flow and trans-
port phenomena when a detailed relation between the 
hydrogeophysical target parameter and the hydraulic 
conductivity is available. If such a relation is unavail-
able, corresponding field relations based on the re-
production of the observed breakthrough curves using 
more conventional approaches to reconstructing the 
aquifer structure, such as crosshole seismic or geora-
dar images alone, or provided that the horizontal cor-
relation length is sufficiently large, even simple 
kriging of closely spaced borehole data may indeed 
provide surprisingly reliable predictions. 
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