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Abstract
Objective:Long-	term	automatic	detection	of	focal	seizures	remains	one	of	the	
major	challenges	in	epilepsy	due	to	the	unacceptably	high	number	of	false	alarms	
from	state-	of-	the-	art	methods.	Our	aim	was	to	investigate	to	what	extent	a	new	
patient-	specific	approach	based	on	similarly	occurring	morphological	electroen-
cephalographic	(EEG)	signal	patterns	could	be	used	to	distinguish	seizures	from	
nonseizure	events,	as	well	as	to	estimate	its	maximum	performance.
Methods: We	 evaluated	 our	 approach	 on	 >5500  h	 of	 long-	term	 EEG	 record-
ings	 using	 two	 public	 datasets:	 the	 Physi	oNet.org	 Children’s	 Hospital	 Boston–	
Massachusetts	Institute	of	Technology	(CHB-	MIT)	Scalp	EEG	database	and	the	
EPILEPSIAE	European	epilepsy	database.	We	visually	identified	a	set	of	similarly	
occurring	morphological	patterns	 (seizure	signature)	 seen	simultaneously	over	
two	 different	 EEG	 channels,	 and	 within	 two	 randomly	 selected	 seizures	 from	
each	individual.	The	same	seizure	signature	was	then	searched	for	in	the	entire	
recording	from	the	same	patient	using	dynamic	time	warping	(DTW)	as	a	similar-
ity	metric,	with	a	threshold	set	to	reflect	the	maximum	sensitivity	our	algorithm	
could	achieve	without	false	alarm.
Results:At	a	DTW	threshold	providing	no	false	alarm	during	the	entire	record-
ings,	 the	mean	seizure	detection	sensitivity	across	patients	was	84%,	 including	
96%	for	the	CHB-	MIT	database	and	74%	for	the	European	epilepsy	database.	A	
100%	sensitivity	was	reached	 in	50%	of	patients,	 including	79%	from	the	CHB-	
MIT	database	and	27%	from	the	European	epilepsy	database.	The	median	latency	
from	seizure	onset	to	its	detection	was	17 ± 10 s,	with	84%	of	seizures	being	de-
tected	within	40 s.
Significance: Personalized	 EEG	 signature	 combined	 with	 DTW	 appears	 to	
be	 a	 promising	 method	 to	 detect	 ictal	 events	 from	 a	 limited	 number	 of	 EEG	
channels	 with	 high	 sensitivity	 despite	 low	 rate	 of	 false	 alarms,	 high	 degree	 of	
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1 	 | 	 INTRODUCTION

Ambulatory	 long-	term	 monitoring	 and	 detection	 of	
all	 seizure	 types,	 using	 wearables	 compatible	 with	 a	
normal	 social	 life,	 represent	 both	 an	 unmet	 need	 and	
a	 significant	 challenge.	 Non-	electroencephalography	
(EEG)-	based	wrist-		or	arm-	worn	solutions,	using	either	
accelerometry,1–	6	surface	electromyography,7–	10	electro-
dermal	activity,	or	any	combination	of	 those,11–	14	have	
so	 far	only	proved	reliable	 to	detect	generalized	tonic–	
clonic	seizures	(GTCSs)	or	major	motor	seizures.15	EEG-	
based	 solutions	 might	 prove	 more	 effective	 to	 detect	
other	 seizure	 types,	 but	 face	 several	 issues,	 including	
high	 sensitivity	 to	 artifacts	 and	 stigma	 due	 to	 the	 ap-
pearance	 of	 currently	 available	 EEG	 caps.16	 However,	
advances	in	miniaturized	electronics	now	allow	record-
ing	of	EEG	using	low-	stigma	electrodes	placed	either	be-
hind	the	ear	(behind-	the-	ear	EEG),17–	21	in	the	ear	canal	
(ear-	EEG),22,23	hidden	 in	 the	 temples	of	glasses,24–	26	or	
in	a	smart	headband.27	Among	other	issues	that	need	to	
be	addressed	to	develop	effective	ambulatory	EEG-	based	
seizure	detection,	the	specificity	of	the	embedded	online	
algorithm	is	a	key	factor.	Currently	available	EEG-	based	
online	seizure	detectors	used	in	video-	EEG	monitoring	
units	 are	 associated	 with	 an	 unacceptable	 rate	 of	 false	
alarms	for	ambulatory	patients,	varying	between	.1	and	
5	per	hour.28

Based	 on	 the	 well-	known	 observation	 that	 the	
EEG	 signature	 of	 seizures	 demonstrates	 a	 high	 level	
of	 interindividual	 heterogeneity	 and	 intraindividual	
reproducibility,	we	developed	a	novel	approach	to	sei-
zure	detection,	based	on	an	interpretable	and	patient-	
specific	 EEG	 similarity	 analysis	 using	 dynamic	 time	
warping	 (DTW).	The	 latter	 was	 chosen	 to	 be	 compat-
ible	 with	 energy-	efficient	 online	 processing,	 which	
could	later	be	embedded	in	a	wearable.	The	algorithm	
was	evaluated	on	EEG	data	recorded	during	in-	hospital	
long-	term	monitoring,	with	a	threshold	set	at	no	false	
alarm	 during	 several	 days	 of	 recordings.	The	 purpose	
of	the	study	was	to	assess	the	extent	to	which	the	pro-
posed	 method	 could	 be	 used	 to	 distinguish	 seizures	
from	 nonseizure	 events	 in	 long-	term	 EEG	 recordings,	
and	 its	 maximum	 achievable	 sensitivity	 without	 false	
positive	alarms.

2 	 | 	 MATERIALSANDMETHODS

2.1	 |	 Datasets

We	 used	 the	 scalp	 EEG	 recordings	 from	 the	 Physi	oNet.
org	 Children’s	 Hospital	 Boston–	Massachusetts	 Institute	
of	 Technology	 (CHB-	MIT)	 Scalp	 EEG	 database29	 and	
EPILEPSIAE	 European	 epilepsy	 database.30	 The	 former	
consists	of	>980 h	of	long-	term	EEG	recordings	obtained	
from	24	pediatric	subjects,	aged	10 ± 6 years,	whereas	the	
latter	 contains	 a	 total	 of	 >4600  h	 of	 continuous	 record-
ings	obtained	from	30	patients	with	epilepsy	aged	41 ± 15	
years.	 Ictal	and	 interictal	phases	are	clearly	 indicated	 in	
both	databases.	For	ictal	events,	the	EEG	onset	and	offset	
timestamps	of	each	seizure	are	specified	in	the	provided	
metadata.	In	one	of	the	two	databases	(EPILEPSIAE),	31	
of	 the	277 seizures	 (11%)	were	annotated	as	clinical	 sei-
zures	without	indication	of	a	detectable	EEG	onset.	Given	
the	EEG-	based	nature	of	our	method,	we	decided	 to	ex-
clude	 these	 events	 from	 our	 study.	 EEG	 signals	 in	 both	
databases	were	sampled	at	fs = 256 Hz,	and	the	placement	

interpretability,	 and	 low	 computational	 complexity,	 compatible	 with	 its	 future	
use	in	wearable	devices.

K E Y W O R D S

false	alarms,	ictal	EEG,	seizure	detection,	seizure	signature

KeyPoints
•	 We	developed	a	method	that	dramatically	mini-

mizes	false	detection	of	ictal	EEG	by	using	the	
intraindividual	stereotypy	of	ictal	patterns

•	 Patients'	specific	signatures	were	visually	iden-
tified	 across	 two	 seizures,	 and	 their	 reoccur-
rence	 was	 searched	 for	 using	 dynamic	 time	
warping

•	 The	 method	 was	 tested	 in	 54	 patients	 and	
>5500 h	of	recordings	from	the	CHB-	MIT	Scalp	
EEG	 and	 the	 EPILEPSIAE	 European	 epilepsy	
databases

•	 At	 a	 preset	 threshold	 that	 ensured	 no	 false	
alarms,	DTW	achieved	an	84%	sensitivity	over-
all,	which	reached	100%	in	half	of	the	patients

•	 This	novel	method,	based	on	 the	 intraindivid-
ual	stereotypy	of	ictal	patterns,	appears	promis-
ing	for	very	long-	term	ambulatory	monitoring
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of	 scalp	 electrodes	 was	 based	 on	 the	 international	 10–	
20 system.31	We	did	not	apply	any	additional	filter	for	the	
purpose	of	this	study.

2.2	 |	 Personalizedseizuresignature

We	 defined	 a	 personalized	 seizure	 signature	 S	 as	 a	 set	
of	similarly	occurring	morphological	patterns	pi	 that	are	
likely	 to	 be	 seen	 within	 each	 seizure,	 in	 which	 each	 pi	
represents	 one	 unique	 patient's	 specific	 seizure	 pattern.	
Seizure	patterns,	of	1-		to	10-	s	duration,	were	manually	se-
lected	at	the	individual	level	by	visualizing	raw	ictal	parts	
of	two	randomly	chosen	seizures	from	the	same	patient,	
across	 all	 EEG	 signal	 channels	 on	 two	 different	 screens	
(see	Figure	1).	This	procedure	was	performed	blinded	to	
any	indication	provided	in	the	available	databases	regard-
ing	channels	affected	in	each	seizure.	Seizures	where	arti-
facts	contaminated	all	EEG	channels	were	excluded	from	
this	process.	Similarity	between	patterns	was	assessed	by	
taking	 into	 consideration	 the	 duration,	 waveforms,	 and	
pair	of	channels	where	they	were	best	observed.	Thus,	sei-
zure	patterns	were	all	defined	by	their	occurrence	across	
two	different	EEG	channels.	The	number	of	seizure	pat-
terns	 selected	 per	 patient	 could	 vary	 from	 one	 to	 three.	
Multiple	 patterns	 proved	 necessary	 in	 some	 patients,	
either	 to	account	 for	different	 seizure	 types	 in	 the	 same	
individual,	or	to	increase	sensitivity.	Nonetheless,	we	fol-
lowed	a	conservative	approach	through	which	we	aimed	
to	minimize	the	number	of	seizure	patterns	needed	for	a	
given	seizure	signature,	as	well	as	the	number	of	different	

seizures	used	for	their	extraction.	Once	a	first	pattern	had	
been	selected,	we	assessed	its	sensitivity	according	to	the	
detection	method	described	further.	In	the	event	that	sen-
sitivity	exceeded	50%,	we	did	not	search	for	another	pat-
tern.	 In	 contrast,	 if	 sensitivity	 remained	 <50%,	 we	 then	
searched	 for	 another	 pattern	 within	 the	 same	 seizures	
from	which	the	first	pattern	was	selected.	If	sensitivity	re-
mained	<50%,	we	then	selected	other	seizures	for	pattern	
identification.

2.3	 |	 Epilepticseizuredetectionflowin
long-termEEGrecordings

Once	 a	 pattern	 pi	 was	 selected,	 the	 corresponding	 EEG	
segment	from	the	seizure	displaying	the	best	signal	qual-
ity	 was	 used	 to	 search	 for	 similar	 patterns	 in	 the	 entire	
available	recording.	To	perform	this	comparison,	we	first	
normalized	the	EEG	traces	by	removing	the	average	value	
of	the	channels	that	constitute	the	seizure	signature.	Then,	
the	similarity	was	estimated	by	minimizing	the	distance	
between	the	signal	segment	and	the	selected	seizure	pat-
tern.	We	used	DTW	as	the	underlying	distance	metric,32	
rather	 than	the	commonly	used	Euclidean	distance,33	 to	
account	 for	 similarly	 occurring	 morphological	 segments	
being	out	of	phase	in	the	time	axis.34	Euclidean	distance	
assumes	a	temporal	alignment	of	the	considered	morpho-
logical	segments	and	is	very	sensitive	to	small	distortions	
in	 the	 segment	 shape.	 DTW	 takes	 these	 distortions	 into	
consideration	by	aligning	the	signal	segments	before	cal-
culating	 the	distance	measure.	To	detect	 seizures	across	

F I G U R E  1  Selection	of	a	personalized	seizure	signature.	Two	raw	ictal	electroencephalographic	(EEG)	recordings	correspond	to	
randomly	chosen	Seizures	#2	and	#5	from	Patient	chb08	from	the	CHB-	MIT	(Children’s	Hospital	Boston–	Massachusetts	Institute	of	
Technology)	Scalp	EEG	database.	Recordings	start	14	and	13 s	after	seizure	onset	for	(A	and	B),	respectively,	and	are	plotted	using	the	
Python	Matplotlib	library.	Visual	inspection	of	the	two	seizures	delineated	a	comparable	5-	s	long	seizure	pattern	involving	channels	P7-	O1	
and	P3-	O1.	That	observed	in	A	was	then	used	as	a	personalized	seizure	signature	to	detect	other	seizures	from	the	same	patient

(A) (B)
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4 |   SOPIC et al.

the	entire	duration	of	available	recordings,	we	used	a	slid-
ing	window,	the	length	of	which	corresponded	to	that	of	
the	pattern	pi,	with	a	step	of	1 s.	Once	the	DTW	metric	Di	
had	been	calculated	over	 the	entire	recording	of	a	given	
patient,	we	set	up	an	optimal	threshold	hi,	specific	to	this	
patient,	that	allowed	detection	of	as	many	seizures	as	pos-
sible	without	false	positives	(see	Figure	2).	As	previously	
described,	sensitivity	was	then	calculated	for	each	patient	
and	seizure	signature,	and	the	number	of	patterns	adapted	
to	its	performance.

2.4	 |	 Evaluationmetrics

To	assess	the	performance	of	our	approach	in	terms	of	the	
maximum	number	of	seizures	that	can	be	detected	without	
false	positive	alarm	over	the	entire	duration	of	available	re-
cordings	 for	 each	 patient,	 we	 used	 sensitivity	 as	 the	 main	
evaluation	metric	

tp

tp+ fn
,	where	tp	and	fn	represent	the	num-

ber	of	true	positives	and	false	negatives,	respectively.	We	also	
calculated	the	detection	latency	as	the	time	in	seconds	from	
the	seizure	onset	to	the	detection	time.	Due	to	the	difference	
in	performance	of	our	method	on	the	two	databases	used,	we	
performed	a	post	hoc	analysis	to	compare	the	quality	of	their	
ictal	EEG	signal	using	the	state-	of-	the-	art	Score	1 metric.35

3 	 | 	 RESULTS

The	number	of	seizures	and	duration	of	available	EEG	re-
cordings	per	patient	used	in	this	study	are	given	in	Table	
1.	Overall,	the	median	number	of	seizures	and	mean	dura-
tion	of	recordings	across	the	two	datasets	were	7 ± 2 sei-
zures	and	103 ± 65 h	of	recordings	(i.e.,	approximately	4	
days)	per	patient.

The	 overall	 performance	 of	 our	 method	 is	 shown	 in	
Figure	 3,	 where	 vertical	 bars	 represent	 the	 sensitivity	

obtained	 in	 each	 patient	 across	 the	 entire	 duration	 of	
available	 EEG	 recordings.	 A	 detailed	 list	 of	 seizures	 de-
tected	 using	 the	 selected	 signature	 from	 each	 patient	 is	
available	in	Table	S1,	with	illustrations	of	such	signatures	
in	Figure	1	and	Figures	S1–	S9.

In	 the	 24  subjects	 from	 the	 CHB-	MIT	 database,	 the	
no-	false-	positive	mean	sensitivity	±	SD	was	96% ± 11%,	
reaching	100%	in	19	patients	(79%),	with	all	patients	ben-
efiting	 from	 >68%	 sensitivity	 (Table	 1,	 Figure	 3A).	 The	
personalized	 seizure	 signature	 used	 to	 achieve	 this	 per-
formance	consisted	of	a	single	seizure	pattern	 in	71%	of	
patients	 (17	 patients),	 two	 different	 seizure	 patterns	 in	
five	 patients	 (21%),	 and	 three	 patterns	 in	 two	 subjects	
(8%;	Table	 1).	The	 performance	 was	 lower	 in	 the	 30	 pa-
tients	 from	 the	 European	 epilepsy	 database,	 where	 the	
no-	false-	positive	mean	sensitivity	±	SD	was	74% ± 30%,	
including	 26	 patients	 (87%)	 with	 >50%	 sensitivity,	 eight	
of	whom	(27%)	showed	100%	sensitivity	(Table	1,	Figure	
3B).	One	patient	(3%)	only	demonstrated	33%	sensitivity,	
and	no	seizures	could	be	detected	in	three	patients	(10%).	
This	performance	was	achieved	using	a	single	pattern	in	
11	 patients	 (37%),	 whereas	 two	 and	 three	 patterns	 were	
required	 in	 14	 (47%)	 and	 two	 (7%)	 patients,	 respectively	
(Table	1).	When	pooling	 the	 two	databases	 together,	 the	
average	sensitivity	was	84% ± 25%.

We	 visually	 inspected	 all	 undetected	 seizures	 from	
both	 datasets	 and	 identified	 that	 42%	 were	 not	 detected	
due	 to	 the	absence	of	 the	chosen	EEG	seizure	signature	
in	the	remaining	seizures	(Figures	S9–	S13),	whereas	29%	
were	 completely	 obscured	 by	 artifacts,	 which	 hindered	
the	pattern	detection.	In	addition,	22%	of	seizures	did	not	
demonstrate	clearcut	 ictal	discharge	on	scalp	EEG,	even	
though	they	were	annotated	with	an	EEG	onset,	and	7%	
appeared	too	short	 to	 identify	a	reproducible	pattern.	To	
further	explore	the	reasons	underlying	the	differences	in	
performance	 over	 the	 two	 databases,	 we	 calculated	 the	
Score	 1	 EEG	 quality	 metric.	 As	 illustrated	 in	 Figure	 4,	
the	 dispersion	 of	 values	 proved	 greater	 in	 the	 European	

F I G U R E  2  Selection	of	threshold	hi	for	the	dynamic	time	warping	(DTW)	metric	Di.	Graph	displays	DTW	Di	values	calculated	over	
39 h	of	recording	from	Patient	chb05	from	the	CHB-	MIT	(Children’s	Hospital	Boston–	Massachusetts	Institute	of	Technology)	Scalp	EEG	
database	using	his	personalized	seizure	signature	extracted	from	Seizure	#2.	Vertical	green	dashed	lines	indicate	the	occurrence	of	five	
seizures	during	this	recording,	and	are	associated	with	low	Di	values.	The	red	dash-	dot	horizontal	line	shows	the	applied	threshold	hi	that	
enables	detection	of	all	seizures	while	ensuring	lack	of	false	positive	results
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epilepsy	database,	with	several	recordings	having	a	partic-
ularly	low	EEG	signal	quality.

The	 detection	 latency	 results	 for	 both	 databases	 are	
shown	in	Figure	5,	with	171	of	179	(96%)	detected	seizures	
from	the	CHB-	MIT	database	and	129	of	181	 (71%)	 from	
the	European	epilepsy	database	identified	in	<40 s	follow-
ing	 seizure	 onset.	 This	 latency	 necessarily	 depended	 of	
the	position	of	the	selected	seizure	signature	within	each	
seizure.

3.1	 |	 Unlabeledseizures

In	two	subjects,	the	optimum	threshold	to	detect	as	many	
seizures	as	possible	without	false	positive	alarms	was	ab-
normally	low	due	to	the	presence	of	sharp	declines	in	the	
DTW	metric,	highly	suggestive	of	seizure	occurrence,	dur-
ing	interictal	periods.	After	a	careful	review	of	the	corre-
sponding	EEG	traces	by	expert	neurologists,	we	concluded	
that	 these	 sharp	 declines	 in	 DTW	 likely	 corresponded	
to	 unlabeled	 ictal	 EEG	 discharges.	 This	 is	 illustrated	 in	
Figure	6	for	one	of	the	two	patients,	chb24,	from	the	CHB-	
MIT	database.	The	other	subject	with	suspected	unlabeled	
seizures	was	Patient	#308102	from	the	European	epilepsy	
database.

4 	 | 	 DISCUSSION

We	found	that	an	original	algorithm,	based	on	the	iden-
tification	 of	 personalized	 EEG-	based	 seizure	 signatures	
previously	defined	in	two	seizures	from	the	same	patient,	
appears	 capable	 of	 distinguishing	 seizures	 from	 nonsei-
zure	activities,	while	ensuring	a	high	sensitivity	without	
false	alarms	in	the	majority	of	patients.	The	video-	EEG	re-
cordings	available	in	the	two	tested	databases	amounted	
to	an	average	duration	of	approximately	4	days,	suggest-
ing	that	false	alarm	rates	(FARs)	for	longer	periods	of	re-
cordings	would	be	lower	than	one	every	4 days,	a	figure	
likely	 to	 be	 acceptable	 for	 many	 patients.	 Furthermore,	
the	computing	and	energy	requirements	of	our	algorithm	
make	it	appropriate	for	embedding	and	continuous	moni-
toring	within	a	wearable	device	including	behind-	the-	ear	
EEG,17–	21	ear-	EEG,22,23	smart	glasses,24–	26	and	smart	head-
bands.27	 Moreover,	 our	 algorithm	 can	 be	 used	 for	 long-	
term	 subdermal	 EEG	 monitoring,	 which	 offers	 higher	
resolution	signal	with	fewer	artifacts.36

Our	method	does	not	belong	to	any	type	of	previously	
described	seizure	detection	algorithm.	Its	novelty	relies	on	
the	use	of	morphological	patterns	that	are	likely	to	be	seen	
in	EEG	signals	at	the	time	of	seizures	for	the	majority	of	
epileptic	patients.	Other	automatic	seizure	detection	algo-
rithms	are	based	on	a	set	of	predefined	features	extracted	T
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6 |   SOPIC et al.

from	EEG	signals	 that	are	 sent	 to	 the	 input	of	a	 trained	
classifier	that	distinguishes	seizures	from	nonseizure	ac-
tivities.	The	most	commonly	reported	features	rely	on	the	
time	and	frequency	domain	EEG	signal	analysis.37–	40	One	
of	 the	 EEG-	based	 state-	of-	the-	art	 methods	 for	 epileptic	
seizure	 detection	 used	 a	 periodic	 waveform	 analysis	 to	
detect	rhythmic	EEG	patterns	that	are	likely	to	be	found	
during	seizures.37	These	rhythmic	patterns	are	detected	by	
thresholding	two	main	features:	the	periodic	energy	index	
(PEI),	 representing	 the	 maximum	 harmonic	 EEG	 signal	
energy,	and	the	periodic	waveform	index,	obtained	by	nor-
malizing	the	PEI	to	the	total	signal	energy.	This	algorithm	
was	evaluated	on	4300 h	of	EEG	recordings	obtained	from	
48	patients,	 reaching	a	mean	sensitivity	of	83%,	with	an	
average	FAR	of	.3/h.	Another	similar	approach	to	extract	
relevant	EEG	features	uses	a	short	time	Fourier	transform	

to	 calculate	 the	 integrated	 power	 in	 the	 frequency	 band	
2.5–	12 Hz	from	a	multichannel	seizure	detection	montage	
referenced	against	the	average	of	Fz-	Cz-	Pz.38	An	adaptive	
thresholding	technique	was	further	applied	to	detect	sei-
zure	 occurrences,	 resulting	 in	 a	 sensitivity	 of	 87.3%	 and	
an	FAR	of	.22/h	obtained	on	25 278 h	of	EEG	recordings	
in	159	patients.

Similar	 methodology	 based	 on	 the	 calculation	 of	 dif-
ferent	 features	 has	 also	 been	 used	 in	 wearable	 EEGs.	 A	
behind-	the-	ear	EEG	device,	using	time	and	frequency	do-
main	features	along	with	different	entropies	and	a	support	
vector	machine	classifier,	achieved	a	mean	sensitivity	of	
69%	 and	 an	 FAR	 of	 .49/h.20	Time	 domain	 features	 such	
as	a	moving-	median	filtered	sliding	window	variance	esti-
mate	were	also	used	to	detect	seizures	from	ear-	EEG	sig-
nals,	reaching	a	sensitivity	of	100%	without	false	alarms.41	

F I G U R E  3  False	alarm-	free	
sensitivity	of	our	method	in	each	
individual	patient.	(A)	Patients	from	
the	Children’s	Hospital	Boston–	
Massachusetts	Institute	of	Technology	
(CHB-	MIT)	database:	False	alarm-	free	
sensitivity	was	>50%	in	all	24	patients	
(blue	columns),	including	100%	sensitivity	
in	19	(79%).	(B)	Patients	from	the	
EPILEPSIAE	European	epilepsy	database:	
False	alarm-	free	sensitivity	was	>50%	in	
87%	of	patients	(blue	columns),	including	
100%	in	eight	patients	(27%).	One	patient	
(3%)	only	demonstrated	33%	sensitivity	
(red	column),	and	no	seizure	could	be	
detected	in	three	patients	(10%)

(A)

(B)
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   | 7SOPIC et al.

However,	 this	 latter	 method	 was	 only	 tested	 on	 a	 small	
dataset	of	three	subjects,	and	for	the	detection	of	GTCSs	
specifically.

Apart	from	feature-	based	algorithms,	the	current	trend	
in	machine	learning	has	used	deep	learning,	including	a	
convolutional	 neural	 network	 (CNN),	 to	 automatically	
learn	 EEG	 features	 intrinsic	 to	 seizures	 and	 nonseizure	
events,	without	any	 feature	engineering	beforehand.42–	45	
Such	 methods	 have	 reached	 an	 average	 sensitivity	 of	
94.07%	with	an	FAR	of	.66/h,	obtained	on	the	CHB-	MIT	
database.42	 Another	 end-	to-	end	 seizure	 detection	 algo-
rithm,	 based	 on	 a	 deep	 CNN,	 used	 additional	 dropout	
layers	and	batch	normalization	after	every	convolutional	
layer,	yielding	an	overall	sensitivity	of	95.8%	and	an	FAR	
of	 .58/h	 obtained	 across	 29	 pediatric	 patients.41	 Apart	
from	feeding	a	deep	neural	network	with	raw	EEG	signals,	
EEG	image-	based	representation	can	be	used	for	seizure	
detection.44,46	First,	EEG	signals	are	transformed	into	a	se-
quence	of	topology-	preserving	multispectral	images,	and	
then	a	recurrent-	convolutional	neural	network	is	trained,	
resulting	 in	 an	 average	 sensitivity	 of	 85%	 and	 an	 FAR	
of		.8/h.	A	seizure	detection	algorithm	based	on	a	genera-
tive	adversarial	network	using	unsupervised	learning	was	
recently	applied	to	behind-	the-	ear	EEG,	and	resulted	in	a	
sensitivity	of	96.3%	and	an	FAR	of	.14/h.19

As	 illustrated	 above,	 currently	 available	 EEG-	based	
algorithms	 suffer	 from	 false	 positive	 alarms	 that	 range	
between	 .1	and	5	per	hour,28	hindering	 their	acceptance	
in	 ambulatory	 long-	term	 patients'	 monitoring.46	 This	
issue	is	likely	to	partly	reflect	the	level	of	interindividual	

differences	in	ictal	scalp	EEG	patterns,	which	necessarily	
reduces	 the	 capacity	 for	 any	 given	 nonpersonalized	 al-
gorithm	to	distinguish	ictal	from	interictal	EEG	patterns	
across	individuals.	In	contrast,	one	can	take	advantage	of	
the	well-	known	high	level	of	intraindividual	stereotypy	of	
seizure	patterns	to	achieve	better	performing	EEG-	based	
seizure	 detection,	 as	 demonstrated	 in	 this	 study.	 A	 first	
step	in	that	direction	was	to	take	into	account	the	six	most	
common	types	of	ictal	EEG	morphologies	in	an	otherwise	
feature-	based	algorithm	trained	through	a	support	vector	
machine	classifier.47	When	applied	on	>1400 h	of	record-
ings	and	57	patients,	this	method	achieved	an	average	cor-
rect	detection	rate	of	>96%,	with	a	mean	FAR	of	<.25/h	
as	compared	to	<.5/h	when	not	using	specific	ictal	mor-
phologies.	Overall,	 this	 study	demonstrated	 the	value	of	
a	more	personalized	seizure	detection	approach	without	
the	necessity	to	adapt	the	algorithm	to	individual	patients.	
Nonetheless,	this	interesting	approach	still	suffers	from	a	
relatively	high	FAR,	as	compared	to	the	lack	of	such	false	
positives	provided	by	our	method	over	an	average	dura-
tion	of	4.3 days	of	recording	per	patient	(5580 h	in	total).	
On	the	other	hand,	our	method	comes	with	some	limita-
tions.	Although	we	only	needed	a	single	seizure	pattern	to	
detect	all	ictal	events	without	false	alarms	in	the	majority	
of	cases,	multiple	patterns	were	required	for	some	patients	
to	optimally	distinguish	the	ictal	events	from	the	interictal	
background.	One	future	line	of	work	shall	be	to	combine	
these	patterns	in	a	single	seizure	signature	to	optimize	the	
online	EEG	processing.48,49	In	other	patients,	several	sei-
zure	signatures	will	still	be	required	to	detect	truly	differ-
ent	seizure	types	occurring	in	the	same	patient.

We	 observed	 a	 difference	 in	 the	 sensitivity	 of	 our	
method	between	the	two	datasets	used	in	this	study,	with	
greater	sensitivity	for	the	CHB-	MIT	database	than	for	the	
European	epilepsy	database.	One	possible	explanation	for	
this	observation	is	the	difference	in	the	two	databases'	age	
groups	and	types	of	epilepsy.	Namely,	EEG	signals	from	the	
CHB-	MIT	database	were	collected	from	pediatric	patients	
(aged	10 ± 6	years),	whereas	those	from	the	European	ep-
ilepsy	database	were	primarily	collected	from	adults	(aged	
41 ± 15	years).	The	CHB-	MIT	and	EPILEPSIAE	databases	
also	differ	in	terms	of	EEG	montage,	with	the	former	pro-
viding	bipolar	montage	and	the	latter	providing	common-	
average	montage.	Another	possible	explanation	could	be	
the	 difference	 in	 EEG	 signal	 quality	 observed	 between	
the	two	databases,	with	only	patients	from	the	European	
epilepsy	database	showing	low	Score	1 values,	suggesting	
poor	EEG	signal	quality.

Given	 the	 EEG-	based	 nature	 of	 our	 seizure	 detec-
tion	 method,	 we	 excluded	 from	 this	 study	 those	 sei-
zure	events	not	associated	with	a	detectable	EEG	onset,	
which	 represented	 31	 of	 475  seizures	 (7%)	 across	 the	
two	databases.	It	is	well	known	that	some	seizures	are	

F I G U R E  4  Quantitative	electroencephalographic	(EEG)	signal	
quality	assessment.	The	Score	1 values	for	the	EEG	recordings	of	
the	two	databases	show	a	number	of	lower	quality	recordings	(low	
Score	1 values)	in	the	European	epilepsy	database	as	compared	
to	the	Children’s	Hospital	Boston–	Massachusetts	Institute	of	
Technology	(CHB-	MIT)	database
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8 |   SOPIC et al.

not	associated	with	detectable	scalp	EEG	findings,	a	sit-
uation	that	cannot	be	tackled	with	our	method.	There	
were	also	a	few	cases	for	which	our	approach	failed	to	
detect	a	significant	proportion	or	even	all	epileptic	sei-
zures.	 Here	 again,	 this	 appeared	 to	 reflect	 the	 lack	 of	
visually	 detectable	 scalp	 EEG	 ictal	 discharge	 in	 some	
patients,	whereas	in	others,	our	false	negative	findings	
appeared	 to	 reflect	 either	 the	 presence	 of	 muscle	 or	
movement	 artifacts	 completely	 obscuring	 EEG	 traces,	
an	insufficient	duration	of	seizure,	or	the	lack	of	repro-
ducibility	of	the	seizure	signature.

Further	caution	needs	to	be	considered	in	the	 inter-
pretation	 of	 the	 performance	 of	 our	 method.	 First,	 the	
value	 of	 each	 individual	 threshold	 used	 to	 distinguish	
seizures	from	nonseizure	events	was	selected	a	posteri-
ori	on	the	basis	of	the	entire	signal	recording.	A	prospec-
tive	assessment	might	provide	less	sensitive	findings	or	
more	false	alarms.	An	online	version	of	the	algorithm	is	
currently	being	developed	to	test	this	critical	issue.	Our	
method,	while	relying	on	only	 two	EEG	leads	 to	delin-
eate	 a	 seizure	 signature,	 took	 advantage	 of	 the	 entire	

10–	20  system	 to	 select	 the	 most	 appropriate	 couple	 of	
leads.	 In	 future	 ambulatory	 solutions,	 a	 lower	 number	
of	recording	leads	will	be	available,	which	could	also	re-
duce	the	performance	of	our	method.	Most	importantly,	
the	 EEG	 recordings	 used	 for	 this	 study	 were	 obtained	
in	 patients	 undergoing	 in-	hospital	 video-	EEG	 monitor-
ing,	 during	 which	 patients	 are	 mostly	 laying	 in	 their	
beds	with	limited	motor	activities.	In	a	real-	life	setting,	
daily	motor	activities	are	 likely	to	generate	much	more	
movements	and	muscle	artifacts	than	those	observed	in-	
hospital.	This	 issue	might	be	tackled	by	using	subcuta-
neous	EEG	recordings36	or	optimized	methods	to	reject	
artifacts.	 Another	 limitation	 of	 our	 approach	 is	 that	 it	
first	needs	to	identify	the	most	typical	seizure	pattern(s)	
in	 each	 individual.	 Currently,	 this	 would	 be	 primarily	
performed	 during	 in-	hospital	 video-	EEG	 monitoring,	
an	 investigation	 increasingly	 undertaken	 in	 patients	
with	drug-	resistant	seizures.	In	the	future,	home-	based	
video-	EEG,	which	is	rapidly	developing	in	several	coun-
tries,	will	leverage	the	possibility	to	obtain	ictal	EEG	re-
cordings.50	Another	related	limitation	of	our	method	is	

F I G U R E  5  Latency	of	seizure	
detection	per	individual	patient	for	the	
CHB-	MIT	Database	(A)	and	EPILEPSIAE	
European	Epilepsy	Database	(B).	Violin	
plots	with	median	(white	dots)	and	
interquartile	(colored	dots)	values	of	the	
latency	in	seconds	from	seizure	onset	
(as	recorded	in	the	database)	to	seizure	
detection,	in	each	individual	patient

(A)

(B)
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   | 9SOPIC et al.

that	 seizure	 signatures	 were	 delineated	 through	 visual	
inspection	of	EEG.	This	could	be	readily	replaced	by	ap-
plying	 motif	 discovery	 algorithms,51,52	 an	 approach	 we	
are	planning	to	implement	in	the	near	future.

5 	 | 	 CONCLUSIONS

The	 main	 aim	 of	 this	 study	 was	 to	 present	 a	 patient-	
specific	 approach	 for	 EEG-	based	 ambulatory	 long-	term	
automatic	 seizure	 detection	 based	 on	 the	 reproducible	
morphological	 seizure	 segments,	 with	 the	 intention	 of	
removing	 false	 positive	 alarms.	 According	 to	 its	 perfor-
mance	tested	over	two	public	databases	and	54	patients,	
our	 highly	 interpretable	 and	 energy-	efficient	 algorithm,	

based	on	 the	similar	morphological	EEG	signal	patterns	
observed	across	seizures	in	individual	patients,	appears	to	
represent	a	suitable	tool	for	future	wearable	EEG	seizure	
detection	systems.
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