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Abstract

Background: Uncertainties about the pathophysiological processes resulting in cardiac surgery-related acute kidney
injury (AKI) in infants concern the relative impact of the most prominent risk factors, the clinical relevance of
changes in glomerular filtration rate vs tubular injury, and the usefulness of available diagnostic tools. Structural
equation modelling could allow for the assessment of these complex relationships.

Methods: A structural model was specified using data from a prospective observational cohort of 200 patients
<1 year of age undergoing cardiopulmonary bypass surgery. It included four latent variables: AKI, modelled as a
construct of perioperative creatinine variation, of oliguria and of urine neutrophil gelatinase-associated lipocalin
(uNGAL) concentrations; the cardiopulmonary bypass characteristics; the occurrence of a post-operative low cardiac
output syndrome and the post-operative outcome.

Results: The model showed a good fit, and all path coefficients were statistically significant. The bypass was the
most prominent risk factor, with a path coefficient of 0.820 (95 % CI 0.527–0.979), translating to a 67.2 % explanation
for the risk of AKI. A strong relationships was found between AKI and early uNGAL excretion, and between AKI and
the post-operative outcome, with path coefficients of 0.611 (95 % CI 0.347–0.777) and 0.741 (95 % CI 0.610–0.988),
respectively. The path coefficient between AKI and a >50 % increase in serum creatinine was smaller, with a path
coefficient of 0.443 (95 % CI 0.273–0.596), and was intermediate for oliguria, defined as urine output <0.5 ml kg−1 h−1,
with a path coefficient of 0.495 (95 % CI 0.250–0.864). A path coefficient of −0.229 (95 % CI −0.319 to 0.060) suggested
that the risk of AKI during the first year of life did not increase with younger age at surgery.

Conclusions: These findings suggest that cardiac surgery-related AKI in infants is a translation of tubular injury,
predominately driven by the cardiopulmonary bypass, and linked to early uNGAL excretion and to post-operative
outcome.
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Background
Acute kidney injury (AKI) is a common complication of
cardiac surgery, and the occurrence of AKI is an inde-
pendent risk factor for death following cardiac surgery
in infants [1, 2]. Although almost all of the known risk
factors for AKI in infants relate to impaired renal perfu-
sion, the weight of each causal factor is still debated.
Data in adults support a lower risk of AKI when the car-
diac surgery (i.e., coronary artery bypass) is performed
off-pump, incriminating cardiopulmonary bypass (CPB)
itself as a trigger [3]. The design of previous studies in
infants [2, 4–8] did not allow for the prioritization be-
tween the CPB-related and other pre-, intra- and post-
operative risk factors of AKI.
A second subject of ongoing debate is the early diag-

nosis of AKI in infants undergoing cardiac surgery.
Serum creatinine concentration (sCr) is acknowledged
to be an inadequate marker for early diagnosis. This is
because of compensatory mechanisms in the setting of
pre-renal hypoperfusion, combined with slow variation
of sCr after injury. sCr is not only slow to increase but
often decreases in very young patients owing to the dilu-
tional effects of CPB priming and post-operative fluid
overload [9, 10]. Urine neutrophil gelatinase-associated
lipocalin (uNGAL) is a marker of tubular injury which
has been shown to reveal AKI before the rise in creatin-
ine in infants [11–13]. However, tubular injury may not
always couple with reductions in the glomerular filtra-
tion rate (GFR), and, conversely, reductions in GFR from
pre-renal azotaemia may not always combine with tubu-
lar injury. A further unresolved issue is that of which
pathophysiological process is more likely to be clinically
relevant for AKI, and thus more important to monitor:
changes in GFR or tubular injury. Focusing on the rela-
tionships between AKI and casual exposures, clinical
patterns, concurrent testing and prognosis may help elu-
cidate the consequences of attributing post-operative
AKI to changes in tubular integrity instead of glomerular
function, and improve the understanding of the overall
spectrum of the disease [14].
Structural equation modelling (SEM) [15, 16] is a

way to assess complex and multivariate relationships
and can be used to test conceptual models. It also al-
lows for the use of latent variables (i.e., variables
which cannot be measured directly but which can be
expressed by measurable ones). It is an appealing way
to resolve diagnostic problems in the absence of an
acknowledged diagnostic gold standard. The aim of
the present work was to identify the main drivers
leading to AKI in infants undergoing cardiac surgery,
the clinical relevance of changes in GFR vs tubular
injury, and the usefulness of available diagnostic tools.
To do so, we investigated the complex relationships
between AKI (modelled as a latent variable), observed

causal exposures, clinical patterns, traditional biomarkers
of AKI, uNGAL and outcome.

Methods
Study setting, design and participants
The study was conducted at the Necker-Enfants Malades
University Hospital, Paris, France, after approval by the
regional ethics committee, Paris Descartes University,
France, and was performed with the financial support of
the Direction de la Recherche Clinique, Assistance
Publique - Hôpitaux de Paris, France. The ethics com-
mittee waived the need for written consent because data
were anonymised through a deidentification process, and
since samples consisted of urine collected through a urin-
ary catheter that would have otherwise been discarded. As
advised by the ethics committee, verbal consent was
collected from all the participants’ parents. The study is
registered with ClinicalTrials.gov (NCT01219998).
This observational study included 75 neonates

(≤28 days old) and 125 infants undergoing cardiac sur-
gery with CPB who were enrolled prospectively to ex-
plore the predictive ability of post-operative uNGAL
concentrations for AKI. No pre-term infant was in-
cluded. Surgery was performed with either normother-
mic, non-pulsatile CPB or deep hypothermic circulatory
arrest (when reconstruction of the aortic arch was re-
quired), and surgical complexity was accounted for by
using the Society of Thoracic Surgeons and European
Association for Cardio-Thoracic Surgery Congenital
Heart Surgery Mortality Score [17]. All patients were
provided with standard care and monitoring according
to the institution’s protocol. SCr and urea concentrations
were measured pre-operatively and on a daily basis after
surgery. Lactacidemia was measured every 6 h, and both
urine output and arterial pressure were recorded hourly.
A total of 1176 urine samples were collected within 48 h
of surgery, with a median of 6 measurements per pa-
tient. Samples were centrifuged, then aliquoted, stored
at −80 °C and analysed using the ARCHITECT C16000
platform (Abbott Diagnostics, Abbott Park, IL, USA).
The first results were reported previously [11], and they
showed excellent predictive ability of the urine creatin-
ine normalized ratio of neutrophil gelatinase-associated
lipocalin (NGAL) measured within 24 h of surgery for
the composite outcome of dialysis and/or death. In the
present study, we investigated the complex relationships
between AKI (modelled as a latent variable), risk factors
of AKI, traditional biomarkers of AKI, uNGAL and post-
operative outcomes.

Statistical analyses
Repeated measurements were analysed using the area
under the curve (AUC) calculated by using the trapez-
oidal method, accounting for the magnitude and the
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duration of the parameter variation and adjusted for
monitoring duration. Urinary excretion of NGAL within
the first 12 h after surgery was analysed using the AUCs
for absolute concentration, excretion rate and urine cre-
atinine normalized concentration. The metric for the
variations of arterial pressure within 24 h of surgery was
the AUC below the first quintile per age group (<2 days,
3–28 days or older). SCr was analysed using either the
AUCs for the post-operative variation relative to baseline
or the AUC for a >50 % post-operative increase relative
to baseline. Because the literature is conflicting with
regard to the definition of oliguria following cardiac
surgery in patients <1 year of age [4, 7, 18], the
metric for oliguria was the AUC below the most
popular thresholds of urine output (i.e., <0.5, <1 and
<2 ml kg−1 within 24 h of surgery). Finally, the AKI
stage was estimated according to the classification of
the Acute Kidney Injury Network (AKIN) [19]. The
vasoactive-inotropic score [20], the sum of diuretic dos-
ages administered within 24 h of surgery, and the sum of
all blood products used intra-operatively and during the
day of surgery (day 0) were also calculated. Fluid balance
was computed within 24 h of surgery. A composite vari-
able was adopted to summarize the pre-operative medical
history, with a score of 1 attributed for each of the
following: need for resuscitation, mechanical ventila-
tion or inotropic support; pre-operative infection; en-
terocolitis; pulmonary hypertension; preoperative use
applies to "diuretics, angiotensin-converting enzyme inhibi-
tors, aminoglycoside antibiotics, vancomycin or intravenous
contrast"; or presence of an identified genetic syndrome.

Data modelling
The dataset contained a large number of correlated vari-
ables, and we assumed that they might be a reflection of
a limited number of pathophysiological processes. To
reduce the number of variables and to identify the po-
tential factors (pathophysiological processes and their
surrogates) across the dataset, we used exploratory fac-
tor analysis (EFA) with varimax rotation [15]. The latent
root criterion with eigenvalues >1 was used to identify
the number of potential factors, and the scree test criter-
ion was used to reduce the number of factors. By using
EFA, we estimated the loading of each variable on each
factor (equivalent to the correlation coefficient between
the variable and the factor), as well as the communalities
(summary statistic showing how much of the variable’s
variance is accounted for by the factor solution). During
the EFA refinement process, the variables with low load-
ing (<0.400 for a sample size of 200) and/or low commu-
nality (<50) and/or cross-loading were excluded. In cases
where variables represented different expressions of the
same phenomena (the three NGAL metrics, the three
oliguria metrics, the two variation of serum creatinine

relative to baseline [ΔsCr] metrics and the AKIN stage,
and the systolic and mean arterial pressure variations),
the variable with the highest factor loading was used as
a surrogate representative. All of the factors retained in
the EFA were used to model latent variables.
Next, an SEM was specified using the selected

variables [16]. The path coefficient values correspond to
the standardized solution of the model and, as such,
allow for a direct comparison between the strength of
the paths in the model. The amount of the variance
shared by two variables corresponds to the square of the
numerical value of the path connecting them. The
Lagrange multiplier was used to respecify the initial
model, and the Bayesian information criterion (BIC) was
adopted for refinement of the model specification. The
model was evaluated using the root mean square error
of approximation (RMSEA), the normed fit index (NFI)
and the goodness-of-fit index (GFI). The χ2 exact test of
fit was not used, since it is too sensitive when applied to
large datasets. Individual path coefficients in the model
were tested for statistical significance, and 95 % 95 %
CIs of all parameters were estimated by bootstrapping
with 200 resamples. In the comparison of the path
coefficients, we employed the estimation of the 95 % CIs
of their difference by bootstrapping with 200 resamples.
SEM was performed using the “sem” package, and the
basic package of the R software version 2.10.1 for
Windows (https://cran.r-project.org/bin/windows/base/
old/2.10.1/) was used for all other analyses.

Results
The characteristics of the study population have been de-
scribed extensively elsewhere [11], and they are summarized
in Table 1. Extracorporeal membrane oxygenation was the
only mechanical assist method and peritoneal dialysis the
only renal replacement therapy used in the study population.
All of the variables used for EFA were metric measure-

ments, except for in-hospital mortality. Both the Bartlett
test of sphericity (χ2 = 4746 with 406 degrees of freedom,
p < 0.001) and the Kaiser-Meyer-Olkin measure of sample
adequacy (0.804, represents the numerical value of thet
result of the Kaiser-Meyer-Olkin test) indicated that the
correlations between variables were greater than would be
expected by chance, and that the dataset was suitable for
EFA. The latent root criterion suggested that the first seven
factors would qualify; nevertheless, since only one variable
loaded significantly on the seventh factor, the six-factor
solution was chosen. The initial factor solution is
shown in Additional file 1. The EFA refinement process
resulted in a four-factor solution, shown in Table 2 along
with the factors and loading values (±0.200 or greater).
Together, the four factors explained 61.0 % of the variance
in the dataset, a proportion considered satisfactory
[15]. Factor 1 explained 19.8 % of the total variance and
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was related to the outcome variables, which were
used to model the Outcome latent variable. Factor 2
explained 18.3 % of the total variance and was repre-
sented by the CPB parameter variables, which were
used to model the CPB latent construct. Factors 3
and 4 explained, respectively, another 15.8 % and
7.1 % of the total variance and were related to the
post-operative hemodynamic parameters, which were
used to model the low cardiac output syndrome
(LCOS) latent variable, and to the renal parameters,
which were used to model the AKI latent variable.
Variation of all of the observed parameters included in

the SEM is shown in Fig. 1 as a function of time. Two
covariance paths were added during the model refine-
ment process. The first was between creatinine normal-
ized uNGAL and the duration of CPB, and the second
was between ΔsCr >50 % and in-hospital mortality. The
diagram of the final SEM is shown in Fig. 2 and follows
the convention of representing latent variables with
ovals and observed variables with rectangles. The path
coefficients shown above each single-headed arrow are
standardized partial regression coefficients, and the
coefficients shown above the double-headed arrows are
covariance coefficients. Residual arrows were omitted.
All direct path coefficients shown in Table 3 were statis-
tically significant. The RMSEA was 0.085, indicating a
reasonable error of approximation of the covariance
matrix [21]. The NFI was 0.911 and the GFI was 0.909,
indicating good adjustment. The BIC was −167.12.
Two common rules in path models are that the nu-

merical value of a compound path is equal to the
product of the values of its constituent arrows, and
that the correlations between two variables can be
expressed as a sum of all direct and/or indirect paths
connecting them. Accordingly, the SEM indicated that
there was a significantly stronger relationship between

Table 1 Characteristics of the study population

Characteristics Data

Demographic characteristics

Age, days 95.8 ± 91.1

≤ 28 days of birth 75 (37.5)

≤ 48 h of birth 5 (2.5)

Weight, kg 4.4 ± 1.5

Medical history before surgery

Genetic syndrome 8 (4)

Resternotomy 18 (9)

Cardiopulmonary resuscitation 2 (1)

Mechanical ventilation 11 (5.5)

Inotropic support 3 (1.5)

Infection 19 (9.5)

Enteropathy 4 (2)

Medication before surgery

Furosemide 42 (21)

Spironolactone 12 (6)

Angiotensin-converting enzyme inhibitors 28 (14)

Beta blockers 12 (6)

Prostaglandin E1 44 (22)

Aminoglycoside antibiotics 31 (15.5)

Vancomycin 18 (9)

Angiography within 1 week before surgery 22 (11)

Intra-operative variables

STS-EACTS Congenital Heart Surgery Mortality Score 0.94 ± 0.79

Duration of cardiopulmonary bypass, minutes 118.2 ± 63.0

Surgery requiring aortic cross-clamping 190 (95)

Duration of aortic cross-clamping, minutes 62.9 ± 33.9

Ultrafiltration rate, ml kg−1 min−1 of bypass 1.4 ± 0.6

Surgery requiring deep hypothermic circulatory arrest 18 (9)

Packed red blood cell transfusions, ml 469.9 ± 153.9

Fresh frozen plasma transfusions, ml 221.1 ± 116.4

Platelet transfusions, ml 61.8 ± 32.7

Post-operative variables

Requirement for delayed sternal closure 38 (19)

Requirement for extracorporeal membrane oxygenation 3 (1.5)

Peak lactacidemia within 6 h of surgery, mmol L−1 3.8 ± 2.0

Peak lactacidemia within 48 h of surgery, mmol L−1 3.7 ± 1.9

Vasoactive-inotropic score within 48 h of surgery,
μg kg−1 min−1

15.05 ± 7.29

Delay to sternal closure, days 3.9 ± 3.5

Post-operative renal variables

Peak serum creatinine within 48 h of surgery, mmol L−1) 49.2 ± 23.1

Peak ΔsCr within 48 h of surgery, % 26.4 ± 47.1

Mean urine output within 24 h of surgery, ml kg−1 h−1 4.1 ± 2.7

Table 1 Characteristics of the study population (Continued)

Negative fluid balance, ml kg−1 24 h−1 −28.06 ± 26.8

Peritoneal dialysis 16 (8)

Duration of peritoneal dialysis, days 0.24 ± 0.96

AKI stage according to AKIN system

Stage 1 16 (8)

Stage 2 8 (4)

Stage 3 17 (8.5)

Duration of mechanical ventilation, days 1 [0–5]

Duration of intensive care unit stay, days 4.5 [2–7]

In-hospital death 8 (4)

AKI acute kidney injury, AKIN Acute Kidney Injury Network, ΔsCr serum
creatinine variation relative to baseline, STS-EACTS Society of Thoracic
Surgeons and European Association for Cardio-Thoracic Surgery
Data are shown as mean ± SD, median [IQR] or number and proportion
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CPB and AKI than between LCOS and AKI, with direct/
compound path coefficients of 0.820 (i.e., 0.596 + 0.451 ×
0.347 + 0.997 × 0.137 × 0.508) with 95 % CI 0.527–
0.979 and 0.347 with 95 % CI 0.096–0.553, respect-
ively. The 95 % CI of their difference was 0.062–
0.607, which was statistically significant. The SEM
also indicated that there was a stronger relationship
between AKI and the creatinine normalized uNGAL
than between AKI and ΔsCr >50 %, with direct/com-
pound path coefficients of 0.611 (i.e., 0.508 + 0.137 ×
0.997 × 0.596 + 0.137 × 0.997 × 0.451 × 0.347) with 95 %
CI 0.347–0.777 and 0.443 with 95 % CI 0.273–0.596,
respectively. The relationship between AKI and Oliguria
was intermediate, with a direct path coefficient of 0.494
with 95 % CI 0.250–0.864. There was a strong relation-
ship between AKI and Outcome, with a path com-
pound coefficient of 0.741 (i.e., 0.684 + 0.443 × 0.197 ×
0.652) with 95 % CI 0.610–0.988. There was a non-
significant relationship between age and AKI, as sug-
gested by the compound path coefficient of −0.229
(i.e., 0.661 × 0.347) with 95 % CI −0.319 to 0.060.

Discussion
When modelled as a latent variable, cardiac surgery-
related AKI in patients <1 year of age appeared to be a

consequence of tubular injury, predominately mediated
by the CPB, and strongly related to early NGAL excre-
tion. The strong relationship with the outcome after sur-
gery suggests that tubular injury is the most relevant
process to monitor in this setting. The present findings
also suggest that urine creatinine normalized NGAL
concentration is a more accurate marker of AKI than
ΔsCr in this setting, and that oliguria is a marker of
intermediate value. According to the present results, age
at surgery has little impact on the occurrence of post-
operative AKI within the first year of life.
AKI following cardiac surgery is known to be multi-

factorial, and several pre-, intra- and post-operative
factors have been reported to increase the risk of
post-operative AKI [22]. Low systemic oxygen delivery
and low blood pressure have recently been pointed
out as main drivers for severe AKI in this context
[23]. Specific risk factors based on physiological fea-
tures related to age and due to specific surgical re-
quirements have been reported in very young patients.
Because of the small sample size of the present study, not
all of the known and/or suspected risk factors for post-
operative AKI were covered here. To limit the number of
confounding variables, the present analysis was focused
on a homogeneous group of patients <1 year of age.

Table 2 Exploratory factor analysis with varimax rotation: results of the 4-factor solution

Variable Factor 1 Factor 2 Factor 3 Factor 4

Outcome CPB LCOS AKI

Age, days −0.773

Duration of cardiopulmonary bypass, minutes 0.305 0.907 0.242

Duration of aortic cross-clamping, minutes 0.817

Conventional ultrafiltration on bypass, ml 0.695

Blood transfusions on day 0, ml 0.251 0.215 0.627

Lactacidemia, AUC 0.280 0.680

Systolic arterial pressure, AUCa 0.209 0.610 0.214

Urine output <0.5 ml kg−1 h−1, AUC 0.188 0.420

Increase in serum creatinine >50 % relative to baseline, AUC 0.538

Urine creatinine normalized NGAL, AUCb 0.393 0.494

Duration of mechanical ventilation, days 0.946 0.202 0.227

Length of intensive care unit stay, days 0.910 0.227

In-hospital mortality 0.613 0.236

Eigenvalue 5.11 1.71 1.55 1.01

Proportion of the explained variance 0.198 0.183 0.158 0.071

NGAL neutrophil gelatinase-associated lipocalin, AKI acute kidney injury, CPB cardiopulmonary bypass, LCOS low cardiac output syndrome
The table shows the estimated factor loadings. The factor loading value is equivalent to the correlation coefficient between the variable and the factor. Only
factor loading values greater than ±0.200 are shown. Factor loading values greater than ±0.400 (considered significant for a sample size of 200) are shown in
boldface type; they allowed for identification of the variables further used to model the latent constructs Outcome, CPB, LCOS and AKI. Together, the four factors
explained 0.610 of the total variance in the dataset, a proportion considered acceptable. AUC accounts for the magnitude and the duration of the parameter variation
aWithin 24 h of surgery
bWithin 12 h of surgery. All the other parameters were monitored within 48 h of surgery
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Even though it is more commonly adopted in the so-
cial sciences, SEM has found a few applications in the
field of nephrology, such as in assessment of the rela-
tionship between chronic kidney injury and periodontal
disease [24] and in analysis of the diagnostic accuracy of
AKI biomarkers [25]. SEM was chosen for the present
study because it appeared to be well-suited for investiga-
tion of the pathophysiological pathways whereby cardiac
surgery-related AKI develops. Since the model showed a
close fit, the pathways considered here are statistically
plausible. Also, by providing numerical estimates for the
parameters, SEM allows for an estimation of the
strength of the relationships. Both length of CPB and
LCOS have been acknowledged to be major risk factors
for AKI in paediatric studies [2, 4–8]. The new finding
in the present study is the attribution of the leading role
to CPB. With a path coefficient of 0.820, 67.2 % of the
variability of the risk of AKI was explained by the CPB,
whereas with a path coefficient of 0.347, only 12.0 % of
the variability in the occurrence of post-operative LCOS
translated into AKI risk. A parallel can easily be drawn
with the controversy around off-pump coronary artery
bypass in adults: off-pump surgery removes the

bypass circuit but can be associated with greater
hemodynamic instability as the heart is manipulated
to access the coronary arteries. Such situation allows
separation of the risk factors specifically associated
with the CPB itself from pre-, intra- and post-
operative factors. Despite ongoing controversy, data
support a lower risk for AKI in patients who undergo
off-pump surgery [3]. It is largely assumed that oxida-
tive stress, inflammation and ischemia are the most
prominent mechanisms of cardiac surgery-related AKI
[22]. They could all be caused by CPB because CPB
is associated with the generation of free haemoglobin
and iron through haemolysis [3] and contributes to oxida-
tive stress [26]. CPB also causes systemic inflammatory re-
sponse syndrome [27], and it is not known whether renal
autoregulation is maintained and adequate perfusion is
provided to the kidney during non-pulsatile CPB in
children.
In accordance with previous literature showing that

uNGAL can reveal AKI in infants who undergo cardiac
surgery [11–13] and with the results of the EFA, uNGAL
was used in the present study to model the AKI latent
variable. The SEM suggested that the relationship

Fig. 1 Variation as a function of time for the parameters included in the structural equation model. Duration of monitoring varied between 12
and 48 h after surgery. NGAL neutrophil gelatinase-associated lipocalin, ΔsCr variation of serum creatinine relative to baseline
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between AKI and uNGAL was stronger than that be-
tween AKI and ΔsCr. The dissociation between the in-
crease in sCr and uNGAL excretion in patients
susceptible to AKI is not a new finding, and it is ac-
knowledged that uNGAL and sCr provide signals of a
different nature. In contrast to conventional markers
such as sCr and urea, uNGAL reflects not kidney func-
tion but structural damage of the tubular cells [28].
Haase et al. conducted a pooled analysis including more
than 2000 patients with cardiorenal syndrome [29]. Pa-
tients with positive uNGAL and sCr criteria of AKI had
the worst outcomes. Nevertheless, the authors identified
a subgroup of NGAL+/sCr− patients diagnosed with AKI
by means of NGAL, which would have been diagnosed
as non-AKI using sCr criteria. These patients had tubu-
lar injury without evidence of glomerular function def-
icit. The probability of renal replacement therapy
increased by more than 16-fold in NGAL+/sCr− patients
as compared with NGAL−/sCr− patients, length of stay
was >70 % longer and hospital mortality doubled. A
smaller group of patients were NGAL−/sCr+. They ex-
hibited pre-renal azotaemia, implying loss of renal func-
tion without evidence of tubular injury, and their
outcome was found to be intermediate in severity. Such

results suggest that tubular injury is a more clinically
relevant event than isolated functional deficit. It is
likely that the underlying pathological mechanism
identified by the AKI construct in the present study
was for the main part tubular injury with subsequent
tubular expression and excretion of NGAL. This hy-
pothesis is further strengthened by the direct covari-
ance path added between uNGAL and the duration of
CPB, which improved the adequacy of the SEM.
However, there was a strong relationship between the
AKI construct and the outcome, with a compound
coefficient of 0.741, translating to a 54.9 % explan-
ation of the variability in the post-operative outcome.
This is in accordance with previous literature on in-
fants [1, 2] and strengthens the validity of our AKI
construct. Together, the present findings suggest that
the most prominent pathophysiological process and
the most clinically relevant event in cardiac surgery-
related AKI is tubular injury.
Nevertheless, our findings do not disqualify functional

glomerular deficit as a pathophysiological process in-
volved in cardiac surgery-related AKI. Moreover, the
addition of a direct covariance path between ΔsCr >50 %
and in-hospital mortality contributed to the refinement

Fig. 2 Diagram of the structural equation model. The path coefficients shown above each single-headed arrow are standardized partial regression
coefficients, indicating to what extent a change of the variable at the tail of the arrow is transmitted to the variable at the head of the arrow (with
all other variables indicated in the diagram held constant). The coefficients shown above double-headed arrows are covariance coefficients.
Residual arrows were omitted. All path coefficients were statistically significant (p < 0.001). *Modelled using the AUCs, accounting for the
magnitude and the duration of the parameter variation. AKI acute kidney injury, CPB cardiopulmonary bypass, ICU intensive care unit, LCOS
low cardiac output syndrome, ΔsCr variation of serum creatinine relative to baseline, uNGAL urine neutrophil gelatinase-associated lipocalin
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of the SEM. sCr usually decreases following CPB in in-
fants, and infants with AKI may have a decreased sCr
post-operatively [10]. Indeed, a 50 % sCr increase, espe-
cially when it occurs within the first 48 h of surgery, is
likely to be the result of a severe injury to the kidney.
Experimental AKI models support the hypothesis that
tubular injury precedes sustained severe GFRimpaire-
ment [30], and it is likely that, here the ΔsCr >50 % cri-
terion identified infants with an advanced stage of
tubular injury. Our findings are therefore in accordance
with previous studies of infants showing that only large
increases in sCr affect survival [1, 2]. Furthermore, they
highlight the importance of monitoring markers of tubu-
lar injury to identify patients in the early stage of the
disease.
Our study was conducted in a population of cardiac

surgery neonates and young infants, a population never
previously covered in large studies [31]. Younger age has
traditionally been associated with an increased risk of
post-operative AKI, due to the relative renal immaturity

of the neonate [2, 32, 33]. Within the first days after
birth, the physiologically very low GFR, together with
the rapid changes in the distribution of water between
extracellular and intracellular fluid compartments,
makes it difficult for the neonate’s system to control
water balance, especially if kidney function is further im-
paired following CPB. In a recent study of infants, re-
searchers found a 3 % decrease in the risk of cardiac
surgery-related AKI per day following birth [2]. Conse-
quently, many institutional protocols advocate support-
ive care rather than corrective surgery in the early
neonatal period in order to allow for weight gain and
organ maturation. However, this is controversial because
an absence of association between body weight and
short-term outcomes following paediatric cardiac sur-
gery has also been reported [34]. Moreover, recent data
show that the risk of cerebral damage in neonates with
cyanotic heart disease increases with the time to correct-
ive surgery [35]. Under normal conditions, the partial
pressure of oxygen in arterial blood (PO2) in the inner
medulla is 20 mmHg [36]. Most infants requiring sur-
gery early in life have cyanotic heart diseases. PO2 is as
low as 40 mmHg in patients with cyanotic cardiac dis-
ease, and it is likely that the PO2 in the inner medulla
becomes critically low and that the risk due to renal im-
maturity is compounded by the risk of tubular hypoxia.
In the present study, we found the relationship between
age and risk of AKI to be very weak, with a compound
path coefficient of only −0.229, translating to only a
5.2 % explanation of the AKI risk. With regard to the
risk of post-operative AKI, our findings suggest that
there is no benefit of delaying surgery in neonates. Con-
versely, we found a strong association between age and
the occurrence of LCOS, which is in accordance with
published data [37, 38].

Limitations
The major limitation of this observational study is the
inability to infer any causality, regardless of how well the
SEM fits with the data. The small sample size did not
allow for analysis of all of the possible risk factors for
AKI, and our interpretation is consequently vulnerable
to any important variable that could have been omitted.
The weak relationship between LCOS and AKI could
have been partly due to the time offset between the
monitoring of the parameters used to model the two
latent variables.

Conclusions
The findings in the present study suggest that cardiac
surgery-related AKI in patients <1 year of age is a conse-
quence of tubular injury, predominately driven by the
CPB, and strongly related to early NGAL excretion. Our
findings suggest that urine creatinine normalized NGAL

Table 3 Path coefficients of the structural equation model

Direct path of the SEM Standardized
coefficient

95 % CI

CPB→ duration of CPB 0.997 0.946–1.051

CPB→ duration of cross-clamping 0.838 0.753–0.893

CPB→ conventional ultrafiltration 0.708 0.592 to −0.791

LCOS→ age −0.661 −0.762 to −0.559

LCOS→ systolic arterial pressure 0.684 0.541–0.791

LCOS→ lactacidemia 0.749 0.674–0.822

LCOS→ transfusions on day 0 0.709 0.584–0.796

AKI→ creatinine normalized uNGAL 0.508 0.202–0.745

AKI→ ΔsCr >50 % 0.443 0.273–0.596

AKI→ oliguria 0.494 0.250–0.864

Outcome→ duration of mechanical
ventilation

0.998 0.958–1.043

Outcome→ length of ICU stay 0.934 0.905–0.967

Outcome→ in-hospital mortality 0.652 0.375–0.784

CPB→ AKI 0.596 0.341–0.747

CPB→ LCOS 0.451 0.319–0.562

LCOS→ AKI 0.347 0.096–0.553

AKI→ outcome 0.684 0.532–0.878

Duration of CPB ↔ creatinine
normalized uNGAL

0.137 0.077–0.404

In-hospital mortality ↔ ΔsCr >50 % 0.197 0.109–0.271

AKI acute kidney injury, CPB cardiopulmonary bypass, Cr creatinine, ΔsCr serum
creatinine variation relative to baseline, LCOS Low cardiac output syndrome,
ICU intensive care unit, uNGAL urine neutrophil gelatinase-associated lipocalin,
SEM structural equation modelling
Only the direct path coefficients are shown. The 95 % CIs were estimated by
bootstrapping with 200 resamples. All p values were <0.001. The values of the
compound path coefficients are given in the main text, together with their
95 % CIs
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concentration is a more accurate marker of AKI than
sCr variations in this setting, and that oliguria is a
marker of intermediate value. They also suggest that age
has little impact on the occurrence of post-operative
AKI within the first year of life.

Key messages

� Cardiac surgery-related AKI in patients <1 year of
age is a consequence of tubular injury.

� The most prominent risk factor for post-operative
AKI is the duration of the cardiopulmonary bypass.

� Urine creatinine normalized NGAL concentration is
a more accurate marker of AKI than creatinine
variations.

� Age at surgery has little impact on the occurrence of
post-operative AKI within the first year of life.

Additional file

Additional file 1: Exploratory factor analysis with varimax rotation:
results of the initial model, including all of the available variables.
(DOCX 16 kb)
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