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The molecular basis, genetic control and pleiotropic
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Nearby genes are often expressed as a group. Yet, the prevalence, molecular mechanisms

and genetic control of local gene co-expression are far from being understood. Here, by

leveraging gene expression measurements across 49 human tissues and hundreds of indi-

viduals, we find that local gene co-expression occurs in 13% to 53% of genes per tissue. By

integrating various molecular assays (e.g. ChIP-seq and Hi-C), we estimate the ability of

several mechanisms, such as enhancer-gene interactions, in distinguishing gene pairs that are

co-expressed from those that are not. Notably, we identify 32,636 expression quantitative

trait loci (eQTLs) which associate with co-expressed gene pairs and often overlap enhancer

regions. Due to affecting several genes, these eQTLs are more often associated with multiple

human traits than other eQTLs. Our study paves the way to comprehend trait pleiotropy and

functional interpretation of QTL and GWAS findings. All local gene co-expression identified

here is available through a public database (https://glcoex.unil.ch/).
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Gene regulation is an essential component of cellular
function, and its dysregulation often leads to disease1,2.
The genetic makeup intrinsic to each person shapes their

disease susceptibilities and response to treatment, making
understanding the functional impact of genetic mutations one of
the most pursued challenges in genetics research. Genome-wide
association studies (GWAS) have associated tens of thousands of
genetic variants with complex traits, but the functional link
between them is unknown. In this context, expression quantita-
tive trait loci (eQTL) analyses, which rely on studying the tran-
scriptomic profiles of many individuals to reveal variants that
modulate gene expression, are pivotal in bridging the functional
gap between genotypes and organismal phenotypes2–4. Indeed, in
combination with GWAS, eQTL studies have been crucial in
identifying causal genes and tissues associated with complex traits
and disease5. Yet, understanding a variant’s molecular link to
complex traits and disease is still a major challenge, given that
most are found in the genome’s non-coding regions, act only in
specific tissues and may affect several genes6,7.

A pertinent clue in the linking genome to phenome is the cor-
relation of activity among regulatory elements and genes, which is
key in understanding the shared genetic architecture between mul-
tiple complex traits and diseases as well as between all associated
genes. In this respect, previous studies have found that gene order in
eukaryotes is not random, and genes with similar expression profiles
tend to be genomically linked8. Indeed, genes located near to each
other (e.g. <1Mb) often display concerted co-expression9–11. Local
gene co-expression is more pronounced in the immediate vicinity of
a gene (e.g. <100 kb) but it has also been shown that it extends
further and occurs regardless of the strand, transcription orientation,
shared functionality or tandem duplications11,12. The existence of
structural and regulatory domains orchestrating the organised
expression of nearby genes and mediating the genetic effects of
regulatory variants on genes has been demonstrated9, thus sug-
gesting that regulatory element sharing and regulatory variant
sharing may be key in controlling the co-expression of nearby genes.
However, the molecular mechanisms, genetic control and tissue
specificity of local gene co-expression are far from being fully
understood. For instance, while genetic variants controlling expres-
sion have been found for almost all genes2, the extent to which
several genes may be controlled by the same genetic variants is yet
unknown. Moreover, the full extent of local gene co-expression
remains to be deeply assessed, particularly across tissues.

Here, we thoroughly investigate (i) the full genome-wide pre-
valence of local gene co-expression across human tissues, (ii) the
molecular mechanisms that play a role in local gene co-expres-
sion, (iii) the regulation of local gene co-expression by genetic
variants and (iv) their relevance on human disease and trait
pleiotropy. For this, we develop a framework to detect local gene
co-expression and associated regulatory variants using tran-
scriptomic profiles across hundreds of genotyped individuals and
49 human tissues. To understand which molecular mechanisms
play a role in local gene co-expression, we integrate various
molecular features (e.g. chromatin contacts, enhancer–gene
interactions) and estimate their ability to distinguish gene pairs
that are co-expressed from those that are not. Furthermore, our
study identifies thousands of eQTLs that are predicted to regulate
multiple co-expressed genes through shared regulatory elements
as well as associated with multiple societal-relevant diseases and
traits. Our extensive search for local gene co-expression reveals
novel links between genetic variation and gene (co-)expression,
opening the way to comprehend the pleiotropy and disease
comorbidity observed in humans and provide functional inter-
pretation of QTL and GWAS findings.

Results
The prevalence of local gene co-expression across human tis-
sues. Previous studies have found extensive local gene co-
expression throughout the genome10,11, but no consensus
approach to identify local gene co-expression exists. Moreover, to
date, studies of local gene co-expression were only performed on
a limited number of individuals and tissues11 and although gene
expression measurements are often confounded by both known
and unknown confounders13, these did not account for either.

Here, we developed a robust approach to generate genome-
wide maps of local gene co-expression from cross-individual gene
expression quantifications (e.g. a gene expression matrix from
multiple RNA-seq experiments). For this, we exploited the
principle that nearby genes exhibiting significant expression
correlation between each other across individuals can be
considered as co-expressed (Fig. 1). Briefly, for each gene, our
method identifies all genes in a cis window of 1Mb around the
gene transcription start site (TSS) displaying substantial inter-
individual expression correlation (Pearson correlation). Since the
correlation value of truly correlated genes is unknown, we
compare the observed values of each gene/cis-gene pair to
expected correlation values under the null obtained by shuffling
expression values, effectively ensuring that the number of nearby
genes is accounted for (see the “Methods” section). In this way,
high observed correlation values can be pinpointed and sets of
bona fide co-expressed genes extracted while controlling for false
discovery rate (FDR). Contrary to previous studies, this approach
ensures that local gene co-expression can be identified regardless
of gene order or transcriptional direction, which is particularly
important given that gene regulation often occurs in a 3D
manner. In addition, we extensively accounted for known (e.g.
sex, subpopulation structure) and unknown confounding factors
(using PCA for the Geuvadis dataset and PEER14 for the GTEx
dataset; see the “Methods” section).

We first applied our approach to a dataset of gene expression
profiles from 358 lymphoblastoid cell line (LCL) RNA-seq
samples from the Geuvadis project15, composed of European
individuals genotyped in the 1000 Genome project16 (see the
“Methods” section). We identified all correlated LCL-expressed
gene pairs among 15,059 protein-coding and 1781 long intergenic
non-coding RNA (lincRNA) genes (see the “Methods” section).
At 1% FDR (corresponding to a minimum correlation coefficient
of 0.16), we found 9384 significantly co-expressed gene pairs
(COPs) within 1MB of each other (8716 correlated positively and
668 correlated negatively), which correspond to 9030 distinct
genes. A higher proportion of protein-coding genes (54.8%) is co-
expressed compared to lincRNAs (43.5%), and as much as 53%
COPs are formed between the nearest neighbours (Supplemen-
tary Fig. 1). Importantly, regardless of the FDR threshold used, we
observe that COPs are well spread across all chromosomes
(Supplementary Fig. 2), with the percentage of genes co-expressed
falling between 46% and 62% across chromosomes (FDR 1%).
Altogether, this indicates that local gene co-expression is highly
prevalent in human LCLs.

When grouping COPs into network components—nodes being
genes and edges being the co-expression between genes—we
found 2545 unconnected groups of co-expressed genes (Fig. 2a).
The majority of these groups are composed of only 2 or 3 genes
(55.1% and 19.1% of the groups, respectively), yet, groups with
more than 10 genes are also observed (3.5% of the groups).
Several of these larger co-expressed gene groups can be readily
assigned to known human gene clusters, such as the Hox A, B and
C gene clusters17, as well as a protocadherin cluster18 and the
histone H4 cluster19 (Fig. 2a). To further understand how local
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gene co-expression is linked to shared functionality, we gathered
data from several datasets of functional-relatedness (see the
“Methods” section). When compared to all gene pairs tested,
COPs are significantly enriched for (i) genes annotated with the
same exact function, based on the Gene Ontology (GO)20

(Fisher’s exact test p-value < 2.2e−308, odds ratio (OR)= 3.68),
(ii) genes encoding proteins belonging to the same protein
complex, based on CORUM21 and hu.MAP22 databases (p-value
= 2.1e−74, OR= 12.54), (iii) genes belonging to a same biological
pathway, taken from KEGG23 and Reactome24 (p-value
= 2.8e−166, OR= 2.52; Supplementary Fig. 3). Substantial
functional-relatedness in local gene co-expression could be due
to local duplication of genes. In fact, we also found that COPs
connect known paralogs more often than what is expected by
chance (Fisher’s exact test p-value < 2.2e−308, OR= 11.20,
Supplementary Fig. 3, see the “Methods” section). However,
while these findings attest to the ability of our method in
identifying known and expected groups of correlated genes,
functional or evolutionary relatedness between gene pairs by no
means explain all the local co-expression observed, as we could
not find evidence of this link for the majority of COPs (71%, 6698
out of 9384 gene pairs).

To estimate the prevalence of local gene co-expression across
human tissues, we applied our identification method to 49 human
tissues from the GTEx v8 project25 (see the “Methods” section).
We identified 64,320 distinct COPs across tissues (FDR 1%,
corresponding to a minimum correlation between 0.12 and 0.25,
depending on the tissue). These amount to 18.3% of all gene pairs
assessed for co-expression (350,564 gene pairs), which clearly
demonstrate that local gene co-expression is highly prevalent. For
individual tissues, the number of co-expressed genes ranged from
2347 (Brain Putamen basal ganglia; 13% genes tested) to 9062
(Thyroid; 50% genes) (Fig. 2b). The discrepancy in the numbers

of co-expressed genes may be due to distinct biological regulation
of gene expression (e.g. 22,610 genes were found expressed in
Testis against 15,051 in Whole Blood). However, we also found a
strong correlation with the RNA-seq sample sizes available per
tissue (Spearman rho= 0.75, p-value= 7e−10, Supplementary
Fig. 4). Importantly, we observe that the patterns of gene co-
expression sharing reflect well our expectations in terms of
biological similarity across tissues. For instance, by measuring the
percentage of COPs in a tissue that are also COPs in another
tissue, we find that related tissues such as artery aorta and
coronary artery or various brain subregions are concertedly
grouped (Fig. 2c). Tissue grouping by gene expression of single
genes had previously produced similar results2, which indicates
that the local gene co-expression observed here encompasses
relevant gene pair links and biological meaning. Our results about
local gene co-expression across tissues, their correlation values,
statistical significance and genomic information are all readily
available in the LoCOP public database (http://glcoex.unil.ch).

Molecular features associated with local gene co-expression.
Gene expression is known to be regulated by several genomic
elements such as promoters, enhancers and insulators26,27. Here,
we assess whether regulatory elements and mechanisms (termed
here as ‘molecular features’) known to be associated with gene
expression regulation can explain the observed inter-individual
local gene co-expression. For this purpose, we train logistic
regression models (on 80% of the gene pairs) and measure the
area under the ROC curve (AUC) on predictions of a test set
(20% of the gene pairs) to compare how well local gene co-
expressed genes pairs (i.e. positive cases) can be distinguished
from non-co-expressed pairs (i.e. negative cases) for each assessed
molecular feature (see the “Methods” section). For instance, as
reported in previous studies11,26, genes that are co-expressed

Fig. 1 Local gene co-expression identification approach. Inter-individual gene expression correlation is calculated for each gene pair whose TSSs are
within 1Mb of each other. For each gene, observed correlation values are compared to expected correlation values when shuffling expression values across
individuals. Gene pairs passing the FDR threshold are considered COPs (see the “Methods” section).
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locally are more likely to be found in close proximity. Indeed,
even though we searched for co-expression of genes within 1Mb
of each other, we found that most COPs are found in relatively
closer distances, with 71.7% COPs found within 200 kb from each
other (Fig. 3a; median distance= 78,543 bp. Geuvadis LCLs).
Predicting local gene co-expression through genomic distance
alone provides an AUC of 0.81 (Supplementary Fig. 5). While
clearly important, distance alone does not fully determine local
gene co-expression, as only a fraction of nearby gene pairs are
found co-expressed (e.g. 11.8% of gene pairs apart for <200 kb are
co-expressed; 17.1% for 100 kb; 34.4% for 10 kb). This hints at the
presence of fine-detailed regulatory mechanisms that determine
which gene pairs are co-expressed and the presence of genomic
structure (e.g. chromatin boundaries) which effectively separate
in space and time the expression of nearby genes.

Given that many molecular features—such as DNA contacts
and gene–enhancer interactions—are dependent on genomic
distance, we compare COP’s molecular features to those observed
in a set of non-co-expressed gene pairs (non-COPs) that very
closely matches the distance distribution observed in COPs

(Fig. 3a; see the “Methods” section). This ensures that the
following results are independent of distance (i.e. distance has an
AUC of 0.5). Importantly, since paralog genes may display co-
expression due to particular circumstances, such as the use of the
same or a duplicated regulatory element, all gene pairs composed
of paralog genes were excluded from this and all subsequent
analyses to exclude this potential bias (see the “Methods” section).
Moreover, for simplicity, in all analyses, we focused on COPs
with positive expression correlation, for which we have
approximately an order of magnitude more COPs than for
negative correlation. Results on negatively correlated COPs are
summarised in Supplementary Note 1. After these filters, 6668
Geuvadis COPs and 40,999 distinct GTEx COPs (number of
COPs per tissue on Supplementary Fig. 6) were kept for analysis.

We first analysed COPs derived from Geuvadis LCLs, for
which there is a wealth of molecular annotations. When
measuring the presence of total and inverted CTCF-binding sites
between gene TSSs (suggestive of insulation) we found them to be
clearly depleted in COPs when compared to distance-matched
non-COPs, in particular when distance increases (Supplementary

Fig. 2 Local gene co-expression discovery across tissues. a Grouping of Geuvadis LCL COP discovery into 2545 network components (genes as black
nodes, correlation as edges), edge colour is mapped to correlation strength and several known gene clusters are highlighted. b Number of COPs identified
in each GTEx tissue. c Clustering of COP sharing across GTEx tissues. For each pair of tissues (tissue A, tissue B), the percentage of COPs of tissue A that
are also COPs in tissue B is calculated and used for clustering (hierarchical clustering). Higher blue colour intensity corresponds to a higher percentage of
COPs shared.
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Fig. 3 Molecular features of COPs. a Distribution of the absolute distance between TSS for Geuvadis LCL COPs and non-COPs. Gene pairs before applying
paralog and positive correlation filters. b Receiver operating characteristic (ROC) curve of predicting Geuvadis LCLs COPs for several molecular features (logistic
regression; N= 6668 for COPs and for non-COPs; see the “Methods” section for molecular feature descriptions). c and d boxplots of total enhancers and total
transcription factor binding sites (TFBS), respectively, between COPs and non-COPs across four datasets: Geuvadis LCLs (N= 6668), GTEx LCLs (N= 4702),
Lung (N= 4398) and Muscle Skeletal (N= 5401). Values next to the boxplots represent the mean. P-values were obtained from two-tailedWilcoxon signed-rank
tests. e Boxplots of the AUC values obtained for each molecular feature and dataset across the 50 training-test set randomisations. Values below each boxplot
represent the mean AUC. For each boxplot, the length of the box corresponds to the interquartile range (IQR) with the centre line corresponding to the median,
the upper and lower whiskers represent the largest or lowest value no further than 1.5 * IQR from the third and first quartile, respectively.
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Fig. 7; see the “Methods” section). This makes CTCF-binding site
presence reasonably predictive of local gene co-expression (mean
AUC= 0.57 for all COPs, 0.63 for those >200 kb apart; Fig. 3b;
Supplementary Fig. 8), which indicates possible constraints in the
chromatin structure in which some gene pairs may be hindered
from interacting. Looking more closely at chromatin interactions,
we found that chromatin contacts between gene TSSs (Hi-C data,
5 kb resolution; see the “Methods” section) are higher in COPs
than non-COPs when these are separated by more than 200 kb
(mean AUC= 0.59), whereas at closer distances such contacts
occur with similar intensities in COPs and non-COPs (mean
AUC= 0.50; Supplementary Figs. 7 and 8). These results indicate
that chromatin structure may play a role in gene co-expression,
yet, these do not seem determinant in pinpointing which local
gene pairs are co-expressed or not.

Next, we assessed whether enhancer–gene interactions and
transcription factor (TF)-binding explain local gene co-
expression. Interestingly, COPs were found associated with lower
numbers of enhancers than non-COPs (LCL-active enhancers;
Fig. 3c). Moreover, a similar pattern was observed when analysing
TF binding on the 50 kb flanking region of gene TSSs (see the
“Methods” section), where again we found that COPs have fewer
TF-binding sites (TFBS) than non-COPs (Fig. 3d). These results
were readily replicated in LCLs from the GTEx project (Fig. 3c,
d), as well as in two other GTEx tissues for which tissue-specific
enhancer datasets were available—Skeletal Muscle and Lung
(mean AUCs between 0.59 and 0.68, Fig. 3c–e). Interestingly,
when we split COPs into four categories based on their tissue
prevalence across 49 tissues (Supplementary Fig. 9; see the
“Methods” section), we observed a clear trend in which conserved
COPs generally have higher AUCs across molecular features than
tissue-specific or unique COPs (Supplementary Fig. 10). Indeed,
the AUCs for conserved COPs are consistently higher than tissue-
specific COPs for each molecular feature, including a more
pronounced depletion of TFBSs and interacting enhancers
(Supplementary Fig. 10). Importantly, these results are consistent
for COPs and annotations from Muscle Skeletal, Lung and LCL
(Supplementary Figs. 10–12). A hypothesis for this finding is that
there is a driving force for COPs to reduce the total number of
expression regulators, i.e. a pressure to keep regulatory machinery
relatively simple in order to achieve similar levels of expression
between genes. Indeed, another feature of COPs is that the
expression level and variation between the two genes in the pair
tend to be more similar than when compared to non-COPs
(mean AUC between 0.59 and 0.65, Fig. 3e, Supplementary
Fig. 13). Importantly, this is observed even when matching the
expression levels between COPs and non-COPs (Supplementary
Fig. 13).

We confirmed that the molecular features observed for COPs
are largely independent of the linkage disequilibrium (LD)
between the genes’ promoters (mean AUC= 0.52, Geuvadis
LCLs, Fig. 3b; see the “Methods” section). Indeed, the genetic
linkage of COPs and non-COPs does not substantially differ, as
measured by their TSS centimorgan distance and presence in the
same LD block (Supplementary Fig. 14). Moreover, since paralog
genes were excluded from analysis, the sharing of function
between gene pairs also had low AUCs (0.53–0.54 for Lung,
Muscle Skeletal and LCL, Fig. 3e), as measured by the two genes
in the pair sharing the same exact biological process (BP) GO
term (see the “Methods” section). Interestingly, when combining
all the molecular features assessed in Geuvadis LCLs together into
the same regression model we obtain a global mean AUC of 0.72
(Fig. 3b). This AUC is higher than any individual molecular
feature, indicating that each feature explains local gene co-
expression in a complementary way. Indeed, except for Hi-C
contacts and redundant metrics, each distinct molecular feature

significantly explains some of the variations in local gene co-
expression independently of the other features (Supplementary
Table 1) and no combination of two features reaches AUC levels
above 0.69 (the highest being total enhancers in combination with
expression level similarity; Supplementary Fig. 15). Albeit
reasonable, a global AUC of 0.72 also indicates that the molecular
features or the datasets used here are yet far from explaining all
the observed local gene co-expression. Supplementary Note 2
compares a subset of the assessed molecular features between cis-
COPs and trans-COPs.

One way to assess the effect of known and unknown molecular
features and mechanisms implicated in gene regulation is to
exploit the natural genetic variation observed in human
populations (e.g. eQTLs). To assess how well genetic variation
can provide information about gene co-expression, we identified
eQTLs in cis (±1Mb) for all expressed human genes, i.e.
discovered associations between genetic variants and gene
expression levels for all genes across all tissues (FDR 5%; see
the “Methods” section). To discover putative cases of co-
regulation of gene pairs by the same genetic variant(s), for each
gene pair, we tested whether the lead eQTL of each gene (i.e. the
genetic variant most strongly associated with the gene, if any) is
also associated to the other gene in the pair (nominal p-value <
0.05; see the “Methods” section). For simplicity, we name such
associations of a variant to gene pairs as ‘eQTL sharing’. Through
this approach, we found that as many as 41.9% of all COPs
display eQTL sharing in Geuvadis LCLs (358 genotyped
individuals), compared to only 5.9% in distance-matched non-
COPs (Supplementary Fig. 16). Given that eQTL discovery power
is largely dependent on sample size and only 46.2% genes (7805
out of 16,906 expressed genes) are genes (i.e. significantly
associated with a cis variant) in Geuvadis LCLs, the high number
of co-regulated COPs is striking. In fact, if only gene pairs
composed of eGenes are considered (i.e. genes significantly
associated with at least one eQTL), the percentage of COPs in
eQTL sharing increases to 85.4%, compared to 20.0% in non-
COPs (Supplementary Fig. 16). Moreover, we observed that eQTL
sharing occurs more often for local co-expressed genes than genes
that are co-expressed in trans at similar correlation values (trans-
COPs, see the “Methods” section). Indeed, only 8.9% of trans-
COPs were found in eQTL sharing (compared to 41.9% cis-COPs;
Supplementary Fig. 16), suggesting that most eQTL sharing found
for cis-COPs may represent co-regulation of multiple genes by
the same variant rather than simple transient correlation between
expression values and genotypes.

In the regression model, eQTL sharing leads to mean AUCs
between 0.62 and 0.73, depending on the tissue assessed (Fig. 3e).
Importantly, by combining eQTL sharing and all previously
assessed molecular features, we increase the global mean AUC to
between 0.74 (Muscle Skeletal) and 0.82 (Geuvadis LCL, Fig. 3b, e).
This increase in the global model AUC indicates that by measuring
eQTL sharing we are able to capture gene regulation that was not
yet assessed with the other molecular features. Overall, these results
highlight the complexity and diversity of mechanisms involved in
the regulation of gene co-expression and indicate a high level of
control of co-expression regardless of the genomic distance
between genes.

Genetic regulation of local co-expressed genes. The integration
of QTL analysis and functional annotations provides insights into
the molecular mechanisms of transcriptional regulation and their
phenotypic consequences. We thus next investigated whether
shared eQTLs are more likely to fall in regulatory regions of the
human genome than lead eQTLs that associate with a single gene.
First, as expected, we found that all Geuvadis LCL lead eQTLs
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(shared or not) are more likely than expected by chance to fall
within gene body regions as well as various LCL-specific func-
tional regions from Encode28 such as enhancers (OR= 1.8–2.7, p-
value= 1e−4), DNAse sensitive regions (OR 1.8–2.4, p-value
= 1e−4) and protein binding regions (OR= 1.5–1.9, p-value= 1e
−4, Fig. 4a; see the “Methods” section). However, we found that
shared eQTLs in LCL are more highly enriched in these three
functional annotations than other lead eQTLs, particularly for

enhancers (Fisher’s Exact test OR= 1.7, p-value= 3e−7, Fig. 4b).
Remarkably, an enrichment for shared eQTLs overlapping
enhancers more than other eQTLs can also be observed for GTEx
LCLs (Fisher’s Exact test OR= 1.96, p-value= 4e−3, Fig. 4c), as
well as for functional annotations from the Roadmap Epige-
nomics project28,29 for LCL, Muscle and Lung tissues (Fisher’s
Exact test OR= 1.3–1.4, Supplementary Figs. 17–20). Crucially,
discovering genetic variants affecting regulatory regions such as

Fig. 4 Discovery and functional enrichments of shared eQTLs. a Overlap enrichment of Geuvadis LCL shared lead eQTLs (solid colour, round points) and
other lead eQTLs (pale colour, triangles) in Encode LCL functional annotations and Gencode gene body categories (see the “Methods” section). Odds
ratios are calculated based on the observed versus expected overlap (10,000 QTLtools Fenrich permutations; see the “Methods” section) between eQTLs
and each functional annotation, through two-sided Fisher’s exact tests (no multiple test adjustment). Error bars are 95% confidence intervals. The right
part of the plot denotes the percentage of overlap between eQTLs and each functional annotation. b, c Two-sided Fisher’s exact test odds ratio and p-value
for the enrichment of shared lead eQTLs in each functional annotation compared to other lead eQTLs, for eQTLs in Geuvadis LCLs and GTEx LCLs,
respectively. Error bars are 95% confidence intervals. d Percentage of COPs with a shared lead eQTL per GTEx tissue. Numbers inside bars denote the
number of COPs with eQTL sharing.
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enhancers, which are known to interact with several genes, can
provide a mechanistic explanation of how such variants regulate
multiple genes. To further evidence that COPs are co-regulated
by the same genetic variants, we performed colocalization analysis
between the eQTL signals of the two genes in the pair using
COLOC30 (see the “Methods” section). As expected, a large
portion of COPs in eQTL sharing show evidence of common
eQTL signals (45.6% COPs, coloc H4 posterior probability (PP4)
> 0.5), whereas COPs that are not in eQTL sharing show very low
evidence of common eQTL signals (0.9% COPs with PP4 > 0.5,
Supplementary Fig. 21). Importantly, COPs (in eQTL sharing or
not) also evidence more common eQTL signals than non-COPs,
even when considering only pairs of genes in both categories (PP4
> 0.5 in 42.4% of COPs compared to 5.4% for non-COPs, Sup-
plementary Fig. 21). In addition, we find that shared eQTLs with
PP4 > 0.5 display stronger functional enrichments than those with
PP4 < 0.5 (Supplementary Fig. 21). Yet, even shared eQTLs with
PP4 < 0.5 are enriched for various annotations, including enhan-
cers (OR= 2.2, p-value= 1e−4).

To study the sharing of genetic regulation across all 49 GTEx
tissues, we extended our approach to identifying all lead eQTLs
affecting the expression of COPs to all tissues (5% FDR, see the
“Methods” section). We found that 63% (85,460 out of 135,662)
COP–tissue pairs have a lead eQTL that is significantly associated
with both genes, illustrating the widespread sharing of genetic
effects through local co-expressed genes. Per tissue, between 6.2%
and 89.3% (median= 46.2%) COPs have a shared lead eQTL
(Fig. 4d), the large spread between tissues being largely due to
sample size differences (Spearman rho= 0.78, p-value= 3.5e−11,
Supplementary Fig. 22). On average, a COP in eQTL sharing is
associated with the same lead eQTL in 21.8% of the tissues where
present (considering COPs in >5 tissues, Supplementary Fig. 23).
As a whole, these results indicate that the co-regulation of
multiple genes by single genetic variants is widespread and often
made through shared regulatory elements.

Shared gene regulation and trait pleiotropy. Recent GWAS and
PheWAS studies have uncovered extensive pleiotropy of complex
trait associations, finding that a high proportion of variants are
associated with multiple traits31. A plausible explanation for this
is the association of variants to multiple genes. Indeed, cis-eQTLs
that affect the expression of multiple genes have been recently
shown to have high complex trait pleiotropy25. Given the abun-
dance of genetic variation co-regulating multiple genes across
tissues found in our study (shared eQTLs), we sought to inves-
tigate how pleiotropy can be driven by gene co-regulation. For
this, we first collected GWAS summary statistics for 35 traits
from the PanUK Biobank (Pan-ancestry genetic analysis of the
UK Biobank) including binary and continuous data types, from
basic anthropometric measurements to frequently studied clinical
and complex traits with more than 15,000 cases (Supplementary
Table 2; see the “Methods” section). Association summary sta-
tistics from the PanUK Biobank are provided for the same set of
28,987,534 variants across traits and these include the vast
majority (96.8%) of all distinct lead eQTLs found across tissues.
Then, for each trait, we only retained genome-wide significant

associations (p-value < 5e−8), resulting in 373,206 variants, of
which 109,167 (29.3%) are associated with more than one of the
35 traits. Considering the 32,636 unique lead eQTLs across tissues
associated with COPs (eQTL sharing), we found that 4301
(13.2%) are associated with at least one trait, with 1274 (29.6% of
those) associated with more than one trait (Table 1). This com-
pares to 10,633 (9.4%) of other lead eQTLs (not shared) being
associated with at least one trait, with 2647 (24.9% of those)
associated with more than one trait. Shared eQTLs are thus sig-
nificantly more likely to be associated with at least one trait
(Fisher’s Exact test OR= 1.5, p-value < 2e−16), as well as with
more than one trait (OR= 1.7, p-value < 2e−16). Indeed, out of all
lead eQTLs associated with traits, those that are shared are more
pleiotropic than other lead eQTLs (mean 1.5 for shared, 1.38 for
other lead eQTLs, two-sided Wilcoxon rank-sum test p-value=
3e−11, Fig. 5a). We confirmed that shared eQTLs have increased
pleiotropy independently of their increased presence in multiple
tissues (two-way ANOVA p-value= 1.4e−11). Indeed, the pre-
sence of the same lead eQTL across multiple tissues, previously
found to have higher pleiotropy than tissue-specific eQTLs25,
results only in a mild increase of pleiotropy in our dataset (mean
1.45 for multiple tissues, 1.4 for tissue-specific, two-sided Wil-
coxon rank-sum test p-value= 0.06, Supplementary Fig. 24). This
suggests that pleiotropy can arise due to the co-expression and
co-regulation of nearby genes, for example, through the effect of
several genes implicated in diverse physiological processes.

Next, we investigated whether shared lead eQTLs are strongly
associated with the 35 traits analysed here, by comparing the
probability distributions of all variants prior to any p-value
filtering. First, as found in the previous studies5,32, we observed
that lead eQTLs (shared or other) are more likely to display
stronger associations (i.e. lower association p-value) than other
variants, as observed in quantile-quantile plots (Q–Q plots) and
measured by the genomic inflation factor (ƛ metric, Fig. 5b,
Supplementary Fig. 25). Notably, we found that shared lead
eQTLs often have stronger associations than other lead eQTLs, as
it can be observed in known tissue-trait pairs, such as
hypothyroidism-thyroid (ƛ= 1.64 for shared, ƛ= 1.34 for other
eQTLs) and systolic blood pressure—artery aorta (ƛ= 2.83 for
shared, ƛ= 2.55 for other eQTLs) (Fig. 5b). Moreover, consider-
ing all shared and other lead eQTLs across the 49 GTEx tissues,
we found stronger association p-values (higher ƛ) for shared lead
eQTLs across 34 out of the 35 traits assessed, which is a
remarkably consistent result (Supplementary Fig. 25). Together,
these findings suggest that eQTLs affecting more than one gene
play an important role in (multiple) complex traits and disease,
and can help reveal novel links between traits that may explain
disease and trait comorbidity.

Through our analysis, we identified a total of 1274 unique
variants (in 3201 eQTL–COP–tissue combinations) that affect
multiple genes as well as multiple traits (Supplementary Data 1).
Of these variants, 219 fall in promoters, and 26 in enhancer
regions, a higher overlap proportion than found for other lead
eQTLs that are also pleiotropic but do not affect multiple genes
(Fisher’s exact test p-value= 1e−5 and 0.05, respectively,
Supplementary Fig. 26, Ensembl v101 Regulatory Build33). This
overlap to functional regions denotes plausible mechanistic

Table 1 Number of lead eQTLs associated with one or more traits.

Lead eQTL category Total # eQTLs Associated to a trait Associated to >1 trait

All lead eQTLs 145,327 14,934 (10.3%) 3921 (26.3% of previous)
Shared lead eQTLs 32,636 4301 (13.2%) 1274 (29.6% of previous)
Other lead eQTLs 112,691 10,633 (9.4%) 2647 (24.9% of previous)
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explanations linking genetic variation to the expression of several
genes which in turn affect multiple traits. Overall, our approach
allows us to gather novel information into the genetic architecture
of disease loci, and its exploration can open the way to
comprehend trait pleiotropy and comorbidity, aiding the
interpretation of QTL and GWAS findings.

Discussion
Prevalent genome-wide local gene co-expression had been pre-
viously reported in humans, but limited to a few tissues or cell
types10,11. In this study, we confirm that local gene co-expression
is highly prevalent and we provide the community with a data-
base containing an extensive catalogue of local gene co-expression
and shared eQTLs across 49 human tissues. Previous studies
reported a genome-wide level of 37.4% co-expressed genes (out of
20,502 genes assessed) in 100 normal breast tissue samples10.
When correcting for multiple testing and accounting for technical
variability, as we attempted in our new method, we found a
similar proportion of co-expressed genes (38.1%), even though a
larger dataset comprising 396 GTEx breast mammary tissue
samples was used. Interestingly, we found that COP genes are
enriched in belonging to the same biological pathway (OR= 2.6,
Supplementary Fig. 3), BP GO term annotation (OR= 3.9) and
protein complex (OR= 12.5). The particularly high enrichment
in COPs encoding proteins belonging to the same protein com-
plex could indicate that gene co-regulation may aid the main-
tenance of stoichiometry in protein complexes. Our finding that
COPs have more similar expression levels and variation com-
pared to non-COPs corroborates this notion.

In this study we assessed the relevance of several molecular
features for local gene co-expression, replicating results in various
tissues and datasets. As expected from the perceived complexity
of gene regulation, we found that several factors contributed to
local gene co-expression and provided novel insights into cis-
regulation. Of particular relevance was the finding that low reg-
ulatory complexity, e.g. a low number of nearby TFBS and
enhancers, coincides with high gene co-expression, particularly in
COPs present in many tissues. In agreement with our findings, a
recent study identifying cohesin chromatin loops also evidenced
the usage of a simpler circuitry in constitutive genes which have a
steady level of expression, whereas more extensive regulatory
architectures were found in dosage-sensitive genes34.

A limitation of our approach rests in our inability to disen-
tangle whether the observed molecular features (e.g. enhancer-
gene interactions, CTCF binding) actually cause the observed
gene co-expression or whether they are its consequence. To dis-
criminate these, molecular experiments would have to be per-
formed (e.g. massively parallel reporter assays and CRISPR/Cas9-
based technologies27,35). Another feature that is hard to dis-
criminate between cause or consequence, is the finding that genes
in a COP often have similar expression levels as well as reduced
expression variation between them. On one hand, selection for
reduced expression noise has been previously proposed as a cause
for the grouping of genes in the genome, particularly for essential
genes36. On the other hand, local gene co-expression can simply
be a consequence of stochastic chromatin fluctuations (i.e. similar
expression patterns can be a consequence of genes being close
together). Indeed, Kustatscher et al. have found evidence for both
cases, although most local gene co-expression was shown to be
buffered at the protein level37.

Our approach is affected by the amount and quality of mole-
cular data available for distinct tissues. This could explain some of
the differences in AUCs observed, such as lower AUCs for
enhancer features for Lung and Muscle skeletal (AUC= 0.57), as
only 43,973 and 39,708 predicted enhancer–gene interactions
were used for Lung and Muscle skeletal, respectively, compared to
78,796 for LCLs (AUC= 0.61 for GTEx and 0.64 for Geuvadis
LCLs)38. Indeed, given the difficulty in obtaining complete tissue-
specific regulatory maps (e.g. all enhancer–gene interactions
relevant in a certain tissue) and the added complexity of reg-
ulatory mechanisms (e.g. we did not include CpG islands and
promoter types in our study), we did not fully account for all
possible regulatory mechanisms in this manner. Instead, we
reasoned that identifying natural genetic variation and associating
it with the expression of several genes (shared eQTLs) would
allow us to map genomic regions pertaining to both known (e.g.
enhancers) and unknown features of gene co-regulation. Indeed,
the AUCs for eQTL sharing were shown to be higher than for any
other metric assessed, which indicates the feasibility and benefit
of this approach to study the regulation of local gene co-
expression.

While our approach to find variants affecting multiple genes
may be overly simplistic (e.g. only lead eQTLs are used and
causality is not assured) and limited by sample size, we have

Fig. 5 Comparison of trait pleiotropy and association p-values between shared and other lead eQTLs. a Distribution of trait pleiotropy (association p-
value < 5e−8) across 35 UKBB GWAS traits. If a lead eQTL is shared in at least one tissue (even if not in other tissues) it is considered as “shared”. The
remaining lead eQTLs compose the “other” category. Only lead eQTLs associated with at least one trait were considered; b, c Q–Q plots of association p-
values (−log10 scale) for known tissue-trait matched pairs (hypothyroidism in thyroid tissue and systolic blood pressure in artery aorta), comparing shared
(green) and other (orange) lead eQTLs. GWAS (blue) is a sample of 10,000 variants (randomly and independently picked for each trait) shown only for
comparison purposes.
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nevertheless found extensive evidence of joint control of co-
expressed genes through the same genetic variant. Indeed, we
found that shared eQTLs (i) often overlap enhancers, (ii) are
more strongly associated with GWAS traits and (iii) are more
likely to affect more than one trait. Recent studies also found that
eQTLs that affect the expression of multiple genes display high
complex trait pleiotropy25,39. Our findings provide further
insights into the molecular underpinnings of pleiotropy: variants
that affect the expression of multiple genes by overlapping reg-
ulatory elements display a higher degree of complex trait pleio-
tropy. This indicates that the pleiotropy reported in previous
studies31 may emerge from cis-regulation, besides the possibility
of it arising from multiple functions of genes, particularly under
distinct tissues and cellular contexts. Moreover, describing COPs
and their co-regulation can aid in establishing the direction of
causality between traits that were previously found to be
comorbid. Characterising how variants are functionally linked to
disease is still a challenge but approaches such as ours provide an
additional layer of interpretation, by linking groups of genes
regulated together and describing how regulatory signals may be
propagated. As current colocalization methods are only focused
on the sharing of GWAS and eQTL signals for single genes, the
development of methods dedicated to pinpointing causal variants
co-regulating multiple genes and/or other molecular phenotypes
may prove an asset for future research.

Methods
Geuvadis consortium gene expression dataset. Geuvadis consortium15 BAM
files previously mapped to GRCh37 for RNA-seq experiments on LCL were used
for COP identification. Only a subset of 358 European (EUR) individuals from the
Geuvadis study also present in the 1000 Genomes project phase were considered.
Data was downloaded from the EBI ArrayExpress (accession code E-GEUV-1).
Gene expression was quantified for all protein-coding and lincRNAs geness
annotated in GENCODE v1940 using QTLtools41 v1.1 quan function with default
parameters. Genes within or around the MHC complex region
(chr6:29500000–33600000) and in non-autosomal chromosomes (X and Y), as well
as pseudoautosomal regions (PAR1, PAR2) or unassembled regions, were removed.
Moreover, genes with no expression measurements across most individuals (≥50%
of the individuals with RPKM= 0) were also excluded. To account for con-
founding factors, the following covariates were regressed out: (i) sample sex (as
defined by the 1000 Genomes project), (ii) ancestry (three first PCA principal
components (PC) computed using QTLtools pca function on genotype data that
has been trimmed for one variant with minor allele frequency (MAF) > 5% every
50 kb) and (iii) unknown technical/experimental variables based on the first 50
PCA PCs computed using QTLtools pca function on the gene expression matrix.
The 50 PCs were determined as the number of PCs that maximises the number of
eGenes discovered. Importantly, residualising gene expression by several PC, a
practice commonly used in eQTL mapping2 to improve discovery power, is
expected to reduce trans gene co-expression effects, leading to increased power in
detecting weaker effects of local gene co-expression. Finally, the expression
quantifications across individuals were normalised to match a normal distribution
N(0,1).

GTEx project gene expression dataset. Gene expression quantifications (TPM
values) from RNA-seq experiments across 49 tissues (for which genotype data is
also available for ≥70 individuals) processed and provided by the GTEx project
v825 were used for COP identification. Data was downloaded from dbGaP
(accession: phs000424.v8.p2). The provided quantifications had been mapped to
Gencode v2640 gene annotations on hg38 and normalised by TMM between
samples (as implemented in edgeR), and inverse normal transform across samples.
Moreover, only genes passing an expression threshold of >0.1 TPM in ≥20%
samples and ≥6 reads in ≥20% samples had been retained. As done for the Geu-
vadis dataset, only protein-coding and lincRNA genes were considered in this
study, and genes in the MHC complex region and in non-autosomal or pseu-
doautosomal regions were removed. Covariates provided by GTEx v8 for each
tissue were regressed out of each expression matrix to account for potential con-
founding factors. These included 15–60 Peer factors (depending on tissue sample
size), 5 Genotype PCA PCs as well as information about the sequencing platform,
PCR usage, and the sex of the samples, all provided by GTEx.

Identification of co-expressed gene pairs. A framework for robustly identifying
local gene co-expression was developed in this study. The input for this method is a
gene expression matrix across individuals (e.g. genes as rows, individuals as col-
umns) including gene coordinates (chromosome and TSS position). In this study,

the input expression matrices were previously pre-filtered, normalised and cor-
rected for covariates (see above). Gene pair Pearson correlation across individuals
is then calculated for all gene pairs whose TSS’s are <1Mb apart. This window size
is commonly used in genetic studies for assessing cis effects and allows to test the
vast majority of genes. For instance, in Geuvadis LCLs 16,840 genes have a
neighbour within 1Mb, out of the 16,907 genes assessed. The total number of gene
pairs tested are thus 224,267 gene pairs for the Geuvadis dataset and 350,564 gene
pairs for the GTEx dataset across all tissues (e.g. 242,084 for Lung and 192,637 for
Muscle Skeletal). Of note, the gene pair correlation is calculated regardless of gene
order, transcription directionality and coordinate overlap, thus accounting for all
possible co-expression occurring in a certain cis window. To account for the
variable number of genes neighbouring in a cis window the following procedure
was applied: (i) for each gene, it’s cross-individual expression values were shuffled
and the correlation with each other gene in the cis window was recalculated 1000
times (while keeping the expression values of the other genes intact); (ii) in each
randomisation, the highest correlation value across cis genes is kept in order to
build a null distribution; (iii) an empirical p-value (‘adjusted p-value’) is obtained
for each gene pair for the correlation value observed with the real data to be higher
than the correlation values obtained in the randomisations. Notably, this procedure
adjusts for the total number of neighbouring cis genes while ensuring that the
correlation structure between them is unchanged. To control for the total number
of genes tested with this approach, the Benjamini–Hochberg procedure was applied
on the adjusted p-values corresponding to the highest correlation values observed
for each gene. The adjusted p-value corresponding to FDR 1% was kept and any
gene pair whose adjusted p-values are below this adjusted p-value was considered
significantly co-expressed gene pairs (COPs). Note that in GTEx this procedure is
performed for each tissue separately. Extremely high correlation (≥0.99) was found
to be mapping artefacts and were removed from the analysis (164 gene pairs in
Geuvadis, none for GTEx). Finally, COPs were grouped into a network using
igraph v0.7.1 on Python3.6 and plotted with Cytoscape 3.8.042.

Enrichment to functionally and evolutionarily related datasets. The over-
representation of Geuvadis LCL COPs (unfiltered, positive and negative correla-
tion) as functional-related gene pairs was assessed with one-way Fisher’s Exact tests
to several datasets: (i) genes annotated with the same exact ‘Biological Processes’
annotation of the GO20, obtained from Ensembl v98 via the BioMart interface; (ii)
genes belonging to the same biological pathway, gathered from KEGG23 and
Reactome24 through the Ensembl v98 BioMart data mining tool43 (25 May 2020);
(iii) genes belonging to the same human protein complex, gathered from the
CORUM 3.0 database21 and hu.MAP21,22 (20-April-2020). UniprotKB IDs were
converted to Ensembl IDs with the Uniprot ID mapping tool44. Moreover, to assess
the overrepresentation of COPs in evolutionarily related human genes, a com-
pendium of human paralog gene pairs was gathered from (i) paralog gene pairs
from the Ensembl v98 BioMart data mining tool43, (ii) human gene pairs belonging
to the same OrthoMCL v645 cluster and (iii) gene pairs belonging to the same
group of the Duplicated Genes Database46 (last update: June 19, 2015). This
compendium of 11,304 local (within 1Mb) paralog gene pairs was used to filter
evolutionarily-related genes in downstream analysis.

COP dataset filtering. Given that neighbouring paralog genes may display co-
expression due to usage of the same or copied regulatory elements, all 11,304 local
paralog genes gathered from Ensembl, OrthoMCL and the Duplicated Genes
Database (see above) were excluded from analysis (before COP discovery phase).
Moreover, only COPs with positive expression correlation were used for molecular
feature analysis and subsequent analysis (>90% of COPs from each dataset). This is
because positive and negative gene pair correlation may be regulated in distinct
manners and the number of negatively correlated genes is too low for an extensive
analysis of only negative correlation (e.g. only 7.1% COPs are negatively correlated
in Geuvadis LCLs). In addition, only COPs that passed significance cutoffs (FDR
1%) in both gene pair comparisons assessed (i.e. gene1–gene2 and gene2–gene1)
were considered (<1% of COPs per dataset were removed in this way). These filters
were applied equally to both Geuvadis LCL (from 9384 to 6668 COPs) and all
GTEx tissues (from 64,320 to 40,999 distinct COPs across tissues).

Creation of non-COP and trans-COP controls. To control for distance effects in
local gene pair co-expression, a set of non-COPs was built for each dataset and
tissue. For this, for each COP, a gene pair that is not co-expressed (non-COP) but
is matched for the distance between TSSs observed in the COP is randomly
sampled. The maximum distance discrepancy allowed between a COP and a
matching non-COP is 100 bp. Non-COPs are picked randomly without replace-
ment. To ensure that non-COPs are not COPs that simply did not pass FDR 1%,
only non-COPs with adjusted p-value > 0.5 were randomly sampled. Given the
large number of non-COPs available (~95% of all gene pairs tested), in no case a
COP is lost for not having a matching non-COP in Geuvadis and in most GTEx
tissues, exceptions being 4 gene pairs in Adipose_Subcutaneous, 8 in Muscle_S-
keletal and 6 in Thyroid.

To compare the proportion of eQTL sharing in cis-COPs and trans-COPs in
Geuvadis LCLs, a set of trans-COPs was defined, consisting of all gene pairs
(regardless of genomic location) that have correlation above 0.143 (the minimum
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correlation value for significant cis-COPs) and are not cis-COPs. Then, for each
cis-COP, a random trans-COPs with a correlation value at most 5% different from
the cis-COP correlation value was selected. 6316 cis-COP/trans-COP matches were
liable to be created in this manner.

Molecular feature metrics and datasets used. The following metrics were
assessed for their potential to regulate local gene co-expression. These were cal-
culated in the same way for the Geuvadis LCL dataset and three GTEx tissues—
Muscle Skeletal, Lung and Cells EBV-transformed lymphocytes (equivalent to
LCLs)—unless otherwise stated.

(a) Total CTCF sites: Total number of CTCF-binding sites found between the
TSSs of both genes in the gene pair. Tissue or cell-line-specific data was
collected from the ReMap 2018 v1.2 database47, which includes Encode and
other public datasets of ChIP-seq experiments. MYOBLAST data was used
as a proxy for the GTEx Muscle Skeletal tissue, whereas Lung and LCL
(GM12878) datasets were readily available.

(b) Inverted CTCF motifs: Number of CTCF motifs found in opposite
orientations (i.e. pairs of ‘+’ and ‘−’ CTCF motifs) between the TSS of
both genes in the gene pair. Note that this does directly count the number of
CTCF motifs in a convergent orientation, but is rather intended as a proxy
for the number of possibilities to form DNA loops. TF motifs mapped to
hg19 were downloaded from the MotifMap database48 in August 2019. The
following CTCF motifs were used: ‘LM2_CTCF= CTCF’, ‘M01200=
CTCF’, ‘M01259= CTCF’ and ‘MA0139= CTCF’.

(c) Hi-C contacts: KR normalised Hi-C contacts between the 5 kb bins
encompassing the TSSs coordinate of each gene in the gene pair. Data
from the GM12878 cell line (LCL) at 5 kb resolution was used49. This metric
was only calculated for the Geuvadis LCL dataset.

(d) Enhancer sharing: Number of common enhancers interacting with both
genes in the gene pair. Predicted enhancer–gene interactions were
downloaded from the Enhancer Atlas V2.050 (March 2020). Data from
the GM12878 cell line was used for Geuvadis and GTEx LCLs as well as
human ‘Skeletal_muscle’ and ‘Lung’ data for the respective GTEx tissues.

(e) Total enhancers: Number of distinct enhancers interacting with each gene in
the gene pair. If the same enhancer interacts with both genes in the pair, it is
counted once. Data downloaded from the Enhancer Atlas V2.0, as above.

(f) Shared TFs: Number of distinct TF motifs found within ±50 kb flanking the
respective TSS of both genes in the gene pair (i.e. a number of distinct TF
motifs in common between the two genes). TF motifs mapped to hg19 were
downloaded from the MotifMap database48 in August 2019, and amount to
607 different TF motifs.

(g) Total TF-binding sites (total TFBS): Sum of TF-binding motifs (including
redundant and overlapping motifs) within ±50 kb flanking of each gene TSS
in the gene pair. All 607 different TF motifs from the MotifMap database
were used.

(h) Expression level difference (Diff. expr. level): Relative difference in expression
between each gene in the gene pair, calculated as the absolute difference
between the average expression level of the genes in the pair, divided by the
mean expression level of the pair. For the Geuvadis dataset, mean raw RPKM
values were used, whereas for GTEx tissues, median raw TPM values were used.

(i) Expression coefficient of variation difference (Diff. coef. var.): Absolute
difference between the expression coefficient of variation of the two genes in
the gene pair, divided by the mean coefficient of variation of the gene pair,
calculated from cross-individual raw RPKM values. This metric was only
calculated for the Geuvadis LCL dataset.

(j) GO term sharing: Total number of BP GO terms that are in common
between the gene pair. GO ID matching is exact. Gene GO term annotations
were downloaded through the Ensembl v98 BioMart data mining tool43

(December 2019).
(k) Linkage disequilibrium (LD): A proxy for possible LD between the two genes

in the gene pair was obtained as the maximum LD between the variants
flanking the TSS (±5 kb) of one gene and those flanking the TSS of the other
gene in the gene pair. LD was measured as R-squared using vcftools
v0.1.1551. This metric was only calculated for the Geuvadis LCL dataset.

(l) eQTL sharing: Whether the lead cis-eQTL (FDR 5%, Benjamini–Hochberg
procedure) of one gene in the pair is nominally significant (p-value < 0.05)
for association with the other gene in the gene pair. This is tested two-ways
and values are attributed as: 0 if no lead eQTL is shared, 1 if the lead eQTL
of one gene is shared, 2 if the lead eQTL of each gene is shared in the other
gene of the pair. Sharing is only considered if the effect sign (beta sign) is
conserved across the pair. Only lead eQTLs of eGenes are considered. eQTL
mapping was performed with QTLtools v1.141 on the same samples and
individuals studied for local gene co-expression. Further details on the eQTL
analysis are provided below.

(m) Co-expressed eGenes: Whether none, one or both genes in the pair are
eGenes, i.e. having a significant cis-eQTL (FDR 5%, Benjamini–Hochberg
procedure), using the same cis-eQTLs as in the “eQTL sharing” metric.

For all metrics, missing data and ‘NA’s were replaced with zeroes. When
necessary, annotation coordinates were moved to hg38 (for GTEx tissues) or hg19

(for Geuvadis dataset) using the UCSC liftOver tool52. In addition to these metrics,
to estimate the distance between gene pairs in terms of centimorgans, genetic
distance maps based on recombination estimates from Auton et al. 2007 were
used53. Using these maps, the absolute centimorgan distance between gene TSSs
were interpolated for each Geuvadis LCL COP and non-COP. Moreover, the
presence of gene pairs in the same LD block or across LD blocks defined by Berisa
and Pickrell 201654 was assessed considering gene TSS coordinates.

Logistic regression models. Logistic regression for several models of features/
metrics liable to explain some of the observed local gene co-expression were per-
formed with custom scripts using R (v3.4.4) project programming language, using
the glm function. Co-expression was encoded in a binomial format based on co-
expression, with COPs regarded as positives (value 1) and distance-matched non-
COPs as negatives (value 0, see above for details). The regression models were
trained with 80% randomly sampled gene pairs (no replacement), keeping the same
sample size between positives and negatives. The ability to correctly predict whe-
ther the remainder 20% gene pairs are positives or negatives from the learned
models was evaluated for each model independently by measuring the AUC of the
ROC curve. The sampling of gene pairs into training or test sets was repeated 50
times and the mean AUC reported, unless otherwise specified.

For simplicity, several related metrics were combined into the same model, and
thus the AUCs reported are based on these combinations of metrics: (i) the
‘Enhancer’ model consists of ‘Enhancer sharing’+ ‘Total enhancers’ metrics; (ii)
the ‘TF’ model consists of ‘Shared TFs’+ ‘Total TF-binding sites’ metrics; (iii) the
‘CTCF’ model consists of ‘Total CTCF sites’ and ‘Inverted CTCF motifs’; (iv) the
‘Expression’ model consists of ‘Expression level difference’+ ‘Expression
coefficient of variation difference’ metrics (for Geuvadis LCLs only); (v) the ‘eQTL
sharing’ model consists of ‘eQTL sharing’ and ‘Co-expressed eGenes’ metrics. All
other models are based on a single metric, described above.

COP sharing across tissues. Clustering of tissues based on COP sharing was per-
formed in R (v3.4.4) using hclust and Pearson correlation coefficient using a discovery-
replication approach: for a pair of tissues (tissue A and tissue B), the percentage of
COPs (FDR 1%) of tissue A that are also COPs (FDR 1%) in tissue B (and vice versa) is
calculated. This provides a non-symmetrical matrix. Only COPs assessed in both tissue
A and B were considered. This was performed before COP dataset filtering.

Local gene pair co-presence is defined as both genes in the pair passing an
expression threshold of >0.1 TPM in ≥20% samples and ≥6 reads in ≥20% samples
(defined by the GTEx project), which is a prerequisite for COP detection. The
calculation of the percentage of tissues where co-present was based on this
definition across the 49 GTEx tissues. COP sharing and percentage of tissues where
co-expressed was calculated as the number of tissues where the COP is found (FDR
1%) divided by the number of tissues where the pair is co-present. To be able to
distinguish simple gene expression tissue-specificity from gene co-expression
specificity, only COPs where both genes were present (non-zero expression) in at
least five tissues were considered (38,196 out of 40,999). COP sharing categories
(conserved, prevalent, specific and unique) were derived from this metric as
follows: (i) ‘unique COPs’, found in only one tissue (N= 20,781 across tissues), (ii)
‘specific COPs’, found in >1 tissue but at most 15% tissues where both genes in the
pair are present (range: 2–7 tissues, N= 10,111), (iii) ‘prevalent COPs’, found in >1
tissue and between 15% and 50% tissues (N= 4863) and (iv) ‘conserved COPs’,
found in >50% tissues (N= 2441).

eQTL mapping and eQTL-sharing analysis. Genotypes for the 358 European
individuals of the Geuvadis dataset15 were downloaded from the 1000 Genomes16

FTP server (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). All var-
iant sites with more than two possible alleles or with a MAF below 5% have been
removed. In total 6,865,255 variants (6,050,717 SNPs, 809,705 indels, 4833 struc-
tural variants) were used in analysis after filters. Genotypes from the GTEx v8
dataset were obtained via dbGaP accession number phs000424.v8.p2, which
includes 838 subjects, 85.3% European American, 12.3% African American and
1.4% Asian American. Details regarding donor enrolment, consent process, bios-
pecimen procurement methods and other procedures is previously described55.
The phased version of the genotype files was used and only variants with MAF >5%
were used for analysis, totalling 6,590,509 variants (6,123,541 SNPs, 466,968
indels).

For each gene expression matrix (normalised and corrected for covariates), i.e.
for Geuvadis LCL expression matrix and each GTEx tissue expression matrix, cis-
eQTLs were mapped using QTLtools v1.141 cis function. The mapping window was
defined as 1Mb up-stream and down-stream of the TSS of each gene and in all
cases the --normal option was used to enforce gene expression phenotypes to
match normal distributions N(0, 1). Two runs of eQTL mapping were produced:

1. identification of eGenes and lead eQTLs: the QTLtools cis --permute 1000
option was used to obtain a lead eQTL for each gene, i.e. the variant with the
lowest p-value. Of note, the --permute option takes into account the total
number of variants tested in each gene by randomly shuffling gene
quantifications 1000 times and producing a null distribution of the best
association p-values obtained in each randomisation. This null distribution
is used to fit a beta distribution and thus adjust the nominal p-value
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obtained with the read data. Furthermore, to account for multiple genes
being tested in each gene expression matrix, the FDR was calculated on
beta-adjusted nominal p-values through the Benjamini–Hochberg proce-
dure and only genes with a lead eQTL with FDR less or equal 0.05 were
considered to be eGenes and their lead eQTLs kept.

2. identification of all gene–cis–eQTL associations: the QTLtools cis --nominal
0.05 option was used to obtain all gene–cis–variant associations (within the
defined cis-window) with nominal p-value < 0.05. In this case no adjustment
or FDR threshold was applied to these nominal p-values, as these were only
used to replicate the association of a lead eQTL to neighbouring co-
expressed genes (eQTL sharing).

Using both runs of eQTL mapping described above and the sets of COPs (FDR 1%)
for each tissue in GTEx and Geuvadis LCL dataset, the lead eQTL (FDR 5%) of each
eGene was tested for their ability to associate (i.e. nominal p-value < 0.05) with other co-
expressed genes (even if these are not eGenes). Lead eQTLs that associate with co-
expressed genes in this way are considered as ‘shared lead eQTLs’. Importantly, a shared
lead eQTL is only considered if the effect sign (beta sign of the regression) is the same
for both genes. This definition of eQTL sharing was used for both the molecular feature
‘eQTL sharing’ and for subsequent functional enrichments of lead eQTLs.

For colocalization analysis, the nominal p-values of all variants 2Mb up- and
down-stream of the TSS of each gene were used (no p-value threshold applied).
The COLOC30 v3.2.1 on R v3.5.1 abf function was run for each Geuvadis LCL COP
(N= 6668) and distance-matched non-COPs (N= 6668), i.e. considering each
gene in the pair as a trait. Variant MAF calculated with bcftools v1.11 on the 358
Geuvadis samples used for COP identification was used for input. Gene pairs with
coloc PP4 (posterior probabilities for hypothesis 4) > 0.5 were considered to share a
signal.

Functional annotations and eQTL enrichments tests. Several functional anno-
tation datasets were collected from distinct sources:

1. ENCODE28 functional annotations for LCL (GM12878) downloaded from
the EBI FTP server. (i) Protein binding: TFBS coordinates from 74 ChIP-seq
experiments across distinct TFs; (ii) TSS (promoter region including TSS);
(iii) enhancer as well as CTCF (CTCF-enriched element) annotations
produced by ChromHMM56 combined with SegWay57; (iv) DNAse: open
chromatin regions predicted through DNAse-seq (narrowPeak, FDR 1%).

2. GENCODE40 gene body categories of human genes: for Geuvadis LCLs, the
coding sequence (CDS), untranslated region (UTR) and intron coordinates
for all genes were retrieved from the GENCODE v19 GFF3 file (i.e. the
annotation on which gene expression was assessed). For GTEx data, the
same gene body regions were retrieved from GENCODE v26 and the 3′UTR
and 5′UTR were combined into the same UTR category to reproduce the
regions available for the Geuvadis dataset. In all cases, annotations were
migrated from hg19 to hg38 when needed using the UCSC liftOver tool52.

3. Chromatin state annotation from the Roadmap epigenomics Core29 15-state
model (5 marks) was downloaded in July 2020 for Lymphoblastoid Cells
(E116), Lung (E096) and Skeletal Muscle (Male (E107) and Female (E108)
samples were concatenated).

The statistical enrichment of the overlap of lead eQTLs—shared lead eQTLs and
other lead eQTLs—for each functional annotation was performed in two ways: (i)
Direct enrichments: two-way Fisher’s exact test between the overlap found for shared
lead eQTLs versus the overlap found for other lead eQTLs; (ii) Enrichments over
expectation: the assessment of whether eQTLs fall within a certain functional
annotations more often than expected by chance was performed with QTLtools
v1.3.141 fenrich function. Briefly, for each eQTL dataset (shared or other) and for each
functional annotation, the expected mean number of eQTLs falling within the
functional annotations is computed from 10,000 permutations of the annotations
found around ±1Mb of the TSS of each gene. For instance, annotations around gene A
are attributed to gene B, accounting for strand orientation and maintaining distances
between annotations and TSS identical. In this way, the distribution of functional
annotations around genes is unchanged, only their assignment to genes is shuffled
through permutations. Then, the observed overlap is compared to the expected one
through a two-way Fisher’s Exact test. Of note, possible differences between the
distribution of functional annotations around eGenes with shared lead eQTLs and
those with other lead eQTLs is taken into account in this way, since the expected
distributions represent what is expected for the eGenes present in each category. The
granularity of the data used consists of eGene–eQTL pairs, i.e. if the same variant is a
lead eQTL for two genes, this is counted twice.

For the analysis aggregating pleiotropic lead eQTLs across the 49 GTEx tissues
(shared eQTLs and other lead eQTLs) unique eQTLs were used, i.e. if the same
eGene–eQTL pair is present in several tissues, this is only counted once. If a lead
eQTL is shared in at least one tissue (even if not in other tissues) it is considered as
“shared”. Overlap of shared eQTLs and other lead eQTLs was compared across
functional annotations from the Ensembl v101 Regulatory Build33 and genic
regions from GENCODE v2640 using BEDTools58 intersect v2.29.2.

GWAS summary statistics and trait pleiotropy analysis. GWAS summary
statistics for 35 phenotypes comprising diverse categories such as disease,
anthropometric, live-style, cardio-metabolic, blood and neurological traits

(Supplementary Table 2) were downloaded from the UK Biobank project59

through the Pan UK Biobank resource (Pan-UKB team. https://pan.ukbb.
broadinstitute.org. 2020). This resource provides summary statistics of 7221 phe-
notypes using a generalised mixed model association testing framework and pro-
vides results stratified by ancestry groups. For each phenotype, the same set of
28,987,534 variants is used (which includes 96.8% of all distinct GTEx lead eQTLs
across tissues), therefore not requiring variant imputation or harmonisation
between phenotypes. Only summary statistics for the European ancestry group
(EUR, total of 420,531 individuals) were used for each phenotype. Moreover, all
phenotypes selected had at least 15,000 cases in the EUR population. Genomic
coordinates of genetic variants were lifted over to hg38 using the UCSC liftOver
tool. For the pleiotropy analysis, genetic variants were considered to be associated
with a phenotype if the (EUR) association p-value was below 5e−8.
Quantile–quantile plots of association p-values (not filtered) were built against a
uniform distribution using the ggGWAS R package and the genomic inflation factor
was calculated as ƛ (lambda), defined as the median of the resulting chi-squared
test statistics divided by the expected median of the chi-squared distribution with
one degree of freedom.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data on co-expressed genes and shared eQTLs discovered here are available for
consultation and download through the LoCOP database (http://glcoex.unil.ch/)
developed here. The list of eQTL–COP–tissue combinations that affect multiple traits
generated in this study are provided in Supplementary Data 1. Geuvadis RNA-seq and
genotype data are available under accession numbers: EBI ArrayExpress (accession code
E-GEUV-1) for RNA-seq data and 1000 Genomes (http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502/) for the genotype data. GTEx RNA-seq and genotype data are
available from dbGaP (accession: phs000424.v8.p2).

Code availability
The code used for analysis is available under https://github.com/diogomribeiro/
LoCOP60.
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