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Abstract
Objective: Long-term automatic detection of focal seizures remains one of the 
major challenges in epilepsy due to the unacceptably high number of false alarms 
from state-of-the-art methods. Our aim was to investigate to what extent a new 
patient-specific approach based on similarly occurring morphological electroen-
cephalographic (EEG) signal patterns could be used to distinguish seizures from 
nonseizure events, as well as to estimate its maximum performance.
Methods: We evaluated our approach on >5500  h of long-term EEG record-
ings using two public datasets: the Physi​oNet.org Children’s Hospital Boston–
Massachusetts Institute of Technology (CHB-MIT) Scalp EEG database and the 
EPILEPSIAE European epilepsy database. We visually identified a set of similarly 
occurring morphological patterns (seizure signature) seen simultaneously over 
two different EEG channels, and within two randomly selected seizures from 
each individual. The same seizure signature was then searched for in the entire 
recording from the same patient using dynamic time warping (DTW) as a similar-
ity metric, with a threshold set to reflect the maximum sensitivity our algorithm 
could achieve without false alarm.
Results: At a DTW threshold providing no false alarm during the entire record-
ings, the mean seizure detection sensitivity across patients was 84%, including 
96% for the CHB-MIT database and 74% for the European epilepsy database. A 
100% sensitivity was reached in 50% of patients, including 79% from the CHB-
MIT database and 27% from the European epilepsy database. The median latency 
from seizure onset to its detection was 17 ± 10 s, with 84% of seizures being de-
tected within 40 s.
Significance: Personalized EEG signature combined with DTW appears to 
be a promising method to detect ictal events from a limited number of EEG 
channels with high sensitivity despite low rate of false alarms, high degree of 
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1   |   INTRODUCTION

Ambulatory long-term monitoring and detection of 
all seizure types, using wearables compatible with a 
normal social life, represent both an unmet need and 
a significant challenge. Non-electroencephalography 
(EEG)-based wrist- or arm-worn solutions, using either 
accelerometry,1–6 surface electromyography,7–10 electro-
dermal activity, or any combination of those,11–14 have 
so far only proved reliable to detect generalized tonic–
clonic seizures (GTCSs) or major motor seizures.15 EEG-
based solutions might prove more effective to detect 
other seizure types, but face several issues, including 
high sensitivity to artifacts and stigma due to the ap-
pearance of currently available EEG caps.16 However, 
advances in miniaturized electronics now allow record-
ing of EEG using low-stigma electrodes placed either be-
hind the ear (behind-the-ear EEG),17–21 in the ear canal 
(ear-EEG),22,23 hidden in the temples of glasses,24–26 or 
in a smart headband.27 Among other issues that need to 
be addressed to develop effective ambulatory EEG-based 
seizure detection, the specificity of the embedded online 
algorithm is a key factor. Currently available EEG-based 
online seizure detectors used in video-EEG monitoring 
units are associated with an unacceptable rate of false 
alarms for ambulatory patients, varying between .1 and 
5 per hour.28

Based on the well-known observation that the 
EEG signature of seizures demonstrates a high level 
of interindividual heterogeneity and intraindividual 
reproducibility, we developed a novel approach to sei-
zure detection, based on an interpretable and patient-
specific EEG similarity analysis using dynamic time 
warping (DTW). The latter was chosen to be compat-
ible with energy-efficient online processing, which 
could later be embedded in a wearable. The algorithm 
was evaluated on EEG data recorded during in-hospital 
long-term monitoring, with a threshold set at no false 
alarm during several days of recordings. The purpose 
of the study was to assess the extent to which the pro-
posed method could be used to distinguish seizures 
from nonseizure events in long-term EEG recordings, 
and its maximum achievable sensitivity without false 
positive alarms.

2   |   MATERIALS AND METHODS

2.1  |  Datasets

We used the scalp EEG recordings from the Physi​oNet.
org Children’s Hospital Boston–Massachusetts Institute 
of Technology (CHB-MIT) Scalp EEG database29 and 
EPILEPSIAE European epilepsy database.30 The former 
consists of >980 h of long-term EEG recordings obtained 
from 24 pediatric subjects, aged 10 ± 6 years, whereas the 
latter contains a total of >4600  h of continuous record-
ings obtained from 30 patients with epilepsy aged 41 ± 15 
years. Ictal and interictal phases are clearly indicated in 
both databases. For ictal events, the EEG onset and offset 
timestamps of each seizure are specified in the provided 
metadata. In one of the two databases (EPILEPSIAE), 31 
of the 277 seizures (11%) were annotated as clinical sei-
zures without indication of a detectable EEG onset. Given 
the EEG-based nature of our method, we decided to ex-
clude these events from our study. EEG signals in both 
databases were sampled at fs = 256 Hz, and the placement 

interpretability, and low computational complexity, compatible with its future 
use in wearable devices.

K E Y W O R D S

false alarms, ictal EEG, seizure detection, seizure signature

Key Points
•	 We developed a method that dramatically mini-

mizes false detection of ictal EEG by using the 
intraindividual stereotypy of ictal patterns

•	 Patients' specific signatures were visually iden-
tified across two seizures, and their reoccur-
rence was searched for using dynamic time 
warping

•	 The method was tested in 54 patients and 
>5500 h of recordings from the CHB-MIT Scalp 
EEG and the EPILEPSIAE European epilepsy 
databases

•	 At a preset threshold that ensured no false 
alarms, DTW achieved an 84% sensitivity over-
all, which reached 100% in half of the patients

•	 This novel method, based on the intraindivid-
ual stereotypy of ictal patterns, appears promis-
ing for very long-term ambulatory monitoring
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      |  3SOPIC et al.

of scalp electrodes was based on the international 10–
20 system.31 We did not apply any additional filter for the 
purpose of this study.

2.2  |  Personalized seizure signature

We defined a personalized seizure signature S as a set 
of similarly occurring morphological patterns pi that are 
likely to be seen within each seizure, in which each pi 
represents one unique patient's specific seizure pattern. 
Seizure patterns, of 1- to 10-s duration, were manually se-
lected at the individual level by visualizing raw ictal parts 
of two randomly chosen seizures from the same patient, 
across all EEG signal channels on two different screens 
(see Figure 1). This procedure was performed blinded to 
any indication provided in the available databases regard-
ing channels affected in each seizure. Seizures where arti-
facts contaminated all EEG channels were excluded from 
this process. Similarity between patterns was assessed by 
taking into consideration the duration, waveforms, and 
pair of channels where they were best observed. Thus, sei-
zure patterns were all defined by their occurrence across 
two different EEG channels. The number of seizure pat-
terns selected per patient could vary from one to three. 
Multiple patterns proved necessary in some patients, 
either to account for different seizure types in the same 
individual, or to increase sensitivity. Nonetheless, we fol-
lowed a conservative approach through which we aimed 
to minimize the number of seizure patterns needed for a 
given seizure signature, as well as the number of different 

seizures used for their extraction. Once a first pattern had 
been selected, we assessed its sensitivity according to the 
detection method described further. In the event that sen-
sitivity exceeded 50%, we did not search for another pat-
tern. In contrast, if sensitivity remained <50%, we then 
searched for another pattern within the same seizures 
from which the first pattern was selected. If sensitivity re-
mained <50%, we then selected other seizures for pattern 
identification.

2.3  |  Epileptic seizure detection flow in 
long-­term EEG recordings

Once a pattern pi was selected, the corresponding EEG 
segment from the seizure displaying the best signal qual-
ity was used to search for similar patterns in the entire 
available recording. To perform this comparison, we first 
normalized the EEG traces by removing the average value 
of the channels that constitute the seizure signature. Then, 
the similarity was estimated by minimizing the distance 
between the signal segment and the selected seizure pat-
tern. We used DTW as the underlying distance metric,32 
rather than the commonly used Euclidean distance,33 to 
account for similarly occurring morphological segments 
being out of phase in the time axis.34 Euclidean distance 
assumes a temporal alignment of the considered morpho-
logical segments and is very sensitive to small distortions 
in the segment shape. DTW takes these distortions into 
consideration by aligning the signal segments before cal-
culating the distance measure. To detect seizures across 

F I G U R E  1   Selection of a personalized seizure signature. Two raw ictal electroencephalographic (EEG) recordings correspond to 
randomly chosen Seizures #2 and #5 from Patient chb08 from the CHB-MIT (Children’s Hospital Boston–Massachusetts Institute of 
Technology) Scalp EEG database. Recordings start 14 and 13 s after seizure onset for (A and B), respectively, and are plotted using the 
Python Matplotlib library. Visual inspection of the two seizures delineated a comparable 5-s long seizure pattern involving channels P7-O1 
and P3-O1. That observed in A was then used as a personalized seizure signature to detect other seizures from the same patient

(A) (B)
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the entire duration of available recordings, we used a slid-
ing window, the length of which corresponded to that of 
the pattern pi, with a step of 1 s. Once the DTW metric Di 
had been calculated over the entire recording of a given 
patient, we set up an optimal threshold hi, specific to this 
patient, that allowed detection of as many seizures as pos-
sible without false positives (see Figure 2). As previously 
described, sensitivity was then calculated for each patient 
and seizure signature, and the number of patterns adapted 
to its performance.

2.4  |  Evaluation metrics

To assess the performance of our approach in terms of the 
maximum number of seizures that can be detected without 
false positive alarm over the entire duration of available re-
cordings for each patient, we used sensitivity as the main 
evaluation metric 

tp

tp+ fn
, where tp and fn represent the num-

ber of true positives and false negatives, respectively. We also 
calculated the detection latency as the time in seconds from 
the seizure onset to the detection time. Due to the difference 
in performance of our method on the two databases used, we 
performed a post hoc analysis to compare the quality of their 
ictal EEG signal using the state-of-the-art Score 1 metric.35

3   |   RESULTS

The number of seizures and duration of available EEG re-
cordings per patient used in this study are given in Table 
1. Overall, the median number of seizures and mean dura-
tion of recordings across the two datasets were 7 ± 2 sei-
zures and 103 ± 65 h of recordings (i.e., approximately 4 
days) per patient.

The overall performance of our method is shown in 
Figure 3, where vertical bars represent the sensitivity 

obtained in each patient across the entire duration of 
available EEG recordings. A detailed list of seizures de-
tected using the selected signature from each patient is 
available in Table S1, with illustrations of such signatures 
in Figure 1 and Figures S1–S9.

In the 24  subjects from the CHB-MIT database, the 
no-false-positive mean sensitivity ± SD was 96% ± 11%, 
reaching 100% in 19 patients (79%), with all patients ben-
efiting from >68% sensitivity (Table 1, Figure 3A). The 
personalized seizure signature used to achieve this per-
formance consisted of a single seizure pattern in 71% of 
patients (17 patients), two different seizure patterns in 
five patients (21%), and three patterns in two subjects 
(8%; Table 1). The performance was lower in the 30 pa-
tients from the European epilepsy database, where the 
no-false-positive mean sensitivity ± SD was 74% ± 30%, 
including 26 patients (87%) with >50% sensitivity, eight 
of whom (27%) showed 100% sensitivity (Table 1, Figure 
3B). One patient (3%) only demonstrated 33% sensitivity, 
and no seizures could be detected in three patients (10%). 
This performance was achieved using a single pattern in 
11 patients (37%), whereas two and three patterns were 
required in 14 (47%) and two (7%) patients, respectively 
(Table 1). When pooling the two databases together, the 
average sensitivity was 84% ± 25%.

We visually inspected all undetected seizures from 
both datasets and identified that 42% were not detected 
due to the absence of the chosen EEG seizure signature 
in the remaining seizures (Figures S9–S13), whereas 29% 
were completely obscured by artifacts, which hindered 
the pattern detection. In addition, 22% of seizures did not 
demonstrate clearcut ictal discharge on scalp EEG, even 
though they were annotated with an EEG onset, and 7% 
appeared too short to identify a reproducible pattern. To 
further explore the reasons underlying the differences in 
performance over the two databases, we calculated the 
Score 1 EEG quality metric. As illustrated in Figure 4, 
the dispersion of values proved greater in the European 

F I G U R E  2   Selection of threshold hi for the dynamic time warping (DTW) metric Di. Graph displays DTW Di values calculated over 
39 h of recording from Patient chb05 from the CHB-MIT (Children’s Hospital Boston–Massachusetts Institute of Technology) Scalp EEG 
database using his personalized seizure signature extracted from Seizure #2. Vertical green dashed lines indicate the occurrence of five 
seizures during this recording, and are associated with low Di values. The red dash-dot horizontal line shows the applied threshold hi that 
enables detection of all seizures while ensuring lack of false positive results
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epilepsy database, with several recordings having a partic-
ularly low EEG signal quality.

The detection latency results for both databases are 
shown in Figure 5, with 171 of 179 (96%) detected seizures 
from the CHB-MIT database and 129 of 181 (71%) from 
the European epilepsy database identified in <40 s follow-
ing seizure onset. This latency necessarily depended of 
the position of the selected seizure signature within each 
seizure.

3.1  |  Unlabeled seizures

In two subjects, the optimum threshold to detect as many 
seizures as possible without false positive alarms was ab-
normally low due to the presence of sharp declines in the 
DTW metric, highly suggestive of seizure occurrence, dur-
ing interictal periods. After a careful review of the corre-
sponding EEG traces by expert neurologists, we concluded 
that these sharp declines in DTW likely corresponded 
to unlabeled ictal EEG discharges. This is illustrated in 
Figure 6 for one of the two patients, chb24, from the CHB-
MIT database. The other subject with suspected unlabeled 
seizures was Patient #308102 from the European epilepsy 
database.

4   |   DISCUSSION

We found that an original algorithm, based on the iden-
tification of personalized EEG-based seizure signatures 
previously defined in two seizures from the same patient, 
appears capable of distinguishing seizures from nonsei-
zure activities, while ensuring a high sensitivity without 
false alarms in the majority of patients. The video-EEG re-
cordings available in the two tested databases amounted 
to an average duration of approximately 4 days, suggest-
ing that false alarm rates (FARs) for longer periods of re-
cordings would be lower than one every 4 days, a figure 
likely to be acceptable for many patients. Furthermore, 
the computing and energy requirements of our algorithm 
make it appropriate for embedding and continuous moni-
toring within a wearable device including behind-the-ear 
EEG,17–21 ear-EEG,22,23 smart glasses,24–26 and smart head-
bands.27 Moreover, our algorithm can be used for long-
term subdermal EEG monitoring, which offers higher 
resolution signal with fewer artifacts.36

Our method does not belong to any type of previously 
described seizure detection algorithm. Its novelty relies on 
the use of morphological patterns that are likely to be seen 
in EEG signals at the time of seizures for the majority of 
epileptic patients. Other automatic seizure detection algo-
rithms are based on a set of predefined features extracted T
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from EEG signals that are sent to the input of a trained 
classifier that distinguishes seizures from nonseizure ac-
tivities. The most commonly reported features rely on the 
time and frequency domain EEG signal analysis.37–40 One 
of the EEG-based state-of-the-art methods for epileptic 
seizure detection used a periodic waveform analysis to 
detect rhythmic EEG patterns that are likely to be found 
during seizures.37 These rhythmic patterns are detected by 
thresholding two main features: the periodic energy index 
(PEI), representing the maximum harmonic EEG signal 
energy, and the periodic waveform index, obtained by nor-
malizing the PEI to the total signal energy. This algorithm 
was evaluated on 4300 h of EEG recordings obtained from 
48 patients, reaching a mean sensitivity of 83%, with an 
average FAR of .3/h. Another similar approach to extract 
relevant EEG features uses a short time Fourier transform 

to calculate the integrated power in the frequency band 
2.5–12 Hz from a multichannel seizure detection montage 
referenced against the average of Fz-Cz-Pz.38 An adaptive 
thresholding technique was further applied to detect sei-
zure occurrences, resulting in a sensitivity of 87.3% and 
an FAR of .22/h obtained on 25 278 h of EEG recordings 
in 159 patients.

Similar methodology based on the calculation of dif-
ferent features has also been used in wearable EEGs. A 
behind-the-ear EEG device, using time and frequency do-
main features along with different entropies and a support 
vector machine classifier, achieved a mean sensitivity of 
69% and an FAR of .49/h.20 Time domain features such 
as a moving-median filtered sliding window variance esti-
mate were also used to detect seizures from ear-EEG sig-
nals, reaching a sensitivity of 100% without false alarms.41 

F I G U R E  3   False alarm-free 
sensitivity of our method in each 
individual patient. (A) Patients from 
the Children’s Hospital Boston–
Massachusetts Institute of Technology 
(CHB-MIT) database: False alarm-free 
sensitivity was >50% in all 24 patients 
(blue columns), including 100% sensitivity 
in 19 (79%). (B) Patients from the 
EPILEPSIAE European epilepsy database: 
False alarm-free sensitivity was >50% in 
87% of patients (blue columns), including 
100% in eight patients (27%). One patient 
(3%) only demonstrated 33% sensitivity 
(red column), and no seizure could be 
detected in three patients (10%)

(A)

(B)
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      |  7SOPIC et al.

However, this latter method was only tested on a small 
dataset of three subjects, and for the detection of GTCSs 
specifically.

Apart from feature-based algorithms, the current trend 
in machine learning has used deep learning, including a 
convolutional neural network (CNN), to automatically 
learn EEG features intrinsic to seizures and nonseizure 
events, without any feature engineering beforehand.42–45 
Such methods have reached an average sensitivity of 
94.07% with an FAR of .66/h, obtained on the CHB-MIT 
database.42 Another end-to-end seizure detection algo-
rithm, based on a deep CNN, used additional dropout 
layers and batch normalization after every convolutional 
layer, yielding an overall sensitivity of 95.8% and an FAR 
of .58/h obtained across 29 pediatric patients.41 Apart 
from feeding a deep neural network with raw EEG signals, 
EEG image-based representation can be used for seizure 
detection.44,46 First, EEG signals are transformed into a se-
quence of topology-preserving multispectral images, and 
then a recurrent-convolutional neural network is trained, 
resulting in an average sensitivity of 85% and an FAR 
of  .8/h. A seizure detection algorithm based on a genera-
tive adversarial network using unsupervised learning was 
recently applied to behind-the-ear EEG, and resulted in a 
sensitivity of 96.3% and an FAR of .14/h.19

As illustrated above, currently available EEG-based 
algorithms suffer from false positive alarms that range 
between .1 and 5 per hour,28 hindering their acceptance 
in ambulatory long-term patients' monitoring.46 This 
issue is likely to partly reflect the level of interindividual 

differences in ictal scalp EEG patterns, which necessarily 
reduces the capacity for any given nonpersonalized al-
gorithm to distinguish ictal from interictal EEG patterns 
across individuals. In contrast, one can take advantage of 
the well-known high level of intraindividual stereotypy of 
seizure patterns to achieve better performing EEG-based 
seizure detection, as demonstrated in this study. A first 
step in that direction was to take into account the six most 
common types of ictal EEG morphologies in an otherwise 
feature-based algorithm trained through a support vector 
machine classifier.47 When applied on >1400 h of record-
ings and 57 patients, this method achieved an average cor-
rect detection rate of >96%, with a mean FAR of <.25/h 
as compared to <.5/h when not using specific ictal mor-
phologies. Overall, this study demonstrated the value of 
a more personalized seizure detection approach without 
the necessity to adapt the algorithm to individual patients. 
Nonetheless, this interesting approach still suffers from a 
relatively high FAR, as compared to the lack of such false 
positives provided by our method over an average dura-
tion of 4.3 days of recording per patient (5580 h in total). 
On the other hand, our method comes with some limita-
tions. Although we only needed a single seizure pattern to 
detect all ictal events without false alarms in the majority 
of cases, multiple patterns were required for some patients 
to optimally distinguish the ictal events from the interictal 
background. One future line of work shall be to combine 
these patterns in a single seizure signature to optimize the 
online EEG processing.48,49 In other patients, several sei-
zure signatures will still be required to detect truly differ-
ent seizure types occurring in the same patient.

We observed a difference in the sensitivity of our 
method between the two datasets used in this study, with 
greater sensitivity for the CHB-MIT database than for the 
European epilepsy database. One possible explanation for 
this observation is the difference in the two databases' age 
groups and types of epilepsy. Namely, EEG signals from the 
CHB-MIT database were collected from pediatric patients 
(aged 10 ± 6 years), whereas those from the European ep-
ilepsy database were primarily collected from adults (aged 
41 ± 15 years). The CHB-MIT and EPILEPSIAE databases 
also differ in terms of EEG montage, with the former pro-
viding bipolar montage and the latter providing common-
average montage. Another possible explanation could be 
the difference in EEG signal quality observed between 
the two databases, with only patients from the European 
epilepsy database showing low Score 1 values, suggesting 
poor EEG signal quality.

Given the EEG-based nature of our seizure detec-
tion method, we excluded from this study those sei-
zure events not associated with a detectable EEG onset, 
which represented 31 of 475  seizures (7%) across the 
two databases. It is well known that some seizures are 

F I G U R E  4   Quantitative electroencephalographic (EEG) signal 
quality assessment. The Score 1 values for the EEG recordings of 
the two databases show a number of lower quality recordings (low 
Score 1 values) in the European epilepsy database as compared 
to the Children’s Hospital Boston–Massachusetts Institute of 
Technology (CHB-MIT) database
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not associated with detectable scalp EEG findings, a sit-
uation that cannot be tackled with our method. There 
were also a few cases for which our approach failed to 
detect a significant proportion or even all epileptic sei-
zures. Here again, this appeared to reflect the lack of 
visually detectable scalp EEG ictal discharge in some 
patients, whereas in others, our false negative findings 
appeared to reflect either the presence of muscle or 
movement artifacts completely obscuring EEG traces, 
an insufficient duration of seizure, or the lack of repro-
ducibility of the seizure signature.

Further caution needs to be considered in the inter-
pretation of the performance of our method. First, the 
value of each individual threshold used to distinguish 
seizures from nonseizure events was selected a posteri-
ori on the basis of the entire signal recording. A prospec-
tive assessment might provide less sensitive findings or 
more false alarms. An online version of the algorithm is 
currently being developed to test this critical issue. Our 
method, while relying on only two EEG leads to delin-
eate a seizure signature, took advantage of the entire 

10–20  system to select the most appropriate couple of 
leads. In future ambulatory solutions, a lower number 
of recording leads will be available, which could also re-
duce the performance of our method. Most importantly, 
the EEG recordings used for this study were obtained 
in patients undergoing in-hospital video-EEG monitor-
ing, during which patients are mostly laying in their 
beds with limited motor activities. In a real-life setting, 
daily motor activities are likely to generate much more 
movements and muscle artifacts than those observed in-
hospital. This issue might be tackled by using subcuta-
neous EEG recordings36 or optimized methods to reject 
artifacts. Another limitation of our approach is that it 
first needs to identify the most typical seizure pattern(s) 
in each individual. Currently, this would be primarily 
performed during in-hospital video-EEG monitoring, 
an investigation increasingly undertaken in patients 
with drug-resistant seizures. In the future, home-based 
video-EEG, which is rapidly developing in several coun-
tries, will leverage the possibility to obtain ictal EEG re-
cordings.50 Another related limitation of our method is 

F I G U R E  5   Latency of seizure 
detection per individual patient for the 
CHB-MIT Database (A) and EPILEPSIAE 
European Epilepsy Database (B). Violin 
plots with median (white dots) and 
interquartile (colored dots) values of the 
latency in seconds from seizure onset 
(as recorded in the database) to seizure 
detection, in each individual patient

(A)

(B)
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that seizure signatures were delineated through visual 
inspection of EEG. This could be readily replaced by ap-
plying motif discovery algorithms,51,52 an approach we 
are planning to implement in the near future.

5   |   CONCLUSIONS

The main aim of this study was to present a patient-
specific approach for EEG-based ambulatory long-term 
automatic seizure detection based on the reproducible 
morphological seizure segments, with the intention of 
removing false positive alarms. According to its perfor-
mance tested over two public databases and 54 patients, 
our highly interpretable and energy-efficient algorithm, 

based on the similar morphological EEG signal patterns 
observed across seizures in individual patients, appears to 
represent a suitable tool for future wearable EEG seizure 
detection systems.
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