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ABSTRACT 

Implementation of Bayesian Therapeutic Drug Monitoring In 

Modern Patient Care 

The variability observed in drug exposure has a direct impact on the overall response to drug. The 

largest part of variability between dose and drug response resides in the pharmacokinetic phase, 

i.e. in the dose-concentration relationship. Among possibilities offered to clinicians, Therapeutic 

Drug Monitoring (TDM; Monitoring of drug concentration measurements) is one of the useful tool 

to guide pharmacotherapy. TDM aims at optimizing treatments by individualizing dosage regimens 

based on blood drug concentration measurement. Bayesian calculations, relying on population 

pharmacokinetic approach, currently represent the gold standard TDM strategy. However, it 

requires expertise and computational assistance, thus limiting its large implementation in routine 

patient care. 

The overall objective of this thesis was to implement robust tools to provide Bayesian TDM to 

clinician in modern routine patient care. To that endeavour, aims were (i) to elaborate an efficient 

and ergonomic computer tool for Bayesian TDM: EzeCHieL (ii) to provide algorithms for drug 

concentration Bayesian forecasting and software validation, relying on population 

pharmacokinetics (iii) to address some relevant issues encountered in clinical practice with a focus 

on neonates and drug adherence. 

First, the current stage of the existing software was reviewed and allows establishing specifications 

for the development of EzeCHieL. Then, in close collaboration with software engineers a fully 

integrated software, EzeCHieL, has been elaborated. EzeCHieL provides population-based 

predictions and Bayesian forecasting and an easy-to-use interface. It enables to assess the 

expectedness of an observed concentration in a patient compared to the whole population (via 

percentiles), to assess the suitability of the predicted concentration relative to the targeted 

concentration and to provide dosing adjustment. It allows thus a priori and a posteriori Bayesian 

drug dosing individualization.  

Implementation of Bayesian methods requires drug disposition characterisation and variability 

quantification trough population approach. Population pharmacokinetic analyses have been 

performed and Bayesian estimators have been provided for candidate drugs in population of 



 
iv Abstract 

interest: anti-infectious drugs administered to neonates (gentamicin and imipenem). Developed 

models were implemented in EzeCHieL and also served as validation tool in comparing EzeCHieL 

concentration predictions against predictions from the reference software (NONMEM®).  

Models used need to be adequate and reliable. For instance, extrapolation is not possible from 

adults or children to neonates. Therefore, this work proposes models for neonates based on the 

developmental pharmacokinetics concept. Patients’ adherence is also an important concern for 

drug models development and for a successful outcome of the pharmacotherapy. A last study 

attempts to assess impact of routine patient adherence measurement on models definition and 

TDM interpretation.  

In conclusion, our results offer solutions to assist clinicians in interpreting blood drug 

concentrations and to improve the appropriateness of drug dosing in routine clinical practice. 
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RÉSUMÉ 

Implémentation du suivi thérapeutique des médicaments dans 

la prise en charge moderne du patient 

La variabilité observée dans l’exposition au médicament a un impact direct sur la réponse globale à 

celui-ci. La majeure partie de la variabilité entre la dose et la réponse au médicament se situe au 

niveau de la phase pharmacocinétique, c'est-à-dire au niveau de la relation dose – concentration. 

Parmi les possibilités offertes au clinicien, le suivi thérapeutique des médicaments (TDM) est un 

des outils avantageux pouvant aider à la prise en charge au niveau du médicament. Le TDM a pour 

but d’optimiser les traitements en individualisant les posologies en fonction des concentrations de 

médicaments mesurées dans le sang. Le calcul Bayesien, basé sur l’approche de pharmacocinétique 

de population, représente actuellement la méthode de référence pour l’application du TDM. Il 

nécessite néanmoins une certaine expertise et une assistance informatique, limitant la possibilité 

de sa large implémentation en routine. 

L’objectif global de cette thèse etait l’implémentation d’outils robustes en routine afin d’offrir un 

TDM Bayesien au clinicien pour une prise en charge moderne du patient. A cette fin, les objectifs 

concrets ont été (i) de concevoir un logiciel efficace et ergonomique pour la réalisation du TDM 

Bayesian : EzeCHieL (ii) de fournir les algorithmes de calcul des médicaments pour la prédiction 

Bayesienne des concentrations des médicaments et la validation du logiciel en s’appuyant sur 

l’approche de population (iii) de résoudre certaines questions rencontrées en pratique clinique en 

s’intéressant tout particulièrement aux nouveau-nés et à l’adhésion thérapeutique. 

Un état des lieux des logiciels existants a d’abord été réalisé, et a permis de définir les spécifications 

nécessaire à l’élaboration d’EzeCHieL. Par la suite, en collaboration étroite avec les ingénieurs en 

informatique, la réalisation d’EzeCHieL, un logiciel intégré, a débuté. EzeCHieL offre des prédictions 

bayesiennes basées sur l’approche de population et une interface utilisateur intuitive. Il permet 

d’évaluer si une concentration observée chez un patient est attendue, en comparaison à une 

population (via les percentiles), d’établir si la concentration prédite est adaptée à la concentration 

visée et de fournir une adaptation posologique. Il propose donc une individualisation posologique a 

priori et a posteriori.  

L’implémentation d’une méthode de TDM Bayesienne nécessite de caractériser la disposition du 

médicament et de quantifier sa variabilité selon une approche de population. Des analyses de 
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pharmacocinétique de population ont été réalisées et les estimateurs Bayesiens fournis, pour des 

médicaments candidats dans les populations d’intérêt : anti-infectieux chez les nouveau-nés 

(gentamicine et imipenème). Les modèles ainsi développés ont été implémentés dans EzeCHieL et 

servent également d’outils de validation en comparant les concentrations prédites par EzeCHieL 

aux concentrations prédites par le programme de référence (NONMEM®). 

Les modèles nécessitent d’être adéquats et fiables. L’extrapolation n’est, par exemple, pas possible à 

partir des adultes ou nouveau-nés. Ce travail propose donc des modèles pour les nouveau-nés, 

basés sur le concept de la pharmacocinétique développementale. L’adhésion thérapeutique est 

aussi un problème majeur dans le développement de modèle et dans la réussite de la thérapie 

médicamenteuse. Une dernière étude a tenté d’évaluer l’impact de l’adhésion thérapeutique 

mesurée en routine sur la caractérisation des modèles et sur l’interprétation des concentrations 

sanguines de médicament.  

En conclusion, nos résultats proposent des solutions pour assister les cliniciens dans 

l’interprétation des concentrations sanguines de médicament et pour améliorer l’adéquation des 

posologies dans la pratique clinique quotidienne. 
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RÉSUMÉ LARGE PUBLIC 

Implémentation du suivi thérapeutique des médicaments dans 

la prise en charge moderne du patient 

Les individus ne sont pas égaux face aux traitements qui leur sont prescrits. Ainsi pour la même 

dose d’un médicament administré, l’exposition, caractérisée par la concentration sanguine du 

médicament, sera variable d’un individu à l’autre. La majeure partie de cette variabilité réside dans 

la phase pharmacocinétique (processus d’absorption, de distribution et d’élimination du 

médicament), c'est-à-dire au niveau de la relation dose – concentration. Parmi les possibilités 

offertes au clinicien, le suivi thérapeutique des médicaments (TDM) est un des outils avantageux 

pouvant aider à la prise en charge médicamenteuse. Le TDM a pour but d’optimiser les traitements 

en proposant des posologies (quelle dose, à quel intervalle?) individualisée, en fonction des 

concentrations du médicament mesurées dans le sang. Pour tenir compte de ces mesures de 

concentration, le calcul Bayesien peut être employé. Il se base sur les données pharmacocinétiques 

en rassemblant des données des individus au sein d’une population. Il représente actuellement la 

méthode de référence pour l’application du TDM mais nécessite néanmoins une certaine expertise 

et une assistance informatique, ce qui limite son application dans la pratique quotidienne. 

L’objectif global de cette thèse était l’implémentation d’outils robustes en routine afin d’offrir un 

TDM Bayesien au clinicien pour une prise en charge moderne du patient. A cette fin, les objectifs 

concrets étaient (i) de concevoir un logiciel efficace et ergonomique pour la réalisation du TDM 

Bayesien : EzeCHieL (ii) de fournir les algorithmes de calcul pour la prédiction Bayesienne de la 

concentration des médicaments, en s’appuyant sur l’approche de population (iii) de résoudre 

certaines questions rencontrées en pratique clinique, (cas des nouveau-nés et de l’adhésion 

thérapeutique càd prise correcte de son traitement par le patient). 

Après avoir réalisé un état des lieux des logiciels existants a pour fournir les spécifications 

nécessaires à l’élaboration d’EzeCHieL, une collaboration étroite avec les ingénieurs en 

informatique a permis la réalisation d’EzeCHieL. EzeCHieL permet d’évaluer si une concentration 

observée chez un patient est « normale », en comparaison avec ce qui serait attendu dans la 

population, si la concentration est adaptée par rapport à la concentration de médicament visée et 

de fournir une adaptation posologique si nécessaire.  
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L’implémentation d’une méthode de calcul Bayesienne pour le TDM nécessite de caractériser la 

pharmacocinétique du médicament et de quantifier la variabilité observée entre les individus et 

chez un même individu. Une approche de population est alors de rigueur. Des analyses de 

population ont été réalisées et les estimateurs nécessaires au calcul Bayesien fournis pour des 

médicaments candidats. Ce travail s’est particulièrement intéressé aux anti-infectieux chez les 

nouveau-nés (gentamicine et imipenème), en se basant sur le développement physiologique.  

Une dernière étude a tenté également d’évaluer l’impact de l’adhésion thérapeutique mesurée en 

routine sur la caractérisation des modèles pharmacocinétiques et sur l’interprétation des 

concentrations sanguines de médicament.  

 

En conclusion, nos résultats proposent des solutions pour assister les cliniciens dans 

l’interprétation des concentrations sanguines de médicament et pour améliorer l’adéquation des 

posologies dans la pratique clinique quotidienne. 
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CHAPTER I. GENERAL INTRODUCTION 

From Bayesian estimators to dosage individualization 



 

  



 
3 Introduction 

I.1. Drugs and variability in the therapeutic response 

Drug development progressively reaches a fair degree of reliability regarding standard dosage 

recommendations. However, it still devotes insufficient attention to heterogeneity in drug response 

among individuals in terms of both efficacy and safety, which is common and noticed for a long 

time. In 1923, Banting and Macleod were awarded the Nobel Prize in Physiology and Medicine for 

the discovery of insulin, and the modern era of tailored therapy started when they administered the 

first insulin doses to a patient adjusted to blood sugar level [1]. Already in 1785, William Withering 

titrated the dose of foxglove, against its clinical effects and toxicity [2]. Formal individualization of 

digitalis treatment by drug concentration measurement began in the end of the 60’s [3, 4] when 

drug assays became available. These are only typical examples among many others. Sources of 

variability are multiple including genetic polymorphisms, drug-drug interactions, disease 

conditions, specific patients’ characteristics, etc. In the differences observed in drug response, 

pharmacokinetic (PK) considerations, related to drug disposition and metabolism, are of major 

importance. PK describes the fate of drugs in the body by quantifying the absorption, distribution, 

metabolism and excretion processes. It allows to devise the time-course of systemic exposure of a 

drug (and/or its metabolites) reflected by plasma concentration curves. The relationship between 

plasma drug concentrations and reproduction of a clinically relevant outcome, either the 

pharmacodynamic (PD) phase, or response biomarkers (as PD surrogate) is called PK/PD [5]. 

The largest part of variability in drug response resides in the PK phase, i.e. in the dose-

concentration relationships. In a population, the total variability is made-up of predictable and 

unpredictable variability. The unpredictable variability, i.e. the random variability, is in turn made 

up of both inter-individual -which is not predictable from patients’ characteristics and describes 

variability between individuals- and intra-individual variability – which describes the variability 

around each individual average parameter [6]. 

To consider variability in drug response is not so important for drugs with a wide therapeutic 

interval in which case the “one size fits all” approach holds. However, this issue is particularly acute 
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for drugs with a therapeutic window narrower than the random population variability [6]. This 

situation often leads to challenges in optimizing a dosage regimen for an individual patient (figure 

1.1). Drug therapy individualization aims of both optimizing drug efficacy and minimizing its 

harms, by prescribing the right drug at the right dose to the right patient [7]. Thus, it also belongs to 

what has been recently called personalized medicine. An approach to drug therapy 

individualization is to design an appropriate dosage regimen for a given patient, based on dose-

concentration relationship. Dosage individualization based on the measurements of drug 

concentration gave rise to the process of what is now called Therapeutic Drug Monitoring (TDM). 

However, in day-to-day practice, drug individualization is often left to prescribers based on their 

own experience, and patient’s clinical status and characteristics, relying on empirical drug 

monitoring procedure [5]. 

 

Figure 1.1. Pharmacokinetics to pharmacodynamics (solid arrows), back to the 

design of dosage regimen (blue dashed arrows) and relationship with drug 

therapeutic range concept. 
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I.2. Therapeutic Drug Monitoring 

I.2.1. Basic concepts 

As mentioned above, TDM represents the feedback strategy of tailoring dosing regimen based on 

plasma drug concentration measurements, representing additional information to guide drug 

therapy. It is indeed established that for selected drugs, response can be optimised using this 

approach. For instance, this is current practice for lithium, digoxin, aminoglycosides, 

immunosuppressants, and antiepileptics. Monitoring of protease inhibitors (PI), non- nucleoside 

reverse transcriptase inhibitors (NNRTI), tyrosine kinase inhibitors (TKI) and other anti-infectious 

drugs is also progressively adopted in some institutions including ours [8]. Drug candidates for 

TDM need to satisfy a number of criteria [8, 9] as presented in table 1.1.  

Table 1.1. Characteristic requirements for a drug to be a candidate for TDM 

Analytical criteria 

Sensitive and specific analytical method available 

Pharmacokinetic (PK) criteria 

Good knowledge of the PK of the drug of interest 

Large interindividual variability 

Low intraindividual variability 

Low predictability of PK from dose 

Pharmacodynamic (PD) criteria 

Good knowledge of the PD properties of the drug of interest 

Good relationship between drug concentrations and pharmacological effect 

Narrow therapeutic index 

Known target concentrations 

Clinical criteria 

Adequate and easily monitored biomarker not available 

Clinical drug response not easily assessable or not sufficient alone 

Duration of therapy of a sufficient length 

Good interpretation of concentration measurements available 

 

More precisely, TDM can be divided in two types [10]: 

- a priori TDM based on prior knowledge on the patient characteritics to define initial dosage 

regimen and relying on population PK/PD relationships  
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Figure 1.2. Major steps in TDM 

- a posteriori TDM based on plasma drug concentrations, in order to achieve plasma concentration 

within a target range [11, 12]. As illustrated in figure 1.2, it includes: 

 A pre-analytical step: blood sample and request on a laboratory form with essential 

information (dosage regimen, time of sampling, last time of dosing, patients characteristics, 

other administered drugs). 

 An analytical step: rapid, sensitive and specific analytical methods and instruments are key 

for providing reproductible and reliable data that can be used for individualization. 

 A clinical step: drug concentration are interpreted together with target range and clinical 

individual situation. Dosage adjustment can be advised if the concentration is out of target

 

I.2.2. Pharmacokinetic targets 

A target concentration represents the value, or the range of value, with the greatest probability of 

therapeutic success at a given time [13]. The pharmacokinetic targets depend of the considered 
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drugs. The most common target is the trough concentration (Ctrough), just before the next dose. For 

anti-infectious drugs, target also depends of the minimum inhibitory concentration (MIC): for 

instance, peak concentration over MIC (aminoglycosides), percentage of time over the MIC 

(carbapenems). For immunosuppressants, although it is debated, many studies suggested that Area 

Under the Curve (AUC) is a better predictor of success than Ctrough [14]. Average concentration can 

also be considered (digoxin). The target concentration may also depend on the indication. This is 

the case for digoxin depending whether it is being used for atrial fibrillation or congestive heart 

failure. For some antibiotics, it may depend of the severity and the site of infection additionally to 

the pathogen involved. 

Thus, for drug concentration interpretation, it requires to sample at an optimal time, which is 

linked to the PK target and it should be performed at steady-state. In practice, this is not always 

possible to sample patient at optimal time, and in this case, concentration prediction at the time of 

interest may be beneficial. 

I.2.3. Methods for dosage regimen initiation and adjustment 

Rather than identical standard dose for all individual patients, nomograms have been proposed to 

facilitate the determination of initial dosing. The sources of variability in the response are 

anticipated. When a plasma concentration is available, the proportional method can be used to 

calculate an adjusted dosage to reach the desired concentration, from the initial observed 

concentration. This method relies on a simple rule of three, but it assumes that kinetics is linear, 

steady-state is achieved, and that either nominal dose or dosage interval would be modified [15-

17]. Regression methods have also been proposed, that consist of determining the slope of 

elimination (in time-1) from at least two measured concentrations during the post-distributive 

phase, from the same interval of dose. The most popular example is certainly the Sawchuk-Zaske 

method for aminoglycosides [18]. Finally, the most recent pharmacokinetic method based on 

Bayesian approach is generally more accurate and more robust [19-21]. The Bayesian strategy 

relies on the population PK/PD studies which is further developed below. A modern trend of TDM 

is given in figure 1.3.  
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A. Navigation  B. Therapeutic concentration monitoring 

1. What can I 

observe? 

Geostationary 

satellite signal 

 

 What can I 

measure? 

Chemical signal, 

light absorbance, 

electrical detection 

etc.  

 
What is my 

current 

position? 

Calculation of 

coordinates 

 

 2. What is my 

current level? 

Calculation of 

concentration (from 

standard curve) 

 

3. Where does 

this put me? 

Electronic map 

database 

 

 Where does  

this put me? 

Percentiles of 

expected range 

(from population 

analyses)  

 
Is this where I 

should be?  

Address, input  

of destination 

 

 4. Is this where  

I should be?  

Target intervals 

(from evidence-

based trials and 

population 

pharmacodynamics) 

 

 
5. Where should 

I go? 

Signposts, GPS 

navigator 

directions 

  
 

 Where  

should I go? 

Pharmacokinetic-

pharmacodynamic 

prediction 

 

 

 
How do I  

go there? 

Compass, GPS 

navigator 

indications   

 

 6. How do I  

go there? 

Dosage adjustment 

indications   

 

 

 

7. How do I keep 

track of my 

way? 

Logbook,  

GPS track 

recorder 

 

 How do I  

keep track of drug 

exposure? 

Diary, medication 

event recorder, 

remote electronic 

archival 
 

Figure 1.3. Modern trend of TDM. A. Sequential steps of modern navigation, as currently implemented 

in GPS-based satellite navigation devices. B. Potential modern methods of monitoring drug therapy, 

mapped on to the methods of navigation. (Reprinted from An agenda for UK clinical pharmacology, 

Monitoring drug therapy, Buclin et al., BJCP, 2012;73(6):917-23. Copyright (c) 2012, The Authors).  
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I.3. Population approach and modeling: concept and benefits 

I.3.1. Models and compartments theory 

Model is useful as a representative description of a system, especially designed to facilitate 

calculation and prediction. In pharmacokinetics, it aims to show the dose-concentration 

relationship over time of the drug. Compartment theory is often used in PK, in order to describe the 

fate of a drug: in this case, drug distribution within the body is approximated by a model 

constituted of compartments, represented by boxes. In the boxes, the drug appears kinetically 

distributed. It provides a means for estimating the associated parameters such as clearance and 

volume of distribution. An example of a two-compartment model is given in figure 1.4 that includes 

a central compartment, of which plasma is a part and a peripheral compartment, but do not 

necessarily represent any anatomical region of the body [22, 23]. In the population approach, it is 

called the structural model and it can be stated as differential equations (see below). 

 

Figure 1.4. Schematic two-compartments model for an intravenous 

administration with pharmacokinetic parameters: Vc = Central 

volume of distribution, Vp = peripheral volume of distribution, Q = 

intercompartmental clearance, CL = total clearance 

 

I.3.2. Population pharmacokinetic modeling 

In the early 70’s, clinical PK largely benefited of population PK modeling emergence. Its objective is 

to describe plasma concentration-time profile with mathematical and statistical models using 
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sparse blood samples in a whole population. Development of the fixed-effects model allows indeed 

simultaneous analysis of data collected in a population. However, most of the models used in PK are 

nonlinear with time, and in such cases, mathematical calculation is complicated. In the 70’s and 

early 80’s, Sheiner and Beal developed the first method adapted to nonlinear mixed effect model, at 

the University of California, San Francisco: here was born population PK. They also proposed the 

first nonlinear mixed effect modeling software: NONMEM® [24]. In addition to providing the 

average behaviour of the group (the mean plasma concentration-time course), population PK 

provides an opportunity to estimate variability on various PK parameters, identify its sources and 

quantify the unexplained part of variability [25]. 

Population PK is usually characterized in terms of: 

(i) Fixed effects: representing the population average of the model parameters θ 

(clearance and volume of distribution). These parameters are susceptible to various 

factors, such as physiological characteristics (age, gender, body weight, renal status, 

etc), genetic characteristics, or drug-drug interactions. These last factors are the fixed 

effect covariates, zi. 

(ii) Random effects: this is the part of the variability that is not explained by the above 

fixed effect and permits quantification of: 

 The interindividual variability (also called the between subject variability), which is 

the variability between two different individuals. It is expressed by ω2, which is the 

variance of the fixed effect parameter θ. For an individual i, θi = θ + ηi where ηi 

follows a normal distribution with a variance ω2. 

 The intraindividual variability (also called the residual unexplained variability), 

which is the variability within the same individual over time i.e. between two given 

moments. It is expressed by σ2. For an observation j, the corresponding prediction ŷ 

by     = ŷ + εij where εij follows a normal distribution with a variance of σ2. 
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Thus, the general mixed effects model is written: 

    =                

And the parameter model: 

   = g           

Where     is the jth observation in an individual i,     is a known quantity (time or dose),    is the 

pharmacokinetic parameter vector for an individual i, and     represents the residual error; g is a 

structural model which is function of fixed effects covariates zi, and fixed effects parameters θ; 

finally,   represents the pharmacokinetic model (like one, two or three compartments, linear or 

non-linear kinetics). In this general model, residual error     is additive, and means that each 

measurement is assumed to be equally precise for all values of    . When error changes with 

differing values of    ,      is assumed to follow a log-normal distribution with median 1 and a 

constant coefficient of variation. Combinations of additive and log-normal errors can also be used 

[26]. 

The model that best fits the analyzed data is determined by the maximum likelihood approach. 

NONMEM® estimates the best values of θ, ω2, σ2 that give the lowest value of the objective function 

(OF). Complementary to the maximum likelihood approach, diagnostics graphics and values of 

coefficients of variation will be analyzed to determine the final model [26]. 

The advantages of population PK reside in being able to treat sparse data, and thus the possibility to 

use the information generated during patient routine care. Estimation of random and fixed effects 

allows development and improvement in dosing strategies for specific population of patients 

(neonates, paediatrics, elderly, dialysis, disease,…) who will eventually received the drug of interest. 

As it will be presented in the following paragraph, it permits Bayesian feedback analysis to be 

performed for TDM [25]. 
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I.4. From population to individual: Bayesian forecasting 

To forecast individual PK parameters with precision in a given patient is central to make optimal 

dosage decision. The Bayesian approach is more accurate and precise for this purpose as it 

estimates individual PK parameters that will be most consistent with serum level predicted by the 

model and the actual measured concentration. It balances deviation of the individual’s model-

predicted concentration (  ) from observed concentration (Cobs) and the deviation of the 

individual’s estimated parameters values (  ) from the population parameter value (   ). It uses the 

prior probability distribution of the individual’s parameters set in the light of the observed 

concentration to give the posterior distribution. The posterior distribution has a different mode than 

the prior one, and its new mode is used for the next forecasting round (figure 1.5). It takes into 

account uncertainty over individual parameters and measurements error [27-29]. 

 

 

 

Figure 1.5. Parameter density for a priori (grey) and a 

posteriori (black) distribution, with a posteriori mode 

(red line), a posteriori median (green dotted line) and a 

posteriori mean (blue dotted line). 
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Bayesian optimization criterion is based on the maximum a posteriori (MAP), for normal 

distribution assumption, and minimizes the following expression [29] for estimates of parameters 

P: 

           
                

 

  
 

  
        

 

  
 

 

   

 

   

 

        Optimization criterion: P function to minimize 

P   Parameters (clearance(s), volume(s) of distribution, etc) 

        Observed concentration at time    

            = model-predicted concentration  

  
    Residual error variance on        

     Individual’s estimated parameter values 

  
    Population parameter values 

  
    Parameter residual variances 

Individual parameters values, individual-predicted concentrations and residuals-parameters values 

are thus estimated by the so-called post hoc estimation (or empirical bayes estimates (EBE) 

estimation). It is used for the refinement of a patient dosage regimen that can be based only on one 

measured concentration. This process is presented in figure 1.6.   

Figure 1.6. Bayesian strategy for dosage adaptation: from a priori parameters to a posteriori 

individual parameters used for dosage regimen refinement. (adapted from the courtesy of Pr. T. 

Buclin)  
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I. 5. Implementation of Bayesian estimator for dosage individualization 

 I. 5.1. Computer tools and new technologies 

Bayesian forecasting method is computational demanding and necessitates intensive numerical 

integration [30]. Thus, its implementation in the health care system context requires appropriate 

computing platforms for integrating all information gathered, adequate resources and effective 

communication. The 20th century saw the advent of computer, and computerization in medicine has 

evolved with time and the modernization of health care facilities since the 60’s [31]. It also 

benefited from the development of Internet and the Web. As we have moved to the 21st century, we 

have come to rely more and more on the Internet and Web 2.0. Medicine is not left behind, witness 

of the development of Health 2.0, eHealth, Health Information Technology (HIT), mobile Health 

(mHealth) [32, 33]. HIT can be defined as a diverse set of technologies for transmitting and 

managing health information for use by consumers, providers, and all other groups with an interest 

in health and health care, such as payers and insurers. HIT displays a variety of systems, such as 

computerized storage and reporting of laboratory results, electronic health records, or novel 

systems that permit interoperability, i.e. permit clinicians to share information about patients 

across institutional boundaries and even all over the globe. HIT has improved quality and efficiency, 

and eventually reduced health care costs. Its effective use also resides in its ability to retrieve data, 

organize them, apply algorithms, and provide the results to clinicians when and where they need it 

[34]. Products and services based on HIT remains relatively small and undeveloped in medicine 

compared to most other sectors of the economy [35]. The most advanced progression into these 

new possibilities is represented by mHealth. mHealth technology that encompass Smartphone and 

embedded tablets are slowly changing healthcare, with more than 17,000 applications today 

available for mobile devices, for a large panel of tasks either for clinicians, hospitals or directly for 

patients [36]. Use of mHealth technology leads to “put doctor in patients pocket and to jump to 

personalized medicine” [35].  
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Figure 1.7. ISyPeM - A multidisciplinary and multi-institutional 

project to advance state-of-art personalized medicine by creating 

new technologies. 

 I. 5.2 NanoTera project – Intelligent Integrated Systems for Personalized Medicine 

Intelligent Integrated Systems for Personalized Medicine (ISyPeM) is a multi-disciplinary and multi-

institutional project involving the Division of Clinical Pharmacology of the Lausanne University 

Hospital (CHUV), the School Business and Engineering Vaud (HEIG-VD), the University of Applied 

Sciences and Arts Western Switzerland Valais – Wallis (HES-SO-VS), the Swiss Federal Institute of 

Technology Lausanne (EPFL), and the Swiss Center of Electronics and Microelectronics (CSEM), as 

presented in figure 1.7.  

 

This project is part of the Nano-Tera initiative. Nano-Tera is a Swiss collaborative research 

enterprise that aims to bring new technological evolution using engineering and information 

technology to improve health and security and to extend the management of energy and the 

environment. 

The aim of the specific 2-step ISyPeM project1,2 is to advance state-of-art personalized medicine 

while benefiting from technological advances. This project involves many facets, ranging from 

analytic and miniaturized monitoring test development at the point of care, to new drug delivery 

mechanisms.  

                                                             
1 ISyPeM 1: http://www.nano-tera.ch/projects/405.php 
2 ISyPeM 2: http://www.nano-tera.ch/projects/368.php 

http://www.nano-tera.ch/projects/405.php
http://www.nano-tera.ch/projects/368.php
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The present thesis focuses only on the contribution of the Division of Clinical Pharmacology (CHUV) 

to this project. Our division has a longstanding experience on drug dosage individualization, along 

with technical competences in population PK/PD. As previously mentioned, monitoring relies 

almost exclusively on empirical procedure in the medical community, and drug monitoring still 

represents a significant challenge for modern health care. Translation of concentration 

measurements values into personalized treatment advices requires yet the integration of efficient 

and ergonomic computer tools into the system, with communication capabilities, which are 

nowadays becoming a standard in many aspects of medical care. Thus, development of an easy-to-

use and efficient clinical decision support system (CDSS) [37] for health care providers appears 

crucial and lead to EzeCHieL subproject in 2010. It results from close collaboration between the 

division of Clinical Pharmacology and the software engineers from HEIG-VD, who are in charge of 

software development. Figure 1.8 represents CHUV contribution to ISyPeM and especially where 

EzeCHieL realization currently stands. Later, it will be integrated into others ISyPeM devices, once 

available.  

 

 

 

 

Figure 1.8. Contribution of CHUV in ISyPeM : EzeCHieL and project perimeter 

(Courtesy of Pr. T. Buclin, Lausanne) 
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I. 6. Examples of some pharmacokinetic issues in clinical practice 

I. 6.1. Special group of patients: focus on neonates 

Certain patients’ group (elderly, pediatrics, critically ill, patients with renal failure, obese) are 

difficult to study because of ethical and logistic issues. During drug development, studies deal with 

more or less selected subgroups, most of the time quite homogenous (healthy volunteer, patient 

with few associated co-morbidities). Much of the drug PK is thus unknown once it is released on the 

market [38]. 

For instance, no consensus has been reached for dose selection in children but this is often obtained 

from extrapolation in another population of reference, where the relations between covariates and 

parameters is characterised. Implicitly, this means that the following hypotheses are accepted: the 

structural model, variability and covariance are identical; there is continuous covariate-parameters 

relationship; the correlation between covariate and parameters is identical in the new population; 

and there is no other significant covariate in the population of extrapolation. However, it does not 

take into account the developmental change across paediatric populations [39] [40]. There are 

biological basis for using size and maturation to describe PK in this population and, actually, size 

and age are considered as primary covariates for PK model.  

Body size (body weight (BW)) is the most important predictor for elimination process [41]. Most 

body size relation is often described following an allometric relation:            
   

     
 
    

. 

Volume shows direct proportionality to body weight:          
   

     
 
 

 [42]. The value of the 

coefficient of 0.75 used to scale the process of clearance is an empirically derived constant that has 

also been discussed throughout the literature, and it cannot be applied solely for infants without a 

maturation function. Maturation (Age) is used to describe processes that are associated with time 

course and not dependent of size. Maturation of clearance starts before birth, taking into account 

gestational age, additionally to age, thus often leads to better prediction, especially because birth 

may occur prematurely [43]. There are examples of allometric extrapolation from adult to teenager 

or children. But there is no universal method of extrapolation in infants (< 2 to 5 years old) due to 
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Figure 1.9. Adherence in the PK/PD picture 

growth and organ maturation process. Regarding the important need of information for these 

groups, use of information generated during the routine care of patient to obtain estimates is 

advocated and is facilitate by population method and modeling [44]. Neonates are of particular 

interest; since birth seems also to have consequences on maturation that is poorly documented [41, 

42]. 

I. 6.2. Medication adherence 

Medication adherence implies persistence, which refers to continuing the treatment for the 

prescribed duration and, execution which refers to the patterns of patient adherence behavior 

(percentage of days with correct dosing, percentage of correct dosing intervals, drug holidays) [45]. 

The ultimate consequence of poor medication adherence is its contribution to a negative 

therapeutic outcome, especially in chronic disease. While a number of covariates related to the 

clinical response are studied to the clinical response, patient adherence is rarely measured or taken 

into consideration. However, addition of adherence in the PK/PD picture shows how it complicates 

both: drug pharmacokinetic characterization and dosage regimen definition (figure 1.9. adherence 

in the PK/PD concept).  

 

Deviation from taking medication as prescribed is a source of variation in drug exposure and thus 

in the global pharmacotherapy. It can lead to an incorrect description of the PK/PD models. 

Assuming that medications are taken exactly as prescribed when it is not the case can lead to biased 

model parameter estimates and to misleading clinical outcome interpretation. Quantitative 
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measurement of medication adherence can decrease the residual variability up to 50% [46] and can 

substantially remove noise in the PK/PD models [47]. 

Patterns of non adherence also influence TDM intervention. Most TDM intervention assumes a full 

adherence and steady-state condition and the “white coat compliance” (defined as an improved 

medication adherence just before a clinic visit) makes less reliable TDM measurements [48]. 

Individual Bayesian calculations are affected if a wrong dosing history is assumed. In returns, it can 

biased dosage recommendation [49]. 

Consequences of poor adherence depend of drug’s PK and PD properties. Antimicrobials and 

antivirals are frequently unforgiving. Half-life is often quite short, and the rate of potential mutation 

in pathogens is high, which makes essential to maintain an effective concentration throughout the 

dosing interval. Even so, there is a lack of research combining medication adherence variables with 

PK, and a poor understanding of the impact of such model [50].  

I. 7. Objectives of the thesis 

The overall objective of this research is to provide advances in Bayesian drug dosage 

individualization and to allow its implementation in the routine care. 

To that endeavour, the purposes of this thesis are: 

i. To elaborate an efficient and ergonomic computer tool for TDM, EzeCHieL (chapter II), by: 

 Systematically reviewing currents programs available in practice, in order to 

evaluate needs, to provide specifications and to support development of EzeCHieL. 

 Participating actively in the elaboration of EzeCHieL particularly in the conception, 

testing and validation of the software, in close collaboration with the engineers. 

ii. To provide drugs’ algorithms for Bayesian forecasting and validation, relying on population 

approach (chapter III). 

iii. To address some practical issues met during TDM intervention such as better 

understanding causes of variability in drug exposure (specific population, adherence), and 

to optimise TDM intervention via EzeCHieL (Chapter III and Chapter IV).  
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Chapter II in the thesis context 

The global project of this thesis arose from the observation that an adequate tool to offer Bayesian 

TDM at large scale was missing 

The first part of this chapter is presenting a review of the current software tools available regarding 

TDM. In the last decades, several programs have yet been designed to assist clinicians in 

interpreting blood drug concentrations and to improve the appropriateness of drug dosing in 

routine clinical practice. The purpose of this review was to establish the current stage of the 

existing software to evaluate the limits of these current tools and to propose specifications for the 

development of our new tool, EzeCHieL. 

Following this review, the question was “what can we do yet”? The second part of this chapter is 

presenting the concept of EzeCHieL, and intuitive and flexible software intended to assist clinicians 

in TDM interpretation. Different capabilities embeds by the software regarding drug exposure 

prediction, drug treatment indication and interoperability amongst others are under elaboration. 

Its current stage of realization, since the beginning of its development in 2010 is given.  

 

Own contribution:  

First part: Participation to protocol elaboration. Programs’ identification and collection. Extensive 

programs’ testing and comparison. Contact with software distributors. Drafting of the article and 

publication process. 

Second part: Participation in program conception. Extensive program testing and validation. Close 

collaboration with software engineers. Drafting of the article. 
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ABSTRACT 

Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage 

regimens based on the measurement of blood concentrations. Dosage individualization to maintain 

concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian 

calculations currently represent the gold standard TDM approach but require computation 

assistance. In recent decades computer programs have been developed to assist clinicians in this 

assignment. The aim of this survey was to assess and compare computer tools designed to support 

TDM clinical activities. The literature and the Internet were searched to identify software. All 

programs were tested on personal computers. Each program was scored against a standardized 

grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and 

storage. A weighting factor was applied to each criterion of the grid to account for its relative 

importance. To assess the robustness of the software, six representative clinical vignettes were 

processed through each of them. Altogether, 12 software tools were identified, tested and ranked, 

representing a comprehensive review of the available software. Numbers of drugs handled by the 

software vary widely (from two to 180), and eight programs offer users the possibility of adding 

new drug models based on population pharmacokinetic analyses. Bayesian computation to predict 

dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, 

while nine are also able to propose a priori dosage regimens, based only on individual patient 

covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-

USC*PACK© uses the non-parametric approach. The top two programs emerging from this 

benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential 

while being less sophisticated or less user friendly. Programs vary in complexity and might not fit 

all healthcare settings. Each software tool must therefore be regarded with respect to the individual 

needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including 

for non-experienced users. Computer assisted TDM is gaining growing interest and should further 
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improve, especially in terms of information system interfacing, user friendliness, data storage 

capability and report generation. 

II.1.1. Introduction 

The monitoring of drug therapy aims to forecast treatment success, failure or toxicity, and to adjust 

prescriptions as a consequence. Circulating drug concentration is a traditional pharmacokinetic 

surrogate used for this purpose, in what is called therapeutic drug monitoring (TDM) [1]. TDM 

assumes that circulating drug concentrations better predict the effect of pharmaceutical agents and 

clinical outcome than doses. Practically, TDM approaches attempt to optimize individual dosage 

regimens through the maintenance of concentrations within a given therapeutic range [2]. Dosage 

individualization consists either of a priori adjustment (without blood drug concentration 

measurement) based on demographic, biological, pharmacogenetic and clinical covariates, or of a 

posteriori adjustment based on drug concentration determination [3]. TDM-guided dosage 

individualization is currently applied to a number of drugs such as antibacterials, anticonvulsants, 

digoxin and immunosuppressants [4]. Major benefits for patients reside in optimizing the drug 

concentration exposure, leading to more rapid and sustained therapeutic control and to improved 

safety, which might even reduce the duration of hospitalization [1, 5]. Maintaining optimal drug 

concentrations is, however, a complex and demanding task. It requires solid knowledge of 

evidence-based clinical guidelines, clinical pharmacology and pharmacokinetics, as well as definite 

mathematical skills for dosage calculation [5]. It therefore represents a time-consuming activity for 

healthcare professionals and often requires the intervention of a specialist [1]. In such 

circumstances, computer-assisted decision making [6] is advantageous, as algorithms implemented 

enable the automated calculation of doses, while integrating patients’ individual factors such as age, 

bodyweight, sex, kidney function, disease and drug interactions along with drug concentration 

results [7, 8]. Whereas most industries have experienced an information technology revolution 

since the 1980s, healthcare systems are generally moving rather slowly in that direction [9]. The 
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main healthcare domain currently undergoing profound transformation is the field of electronic 

medical records and of networks to share these medical data [9, 10]. Dispensation and dosing of 

drugs also represent a field of interest in which intelligent technologies could be useful [10]. In 

parallel, technological efforts towards the miniaturization of monitoring tests (e.g. TDM 

determinations) are necessary [11], along with the development of robust and user-friendly 

computer tools to provide seamless monitoring services in clinics [1]. Indeed, in recent decades, 

several programs have been designed to assist clinicians in interpreting blood drug concentrations 

and to improve the appropriateness of drug dosing in routine clinical practice [12-19]. Recently, 

computer-assisted decision tools for monitoring gained renewed attention, holding further 

potential for TDM-guided dosing optimization. In 1993, Buffington et al. [12] published a review of 

computer programs designed for TDM-guided dosage optimization available in the USA. Since then, 

however, few evaluations on this type of software have been presented, and no further review has 

ever been published to our knowledge. The aim of this survey is to provide an updated comparative 

evaluation of all software designed for routine TDM-guided dosage adjustment that is widely 

available throughout the world. 

II.1.2. Search strategy and selection criteria 

A literature search for clinical pharmacokinetic software programs was performed through 

MEDLINE (1966 to October 2012) and Google using the following keywords: therapeutic drug 

monitoring, software, program, computerized, clinical pharmacokinetics, computer assisted 

decision-making, dosing, drug dosage. The web portal of David Bourne’s pharmPK forum [20]  was 

also used as a resource for program identification. As programs widely differ in their features, their 

expected characteristics had to be assessed along multiple axes. This led to the design of a 

comprehensive evaluation grid to standardize the comparison of software. Criteria were defined 

based on the authors’ experience in routine TDM practice. General characteristics addressed were 

as follows: user interface, visual aspect, user friendliness; possibility of interfacing with other 
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hospital software (e.g. laboratory software or patient’s medical records); possibility to store 

patient’s or user’s information; the quality of report generated for physicians; the cost; and 

computational aspects such as import and export functions. To take into account the variety of fee 

schemes, prices were calculated for a 5-year annual subscription. Pharmacokinetic aspects 

addressed were as follows: drugs and type of population covered by the programs; type of models, 

calculation approaches, simulation capabilities; modularity; quality of pharmacokinetic plots 

generated; and further utilities such as creatinine clearance calculation. The full grid of criteria is 

available in Tables 2.SI and 2.SII of the Online Resource. The evaluation of all software programs 

was performed on a standard personal computer by one pharmacist user, backed up by two clinical 

pharmacologists experienced in computing and the clinical practice of TDM. A score was assigned 

to each criterion, ranging from 1 (for the lowest performance) to 5 (for the highest performance). 

For binary items (yes/no), a score of either 2 or 4 was allocated and for ternary criteria a score of 1, 

3 or 5 was allocated to balance the marks attributed. Scoring definitions are detailed in the Online 

Resource (Table 2.SI). The scoring approach had to be balanced, since criteria obviously differ in 

their importance. In that endeavour, five physicians, five pharmacists and five computer engineers 

were asked to attribute a weight from 1 to 3 to each criterion (1 for low importance, 2 for useful but 

not essential and 3 for essential). A final weighting factor for each criterion was then calculated by 

arithmetic average. Finally, a ranking of the software programs could be established by summing 

the weighted scores to obtain a global score for each program. Scores by category were also 

calculated in order to appraise more finely the various facets of the programs. When characteristics 

of programs were unclear, contact with the authors or developers was sought to clarify relevant 

points. Validation by the author or by the software developing company was proposed and the grid 

was distributed to those willing to participate. They were asked to fill it in using the explanatory 

table sent along with the grid (Table 2.SI). This allowed a double-control and confirmation of 

missing information. To improve the robustness of our evaluation, six clinical vignettes, inspired by 
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real clinical TDM cases encountered in our routine activity, were also tested. These cases aided the 

evaluation of the software based on systematic testing of real-life situations. They also provided an 

insight of a priori and a posteriori predictions offered, and of the type of specific cases that could 

typically be handled by the programs. 

II.1.3. Therapeutic drug monitoring software 

II.1.3.1. History and evolution 

USC*PACK© was the first available software dedicated to monitoring and dosage adjustment. 

Developed by the Laboratory of Applied Pharmacokinetics at the University of Southern California 

(Los Angeles, CA, USA) and launched in 1973 [21], it is still in use and evolving. It represents a 

comprehensive software that includes MM-USC*PACK© (now called RightDoseTM) and is designed 

for clinical practice and dosage adjustment. Later, in 1982, the Department of Pharmacology and 

Pharmacotherapy at the University of Groninigen (Groningen, The Netherlands) developed 

MwPharm©. MediWare (Charles University, Prague, Czech Republic), now hosting the program, 

was established in 1987. Abbott Laboratories also developed a software package in the early 1990s 

called Abbottbase Pharmacokinetic Systems or PKS [18]. It was widely used, at least in the USA, 

during the 1990s [12]. The program distribution has, however, been discontinued for some years. 

Similarly, there are other programs that existed in the 1990s but are no longer available (e.g. 

SeBAGEN [22], ATM [13], Simkin [23]). Either they are not marketed any more, or their 

development was merged with other software. For example, Kinetidex® has been Thomson Reuters’ 

software since 2001, resulting from a merge between Simkin and Micromedex®. In the meantime, 

other initiatives have appeared, mostly from the academic field. A pharmacist from Creighton 

University (Omaha, NB, USA) developed multiple programs dedicated to assisting hospital 

pharmacy practice under the global name RxKinetics© Software. Among them, three programs are 

intended for dosage adjustment, with the first one, Kinetics©, launched in 1986. More recently, 

programs have been developed in Asia. JPKD® for desktop and TDM for R (which is a variant of 
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JPKD® developed as a plug-in for the R statistical program) were both developed by Kaoshiung 

Medical University (Kaoshiung, Taiwan) and released in 2006. New initiatives are still emerging, 

the latest of which comes from the University of Otago (Dunedin, New Zealand) and the University 

of Queensland (Brisbane, QLD, Australia), which released the first version of TCIWorks in 2011. 

II.1.3.2. Widely available software packages 

Twelve clinical pharmacokinetic programs were identified: MM-USC*PACK©, MwPharm©, 

TCIWorks, JPKD®, TDM for R, Antibiotic Kinetics©, APK©, Kinetics©, Kinetidex®, T.D.M.S. 2000TM, 

DataKineticsTM, RADKinetics. Antibiotic Kinetics©, APK© and Kinetics© belong to the RxKinetics© 

programs. Specific versions reviewed are indicated in Table 2.1.1. Moreover, major features are 

described for each software in Tables 2.1.2 and 2.1.3. All criteria considered are presented in the 

detailed evaluation grid accessible in the Online Resource (Table 2.SII), with their associated 

weight. A summary of the results, scored by category and ranked, is shown in Table 2.1.4. We were 

able to contact authors or the developing company for 11 of the 12 programs (only developers from 

RADKinetics could not be reached because of broken links on their website and unavailability of 

contact information). Some developers declined participation, considering either that it was 

difficult to self-rate items or that our demand included requests for information viewed as 

proprietary. Eventually, five developers provided feedback for MM-USC*PACK©, MwPharm©, 

Antibiotic Kinetics©, APK©, Kinetics©, JPKD®, TDM for R, and T.D.M.S. 2000TM. Among these 12 

programs, DataKineticsTM is no longer marketed. A website still exists for RADKinetics and the 

program can be downloaded, but there is apparently neither support nor updates anymore. There 

has been no update for JPKD® since 2007, but support is still available. 
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Table         Table 2.1.1. Descriptive characteristics of the program 
 
characteristic 

MwPharm© MM-USC* 

PACK© 

TCIWorks RxKinetics Programs© JPKD® TDM for R Kinetidex® TDMS 2000TM Data 

KineticsTM 

RAD 

Kinetics 
Antibiotic 
Kinetics© 

APK© Kinetics© 

Author(s) D.K.F. Meijer, et 
al. 

 

R.W. Jelliffe, 
M. Neely, 
A. Bustad 
 

S. Dufull, PhD 
L. Van Den 
Berg, 
C. Kirkpatrick 

R. Tharp R. Tharp R. Tharp Y. Lee, J.M. Lai  
Y.H. Lu et al.  

M. Chen, 
Y. Lee 

 

R.K. Klasco  
(and authors of 
SimKin 
Program) 

P. O. Anderson, 
A. Gupta  

NA R. 
Rademacker 

 

Company/ 
Institution 

University of 
Groningen 
(developer), 
Faculty of 
Medicine of 
Charles 
University, 
Pragues and 
Mediware 
(marketer) 

Laboratory of 
Applied 
Pharmacokineti
cs, School of 
medicine, USC 

 

School of 
pharmacy, 
University of 
Otago School 
of pharmacy, 
University of 
Queensland 

School of 
pharmacy 
and health 
profession, 
Creighton 
University   

School of 
pharmacy and 
health 
profession, 
Creighton 
University   

School of 
pharmacy and 
health 
profession, 
Creighton 
University   

Graduate 
College of 
Clinical 
Pharmacy, 
Kaohsiung 
Medical 
University, 
Kaohsiung 

Graduate 
College of 
Clinical 
Pharmacy, 
Kaohsiung 
Medical 
University, 
Kaohsiung 

Thomson 
Reuters 

Healthware  
Inc. 

MDK Inc. 
Developper, 
ASHP 
Marketer 

NA 

Location of 
company/ 
Institution 

The Netherlands 
/ Czech Republic 

USA New Zealand / 
Australia 

USA USA USA Taiwan Taiwan USA USA USA USA 

Date of the 
first 
version 

1991 1973 2010 1999 1999 1986 2006 2006 NA 1986 NA NA 

Version 
reviewed 

4.0  15.2 1.0 2.3.9 3.5.3 2.2.5 3.0 2.2.1 11 11.02 5.0.15 2.0.1 

Computer 
language 
of the 
source 
program 

C# C++ / Matlab Java Pascal Pascal Visual Basic Java R NA C++ NA NA 

Still 
marketed 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes 

Websites mediware.cz lapk.org 
/software.php 

tciworks.info rxkinetics.co
m 

rxkinetics.com rxkinetics.com jkpd.kmu.edu.t
w/jpkd/ 

pkpd.kmu.edu. 

tw/tdm/ 

truvenhealth 
.com/products/ 

tdms2000.com  showcase.ne
tins.net/ 
web/radman
/ 

NA not available 

http://www.mediware.cz/aktuality.php?lang=eng
http://www.tciworks.info/
http://www.rxkinetics.com/
http://www.rxkinetics.com/
http://www.rxkinetics.com/
http://www.rxkinetics.com/
http://pkpd.kmu.edu.tw/jpkd/
http://pkpd.kmu.edu.tw/jpkd/
http://www.tdms2000.com/
http://showcase.netins.net/web/radman/
http://showcase.netins.net/web/radman/
http://showcase.netins.net/web/radman/
http://showcase.netins.net/web/radman/
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Table 2.1.2. Features of the programs: general characteristics 

Characteristic MM-USC 
*Pack© 

MwPharm© TCIWorks JPKD® TDM for R Antibiotic 
 Kinetics© 

APK© Kinetics© Kinetidex® T.D.M.S. 
2000TM 

Data 
KineticsTM 

RAD 
Kinetics 

User Interface 

Platform Windows® Windows® Windows® / 
Mac® / Linux 

Windows® 
/ mobile 
device  (no 
iOS®) / 
Mac® / 
Linux 

Windows® 
/ Mac® / 
Linux 

Windows® Windows® /  
mobile device 

Windows® / 
mobile device 

Windows®(no 
international 
version) 

Windows® Windows® / 
mobile device 
(no iOS®) 

Windows® 
(old version) 

User 
friendliness 

Need practice 

 

Need practice Need practice Very easy Not user 
friendly 

Very easy Very easy Very easy Easy Need Practice Easy Easy 

Clinical manual No No Limited No No Yes Yes Yes Yes Limited Limited No 

Interfacing 

 

No Yes, with 
MirthTM 
Connect 
technology 

No No No Yes, only to 
collect some 
patient data 

Yes, only to 
collect some 
patient data 

Yes, only to 
collect some 
patient data 

No No No No 

Storage 

Patient records 
/ Database 

Yes, on local 
files (no real 
database) 

Yes Yes No No No Consultations  
only 

Yes Yes Yes Consultations  
only 

Consultations 
only 

Report generation 

 
Yes Yes, 

customizable 
Yes, 
customizable 

Yes No Yes Yes, 
customizable 

Yes, 
customizable 

Yes, 
customizable 

Yes, 
customizable 

Yes, 
customizable 

Yes 

Costa 

 
Donation  

US$595 

US$1,530 Free Free Free US$125 US$150 US$250 US$1,520 
annually 

US$600 
annually 

US$900 US$100 

Computational aspect 

GUI Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes 

Data import / 
export 

 

Export Export No Export No No Administrative 
data only 

Administrative 
data only 

No No No No 

Technical 
manual 

Sparse Yes Getting started 
guide 

Yes No Yes Yes Yes Yes Getting started 
guide 

Yes No 

GUI graphical user interface 

a Cost indicated for a single seat license 
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Table 2.1.3. Features of the programs: pharmacokinetics 

Feature MM-USC 
*Pack© 

Mw 

Pharm© 

TCI 

Works 

JPKD® TDM 

for R 

Antibiotic 
 Kinetics© 

APK© Kinetics© Kinetidex® TDMS 
2000TM 

Data 

KineticsTM 

RAD 

Kinetics 

Population and drugs 

Add drug model 
interface 

Yes Yes Yes Yes No Yes Yes Yes No Yes No No 

Models 

A priori regimen 
proposal 

Yes Yes Yes No No Yes Yes Yes Yes Yes Yes No 

Bayesian analysis Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 

First dose 
handled 

Yes Yes Yes No No Yes Yes No Yes Yes No No 

Non steady state 
situation 
handled 

Yes Yes Yes No No Yes Yes Yes Yes Yes Yes No 

Modularity 

Possibility of 
user-defined 
parameters 

No Yes Yes Yes No Yes Yes Yes Yes Yes No No 

User-defined 
boundaries 
value target 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Plot 

PK Plot 
generation 

Yes Yes Yes Not for all 
drugs 

No Yes Yes Yes Yes Yes Yes No 

Percentiles Yes No No No No No No No No No No No 

Various 

Creatinine 
clearance 
calculation 

Jelliffe Cockroft & 
Gault 

Cockroft & 
Gault 

None None Cockroft & 
Gault / 
Schwartz / 
Jelliffe  

Cockroft & 
Gault / 
MDRD / 
Schwartz / 
Jelliffe / 
Salazar & 
Corcoran 

Cockroft & 
Gault / 
MDRD / 
Jelliffe / 
Salazar & 
Corcoran 

Cockroft & 
Gault / 
Schwartz 

Cockroft & 
Gault / 
Schwartz 

Cockroft & 
Gault / 
Schwartz / 
Jelliffe 

Cockroft & 
Gault 

MDRD Modification of Diet in Renal Disease, PK pharmacokinetic 
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II.1.3.3. Software requirements and individual characteristics 

General characteristics 

Nowadays, all of the recent program versions run on the Windows® operating system (Microsoft 

Corp., Redmond, WA, USA). Kinetidex® runs only on US-English Windows®. Kinetics© is sold only in 

the USA, Canada and the UK (as it uses a dot to separate decimals instead of a comma as in other 

countries). As users of personal digital assistants, smartphones and Mac® computers (Apple, 

Cupertino, CA, USA) dramatically increased over the last few years; this should also be taken into 

consideration. At present, JPKD®, APK© and Kinetics© have developed an application for mobile 

devices. TCIWorks, JPKD® and TDM for R can be run on Mac OS X® environment (Apple). The 

Internet is the most rapid and convenient media for presentation and distribution of software. All of 

the software packages are hosted on websites, ranging from a simple advertisement for Kinetidex® 

to a comprehensive source of information with technical information, including teaching topics 

and/or screenshots, for JPKD® or MM-USC*PACK©. Most programs are easy to download through 

the Internet, at least as demonstration versions. The importance of support documentation should 

not be underestimated and a user manual should be part of the software bundle. Technical and 

sometimes clinical manuals are included with most software packages. However, there is a large 

discrepancy between software, ranging from a ‘getting started’ guide for T.D.M.S. 2000TM, 

MwPharm© or TCIWorks, to a comprehensive manual directly integrated into the software 

withword search capability for the RxKinetics©, DataKineticsTM and Kinetidex® programs. In 

addition to documentation, JPKD® and TDM for R publish video demonstrations on their respective 

websites. Kinetidex® and DataKineticsTM also provide sample cases that are included in their 

documentation. Only a few of the programs include information on drugs’ pharmacokinetics, or 

even sometimes TDM itself (e.g. the RxKinetics© programs and DataKineticsTM). In addition, 

convenient contact details for support are important. The RxKinetics© programs and the new 

version of MM-USC*PACK© (now known as RightDoseTM) also offer access to a users’ forum for 
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questions and discussions. Another requirement for TDM software is the ability to interface with 

laboratory information management systems, especially for collecting blood drug concentrations, 

receiving administrative and clinical patient data, and sending reports to patient’s electronic 

records. Although interfacing with hospital information systems may be challenging, since they 

differ worldwide, initiatives such as Health Level Seven International (HL7; http://www.hl7.org/) 

aim to standardize electronic health data transfer. Additionally, interfaces have been developed in 

recent years for applications that do not support HL7 standard and thus allow interoperability. 

MwPharm© is the only program that can be relatively easily interfaced with hospital information 

systems through the MirthTM Connect technology (Mirth Corp., Irvine, CA, USA). For administrative 

and some demographic data, the software designers behind RxKinetics© have developed a basic 

interface to allow a health information system to dump such data into the software. Users may 

ideally wish to record their patients’ administrative and clinical data, as well as concentration 

measurements and predictions issued. MwPharm©, TCIWorks, Kinetics©, Kinetidex® and T.D.M.S. 

2000TM have full patient databases that store patients’ administrative data, as well as dosages and 

drug concentration results that were entered for dosage individualization. USC*PACK© does not 

have a fully integrated database but can save patients’ data on a local file on the user’s personal 

computer. Some other programs only have an administrative database that records patients’ basic 

data. Another issue is the confidentiality of data: APK®, Kinetics© and MwPharm© use an 

encrypted database. Software must be able to generate reports that can be transmitted to 

physicians and have the ability to save the possible associated advice consultation into the patient’s 

medical records. Quality and readability of the report generated vary widely between programs, 

from TDM reports that are not transmissible to physicians to clear, printable reports with a highly 

structured core (it should be noted that TDM for R does not generate any kind of report). Essential 

information comprises patient administrative and clinical data, history of drug dosages and 

concentration measurements, and a clearly readable pharmacokinetic interpretation. In addition, 



 
39 Computer Tools 

some reports can include a free text field that can be filled in by the consultant. Reports ideally need 

to be customizable to better meet each institution’s visual identity guidelines. Another important 

issue that users face during the choice of software is its cost. Surprisingly, costs are not consistently 

weighted with regards to software capabilities. Some are free (TCIWorks, JPKD®, TDM for R), others 

are subject to a one-off donation (MM-USC*PACK©), while others require a first-year subscription 

fee followed by a license charge for subsequent years, which basically includes provision for 

updates. Graphical user interface (GUI) is a must-have nowadays. Each program has a unique 

graphical design that makes it more or less user-friendly but definitely facilitates navigation across 

windows, files or menus. Only TDM for R is based on a command-line interface. For research 

purposes, import/export capabilities could represent a valuable feature. Few programs offer this 

facility: JPKD® allows for exporting data in comma-separated variables (CSV) format; MwPharm© 

offers import and export possibilities in structured text (TXT) format; extraction of administrative 

data is possible from APK©, in CSV format, but as it concerned only administrative data, it was not 

considered as data exportation for the purpose of this evaluation. APK© was noted to have the best 

result in the ‘general characteristics’ category, closely followed by MwPharm© (Table 2.1.4). APK© 

offers a simple solution and is remarkably flexible, particularly for non-experienced users, while 

having a favourable cost–quality ratio. MwPharm© and TCIWorks also offer many interesting 

features but represent more sophisticated tools. 
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Table 2.1.4. Weighted scores for each category and overall category rounded to unit and ranking 

 MM-USC 

*Pack© 

Mw 

Pharm© 

TCI 

Works 

JPKD® TDM for 

R 

Antibiotic 

Kinetics© 

APK© Kinetics© Kinetidex® TDMS 

2000 

Data 

KineticsTM 

RAD 

Kinetics 

General characteristics 

User interface 79 (10) 95 (4) 89 (7) 90 (6) 73 (11) 105 (3) 111 (1) 106 (2)  92 (5) 80 (9) 83 (8) 61 (12) 

Interfacing 13 (5) 26 (1) 13 (5) 13 (5) 13 (5) 18 (2) 18 (2) 18 (2) 13 (5) 13 (5) 13 (5) 13 (5) 

Storage 34 (7) 46 (1) 30 (8) 16 (10) 16 (10)  16 (10) 46 (2) 46 (2) 36 (5) 34 (6) 37 (4) 29 (9) 

Report 16 (10) 58 (1) 45 (7) 36 (8) 13 (12) 34 (9) 56 (2) 56 (2) 50 (6) 50 (6) 53 (4) 16 (10) 

Cost 26 (4) 19 (8) 28 (3) 23 (6) 23 (5) 23 (5) 28 (1) 28 (1) 12 (12) 19 (8) 16 (10) 16 (11) 

Computational 

aspects 

60 (3) 59 (4) 78 (1) 66 (2) 53 (10) 58 (5) 58 (5) 58 (5) 51 (11) 55 (9) 58 (5) 41 (12) 

Total 228 (10) 304 (3) 284 (4) 244 (9) 191 (11) 253 (7) 317 (1) 311 (2)  253 (6) 251 (8) 259 (5) 176 (12) 

Pharmacokinetic aspects 

Population and 

drug 

59 (7) 76 (1) 60 (6) 70 (2) 40 (11) 53 (9) 65 (3) 56 (8) 62 (3) 63 (4) 49 (10) 33 (12) 

Models 191 (1) 179 (3) 184 (2) 120 (9) 117 (10) 139 (8) 148 (7) 153 (6) 174 (4) 174 (4) 117 (5) 98 (12) 

Modularity 48 (7) 43 (8) 53 (1) 53 (1) 33 (11) 48 (4) 48 (4) 48 (4) 49 (3) 39 (9) 33 (11) 38 (10) 

Plot 42 (1) 34 (3) 37 (2) 26 (10) 15 (11) 32 (6) 32 (6) 32 (6) 34 (3) 34 (3) 32 (6) 15 (11) 

Various 22 (9) 34 (2) 25 (7) 19 (11) 19 (11) 25 (5) 25 (5) 23 (8) 31 (4) 33 (3) 35 (1) 20 (11) 

Total 363 (2) 366 (1) 358 (3) 288 (9) 225 (11) 297 (8) 317 (6) 311 (7) 350 (4) 342 (5) 266 (10) 204 (12) 

Authors             

Expertise of authors 51 (1) 51 (1) 49 (3) 32 (9) 32 (9) 37 (6) 37 (6) 37 (6) 23 (12) 42 (5) 42 (4) 32 (9) 

Global score 641 (5) 720 (1) 692 (2) 564 (10) 448 (11) 587 (8) 671 (3) 659 (4) 627 (7) 636 (6) 567 (9) 412 (12) 

All data given as weighted score (rank). Rankings were given from1 for the best classified to 12 for the worst classified 

 

Pharmacokinetic aspects 

The number of drugs covered by each program varies from two for RADKinetics to more than 180 

for MwPharm© (Table 2.1.5). The drug of interest can be chosen in the library offered by the 

program. For some programs, even definitions of specific populations for drug use are available 

(e.g. neonates). Few programs take into account drug and/or disease interactions: T.D.M.S. 2000TM, 

MwPharm©, JPKD® and Kinetidex®. Moreover, in the last decade, important progress has been 

achieved in the field of pharmacogenetics, which can be used for a priori dosage regimen 

adaptation in some clinical situations [24]. Integrating a TDM and pharmacogenetics approach 

therefore appears more and more suitable for optimization of pharmacotherapy in the context of 
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personalized medicine [25, 26]. Additionally, some food-drug interactions are progressively being 

discovered, which involve various mechanisms such as an increase or decrease of bioavailability or 

an induction or inhibition of metabolism [27, 28]. The most famous examples are probably those 

involving grapefruit or alcohol [29]. When sufficiently described and quantified, pharmacogenetic 

features and these interactions should certainly be included in TDM programs in the near future. A 

fundamental pharmacokinetic aspect of programs concerns the possibility for the user to add their 

own drug models. In eight programs (MwPharm©, MM-USC*PACK©, TCIWorks, Antibiotic 

Kinetics©, APK©, Kinetics©, JPKD®, T.D.M.S. 2000TM), a new model for a drug or a population can 

be defined within an ‘add drug model interface’ provided, by entering model parameters either 

from a single population pharmacokinetic study or from a systematic pharmacokinetic review of 

studies. For example, APK© offers pre-defined parameter fields using a one-compartment model 

where the values have to be entered, whereas some other programs can handle 

multicompartmental models or different types of administration. USC*PACK© employs a non-

parametric adaptive grid (NPAG) program[30], which makes it more complicated for non-

experienced users but has the great advantage of accommodating any kind of model of up to three 

compartments. Conversely, TCIWorks offers a very simple and intuitive tool for the user to add 

his/her own model of up to two compartments. Moreover, it offers the possibility to freely import 

and export drug models plugged in as extensible markup language (XML) data format and thus 

easily shares drugs models. APK©, Antibiotic Kinetics© and RADKinetics account only for 

intravenous administration owing to the fact that drugs handled by these programs are only given 

through this route of administration. Only the more sophisticated packages (i.e. MM-USC*PACK©, 

TCIWorks, MwPharm©, Kinetidex®, T.D.M.S. 2000TM) are able to handle data for drugs 

administered by continuous intravenous infusions. Those same programs are also able to deal with 

non-steady state and irregular regimens, which represents a substantial feature. In fact, they offer a 

convenient interface to enter concentrations with detailed information on dosage history. It is 
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worth noting that APK© and Kinetics© can deal with non-steady state situations, but require three 

concentration–time data points. APK© is also able to deal with a first dose, but requires at least two 

concentration–time data points to perform calculations, and would not use a Bayesian analysis in 

that case, but rather a simple regression approach. It is crucial that programs document the 

prediction and individualization methods employed to ensure accuracy and appropriateness. 

Equations are, however, detailed in only a minority of support sources, namely in T.D.M.S. 2000TM, 

DataKineticsTM, MwPharm© or RxKinetics©. Whereas in the 1990s only half of the programs 

offered Bayesian prediction [12], nowadays such approaches are widely implemented; ten of 12 

programs offer such techniques. This is particularly convenient for routine practice because of the 

limited number of samples required and the flexibility of sampling times. It is worth noting that 

only MM-USC*PACK© uses a non-parametric approach, which provides the advantage of assuming 

no distribution and of allowing subpopulation clusters[31], which is not easily achievable with 

normal or log-normal distribution assumptions [32]. Nine of the computer tools are able to 

compute an a priori regimen and, among those, seven are also able to estimate a loading dose. For 

users who would not know concentration targets, default therapeutic range targets are often 

provided by the software. To be easily used according to up-to-date institution recommendations 

or specific patient cases, therapeutic targets should be readily modifiable, which is the case in most 

software packages. Pharmacokinetic curve plotting is offered by all software except JPKD® (which 

proposes it only for aminoglycosides), RADKinetics and TDM for R. Only MM-USC*PACK© offers the 

option to include the population variability through adding percentiles to plots.  From a clinical 

point of view, it is essential that clinicians be aware of the creatinine clearance of certain drugs. 

Many programs, in addition to Cockroft-Gault, suggest other creatinine clearance calculations such 

as Schwartz, Cockroft-Gault adjusted to bodyweight, MDRD or Jelliffe’s equations. TDM for R and 

JPKD® do not provide this parameter. Regarding this ‘pharmacokinetic aspects’ category, the most 
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sophisticated programs had the highest scores: MwPharm©, MM-USC*PACK© and TCIWorks 

(Table 2.1.4). 

Authors 

All programs have been developed by pharmacists and/or medical doctors, usually supported by 

skilled computer specialists. They were all developed in an academic environment (except perhaps 

for Kinetidex®, for which no information could be obtained). TCIWorks received grant support from 

a pharmaceutical company (Pfizer) among other academic sponsors. Only two programs have been 

described in the literature in the past (USC*PACK© [21] and MwPharm© [19]), but the publications 

concern old versions. Literature regarding the use of the programs is also quite poor. However, 

among the literature that does exist, USC*PACK© is the best furnished, particularly regarding its 

use in clinical practice [33-36]. TCIWorks has also recently started to be documented as well [37, 

38].  

2.1.3.4. Clinical vignettes 

Clinical vignettes were tested in each program whenever possible (see Table 2.SIII in the online 

Resource), in order to again insight into dose adjustments and predicted concentrations. These 

results are only presented for descriptive purposes. As much as possible, vignettes were entered 

into each program in the same manner. However, difficulties were encountered, such as (i) 

introduction of a first dose or interruption of treatment, especially when a dosing interval or a 

delay before restarting treatment was indicated; (ii) drug administered in neonates and low 

bodyweight patients; and (iii) administration by continuous intravenous infusions. Nevertheless, 

when vignettes were able to be processed, most of them roughly converged to a similar prediction, 

except for phenytoin (a drug characterized by non-linear kinetics), where extrapolated 

concentrations were aberrant in some programs.  
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Table 2.1.5. Drugs supported by the programs 

Drug MM-USC 

*PACK© 

Mw 

Pharm©  

TCI 

Works 

JPKD®  TDM  

for R 

Antibiotic 

Kinetics© 

APK© Kinetics© Kinetidex® TDMS 

2000TM 

Data 

KineticsTM 

RAD 

Kinetics 

Cardiovascular system 

Digoxin             

Quinidine             

Procainamide             

Others  42           

General anti-infectives for systemic use 

Ceftazidime             

Aminoglycoside             

Streptomycin             

Tobramycin             

Gentamicin             

Amikacin             

Netilmicin             

Vancomycin             

Kanamycin             

Indinavir             

Ritonavir             

Zidovudine             

Enfuvirtide             

Others  36        3   

Antineoplasic and immunomodulating agents 

Imatinib mesylate             

Ciclosporine             

Tacrolimus             

Everolimus             

Sirolimus             

Others  10           
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Table 2.1.5. (continued)             

Drug MM-USC 

*PACK© 

Mw 

Pharm©  

TCI 

Works 

JPKD®  TDM  

for R 

Antibiotic 

Kinetics© 

APK© Kinetics© Kinetidex® TDMS 

2000TM 

Data 

KineticsTM 

RAD 

Kinetics 

Nervous system 

Acetylsalicylic acid (aspirin)             

Paracetamol             

Phenobarbital             

Phenytoin             

Carbamazepine             

Valproic acid             

Lithium             

Others  42           

Respiratory system 

Theophylline             

Aminophylline             

Oxtryphilline             

Others  2           

Miscellaneous 

Others drugs  30     1 2     

Other one compartment             

Drug classified according to WHO Anatomical Therapeutic Chemical classification 

  Drug handled by the software 
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II.1.3.5. Overall classification 

From a global benchmarking point of view, MwPharm© and TCIWorks turned out to be the best 

ranked TDM programs. Because they represent sophisticated tools, they fulfil many of the criteria 

considered: both are complete software offering calculation of patient parameters, a priori and a 

posteriori dose suggestions, a structured patient database and good quality reports. However, such 

tools can be rather complex to use, which is especially true for MwPharm©, whereas TCIWorks is 

more intuitive. MwPharm© benefits from a large drug library, but, unfortunately, no description of 

the drug models is available, which means that not all drugs are easily usable. TCIWorks does not 

have a drug library yet. USC*PACK© should also be considered as a comprehensive software; 

however, despite its large number of users worldwide, it lacks user friendliness and flexibility 

compared with other programs and provides no structured database or report transmissible to 

practitioners. The success of the software definitely lies in its good pharmacokinetic capabilities 

and its long experience. The three RxKinetics© programs, Antibiotic Kinetics©, APK© (the third 

best classified program) and Kinetics©, offer simpler but very flexible solutions, particularly for 

non-experienced users, with a good cost/capabilities ratio. Antibiotic Kinetics© is the least 

sophisticated of the three, and is unable to save any patient or consultation data. APK© and 

Kinetics© provide patient records and reports of good quality. These computer tools aim to deal 

with daily clinical practice. T.D.M.S. 2000TM and Kinetidex® also offer nice features with Bayesian 

analysis, a database, and the ability to detail complete patient dose administration and 

concentration measurements. However, these programs are expensive. User friendliness could be 

improved for most software, especially T.D.M.S. 2000TM. JPKD® and TDM for R allow a simple 

adaptation from a single measurement at steady state. JPKD® is a simple, intuitive, convenient and 

free tool. Conversely, TDM for R requires the user to already be an experienced R user. 
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II.1.4. Discussion 

Overall, for many years now, lots of effort has been put into the development of computer tools 

throughout the world to facilitate the practice of TDM and to provide reliable dosing optimization 

advice with convenient and complete software. This article presents a comprehensive review of the 

characteristics of the available software. From simple, efficient and low-cost programs (JPKD®, 

APK©) to comprehensive packages (MwPharm©, TCIWorks, USC*PACK©), the panel of available 

tools is fairly variable. Each software tool must be regarded with respect to the individual needs of 

hospitals or clinicians. Major limitations to achieve this benchmark probably reside in the 

uniqueness associated with each of these programs. Depending on the intended users, specific TDM 

practice, whether it is to be used in clinical research or not, etc., a certain tool would better fit one 

institution than another. In this article, we followed a general and consensual strategy, and our grid 

focuses on all aspects that we considered, as clinical pharmacologists, as being required by an 

‘ideal’ TDM software tool for a large population of potential users. The weight assigned, by three 

different types of professionals (physicians, pharmacists, computer engineers), attempts to balance 

these aspects of the tools. This should, however, not prevent individual users from defining their 

own weighting factors (even 0) for Table 2.SII in the Online Resource and to obtain a global score 

that would better reflect their own needs. Our grid, used to rank the software, is a complete and 

detailed list describing characteristics of the programs assessed; however, it only focuses on dosage 

optimization in the context of TDM. Thus, it may possibly have missed some features that make 

each program unique. MwPharm© and TCIWorks were found to provide optimal characteristics for 

TDM but to represent sophisticated tools that offer detail beyond the traditional needs for drug 

adjustment. For simple adaptation based on one concentration, simpler tools such as JPKD® or 

APK© may be sufficient for many clinicians. TCIWorks is in an early stage of its development and 

looks promising. It has more flexibility and is more intuitive for users than most other programs 

presented in this review. Its developers aimed to implement target concentration intervention 
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(TCI) rather than TDM. TCI is an evolving concept that proposes targeting of a concentration 

associated with a desired effect rather than a traditional therapeutic range [39]. Moreover, future 

versions of TCIWorks should include the possibility to add a pharmacodynamic block to models. 

Although MM-USC*PACK© was not among the best ranked programs, it is used worldwide and is 

still often considered as a reference for precision and prediction (MwPharm© [40] or Abbottbase 

PKS [41] were previously compared to it). Moreover, in addition to the clinical interface for dosage 

adjustment, USC*PACK© offers a full modeling tool employing the NPAG algorithm. Customized 

pharmacokinetic/pharmacodynamic models can be built up through a graphical approach by 

placing boxes on the screen and connecting them with arrows (USC*PACK BOXES). Additionally, 

USC*PACK© also offers programs for infectious disease and cardiology. Finally, new features are 

under development (interfacing, database search function, and drug and disease interactions). It is 

also worth noting that other types of tools than stand-alone TDM programs do exist. A good 

example is the ISBA ImmunoSuppressant Bayesian dose Adjustment) web portal from Limoges 

University Hospital in France (https://pharmaco.chu-limoges.fr/), which proposes TDM adaptation 

for ciclosporin, tacrolimus, mycophenolate mofetil and, coming soon, for aminoglycosides and 

glycopeptides, methotrexate and anticancer agents. When dosage adjustment for one of these drugs 

is desired, the user fills in a data entry sheet on the portal to give information about patient clinical 

evolution, the context of the request, drug intake and blood drug concentration. Adaptation is then 

proposed based on Bayesian estimation and validated by a pharmacologist. It is then sent to the 

applicant via an electronic standardized report, normally in 24 h. A similar portal exists for 

fluorouracil dosage optimization, called ODPM (Onco Drug Personalized Medicine), which has been 

developed by the Cancerology Institute of the West Paul Papin and University of Angers, France 

(http://www.odpm.fr/). Web portals could therefore represent an alternative to autonomous 

software despite their requirement of remote human third-party intervention. Bayesian dosing 

optimization is widely applied now, being considered the gold standard. For instance, the 
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pharmacokinetic Bayesian method is recommended in the ‘‘Australian Therapeutic Guidelines: 

Antibiotics’’ [42, 43] . The use of this approach allows computation of a priori dosage regimens 

based on the individual’s characteristics, the use of random time sampling, performance of clinical 

interpretation in non-steady-state situations, and more accurate predictions [44]. However, such 

complex mathematical calculations would not be possible without computer tools, and this is why 

all currently marketed TDM programs now integrate it. To date, the usefulness of TDM remains 

controversial, with studies showing positive, negative or no significant impact on patient outcomes 

[45]. Despite the heterogeneity of the data, TDM services have been used since the 1970s in clinical 

practice, after some early trials with lithium and digoxin in the 1960s [1, 45]. This has been 

encouraged by the introduction of computerization, especially in Europe (notably in The 

Netherlands [46] ), Australia [47] and the USA [48, 49]. Computer-assisted advice should indeed be 

part of a global multidisciplinary TDM strategy, as foreseen some decades ago [50]. Even though it 

was reported that unassisted clinicians tend to use suboptimal loading, maintenance and total 

doses than when computer support is available [5, 51], dosage optimization programs do not 

replace clinicians with pharmacokinetic skills. Physicians and other specialists involved in patient 

care should be aware of the potential of TDM and increasingly take advantage of these powerful 

computer tools. In the late 1990s, Bates emphasised the importance of educational approaches to 

change physicians’ opinions and interventions, in addition to the efficiency of computer tools [52]. 

Despite the growing availability of dosage adjustment tools, there is still room for improvement. 

Programs should ensure user friendliness through smart design and flexibility, enabling easy and 

quick use in routine activities, including by non-experienced users. Expected pharmacokinetic 

variability should be displayed, e.g. via visual representation of percentiles. More importantly, to be 

used in hospitals, the program should interface with other applications, in particular with 

laboratory information management systems, patient administrative databases and electronic 

medical records. Moreover, the ability to export data should enable further research. Accurate 
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Bayesian approaches should be routinely preferred for optimal dosing regimen prediction. 

Comprehensive but clear and pedagogical printed reports, customizable for institutions, should be 

produced. Support should ideally be provided both by the developers and by a community users 

group, with access to clinical and technical documentation. Finally, TDM applications should 

become easily portable to ubiquitous and user-friendly mobile devices, in order to be used directly 

at the point of care, at the patient’s bedside [53] or even by the patients themselves.  

II.1.5. Conclusion 

While the 12 presently available TDM programs reviewed here reveal an encouraging evolution, 

none of them yet fulfils all of the requirements of an ideal tool [8]. The major challenge currently is 

to develop programs with comprehensive clinical and research capabilities, while still showing 

simplicity, flexibility and user friendliness that would make these tools easy to run by all types of 

users.  
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Supplementary Material 1 

Table 2.SI: Mark definition of the evaluation grid 

From 5, the highest performance to 1, the lowest performance 

1. General characteristics 

a) User interface and utilization 

Platforms supported (Windows, MacOS, 

Unix/Linux, iOS, webOS, Android, Symbian) 

1 = DOS 

2 = Windows but old version or not international version 

3 = Windows 

4 = Windows + (mobile device or Linux and Mac) 

5 = Windows + mobile device + Linux + Mac 

Easy download through Internet 2 = No (or not online, CD Rom) 

4 = Yes 

Easiness of installation 1 to 5 :1 = Difficult, 5 = very easy 

Network installation 2 = No 

4 = Yes 

General user friendliness 1 to 5 :1 = Not user friendly, 5 = most user friendly 

Global visual appeal 1 to 5 :1 = not visually appealing; 5 = visually appealing 

Wizard step-by-step interface for 

inexperienced users 

1 = No  

3 = Few wizard for basic step 

5 = Clearly with ordered wizard for each step  

Multiples languages localizations (en, fr, es, 

others) 

2 = No  

4 = Yes 

Possibility of new language insertion by 

users 

2 = No 

4 = Yes 

Multiple users accommodation (users 

database; password) 

1 = No password 

2 = Administrator login 

3 = Password to protect the patient database 

4 = Login for the program (and possibly plus a password). Password for specific 

features, particularly database edits (patient, drug, user base). Possibility to add user 

5 = Password for database protection and possibility for every user to have its own 

database. Administrator login for specific features (drug model for example). 

Password for the program available on request 

Quality of clinical manual 1 = No clinical manual 

3 = No specific clinical data, precision of what equation for which drug. Suggestion of 

volume of distribution for example 

5 = Well documented. Easy accessible with information available for each drugs 

Web support 1 = Bad 

2 = Many things not working in it 

3 = Simple commercial advertisement 

4 = Good, but no screenshots 

5 = Good, with screenshots or good, no screenshot, but with thumbnails linking to 

teaching documentation 

Possibility of easy contact with the 

company/authors 

1 = No  

2 = Support website has several broken links. Difficult to contact a real person 

3 = Yes initially, then progressively more difficult to find support with clear answers 

4 = Yes, but sometimes difficult to find the correct person to contact for help with 

specific issues 

5 = Yes 

User group active on Internet (forum, blog, 

usenet) 

2 = No 

4 = Yes 
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b) Interfacing 

Lab software interfacing to collect 

concentration measurements 

2 = No 

4 = Yes 

Medical record interfacing to collect patients’ 

administrative and clinical data 

2 = No 

4 = Yes 

Interfacing with medical information 

systems to issue reports 

2 = No 

4 = Yes 

c) Storage 

Patient historical record 1 = No records are saved 

2 = Administrative data are saved 

3 = Consults/Report saved, can be loaded; display, in the search field, the dose that 

has been proposed 

4 = Consults saved, can be loaded; display, in the search field, the dose that has been 

proposed. If printed, PK parameters are saved 

5 = Records are stored (concentrations included) 

Database search by patient, drug, date, user, 

free text… 

1 = No database 

2 = File Name 

3 = Sorted either by ID or by patient (user’s choice) / or patient browsing / or by 

patient name and patient number 

4 = Drug and patient 

5 = By patient, drug, date, medical record, simulation name 

Storage of user identity 1 = No record of the user 

3 = If indicated for the consult 

5 = Yes (with login) 

Tools for statistics of use 2 = No 

4 = Yes 

Encoded database 1 = No database 

2 = Not encrypted 

3 = password protected 

4 = Password protected if desired 

5 = Encrypted 

Possibility of data collection in a remote 

central database and confidentiality 

2 = No 

4 = Yes 

d) Report 

Global readability 1 = No report  

2 = Information available but not clearly presented. Not transmissible as it stands in 

the ward 

3 = Information is classified into sections, but not well (include patient data and 

recommendations). Readability could be improved 

4 = Information is classified into sections (include patient data and 

recommendations) 

5 = Easily readable, customizable, all essential information present 

Inclusion of PK plot 1 = No 

3 = Only for some drugs 

5 = Yes 

Inclusion of a free text field 1 = No 

3 = Note box printed in the report, but must be filled out by hand 

5 = Note box can be edited directly in the software. Comments will be printed in the 

report 

Display of user identity 1 = No 

2 = Devoted space on the printed consult, but it must be filled in by hand 

3 = Yes, asked just before printing or name indicated as a consultant (also asked 

before to be integrated in the consult) 

4 = Yes, the name of the person logged is printed in the consult or the name indicated 

as the consultant 

5 = Institution logo display 
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d) Report (continued) 

Customizable template 1 = No 

2 = Word document generated that can be modified 

3 = Header, footer 

4 = Header, footer, logo 

5 = Header, graph in option, predefined comments that can be customized, many 

items to tick that will be printed 

Conversion 1 = No conversion, no PDF 

3 = PDF Format 

5 = More formats 

e) Cost 
Price of a standard license (over 5 years) 1 = Very expensive ( ≥ 5000 $US) 

2 = Expensive ( 2000 – 4999 $US) 
3 = Medium ( 500-1999 $US) 
4 = Cheap ( < 500 $US) 
5 = Free 

Academic license at reduced cost 2 = No 
4 = Yes 

Maintenance contract proposed 1 = No 
2 = Included in a paid contract 
3 = Updates on websites 
4 = Updates button implemented in the software, that check directly online 
(free) / to download on website 
5 = Updates button implemented in the software + email sent let us know (free) 

f) Computational aspects 
List of changes and bug fixes between 
versions 

2 = No 
4 = Yes 

Access to previous versions 2 = No 
4 = Yes 

Availability of program sources 2 = No 
4 = Yes 

Graphic user interface (GUI) tools 
embedded 

2 = No 
4 = Yes 

Necessity of a runtime framework support 
(Java, .NET, VBRUN, SQL based…) 

2 = Yes 
4 = No 

Capacity of structured data import  1 = No 
3 = Yes, TXT, AccessTM or CSV format 
5 = Yes, TXT, AccessTM or CSV format and XML format for models 

Capacity of structured data export  1 = No 
3 = Yes, TXT, AccessTM or CSV format 
5 = Yes, TXT, AccessTM or CSV format and XML format for models 

Verbose bug output to user 1 = No 
3 = Yes, but not easily understandable 
5 = Yes 

Quality of technical manual 1 = No technical manual  
2 = Basic 
3 = Exists but is difficult to find (scattered) 
4 = Getting started guide good but difficult to find in-depth information 
5 = Clear and easy to find. Index. Comprehensive 
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2. Pharmacokinetic aspects 

a) Population and drug 

Number of drugs 1 = Gentamicin + vancomycine 

2 = Aminoglycoside + / - vancomycine 

3 = Aminoglycoside + classic drugs requesting TDM (for example digoxin, 

lithium, phenytoin …) 

4 = Aminoglycoside + classic drugs that need TDM + anti-HIV / anti-cancer drugs 

5 = Many drugs (all kind) 

Definition of different populations 1 = No different population 

2 = Very basic (edit drug model suggest different doses for pediatrics and 

adults) / Vd adapted with corrected factor for elderly and obese (age, weight) 

3 = Different population (disease) 

4 = Different population (disease) and CRT clearance calculation with Schwartz 

or (Cockcroft-Gault) CG formula. No interface to add our own drug/population 

model 

5 = Yes, population taking into account age (includes neonate models) and 

pathology or disease state. More importantly, one can define different 

populations via the "add drug" interface 

Standard covariates used (age, sex, body 

weight) 

1 = No 

3 = Yes 

5 = Yes with height optional (except for Schwartz calculation) 

Weight range (eg obese, preterm, neonate) 1 = Inferior range limited (< 2 kg) 

3 = Large weight range but CRT clearance does not take into account age 

(example Schwartz formula) 

5 = Large weight range and Schwartz calculation possible 

Readable PK parameters sets 2 = No or no population parameters 

4 = Yes 

Literature references on drug PK 

parameters used 

1 = No references 

3 = References without any specification of the drug or drug specific references 

but at least some of the information is not cited. 

5 = Precise references 

Possibility of new drug and/or population 

insertion and user-friendliness 

1 = No 

2 = Possible but complicated. Requires knowledge of a programming language 

3 = Yes, but not flexible since only predefined parameters can be inserted 

4 = Yes. Flexible, and relative simple 

5 = Easy insertion 

b) Models 

Compartment models  1 = No compartment 

3 = 1 compartment 

5 = From 2 compartments to 3 compartments possible 

IV bolus, infusion, extravascular, and other 

absorption models 

1 = IV bolus 

3 = Oral / IM / IV bolus / Short IV infusion  

5 = Oral / IM / IV bolus / Short IV infusion / Continuous IV infusion 

Non-linear PK models 2 = No 

4 = Yes 

A priori regimen proposal 2 = No 

4 = Yes 

A priori loading dose proposal 2 = No 

4 = Yes 

Number of observations that can be 

entered 

1 = 1 

3 = Few 

5 = Unlimited (sometimes depends of the menu used) 
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b) Models (continued) 

Use of < LOQ observations 2 = No 

4 = Yes 

Non Bayesian calculations 2 = No 

4 = Yes 

Bayesian analysis capabilities 2 = No 

4 = Yes 

Individual parameters generation 1 = No 

3 = Not for all drugs 

5 = Yes 

Concentration profile simulation (Cmax, 

Cmin) 

1 = Not for all drugs 

3 = Yes, but no plot 

5 = Yes 

A posteriori regimen proposal 2 = No 

4 = Yes 

A posteriori re-loading dose or treatment 

interruption proposal 

1 = No  

3 = Yes, but does not take into account an interruption in treatment 

5 = Yes 

First dose handled with extrapolation to 

steady-state 

1 = No 

3 = Option with 2 / 3 points (regression) 

5 = Yes 

Non-steady state situations and irregular 

regimens handled 

1 = No 

3 = Not for all drugs or not for irregular regimen 

5 = Yes 

Possibility to adjust/specify the dosage 

and obtain concentration simulation 

1 = No 

3 = Yes but not convenient, or not possible to modify the dose  

5 = Yes  

Possibility to re-perform population 

analysis from drug concentration history 

1 = No 

3 = Basic (often problematic with sparse data) 

5 = Interface for modeling included in the software 

c) Modularity 

Possibility of new model definition 2 = No 

4 = Yes 

Parameterizable covariates 2 = No 

4 = Yes 

Choice between population values or user 

defined parameters 

1 = No or No population parameters 

3 = Yes, by changing the value in the appropriate field 

5 = Yes, by ticking "user defined" (default population parameters still visible) 

User-defined boundaries value target 1 = No 

3 = Yes but not simple. Cannot be adapted for each case because this requires a 

change in the settings  

5 = Yes 

Default boundaries value target 2 = No 

4 = Yes 

Inter-operability with other software 2 = No 

4 = Yes 
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d) Plot 

Generation of PK curves 1 = No  

3 = Only for aminoglycosides 

5 = Yes 

Prediction intervals/percentiles on PK 

plot 

2 = No 

4 = Yes 

Global on screen readability 1 to 5 :1 = Less readable; 5 = best readable 

Interactive clickable graph 2 = No 

4 = Yes 

e) Various 

Capability of drug interactions integration 2 = No 

4 = Yes 

Capability of disease state effects 

integration 

2 = No 

4 = Yes 

Methods of creatinine clearance 

calculation 

1 = No CRT clearance calculation 

2 = Jelliffe 

3 = Only CG  

4 = CG and adjusted CG, or CG and Schwartz 

5 = Many, including Schwartz, CG and adjusted CG  

Concentration unit conversion and/or 

parameterization 

2 = No 

4 = Yes 

 

 
3. Expertise of authors 

Computer scientists/engineers 1 = No 

3 = Yes, single person with computing certificate 

5 = Yes, team of computer scientist  

Pharmacists/MDs 2 = No 

4 = Yes 

Academic relations 2 = No 

4 = Yes 

Industrial relations 2 = No 

4 = Yes 

Scientific publications describing the 

software 

2 = No 

4 = Yes 

Published clinical research validating the 

software 

2 = No 

4 = Yes 
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Supplementary Material 2 

Table 2.SII.a: Evaluation Grid. General characteristics 

 

 
WT* 

MM-USC 

Pack 

Mw 

Pharm 
TCIworks JPKD 

TDM 

for R 

Antibiotics 

 Kinetics 
APK Kinetics Kinetidex T.D.M.S 

Data 

Kinetics 

RAD 

Kinetics 

1. General characteristics 

a) User interface and utilization 

Platforms supported (Windows, MacOS, 

Linux, iOS, webOS, Android, Symbian) 
2.4 3 3 4 5 4 4 4 3 2 3 4 2 

Easy download through Internet 1.7 4 4 4 4 4 4 4 2 2 4 4 4 

Easiness of installation 2.1 4 3 3 4 4 4 4 4 4 3 3 5 

Network installation 1.8 2 4 4 2 2 4 4 4 4 4 4 2 

General user friendliness 2.8 3 3 4 5 2 5 5 5 4 3 4 4 

Global visual appeal 2.1 3 4 5 3 2 3 3 3 4 2 4 2 

Wizard step-by-step interface for 

inexperienced users 
2.1 1 3 1 3 1 3 3 3 3 1 1 1 

Multiples languages localizations (en, fr, 

de, es, others) 
1.5 2 4 2 2 2 2 2 2 2 2 2 2 

Possibility of new language insertion by 

users 
1.3 2 2 2 2 2 2 2 2 2 2 2 2 

Multiple users accommodation (users 

database; password) 
2.2 1 5 3 1 1 1 4 4 4 1 3 1 

Quality of clinical manual  2.5 1 1 1 1 1 5 5 5 5 3 3 1 

Web support 2.0 5 5 5 5 5 5 5 5 3 5 2 1 

Possibility of easy contact with the 

company/authors 
1.7 5 5 4 5 5 5 5 5 3 5 2 1 

User group active on Internet (forum, 

blog, usenet) 
1.7 4 2 2 2 2 4 4 4 2 2 2 2 
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WT* 

MM-USC 

Pack 

Mw 

Pharm 
TCIworks JPKD 

TDM 

for R 

Antibiotics 

 Kinetics 
APK Kinetics Kinetidex T.D.M.S 

Data 

Kinetics 

RAD 

Kinetics 

b) Interfacing 

Lab software interfacing to collect 

concentration measurements 
2.2 2 4 2 2 2 2 2 2 2 2 2 2 

Medical record interfacing to collect 

patients’ description data 
2.2 2 4 2 2 2 4 4 4 2 2 2 2 

Interfacing with medical information 

systems to issue reports 
2.2 2 4 2 2 2 2 2 2 2 2 2 2 

c) Storage 

Patient historical record 2.9 5 5 5 1 1 1 4 4 5 5 3 3 

Database search by patient, drug, date, 

user, free text 
2.5 2 4 3 1 1 1 3 3 5 3 3 3 

Storage of user  identity/address 2.2 1 1 1 1 1 1 5 5 1 1 3 1 

Tools for statistics of use 1.2 4 2 2 2 2 2 2 2 2 2 2 2 

Encoded database 1.9 2 5 ? 1 1 1 5 5 ? 2 4 2 

Possibility of data collection in a remote 

central database (confidentiality over 

the net) 

1.9 2 4 2 2 2 2 2 2 2 2 2 2 

d) Report 

Global readability 2.7 2 4 5 4 1 4 4 4 5 4 3 2 

Inclusion of PK plot 2.6 1 5 5 3 1 5 5 5 5 5 5 1 

Inclusion of free a text field 2.6 1 5 1 3 1 1 5 5 5 5 5 1 

Display of user identity/address 2.0 1 5 1 1 1 2 5 5 2 2 3 1 

Customizable template 1.5 1 4 3 1 1 1 5 5 3 5 2 1 

Conversion (txt, pdf, doc) 1.9 1 3 5 3 1 1 1 1 1 1 5 1 
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WT* 

MM-USC 

Pack 

Mw 

Pharm 
TCIworks JPKD 

TDM 

for R 

Antibiotics 

 Kinetics 
APK Kinetics Kinetidex T.D.M.S 

Data 

Kinetics 

RAD 

Kinetics 

e) Cost 

Price of a standard license (over 5 years) 2.3 3 2 5 5 5 4 4 4 1 2 3 4 

Academic license at reduced cost 2.3 4 4 4 4 4 2 4 4 2 4 2 2 

Maintenance contract proposed 2.4 4 2 3 1 1 4 4 4 2 2 2 1 

f) Computational aspects 

List of changes and bug fixes between 

versions 
1.8 2 2 2 4 4 4 4 4 2 4 4 2 

Access to previous versions 1.6 2 2 4 2 4 2 2 2 2 2 2 2 

Availability of program sources 1.7 2 2 4 2 4 2 2 2 2 2 2 2 

Graphic user interface (GUI) tools 

embedded 
2.6 4 4 4 4 4 4 4 4 4 4 4 2 

Necessity of a runtime framework 

support (Java, .NET, VBRUN, SQL based) 
1.3 4 2 2 2 4 4 4 4 2 4 4 4 

Capacity of structured data import 2.8 3 3 5 1 1 1 1 1 1 1 1 1 

Capacity of structured data export  2.8 3 3 5 5 1 1 1 1 1 1 1 1 

Verbose of bug communication to user 2.0 5 3 5 5 3 5 5 5 5 5 5 5 

Quality of technical manuals 2.5 3 5 4 5 2 5 5 5 5 4 5 2 
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Table 2.SII.b: Evaluation Grid. Pharmacokinetic aspect 

 
WT* 

MM-USC 

Pack 

Mw 

Pharm 
TCIworks JPKD 

TDM 

for R 

Antibiotics 

 Kinetics 
APK Kinetics Kinetidex T.D.M.S 

Data 

Kinetics 

RAD 

Kinetics 

2. Pharmacokinetic aspects 

a) Population and drug 

Number of drugs 2.6 3 5 1 4 4 2 2 3 3 3 3 1 

Definition of different populations 2.8 4 5 5 5 1 2 2 2 4 4 1 1 

Standard covariates used (age, sex, 

body weight, creatinine) 
2.7 3 3 3 3 3 3 3 3 3 3 5 3 

Weight range (eg obese, preterm, 

neonate) 
2.8 3 5 3 3 3 1 5 1 5 5 5 3 

Readable population PK parameters 

sets 
2.8 4 4 4 2 2 4 4 4 4 4 2 2 

Literature references on drug PK 

parameters used 
2.6 3 3 1 5 1 5 5 5 3 1 1 1 

Possibility of new drug and/or 

population insertion and user-

friendliness 

2.6 2 3 5 4 1 3 3 3 1 3 1 1 

b) Models 

Compartment models (1, 2, 3 cpt) 2.4 5 5 5 3 3 3 3 5 3 5 3 3 

IV bolus, infusion, extravascular, and 

other absorption models 
2.9 5 5 5 3 3 1 1 3 5 5 3 1 

Non-linear PK models 2.4 4 2 4 4 4 2 2 2 4 4 4 2 

A priori regimen proposal 2.3 4 4 4 2 2 4 4 4 4 4 4 2 

A priori loading dose proposal 2.3 4 4 4 2 2 4 4 4 4 4 2 2 

Number of observations that must 

/can be entered 
2.0 5 5 5 1 5 3 3 3 5 3 3 1 

Use of <LOQ observations 1.8 2 2 2 2 2 2 2 2 2 2 2 2 

Non Bayesian calculations 2.5 4 4 4 4 2 4 4 4 2 4 4 4 

Bayesian analysis capabilities 2.9 4 4 4 4 4 4 4 4 4 4 2 2 
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WT* 

MM-USC 

Pack 

Mw 

Pharm 
TCIworks JPKD 

TDM 

for R 

Antibiotics 

 Kinetics 
APK Kinetics Kinetidex T.D.M.S 

Data 

Kinetics 

RAD 

Kinetics 

Individual parameters generation 2.8 5 5 5 5 5 5 5 5 5 5 3 5 

Concentration profile simulation 

(Cmax, Cmin) 
2.9 5 5 5 3 3 5 5 5 5 5 1 3 

A posteriori regimen proposal 3.0 4 4 4 4 4 4 4 4 4 4 4 4 

A posteriori re-loading dose or 

treatment interruption proposal 
2.5 5 5 5 1 1 1 3 3 5 5 1 1 

First dose handled with extrapolation 

to steady-state 
2.7 5 5 5 1 1 3 3 1 5 5 1 1 

Non-steady state situations and 

irregular regimens handled 
2.3 5 5 5 1 1 3 3 3 5 5 3 1 

Possibility to play with adjust/specify 

and obtain concentration simulation 
3.0 5 5 5 5 3 5 5 5 5 3 5 3 

Possibility to re-perform population 

analysis from drug concentration 

history 

1.8 5 1 1 1 1 1 3 3 1 1 1 1 

c) Modularity 

Possibility of new model definition 2.3 4 4 4 4 2 4 4 4 2 2 2 2 

Parameterizable covariates 2.5 4 2 4 4 2 2 2 2 2 2 2 2 

Choice between population values or 

user defined parameters 
2.6 1 3 3 3 1 3 3 3 5 3 1 1 

User-defined boundaries value target 2.6 5 3 5 5 5 5 5 5 5 5 5 5 

Default boundaries value target 2.4 4 4 4 4 2 4 4 4 4 2 2 4 

Inter-operability with other software 1.7 2 2 2 2 2 2 2 2 2 2 2 2 
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WT* 

MM-USC 

Pack 

Mw 

Pharm 
TCIworks JPKD 

TDM 

for R 

Antibiotics 

 Kinetics 
APK Kinetics Kinetidex T.D.M.S 

Data 

Kinetics 

RAD 

Kinetics 

d) Plot 

Generation of PK curves 2.9 5 5 5 3 1 5 5 5 5 5 5 1 

Prediction intervals/percentiles on PK 

plot 
2.6 4 2 2 2 2 2 2 2 2 2 2 2 

Global on screen readability 2.6 5 4 5 3 1 3 3 3 4 4 3 1 

Interactive clickable graph 1.9 2 2 2 2 2 2 2 2 2 2 2 2 

e) Various 

Capability of drug  interactions 

integration 
1.9 2 2 2 4 4 2 2 2 4 4 4 2 

Capability of disease state effects 

integration 
2.1 2 4 2 2 2 2 2 2 4 4 4 2 

Methods of creatinine clearance 

calculation 
2.5 2 5 3 1 1 5 5 4 4 5 4 3 

Concentration unit conversion and/or 

parameterization 
2.3 4 4 4 2 2 2 2 2 2 2 4 2 

* WT = weight applied 
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Table SII.c: Evaluation Grid. Expertise of authors 

 
WT* 

MM-USC 

Pack 

Mw 

Pharm 
TCIworks JPKD 

TDM 

for R 

Antibiotics 

 Kinetics 
APK Kinetics Kinetidex T.D.M.S 

Data 

Kinetics 

RAD 

Kinetics 

3. Expertise of authors 

Computer scientists/engineers 2.4 5 5 5 1 1 3 3 3 5 3 5 1 

Pharmacists/MDs 2.5 4 4 4 4 4 4 4 4 ? 4 4 4 

External relations: Academic 2.2 4 4 4 4 4 4 4 4 ? 4 4 4 

External relations: Industrial 1.3 2 2 4 2 2 2 2 2 2 2 2 2 

Scientific publications describing the 

software 
2.0 4 4 2 2 2 2 2 2 2 2 2 2 

Published clinical research validating 

the software 
2.3 4 4 4 2 2 2 2 2 2 4 2 2 

* WT = weight applied 
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Supplementary Material 3 

Clinical vignette presentation 

Gentamicin Vignette (1) 

SL is a 15-year old girl (born July, 1997) with cystic fibrosis. She weights 49.5 kg and is 155 cm tall. 

Her serum creatinine is 0.6 mg/dl. She was started on gentamicin 500 mg IV every 24 hours 3 days 

ago. Her serum drug level measured just before the 4th dose is 0.27 mg/L and 34.9 mg/L 30 min after 

the infusion end.  

What is the posology recommendation given by the program after fitting these serum 

concentrations? 

What would be the Cmax and Cmin extrapolated for a dose of 400 mg every 24 hours after fitting 

these serum concentration, for a target peak concentration of 25 mg/l and a target trough 

concentration of 0.5 mg/l? 

Gentamicin Vignette (2) 

ZS is a newborn girl (gestational age of 37 weeks). She weights 2.27 kg and she is 40 cm tall. Her 

serum creatinine is 0.25 mg/dl. Because of suspicion of neonatal infection, she received 9 mg 

gentamicin at her birthday, synergistically with amoxicillin. 30 min and 11 hours after the infusion 

end, her serum drug levels are respectively 8 mg/L and 3 mg/L. 

What is the posology recommendation given by the program after fitting these serum concentrations 

measured after a first dose and not at steady state, for a target peak concentration of 6 mg/l and a 

target trough concentration of 1 mg/l? 

What would be the Cmax and Cmin extrapolated for a dose of 8 mg every 24 hours after fitting serum 

concentration? 

Digoxin Vignette 

VC is a 73-year old patient (born April, 1939) suffering from atrial fibrillation. He weights 92.7 kg and 

is 182 cm tall. His serum creatinine is 1.93 mg/dl. He is treated by digoxin 0.250 mg once a day for 

several months. At time of a routine control, 23h45 after his last dose, his serum drug level is 0.9 µg/l.  

What is the a priori posology recommendation from the programs (before fitting any concentration) 

for a target average concentration of 1 µg/l (Cmin = 0.8 µg/l and Cmax = 2 µg/l)? 

After fitting serum concentration, what is the extrapolated concentration if a dose of 0.125 mg every 

24 hours is imposed? 

Vancomycin Vignette 

PJ is a 57-year old patient (born July, 1955) with ruptured infra-aortic aneurysm and amputation of 

both legs. He weights 62.5 kg and he is 172 cm tall. His serum creatinine is 3 mg/dl. He was started 
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vancomycin IV 1000 mg every 24 hours for 3 doses. Afterward vancomycin was stopped. 35h45 

hours after the last administration, his serum drug level is 20.2 mg/l.  

When should the treatment be started again if the target residual concentration is 15 mg/l? 

What is the posology recommendation given by the programs after fitting this serum concentration? 

Tacrolimus Vignette 

BI is a 57-year old patient (born January, 1955) that had a kidney transplant 2 days ago. He weights 

82.2 kg and is 175 cm tall. He is receiving 6 mg of tacrolimus per 24 hours in continuous infusion. 

Treatment started 2 days ago at 1 pm. His albumin concentration is 36 g/l, his hematocrite is 31 % 

and his creatinine clearance is 1.93 mg/dl. The patient is also receiving diltiazem. Today, at noon, his 

serum drug level is 19.1 µg/l.  

What is the posology recommendation given by the programs, after fitting this serum concentration, 

for a target concentration of 10 µg/l? 

Phenytoin Vignette 

CA is a 10-year old girl (born May, 2002) suffering from emphysema. She weights 37.6 kg and is 140 

cm tall. Her albumin is 38 g/l, her hematocrite 34% and her creatinine is 0.4 mg/dl. She is receiving 

oral phenytoin for 7 days at a regimen of 150 mg every 12 hours. 12 hours after her last dose intake, 

her serum level is 34.7 mg/l. 

What is the posology recommendation given by the programs after fitting this serum concentration 

for a target concentration of 15 mg/l? 

What would be the extrapolated concentration Cmin for a dose of 125 mg every 12 hours after fitting 

serum concentration? 
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Table 2.SIII: Results from clinical vignette 

   Gentamicin Vignette (1) 

   
MM-

USC 

PACK 

Mw 

Pharm 

TCI 

Works 
JPKD 

TDM 

for R 

Antibiotic 

Kinetics 
APK Kinetics Kinetidex* TDMS* 

Data 

Kinetics 
RAD Kinetics 

Proposed dose 

(mg) 

Bayesian 367.8 603.9 360 318.48 
Does 

not 

work 

377 377 384 340 380 / 

Not able 
Regression / 302.8 460 343.65 355 355 355 / 355 318.9 

Interval (h) 
Bayesian 24 15.68 24 19.01 20 20 20 12 10.9 / 

Regression / 18.82 24 8.86 19 19 18 / 19.9 19 

Imposed dose 

(mg) 
  400 400 400 400 400 400 400 400 400 400 400 400 

Imposed 

interval (h) 
  24 24 24 24 24 24 24 24 24 24 24 24 

Extrapolated 

concentration 

Bayesian Cmax 

(mg/l) 

27.19 16.23 33 28.74 
Does 

not 

work 

26.3 26.3 25.7 28.6 33 / 

Not able 
Regression / 32.55 42.2 31.03 27.9 27.9 28 / 42.2 31 

Extrapolated 

concentration 

Bayesian Cmin 

(mg/l) 

0.13 0.12 0 0.13 0.2 0.2 0.1 0 0 / 

Regression / 0.45 0 0.22 0.2 0.2 0.2 / 0 0.24 

* For cystic fibrosis 

   Gentamicin Vignette (2) 

   MM-USC 

PACK 

Mw 

Pharm 

TCI 

Works 
JPKD 

TDM 

for R 

Antibiotic 

Kinetics 
APK Kinetics Kinetidex TDMS 

Data 

Kinetics 

RAD 

Kinetics 

Proposed dose 

(mg) 

Bayesian 4.9 5.5 

Not able 

Not 

working 
Does 

not 

work 

/ / 

NA 

6 6 / 

Not able 
Regression / 5.4 8.04 5.7 5.7 / 6 6.1 

Interval (h) 
Bayesian 24 19.71 

Not 

working 
/ / 24 20.3 / 

Regression / 19.63 19.68 24 24 / 20.2 20 

Imposed dose 

(mg) 
  8 8 8 8 8 8 8 8 8 8 8 8 

Imposed 

interval (h) 
  24 24 24 24 24 24 24 24 24 24 24 24 

Extrapolated 

concentration 

Bayesian Cmax 

(mg/l) 

9.61 8.23 

Not able 

Not 

working 
Does 

not 

work 

/ / 

NA 

8.4 8.1 / 

Not able 
Regression / 8.31 5.62 8 8 / 8.3 7.5 

Extrapolated 

concentration 

Bayesian Cmin 

(mg/l) 

1.39 0.92 
Not 

working 
/ / 0.7 0.9 / 

Regression / 0.90 0.13 0.9 0.9 / 0.9 0.83 

Remarks     
Not able 
to handle  
neonate 

    
Only for 
adults 

Taking 
back 

treatment 
right away 

Model 
adapted 

for 
neonates 
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 Digoxine Vignette 

 
MM-USC 

PACK 

Mw 

Pharm 

TCI 

Works 
JPKD 

TDM 

for R 

Antibiotic 

Kinetics 
APK Kinetics Kinetidex TDMS 

Data 

Kinetics 

RAD 

Kinetics 

A priori proposed 

dose (mg) 
Does not 

work 

Does not 

work 
NA 

No a priori 

regimen 
Not able NA NA 

0.138 0.125 0.204 0.148 
NA 

Interval (h) 24 24 24 24 

Imposed dose after 

fitting (mg) 
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.13 0.125 0.125 0.125 0.125 

Imposed interval 

(h) 
24 24 24 24 24 24 24 24 24 24 24 24 

Extrapolated 

concentration Cmin 

(µg/l) 

Does not 

work 

Does not 

work 
NA 0.45 0.45 NA NA 0.5 0.6 0.6 0.5 NA 

 

 
 Vancomycin Vignette 

 
MM-USC 

PACK 

Mw 

Pharm 

TCI 

Works 
JPKD 

TDM 

for R 

Antibiotic 

Kinetics 
APK Kinetics Kinetidex TDMS 

Data 

Kinetics 

RAD 

Kinetics 

Time for retake 

(h) 

NA 

(J4) 

Time to 

hold: 12.25 

NA 

Not able Not able Not able 
Time to 

hold: 14.9  

Time to 

hold: 14.6 
Not able to 

take 

treatment 

interruption 

into account 

Not able Not able Not able 

Dose for retake 

(mg) 
768.6 515.39 361.1 721 721 757 475 495 400 

Next interval 

regimen (h) 
35.71 32.84 24 39 39 42 24 24 24 

Remarks 

   Interval 

indicated = 

48 h 

Interval 

indicated  

= 24 h 

Interval 

indicated = 

48 h 

Interval 

indicated = 

48 h 

Interval 

indicated = 

48 h 
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 Tacrolimus Vignette 

 
MM-USC 

PACK 

Mw 

Pharm 

TCI 

Works 
JPKD* 

TDM 

for R* 

Antibiotic 

Kinetics 
APK Kinetics Kinetidex TDMS 

Data 

Kinetics 

RAD 

Kinetics 

Proposed dose 

after fitting (mg) NA NA NA 
3.9 3.24 

NA NA NA NA NA NA NA 

Interval (h) 24 24 

Remarks    

Not able to 

handle 

continuous 

infusion 

(sampling 

time 

indicated = 

23 h) 

Not able to 

handle 

continuous 

infusion 

(sampling 

time 

indicated = 

23 h) 

       

*diltiazem interaction taken into account in the program 

 Phenytoin Vignette 

 
MM-USC 

PACK 

Mw 

Pharm 

TCI 

Works 
JPKD 

TDM 

for R 

Antibiotic 

Kinetics 
APK Kinetics Kinetidex TDMS 

Data 

Kinetics 

RAD 

Kinetics 

Proposed dose 

(mg) 

NA NA NA 

133.08 158.75 

NA NA NA NA 

178 132 

NA 

Interval (h) 12 12 24 / 

Imposed dose 

(mg) 
125 125 125 125 

Imposed interval 

(h) 
12 12 12 / 

Extrapolated 

concentration 

Cmin (mg/l) 

11.31 -9.22 1092.9 11.9 

Remarks 

   12 h 

manually 

indicated 

for interval 

12 h 

manually 

indicated 

for interval 
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ABSTRACT 

EzeCHieL is a program that aims to support clinicians in the clinical interpretation of blood drug 

concentration measurements. It is designed to be an easy-to-use pharmacokinetic tool for 

experienced as well as inexperienced users to tailor drug dosing regimen to specific patient, either 

based or not on blood drug concentration measurements in the frame of therapeutic drug 

monitoring. With the program, the user is able (i) to assess the expectedness of an observed 

concentration in a patient compared to the population via percentiles (ii) to assess the suitability of 

the predicted concentration at a time of interest according to the therapeutic interval (iii) to 

provide dosing adjustment advice if appropriate. EzeCHieL provides population-based predictions 

and Bayesian forecasting for routine use. The realization of the program is still under development. 

It will be a fully integrated software, affording powerful calculation, interactive graphical display, 

interfacing capabilities with hospital information system compliant with HL7 language, a local 

patient and drug history database, a central database for data collection in the research framework, 

report generation and useful extra tools. The tool is almost accomplished. We present the current 

stage of development of EzeCHieL and expected coming features. 
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II.2.1. Introduction 

The aim of Therapeutic Drug Monitoring (TDM) is to optimise dosing regimens for individual 

patients based on the determination of plasma drug levels, in order to ensure effective drug 

concentration exposure whilst avoiding toxicity. TDM has been recognised to be beneficial in the 

management of various medical conditions, and dosage individualization guided by plasma drug 

measurement is currently applied to a number of drugs [1-3]. Additionally, recent refinements of 

analytical techniques increase the availability of drug assays, therefore putting an increasing 

emphasis on the value of TDM. The number of drug measurements performed in medical 

laboratories is globally expanding. However, measuring drug concentrations without providing 

appropriate clinical interpretation of the results leads to poor benefit to the patient. 

TDM necessitates consistent concentration–effect relationships and is best suited for drugs with a 

narrow therapeutic index that demonstrate a high inter-individual variability. It requires a good 

understanding of the relationship between drug dosing regimens and resulting blood concentration 

profiles, namely pharmacokinetics (PK).  

While most TDM interventions still rely on an empirical approach in daily practice, during the last 

decades it greatly gained from the emergence of population PK. From reference population data, a 

population PK model for a drug can incorporate patients’ descriptors (for instance body weight, 

creatinine clearance, disease, etc) and be fitted to drug concentration values (making it possible to 

quantify the residual unexplained variability). Once well characterized, such a model can be used as 

a prior to build up a formal interpretation of a given patient’s concentration value, as it allows 

individual Bayesian parameter estimation, simulations, concentration predictions and ultimately 

dosing suggestions. Another advantage of this approach is the possibility to accommodate random 

concentration values, which can be then extrapolated at a specific time for comparison with the 

desired targets. Population-based interpretation and Bayesian forecasting rest on mathematical 

modeling and non-trivial calculations. Thus it requires appropriate computing facilities, which are 

however largely available nowadays.  
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A number of more or less sophisticated programs have been proposed during the past years to 

perform this task [4]. It appears however that there is still an important room for improvement in 

this type of software for routine use. Clinicians without special training in PK need a simple, user-

friendly and easily accessible informatics tool. Additionally, such a program should provide 

accurate Bayesian predictions, interfacing with information systems, data storage capabilities and 

automatic report generation [4]. Computer assisted TDM is gaining growing interest, in parallel 

with the expansion of drug measurements. 

Like other institutions, the University Hospital of Lausanne has faced the need of a computer tool to 

assist TDM intervention. In the early 1990s, Borradori et al. showed an association between high 

aminoglycoside exposure and sensorineural hearing loss (SNHL) in preterm infants [5], stressing 

the importance of monitoring carefully the concentration exposure to these antibiotics. It led to the 

design of a small PC program locally available, that helped in the calculation of dosage adaptations 

for aminoglycoside antibiotics and vancomycin. The proposed program, written in Microsoft Visual 

Basic for DOS, implemented a classical two-points approach: it was able to compute individual 

values of clearance and distribution volume from peak and trough concentrations measured after 

first dosing or during a repeated doses regimen. These estimates served to determine the dose 

amounts and dosing intervals required to bring the steady-state peak and trough levels near preset 

target values considered as usually efficient and safe.  

Further initiatives have then been undertaken with regard to antiretroviral therapy (ART). ART 

substantially improves survival in patients infected with HIV. A relationship between plasma levels 

and efficacy/toxicity has been established for certain classes of antiretroviral drugs. Drug 

concentration measurement is recognised as providing useful information to guide therapy for 

these antiretroviral agents, known for a high pharmacokinetic variability, potential interactions and 

complexity of use in polytherapy. Trough concentrations (Ctrough) are traditionally preferred for 

interpretation, as target values have been proposed for them. However, in practice, blood samples 

are often drawn at various times due to modalities of treatment intake and medical visit schedules. 
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To overcome this issue, in the end of the 1990s, our institution undertook further initiatives to 

provide assistance in the interpretation of plasma levels. From in-house developed population 

models, percentiles curves covering the whole dosing interval were established to propose 

reference concentration values under standard dosage regimens at steady-state [6]. In the absence 

of better validated therapeutic intervals, this did help to at least evaluate the expectedness of an 

observed concentration under a given dosage regimen at any time between two dose intakes. This 

represents a rudimentary TDM referring to population PK [7]. It has been applied to a various 

number of antiretrovirals as well as to tyrosine kinase inhibitors (TKI). A more formal Bayesian 

approach has been developed for efavirenz using a simple nomogram, taking advantage from the 

fact that all inter-individual PK variability for this drug could be assigned to its relative 

bioavailability [8]. 

Further efforts have been made to improve the interpretation of randomly measured 

concentrations while ensuring accurate prediction of Ctrough using a Bayesian approach. For 

imatinib, the first commercialized TKI, a Bayesian maximum a posteriori (MAP) estimation method 

base on a population pharmacokinetic model was developed and implemented in Excel (Microsoft® 

Office 2007, Microsoft Corporation, Redmond, WA, USA) [9]. Additionally to prediction, it was used 

with success to optimize dosages when necessary [10, 11]. 

In the spirit of the last decades of innovative improvements to develop TDM for new drugs and to 

support clinicians in TDM interpretations, our division is now at the initiative of the development of 

a new computer program, called EzeCHieL. The main goal of EzeCHieL is to support the medical 

community for the clinical interpretation of randomly measured drug concentrations, using 

population-based reference percentiles and Bayesian predictions. Moreover, this computer tool 

aims to suggest individualised dosing adjustments if necessary, and should straightforwardly 

accommodate any candidate drug. Such aspirations require an easily accessible, integrated and 

user-friendly tool implementing Bayesian MAP estimation that can be used by inexperienced as 

well as experienced users.  
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The objectives of this paper are to provide an outline of the desired tool and to present the 

pharmacological specifications required to succeed in the aforementioned tasks. We will then 

report on the state of progression of EzeCHieL development since the beginning of the project in 

2010. 

II.2.2. General conceptual approach 

EzeCHieL is designed to address three major questions which should be raised following drug 

concentration measurement, and which delineate the intellectual process behind therapeutic drug 

monitoring:  

 Is the patient’s concentration expected? To answer this question, EzeCHieL shall locate the 

patient’s concentration value within the percentiles of distribution of concentrations expected 

under the given dosage, which graphically summarize the variability in drug exposure among the 

population. EzeCHieL will compute population, individual a priori percentiles, from a given 

population pharmacokinetic model, using simulation algorithms. In addition, once one or several 

blood samples of a patient have been measured, the program will confront them to prior 

individual patient’s parameters and compute a posteriori percentiles deduced from Bayesian 

MAP estimation. The expectedness of a concentration can thus be evaluated at different levels: 

either compared to the population or to the patient him- or herself. Moreover, besides this 

empirical Bayesian approach, a full Bayesian approach should be made available, which 

incorporates not only reference population PK parameters (average values, covariates 

coefficients and variability) but also an estimation of their own uncertainty (standard errors and 

correlations between estimates).  

 Is the patient’s concentration suitable? To answer this question, EzeCHieL shall assess whether 

the patient’s concentration profile meets, at a time of interest, the targeted therapeutic value and 

interval. Based on a concentration measurement, Bayesian prediction allows to extrapolate the 

concentration at the time referred for defining target exposure (e.g. peak or trough time, or 

average concentration i.e. AUC). This extrapolation can then be compared to the target 
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concentration or interval. EzeCHieL should accommodate not only standard target ranges, but 

also values depending on a defined covariate or entered specifically for a given patient (e.g. 

minimum inhibitory concentration for anti-infective drugs) 

 How should the dosing regimen be adjusted? To answer this question, EzeCHieL will help the 

prescribed to choose the most appropriate dosing schedule to reach and to maintain the patient’s 

concentration profile within the targeted therapeutic range. EzeCHieL thus offers a reverse PK 

calculation algorithm that starts from concentrations to derive dosages, so to suggest an 

appropriate dosing schedule for the desired target. 

All the above mentioned capabilities should largely rely on data visualisation with generation of 

concentration curves and target ranges. Other desired aspects include an easy-to-use interface and 

a flexible architecture allowing evolutions. EzeChieL will be able to handle various types of 

pharmacokinetic models, so that it can include a large library of drugs, and the users can add their 

own drug models. Interfacing with laboratory and patient information systems is also a major 

aspect of the development. Generation of high quality reports enabling a clear rendering of the 

results is a must-have. Finally, pharmacokinetic data gathered during the daily practice of TDM 

should be saved and used to continuously increase our knowledge and refine our drugs model 

through further research. 

II.2.3. Software Development 

Platform supported and installation requirement 

EzeCHieL is designed to be a stand-alone cross-platform application that runs on any modern 

system (Windows, Mac and Linux, and soon on iOS and Android platforms). It is written in C++ 

using the Qt framework. The program is available in English or French and updates are easily 

downloaded on its the website (http://www.ezechiel.ch/).  

http://www.ezechiel.ch/
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Figure 2.2.1. Graphical User Interface of EzeCHieL. On the left: patients, practitioner, report and chart panels. 

On the top: various menu docks. On the bottom, left: drug dosing history, concentration measurements, and 

covariates tabs. On the bottom, right: Target concentration prediction(s) and population, a priori and a posteriori 

pharmacokinetic parameters. On the right: Drug dosing suggestions panel. Chart: therapeutic interval i.e. target 

(horizontal shaded area). Chart, on the left: population prediction with the typical patient (purple line) and the 

10th-90th percentile (shaded purple area). Observed concentration (green point) with a posteriori patient 

prediction based on Bayesian estimation (green line). Chart, on the right: concentration over time from dosing 

suggestion.  

User interfaces 

The program is intended to provide a user-friendly tool that uses a graphical user interface (GUI), 

menu-driven with docks and panels (figure 2.2.1). It offers a step by step wizard (figure 2.2.2) 

that facilitates navigation for inexperienced users. Control via the command line interface is also 

however possible. From the GUI, patients and physician are added into the suitable panel.  

To handle a TDM intervention, EzeCHieL starts by creating a concentration profile curve. The first 

step consists in indicating the drug of interest and the appropriate reference population. Then the 

user enters dosing regimen information, covariates (patient descriptors) for the chosen drug and 

measured drug concentration. The program will then calculate the patient’s PK parameters for the 

given drug through MAP Bayesian estimation and draw the corresponding PK curve. Further 

actions encompass the localisation of the patient within the population (percentiles display), the 
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comparison of extrapolated concentration with reference target, the provision of dosage 

adjustment suggestions, and the generation of an intervention report. Further features of the 

program and more details regarding these steps are given in the next paragraphs. 

 

 

  

Figure 2.2.2. Step by step wizard for data entry during TDM intervention. A. Patient and drug information. B. 

Type of concentration prediction. C. Drugs schedule and dosage information. D. Covariates information. E. Drug 

concentration measurements information. F. Advance setting for experienced user regarding calculation algorithms 

A 

C 

E 

B 

D 

F 
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Modular architecture 

EzeCHieL architecture is designed to be very flexible. A concept of plugins which articulate around a 

central core has been chosen. These plugins implement various components such as PK model 

calculation, percentiles calculation, Bayesian derivation algorithms, reverse calculation for 

individualised dosage suggestion.  

Pharmacokinetic models and drug description 

In the software, a PK model is made up of a set of parameters either defined for integrated closed-

form PK equations in terms of clearance, volume of distribution, constant of absorption, etc. or in 

terms of microconstants used for the integration of differential equations. Inter-individual 

variability can be associated with each parameter. Correlation between parameters is also 

supported by the program. Parameters are then used to calculate the predicted concentration 

profile and to build up a curve. All type of PK models will be handled by EzeCHieL including: one- 

two- three- linear and non-linear compartment model with first or zero order absorption and 

double gamma absorption for extravascular and intravenous administrations. Further PK models 

could be implemented upon request to the developers.  

An extended markup language (XML) file is written for each drug and is associated with a type of 

aforementioned PK model. This XML file specifies the set of parameters for the drug and the 

population considered, along with both inter- and intra-patient variability stemming from the 

population analysis. In addition, it contains information on drug dosage forms available, resulting 

dosage steps considered reasonable, acceptable intervals of time, usual infusion time if appropriate, 

and drug concentration targets. The XML file also includes the full covariate model description. In 

case of missing data for a given patient, default values, corresponding to the mean value from the 

original population data, can be assigned. EzeCHieL will include a rich library of drugs but users will 

be able to implement their own drugs, either directly into a drug XML file template or using a 

dedicated drug model editor made available. The architecture of calculation is given in figure 2.2.3. 



 
83 Computer Tools 

 

Population prediction and Bayesian individualization 

Individualization is based on the availability of a reference population PK model including 

assumptions of parameters’ distribution. Once a concentration measurement is available its clinical 

interpretation relies on Bayes’ theory. Several steps are outlined here for this interpretation: 

- typical patient 

From the prior knowledge of the distribution of PK model parameters in the general population of 

interest (i.e. the original population dataset previously mentioned), the average typical patient is 

represented (this patient usually corresponds to the reference values of covariates relevant for the 

model). The typical patient is thus representative of a patient whose characteristics affecting the 

drug kinetics (i.e. covariates) are not known. 

- a priori 

The prior knowledge of the distribution of PK model parameters now incorporates the knowledge 

of the patient’s covariates relevant for the model, in order to determine the patient’s a priori 

Figure 2.2.3. Layers architecture of prediction calculation and drugs descriptors 
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parameters (i.e. before any concentration is evaluated). The resulting predicted PK profile allows 

for example planning the initial dosing regimen. 

 - a posteriori: Bayesian estimation 

Once one or several drug concentration measurements are available, individual PK parameters can 

be estimated by Bayesian calculations based on their maximum a posteriori probability (MAP). This 

approach combines the measured drug concentration(s) and the prior knowledge of the 

distribution of model parameters estimated in the population of interest. It searches for the best 

combination of parameters that can account for the concentration(s) observed in the given patient, 

weighted by the prior knowledge of their respective variability in the population. This approach can 

be applied with any number of drug concentration measurements. 

At each level, starting from the typical patient to the a posteriori analysis, the degree of uncertainty 

regarding the fate of drug concentrations is reduced for a given patient.  

Percentiles 

Around all the above PK model based predictions, percentiles of distribution can be generated, 

which describe the respective spread of their uncertainty. Thus, a typical patient exposure profile 

should be complemented with the variability observed in terms of concentration over time 

exposure in the whole population, which encompasses both explained and unexplained between-

patient variability, along with the within-patient or inter-occasion or residual variability. Individual 

a priori percentiles are based on the knowledge of covariates and do not incorporate anymore the 

population variability explained by the covariates. Individual a posteriori percentiles still reduce 

the role of unexplained between-patient variability, since the patient has now been characterized 

by individual monitoring. In case of a large number of concentration measurements, these 

individual a posteriori percentiles end up in containing only the residual variability. The former two 

percentiles can be used to compare the adequacy of a single individual random concentration with 

the population of reference [7, 12], while the latter one rather informs about the expectedness of a 

new concentration value for a given individual having already been sampled. Percentiles are 
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implemented in the program under two distinct methods of calculation, named “Monte Carlo” and 

“Taylor-inspired”. The Monte Carlo method is based on a large number of simulations of 

concentrations from random patients drawn from a probability distribution relying on both inter- 

and intra-individual variability. The Taylor method uses error propagation calculations via the first 

(and possibly via the second) order approximations of the Taylor series. Monte-Carlo tends to 

rebuild the true distribution of concentrations (when N is sufficiently large), while the Taylor-

inspired methods are less accurate but faster. Methods of percentiles calculation are also 

implemented as plugins in the program. 

Curve fitting and prediction engine 

A PK model for a given drug is originally defined by a system of differential equations. Solving the 

system of differential equations allows fitting a curve and so predicting a patient’s concentration 

over time. The curve to fit can be calculated either by the Runge Kutta integration method, using the 

original differential equations plus a set of initial conditions (at time t=0), or by the calculation of 

the analytical solution (closed-form equation) of the differential equation if it exists; this is typically 

not the case for non-linear kinetics, which make TDM of additional value for the corresponding 

drugs (e.g. phenytoin). Analytical solutions are preferable when they are available, for speed 

calculation considerations, but EzeCHieL offers both approaches. 

Drug dosing regimen calculation and targets 

Finally, from the individualized PK parameters, EzeCHieL will generate drug dosing suggestions to 

reach drug target concentration. It displays a certain number of acceptable dosing regimens that 

can achieve the desired PK target exposure. Nominal dose and time interval suggestions are 

constrained to satisfied only relevant combinations based on practical and galenic consideration 

entered in the drug’s XML file. The user can evaluate the choice on a chart that displays the result of 

the dosing suggestions. Relevant predicted concentration at steady-state are calculated and 

displayed. Population target values (and intervals) are handled, including with possible dependence 

on pharmacodynamic covariates, but the user can also define a patient’s own desired target. 
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Drug dosing, measure history 

The dosing regimen and concentration measurements values are displayed on the GUI. Drug dosing 

can easily be modified to fit all actions taken for a patient (missed dose, treatment, interruption, 

nominal dose and/or interval modification). A new drug concentration measurement can readily be 

added. Any covariates value modification can be simply handled via this panel as well.  

Covariates 

Covariate values are also displayed in a tab on the GUI. Similarly, they can easily be modified or 

added. EzeChieL aims at defining global covariates, i.e those most commonly encountered in PK 

models, that could thus be used in different drug model for a given patient (like body weight or 

glomerular filtration rate, etc). More specific covariates are requested according to the chosen drug. 

Regarding covariates derived from other parameters, the program will offer interactive calculations 

directly accessible for: creatinine clearance, body mass index (BMI), body surface area (BSA), or 

different type of body weight (BW). 

Graphical display 

Drug concentration over time is displayed on dynamic graph from the fitted model. Changes in 

covariates or drug dosing (dose, interval) are clearly labelled. Multiples curves can be added, as 

well as percentiles. Targets are clearly depicted. Cursor can be moved along the patient curve, 

indicating the predicted concentration at any time. User can choose between linear and logarithmic 

scale. A colour code is set up for different elements. 

Report 

Reporting and saving results is of major importance. Comprehensive reports, customizable for a 

given institution or practitioner, can be generated to document TDM intervention. They shall 

include administrative information regarding patient, physician and user, laboratory data, dosing 

recommendations if appropriate, dosing regimen graphs, population and individual PK data, and 

free text that can be added by the user. As most of the data used in the reports is already stored in 
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the database and they can be retrieved to prefill many of a report's fields. Customization of the 

report as a shorter version is also possible, through the masking of selected segments. The report is 

implemented using a combination of HTML5 technology, CSS and Qt's webkit features. 

Database 

All clinical useful data need to be saved. Data such as patient data (personal information, some from 

medical records) and practitioner data are stored in a local SQLite database. Patient data are saved 

and current dosing adjustment can also be saved for a future dosage monitoring. It is also 

possible to interface EzeCHieL with the hospital information system (see below). 

For research purpose, EzeCHieL shall also transfer any collected data regarding drug concentration 

and useful PK information (essentially covariates) to be aggregated in a remote central database. 

Such sharing feature will be used to develop and continuously improve existing models. 

Data interoperability and confidentiality 

Seven International (HL7; http://www.hl7.org/), the standard language for electronic health data 

transfer and probably the most commonly encountered in the medical field, is supported by 

EzeCHieL trough the MirthTM Connect technology (Mirth Corp., Irvine, CA, USA). It enables data to 

be interfaced with hospital information system including laboratory systems and the patient 

electronic medical records. To satisfy privacy and security requirements, all data stored locally are 

encrypted, and data transferred will be digitally signed. Regarding data aggregated for research 

purpose, the following approaches will be combined: pseudonymization (by applying the multi-key 

searchable encryptation scheme to the identifiable patient’s information) and anonymization, using 

generalization technique. 
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Export functions 

Curves can be exported as points, with 

many exportation options to satisfy 

user’s preference (figure 2.2.4). Graphs 

can be exported as image or PDF 

documents, reports as PDF or ODT. 

Support 

First, a user manual is provided (free 

access on the program’s website) made 

up of a quick start guide to rapidly 

handling a TDM intervention. It is worth 

noting that EzeCHieL is probably 

intuitive enough to handle a TDM 

intervention without going through the user manual. The second part of the manual gives deeper 

information on all aspects of the program: calculation motor and equations, drugs library, model 

edition, validation of the program, interoperability, database, export, etc. A website and a user 

group are under realization. Finally, the long term support will be ensure via a system of start up, to 

continuously maintain and develop the program, and will offer to users an opportunity for contact 

and request.  

II.2.4. Progress report 

The current stage of realization, since the beginning of its development in 2010 is given in the 

following progress grid, and also including future developments. 

  

Figure 2.2.4. Options panel for curve exportation 
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Table 2.2.1. Progress grid of EzeCHieL development 

Item Specification Current status 

Platforms - PC/Windows OK  with Qt platform 

 - Mac OK with Qt platform 

 - Linux OK with Qt platform 

 - Android smartphone/tablet Envisaged later 

 - iOS iPhone/iPad Envisaged later 

User interfaces - Fully functional command line interface (console 

mode) 

OK 

 

- Graphical user interface (all features for specialized 

users) 
Well advanced 

 - Wizard for every-day use by non-specialists Well advanced 

 - Service to be interfaced with e-environments Envisaged later 

 - Preferred language settings (translations) Translation underway 

 - Global ergonomics Well advanced 

Modular  - Central core, including: Underway 

architecture  - Report generator Awaits finalization 

  - License/security Underway 

  - Configuration/setup Underway 

 - User interfaces  

 

        See below 

 - Drug description XML files  

 - PK models plugins 

 - Posterior estimation plugins (Bayes engine) 

 - Percentiles calculation plugins 

 - Report generators/templates 

 - Dosage adjustment plugins (reverse engine) 

 - Internal database 

 - Data interchange with external system. 

 - Data export to remote databases 

PK model types - Closed integral form: OK, to be expanded 

  - 1, 2 compartments 1st-order for Bolus, infusion, 

and extravascular 

OK 

  - 3 compartments 1st-order, Bolus  To be implemented 

   - 0-order absorption To be implemented 

   - lag time To be implemented 

 - Differential form (Runge-Kutta 4th-order): OK, to be expanded 

  - 1, 2, 3 compartments 1st-order, Michaelis-

Menten and mixte (1st order with Michaelis-Menten) 

Almost finalized 

  - Bolus, infusion, extravascular 1st-order and 0-

order absorption, Michaelis-Menten absorption 

To be done 

 - Treatment start and steady-state Almost finalized 

 - Versatility, ease of future model implementation OK 
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Item Specification Current status 

Drug description - Drug database OK 

(XML) - Data structure definition  

 - popPK parameters, variability OK 

 - Covariates with formulae (on PK parameters 

and on PD parameters = individual targets) 

OK 

 - popPK variability without covariates To be done 

 - Var-covar matrix of estimates To be done 

 - Forget function for past measurements To be done 

 - Separate library of units OK 

 - Drugs XML file validation tool OK 

 - Abundant comments (self-explanatory) OK 

 - Structured references To get structured 

 - Interactive drug file editor To be made soon 

 - Data accountability management Key to be added 

 - Web-based central repository Website to develop 

Prediction engines - Analytical approach based on moment match 

(Taylor-inspired) 

 

  - 1st order OK 

  - 2nd order Awaits finalization 

 - Simulation approach (Monte-Carlo) OK 

Posterior - Empirical Bayesian calculation  

estimation plugins  - Based on Baye’s objective function OK 

  - Allowing for covariances between PK 

parameters 

OK 

  - Allowing for additive, proportional, or mixed 

additive+proportional distributions for PK 

parameters and residual error 

OK 

  - Should meet NONMEM MAP values To be checked 

 - Full Bayesian calculation (takes into account 

variance-covariance matrix) 

To be implemented 

Percentiles - Empirical Bayesian percentiles  

  - Population (without covariates) To be implemented 

  - Typical patient (covariates centered) OK 

  - Individual a priori (individual covariates) OK 

  - Individual a posterior (knowing covariates 

 and 1, 2...n measurement results) 

To be added 

  - Color code for percentiles OK 

  - Vanishing importance of remote past results 

 (time function + defaults time + user  choice) 

To be implemented 

  - Taylor and Monte-Carlo should be close To be checked 

 - Full Bayesian percentiles To be implemented 
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Item Specification Current status 

Adjustment - Reverse calculation from prediction OK 

proposition  - Calculation taking into account realistic 

dose/interval constraints 

OK 

 - Indication of target proximity  

  - On chart OK 

  - Numerically To be implemented 

 - Dosage regimen suggestion by the user OK, to be checked 

Targets - Defined at Cmin, Cmax, Cdefined t  or Css (equivalent to 

AUC/) 

OK 

 - Possibly t>MIC or AUC/MIC Envisaged later 

 - Population values (target + interval) OK 

 - Possibly individual values (either affected by 

covariates or entered for a given individual) 

To be implemented 

Covariates - Global: age, sex, bodyweight, height, BMI, BSA, LBM, 

GFR 

OK 

 - Specific: all other covariates OK 

 - Interactive calculation tools for BMI, BSA, LBM, GFR 

(from creatinine) 

To be implemented 

 - Flexible operations on PK parameters OK 

 - Controlled dictionary Will be set up manually 

Drug dosage - Easy to introduce OK 

 - Easy to modify (missed dose, supplemental dose, 

change in regimen, end of treatment) 

OK 

Concentration  - Easy to introduce OK 

measurements - Easy to modify (remove) OK 

 - Inclusion or not for Bayes individualization 

(according to forget function + modifiable) 

To be implemented 

Chart - Automatic and versatile time axis management 

(scale, shift, contraction/extension) 

OK 

 - Automatic concentration axis scaling (toggle start 

from 0 or not) 

OK (except 0 toggle) 

 - Linear/Logarithmic toggle OK 

 - Possibility of superposing several curves OK  

 - Color code for elements (percentile type, target 

type) 

 

  - Percentile type OK 

  - Target type OK 

 - Cursor, reading of curve values OK 

 - Exportation of datapoints OK 

 - Unit conversion OK  
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Item Specification Current status 

Report generators - Template-based To be finalized 

 - Output in HTML + CSS OK 

 - Conversion into PDF on demand To be finalized 

 - Export into XML, HL7v3 OK 

 - Export into HL7v2 through Mirth Connect To be finalized 

 - Customised to licensed users (or mentioning no 

commercial use) 

To be implemented 

 - Versatile (block selection/deselection) To be finalized 

 - Comment text fields OK 

 - Interactivity with data entry (reflexion of 

corrections  and complementations in database) 

OK 

 - Archival To be implemented 

User ID - Standard fields OK 

Patient ID - Standard fields OK 

Physician ID - Standard fields OK 

Internal database - SQlite, MySQL, SQLserver versatility OK 

 - Patient/covariates/dosage/results storage and 

recall for update 

OK 

 - Protection for sensitive fields OK 

 - Users management OK 

 - Optional historicization / Audit trail  To be finalized 

Data interchange - Data acquisition from a lab system or a medical 

record in HL7v3) 

OK 

 - Data acquisition from a lab system or a medical 

record in HL7v2 trough Mirth connect 

To be finalized 

 - Exportation of report data OK 

Remote database - Optional send out of usage data to central database OK 

 

- Advanced protection, no retrieval of sensitive data 

without user’s collaboration 
OK 

 - Coded user ID OK 

 - Check with updates in software/drug files To be finalized 

Configuration - Information on users, license, preferences To be finalized 

 - Verification/security To be finalized 

Users - Users management OK 

 - Accountability, audit trail, security To be finalized 
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Item Specification Current status 

License - Full functional free version for non-commercial use, 

tagged as such 

To be finalized 

 
- Individual or institutional licenses for commercial 

use, with light protection 

To be implemented 

 - Open-source status for central part of code OK 

Validation - Internal Underway 

 - External, against NONMEM and R Underway 

 - External, against Dose-Me and MW-Pharm on 

predefined vignettes 

OK 

 - External, during clinical implementation, versus 

current approaches 

To be done once ready for 

exploitation 

 - Official by a dedicated organisation To be done later 

Alpha-testing - In PCL Lausanne To be done once ready for 

exploitation 

Beta-testing - Expert users  To be done once in beta-phase 

Dissemination - By EzeCHieL SàRL, to be created To be created 

 - Administrative, technical and clinical support To be set up 

Website - Presentation To be finalized 
 - Dissemination of free version To launch at beta version 

 - Documentation (essentials and technical details)  To be revised and finalized 

 - FAQ, global support To be implemented 

 - Drug files with comments To be implemented 

 - Users community, blog/wiki To launch 

User Manual - Quick start guide To be finalized 

 - Comprehensive guide describing all aspects of the 

program 
To be finalized 

Regulatory 

Approval 
- EMA and FDA requirements To be started once ready for 

exploitation 
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II.2.5. Software validation 

Assessment of the predictive performance for concentration predictions 

To ensure that EzeCHieL is 

numerically accurate and 

precise in terms of 

concentration prediction, 

predictive performances [13] 

are evaluated and graphical 

inspections are performed. Bias 

(MPE: mean prediction 

error) and precision (RMSE: 

root mean squared error) are calculated by comparing EzeCHieL predicted drug concentrations 

against those predicted from the non-linear mixed effect modeling software (NONMEM®) 

considered as the reference method for population analysis and individual prediction, or against 

measured concentrations if existing.  

An automated tool in order to compare EzeCHieL predictions to the reference method, based on 

simulated data, as described figure 2.2.5, has been developed.  

Assessment of dosing regimen recommendation 

Further validation test need to be performed in real clinical setting to demonstrate the capacity of 

the program to suggest suitable dosing regimen recommendation. Predictive performances (bias 

and precision) will be assessed by predicted drug concentration against those observed after 

applying dosing recommendation for individualization.  

  

Figure 2.2.5. Scheme of the automated tool for prediction validation 

against the reference method NONMEM® 
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Regulatory approval requirement 

Overall, a more general validation process will be performed to meet regulatory requirements for 

dissemination of such tool. It requires evaluating the testing methodology and the results. European 

Medicines Agency (EMA) and the Food and Drug Administration (FDA) define criteria to be met for 

medical devices [14, 15]. A registration dossier also represents one of the next stages of the project.  

II.2.6. Discussion 

EzeCHieL will offer a powerful resource to support clinicians in therapy individualization based on 

TDM. It will allow a priori and a posteriori Bayesian dosing adjustment, based on the knowledge of 

drug behaviour in the population of interest. This is a fully integrated tool dedicated to the optimal 

patients care (figure 2.2.6). Its main benefits, additionally to its numerical background, will reside 

in its intuitive user interface and its user-friendliness, mostly suited for non experienced users. The 

program affords also educational opportunities. Its modular implementation largely based on 

plugins make it very flexible, able to evolve and readily customizable for any institution. 

Alpha testing of EzeCHieL, i.e. an internal testing at the developers’ site, is currently ongoing. The 

release of a beta version is now expected in a short time. This means that the software will be 

released for a small group of targeted users, outside of the developer’s team, for further tests and 

validation  

The software will keep evolving from a user perspective. To ensure the continued existence and the 

development of the software and its wide use in the future, issues should be fixed and the tool 

should be able to be modified and improved; addition of novel functionalities should be allowed as 

well. Support of the software will gently slide towards a semi-private business. Our aim is to set up 

a flexible structure in order to collect resources for promoting efficiency, development and 

ensuring financial support, to maintain and disseminate it.  

In the future, EzeCHieL will be able to embark into a point-of-care system for bioanalysis of drugs in 

blood, currently under development [16]. It will also provide the medical doctor with information 
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Figure 2.2.6. EzeCHieL: An integrated software for dosage individualization 

on the situation of the patient within the population and accordingly suggest dosing adjustment 

which in turns could be directly sent back to the patient. 

In a World more and more connected and miniaturized, development of an embedded light version 

of EzeCHieL is also underway, to be used at anytime and anywhere either by the medical doctor or 

by the patient itself. It could be then synchronised with the standard version of EzeCHieL. 
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Chapter III in the thesis context 

Implementation of a Bayesian approach for TDM requires provision of appropriate PK models. The 

general concept to support this development is the non-linear mixed effects modeling. Because some 

subpopulation may present specific characteristics in terms of drug disposition, specific models are 

needed such as for neonates. This chapter handles these two aspects for candidate drugs.  

Sepsis continues to be one of the main causes of morbidity and mortality in newborns admitted in a 

neonatal intensive care unit. 

Gentamicin remains one of the most frequently administered antibacterial drugs in the neonates for 

proven or suspected neonatal infection. A TDM of this drug has been advocated for a long time now 

as a consequence of a large PK variability as well as well-defined concentration-efficacy and toxicity 

relationships. The collection of PK and clinical data in a large cohort of premature and term 

neonates allowed conducting a population PK study of gentamicin, which represents, to the best of 

our knowledge, the largest study ever done in such population. This study aimed to identify 

important predictors of drug exposure. Concretely, the study permitted to reassess the necessity of 

a systematic drug monitoring in the light of shorter treatment duration. Our simulations supported 

current a priori dosage recommendations. Our results were incorporated in EzeCHieL for the 

development of Bayesian TDM for this drug.  

This model was used to re-evaluate the potential association of gentamicin exposure with 

sensorineural hearing loss (SNHL). Under the supervision of Dr E. Giannoni, that initiates this work, 

Lara Zimmerman collected and analyzed all demographic, clinical and therapeutic data (including 

aminoglycoside treatment course) to conduct a case-control study. A brief overview of our 

contribution in this work is given after the model description.  

In contrast, imipenem is administered in complex and critical situations, often in very premature 

neonates. Our institution offers a TDM for this drug. Standard recommended dosage seems leading 
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to sub-therapeutic exposure in many of those patients in this subpopulation. Only one population 

PK study has been published in neonates so far (Yoshizawa et al. Pediatr Infect Dis J. 2013). This 

study has the advantage to present blood and urinary data, but with only a limited number of 

covariates of importance retained for such population (body weight, age). Once again, this study 

aimed to identify important predictors of drug exposure, and to quantify their impact. Simulation 

will provide dosage recommendation that should further be validated in a real clinic care setting. 

Our result will be incorporated in EzeCHieL. 

Own contribution:  

For both population PK analysis (gentamicin and imipenem): Protocol elaboration. Collection 

and assembly of all the data. Population pharmacokinetics modeling, analysis and interpretation of 

the data. Drafting of the article. Publication process for gentamicin. Regarding imipenem, the work 

is still ongoing. Dosing regimen simulations will be provided in a near future. 

For the case control-study regarding gentamicin exposure and SNHL: Collection and assembly 

of gentamicin dosing history. Individual pharmacokinetics parameters of gentamicin exposure 

estimation. Logistic regression analysis. 
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ABSTRACT 

Aim: This study aims to investigate the clinical and demographic factors influencing gentamicin 

pharmacokinetics in a large cohort of unselected premature and term newborns and to evaluate 

optimal regimens in this population. 

Method: All gentamicin concentration data, along with clinical and demographic characteristics, 

were retrieved from medical charts in a Neonatal Intensive Care Unit over 5 years within the frame 

of a routine therapeutic drug monitoring programme. Data were described using non-linear mixed-

effects regression analysis (NONMEM®). 

Results: A total of 3039 gentamicin concentrations collected in 994 preterm and 455 term 

newborns were included in the analysis. A two compartment model best characterized gentamicin 

disposition. The average parameter estimates, for a median body weight of 2170 g, were clearance 

(CL) 0.089 l h−1 (CV 28%), central volume of distribution (Vc) 0.908 l (CV 18%), 

intercompartmental clearance (Q) 0.157 l h−1 and peripheral volume of distribution (Vp) 0.560 l. 

Body weight, gestational age and post-natal age positively influenced CL. Dopamine co-

administration had a significant negative effect on CL, whereas the influence of indomethacin and 

furosemide was not significant. Both body weight and gestational age significantly influenced Vc. 

Model-based simulations confirmed that, compared with term neonates, preterm infants need 

higher doses, superior to 4mg kg−1, at extended intervals to achieve adequate concentrations. 

Conclusion: This observational study conducted in a large cohort of newborns confirms the 

importance of body weight and gestational age for dosage adjustment. The model will serve to set 

up dosing recommendations and elaborate a Bayesian tool for dosage individualization based on 

concentration monitoring. 
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III.1.1. Introduction 

The use of aminoglycosides is limited by their potential ototoxicity and nephrotoxicity, consequent 

to drug accumulation in the inner ear and kidney [1-5]. Despite their toxicity, aminoglycosides are 

widely used in clinical practice. In recent guidelines, gentamicin remains the first line of treatment 

for suspected early-onset neonatal sepsis [6, 7]. Pharmacodynamic investigations have shown a 

concentration-dependent activity, mainly related to the ratio of peak plasma concentration over 

minimum inhibitory concentration (Cmax : MIC), which should exceed 8 to 10 for optimal efficacy 

[8]. Gentamicin is essentially eliminated by renal excretion through glomerular filtration and binds 

to only a limited extent to plasma proteins (between 0–15% [9, 10], and up to 30% according to 

some authors [11]). The majority of nephrons are formed in the third trimester of pregnancy and 

nephrogenesis is complete between 32 to 36 weeks of gestation [12, 13]. In the last decade, 

preterm births (below 37 weeks of gestation) have constituted about 10% of total births worldwide 

[12] and the survival rates of these extremely preterm infants have particularly increased. Infants 

born at 25 weeks of gestation now have up to 80% chance of survival [14]. In this subpopulation, 

the glomerular filtration rate (GFR) is quite low at birth, but this is also typical in term newborns. 

During the first weeks of life, there is a progressive rise in GFR resulting from an acute increase in 

cardiac output and renal blood flow induced by birth and a decrease in renal vascular resistance 

[15]. Thus, renal elimination of gentamicin in neonates is largely linked to both gestational age and 

post-natal (PNA) age. It is worth noting that, as creatinine crosses the placental barrier, blood 

creatinine concentrations are not a reliable indicator of renal function in the first days of life as they 

reflects maternal rather than neonate concentrations [13]. Gentamicin is a polar molecule and is 

distributed predominantly in extracellular fluid, which varies inversely with gestational age [16, 

17]. The large amount of extracellular body water in neonates and young infants results in lower 

plasma concentrations compared with adults for a given body weight-adjusted dosage regimen 

[18]. Therefore, because of age-associated changes in organ function and body composition, 
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gentamicin treatment regimens must be individualized appropriately to reflect maturation 

(increase in age) and growth (increase in size). Therapeutic drug monitoring (TDM), involving a 

close monitoring of the exposure of drug plasma concentrations so as to prevent toxicity and lack of 

efficacy, is the standard of care to optimize the dosage of aminoglycosides. A Bayesian forecasting 

approach for estimation of individual pharmacokinetic (PK) parameters currently represents the 

gold-standard approach for TDM [19]. It is becoming increasingly advocated for treatment 

individualization in neonates [20, 21]. The purpose of this study was to characterize the population 

PK parameters of gentamicin in a large cohort of preterm and term neonates and to investigate the 

influence of clinical, physiological and environmental factors on the disposition of the drug. The 

second objective was to evaluate the achievement of target concentrations according to dosage 

regimen recommendations based on simulations. These recommendations will retrospectively be 

compared with a dosing regimen based on a two point adjustment approach performed routinely in 

our hospital within the framework of TDM. The results should ultimately serve to build up 

gentamicin Bayesian-inspired TDM tools for dosage individualization in patients who need 

monitoring [22]. 

III.1.2. Method 

Study population 

All neonates admitted in the Service of Neonatology of the Lausanne University Hospital between 

December 2006 and October 2011 and receiving gentamicin were eligible for the study. This 

retrospective study was approved by the local ethics committee of the Lausanne University 

Hospital. Initially, 3168 gentamicin concentration measurements collected from 1500 subjects, 

were retrieved using the clinical information system (MetaVision, iMDsoft, Massachussetts, USA) 

and the routine TDM database. Of these, 129 samples were excluded from analysis for the following 

reasons: missing information on drug administration or sampling times, inconsistencies in dosing 

interval or administered dose or unclear dosing schedules. The following characteristics were 
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systematically collected: gender, body weight (BW) at the time of blood sampling, gestational age 

(GA), PNA, concomitant treatment with furosemide, dopamine and non-steroidal anti-inflammatory 

drugs (ibuprofen and indomethacin), presence of a patent ductus arterious (PDA) and concomitant 

respiratory support with invasive or non-invasive ventilation. 

Drug administration and serum concentrations 

Gentamicin (Garamycin®, Hexal, Holzkirchen, Germany) was administered intravenously over a 30 

min infusion, most of the time in association with amoxicillin. The conventional initial dose was 

3mg kg−1 from December 2006 until April 2011, followed by 4mg kg−1 from May 2011 to October 

2011 according to a change in local guidelines. Within the framework of a routine TDM programme 

in our hospital, plasma drug concentrations were drawn twice, 1 h and 12 h after the first 

gentamicin dose, in order to individualize the dosage regimen based on a classical two point 

approach linear regression [23]. Further concentration measurements could be requested by the 

physician if the treatment was prolonged. 

Analytical assay 

Serum concentrations were determined by fluorescent polarization immunoassay (Cobas Integra 

400 Plus, Roche Diagnostics, Rotkreuz, Switzerland). Lower limits of detection and quantification 

were, respectively, 0.04 and 0.5 mg l−1. Coefficients of variation (CV) for imprecision were ≤2.5% at 

0.9 and 7.8 mg l−1 within run and ≤3.1% at 1.5, 4.4 and 7.0 mg l−1 between runs. 

Model-based pharmacokinetic analysis 

Base model: The population PK analysis was performed using a non-linear mixed-effect modelling 

approach with NONMEM® (version 7.1.0, ICON Development Solutions, Ellicott City, MD, USA), 

using first order conditional estimation with interaction (FOCEI). A stepwise procedure was used to 

identify the model that best fitted the data comparing one and two compartment open models. 

Exponential errors were used for the description of the between subject variability (BSV) of PK 
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parameters. Proportional, additive and mixed error models were compared which describe the 

residual variability.  

Covariate model: At first, the graphical exploration of continuous covariates (BW, GA, PNA, 

postmenstrual age (PMA) defined as the sum of PNA and GA) and categorical covariates (gender, 

co-treatment with furosemide, dopamine and indomethacin, PDA, invasive and non-invasive 

ventilation) effects were carried out to visualize the relationship between the PK parameters and 

the covariates. Potentially influencing covariates were then included in the model following a 

sequential forward selection and backward elimination. Ibuprofen and vancomycin, which can 

affect renal function, were not administered in this population and their influence could thus not be 

investigated. The influence of body weight on gentamicin PK parameters was used as a first 

covariate characterized using allometric scaling [24]. 

      
  

        
 
   

 (1) 

Other continuous covariates were implemented in the model using a linear (2), allometric (3) or 

exponential equation (4). Continuous variables were centred on the median: 
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Categorical covariates were implemented in the model according to the following equation: 

                 (5) 
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Since PMA represents the sum of GA and PNA, PNA or GA were not considered if PMA was already 

included in the model and vice versa. 

Parameter estimation and model selection:  Difference in objective function value (ΔOF), 

NONMEM® goodness-of-fit statistics, along with diagnostic goodness-of-fit plots, were used for 

model comparison. Since ΔOF between any two hierarchical models approximates a χ2 distribution, 

it was considered statistically significant if it exceeded 3.8 (P < 0.05) and 6.6 (P < 0.01) points 

respectively, for one additional parameter during model building and backward deletion 

procedures. Akaike’s information criterion (AIC) was used for non-hierarchical models. Shrinkage 

was also examined. When more than one covariate describing the same effect (GA, PNA and PMA) 

was found significant, the covariate causing the largest drop in objective function was preferred. A 

sensitivity analysis was performed for patients with absolute values for conditional weighted 

residuals (CWRES) greater than 5 to test for potential bias in parameter estimation and in covariate 

exploration. It concerned eight data points for six patients. Four observations were excluded for 

suspected error in administered dose, one observation for suspected error in time recording and 

one observation for suspected sampling bias. No obvious reason could plain high CWRES (6.3 and 

5.8) associated with the two remaining observations and they were thus kept in the analysis. The 

sensitivity analysis showed that none of these concentration values affected the PK estimates (data 

not shown). Parameters estimates, when scaled on BW, are reported for the median BW, i.e. 2170 g.  

Model validation and simulation: The final model stability was assessed by the bootstrap method 

using the PsNToolkit [25] (version 3.5.3, Uppsala, Sweden). Mean parameter values with their 95% 

confidence interval (95% CI) estimated from 2000 re-sampled data sets were compared with the 

original model estimations. In addition, prediction-corrected visual predictive checks (pcVPC) [26] 

were performed with PsN-Toolkit and Xpose4 [27] (version 4.3.5, Uppsala, Sweden) by simulations 

based on the final PK estimates using 1000 individuals. Mean prediction corrected concentrations 
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with their 95% percentile interval (95% PI) at each time point were retrieved. Eventually, an 

independent set of 71 premature and term newborns recruited through TDM between January 

2013 and April 2013 was employed for external model validation. From this external dataset, two 

individuals were excluded for an inconsistent dosing record. Population and individual post hoc 

concentrations were derived from the final model to assess the accuracy and the precision by 

means of the mean prediction error (MPE) and the root mean squared error (RMSE) [28], using log-

transformed concentrations. Goodness-of-fit plots of population and individual predictions 

obtained in the final model vs. the observations were generated using R (version 2.15.1, R 

Development Core Team, Foundation for Statistical Computing, Vienna, Austria). Finally, observed 

and simulated concentrations were also compared by the normalized prediction distribution error 

(NPDE) method where each observation was simulated 3000 times (supporting information Figure 

3.SI). Average concentration−time profiles, with their 90% prediction interval (90% PI), were 

simulated for five representative patients (with a GA of 26, 30, 34, 37 and 40 weeks and a BW of 

890, 1080, 2120, 2950 and 3580 g respectively, chosen as illustrative from the original dataset) 

using different dosage regimens, without dopamine co-administration. Dosage regimens evaluated 

were any combination of 4mg kg−1, 4.5 mg kg−1 or 5mg kg−1 any 24 h, 36 h or 48 h. 

Comparison of dosage adjustment methods 

The achievement of target concentrations was evaluated by comparing (i) dosing regimen 

recommendations based on the previously presented simulations and (ii) by TDM using the 

classical linear regression [23]. The external validation dataset was used for the comparison 

between both approaches. Peak and trough concentrations were predicted based on our final 

model (i) with dosing regimens adjusted for GA and BW according to our recommendations and (ii) 

based on individual dosage regimens derived from the linear regression method in the frame of 

TDM. Each set of patients was simulated 1000 times per method. For each set of patients simulated, 



 
111 Population Pharmacokinetics 

the proportion of subjects meeting concentration targets at steady-state was retrieved. The mean 

with the 95% CI of the proportions were calculated. 

III.1.3. Results 

Gentamicin concentration data were collected from 1449 neonates, including 994 preterm (median 

gestational age 32 2/7 weeks, range 24 2/7–36 5/7 weeks) and 455 term newborns, representing a 

total of 1449 neonates who provided 3039 concentration measurements. A summary of the 

patients’ characteristics for the model building and validation datasets is presented in Table 3.1.1. 

Peak concentrations represented 42% of samples (measured between 0.5 and 1.5 h after the start 

of infusion), while 40% were sampled about 12 h after the first dose (between 11.5 and 12.5 h after 

the start of infusion). Most drug measurements (86%) were performed after the first gentamicin 

dose and only 3% of concentrations were sampled beyond 72 h of treatment. The majority of the 

measurements (98%) were performed within the first week of life. Gentamicin concentration 

measurements ranged between 0.5 and 22.1 mg l−1 (one subject had a concentration of 29 mg l−1 

because he received accidentally 10 times the usual prescribed dose). 

Table 3.1.1. Characteristics of the patients at treatment initiation 

 
Model-building set 

N = 1449 

External validation set 

N =  69 

BW (g) 2170  (440-5510) 2060  (600-4200) 

GA (wk) 34  (24-42) 34  (24-42) 

PNA (d) 1 (0-94) 1  (0-34) 

PMA (wk) 34.4  (24.2-42.4) 34.2  (24.2-42.1) 

Male 834  (57.5%) 38  (53.5%) 

IV 301  (20.8%) 21  (30.4%) 

NIV 861  (59.4%) 51  (73.9%) 

PDA 153  (10.6%)  9  (13.0%) 

Furosemide 5  (0.3%) 0  (0%) 

Dopamine 136  (9.4%) 1  (1.4%) 

Indomethacin 27  (1.9%) 2  (2.7%) 

Amikacin 2  (0.1%) 0  (0%) 

Median (range) or count (percent). BW = Body Weight; GA = Gestational Age; PNA 

= Postnatal Age; PMA = Postmenstrual Age; IV = Invasive Ventilation; NIV = Non 

Invasive Ventilation; PDA = Patent Ductus Arteriosus 
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Base model 

A two compartment model parameterized in terms of clearance (CL), inter-compartmental CL (Q), 

volume of distribution of the central compartment (Vc) and peripheral volume of distribution (Vp) 

best described the data (ΔOF from the one compartment model was −280.0, P < 0.001). In addition 

to CL, an improvement of the fit was observed while including BSV on Vc (ΔOF = −252.8, P < 0.001) 

and a correlation of 87% was estimated between CL and Vc (ΔOF = −186.8, P < 0.001). Intrapatient 

variability was best described by a combined additive and proportional residual error model. The 

final base population parameters with their BSV were a CL of 0.087 l h−1 (CV 65%), a Vc of 0.825 l 

(CV 45%), a Q of 0.185 l h−1 and a Vp of 0.714 l. Additive and proportional residual error were 0.89 

mg l−1 and 18%, respectively. 

Covariate model 

Figure 3.1.1 summarizes the model-building steps performed for the covariate analysis. The 

assignment of BW on CL, Vc, Q and Vp, following an allometric equation with a power of 0.75 on CL 

and Q and 1 on the volume parameters, markedly improved the description of the data (ΔOF = 

−3391.5, P < 0.001). The comparison of a one compartment allometric with a two compartment 

allometric model for BW showed that the latter provided a better fit of the data (supporting 

information Table 3.SI). The use of a power function of 0.66 for BW on CL parameters was also 

investigated [29] but was significantly worse than the model with a power of 0.75 (ΔOF = 99.8, P < 

0.001). Estimates of CL and Q increased by 68% whilst Vc and Vp on BW doubling increased by 100 

%. This explained 45% of the intervariability in CL and 55% in Vc. Owing to the very large effect of 

BW on these parameters, this variable was kept in the model for further covariates searches. The 

sequential addition of GA, PNA and PMA using a linear function on CL and Vc resulted in a better 

description of the data. PMA was the most important covariate on CL (ΔOF = −658.1, P < 0.001) and 

on Vc (ΔOF = −214.6, P < 0.001). Since PMA is the sum of GA and PNA, we searched which 

combination of these latter variables provided the best description of the data. Comparing PMA 
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with GA + PNA on CL showed a significant drop in the OF value (ΔOF = −750.8 P < 0.001) in favour 

of the model with the two distinct covariates GA and PNA. PMA was slightly more significant than 

GA on Vc (ΔOF = −206.1 for PMA compared with ΔOF = −201.8 for GA, P < 0.001 with the AIC 

difference between the two models 4.3 points in favour of PMA). However, PNA did not show any 

influence on Vc in the univariate analysis 

(ΔOF = −1.9, P = 0.16). Following the 

parsimony principle, GA alone was preferred 

to PMA as a covariate on Vc. Eventually, PMA 

was also retested in the final model in 

replacement of GA, confirming that it was not 

a better predictor than GA (ΔOF = 0.14, P = 

0.70, and AIC was 1964 for both models). CL 

was reduced by 12% and 18% by co-

administration of dopamine (ΔOF = −11.3, P < 

0.001) and indomethacin (ΔOF = −7.8, P = 

0.005), respectively. Although not statistically 

significant, furosemide co-administration 

reduced CL by 34% (ΔOF=−6.3, P = 0.012). No 

other covariates showed any significant effect 

on gentamicin disposition (ΔOF > −6.1, P > 

0.01).  

Model validation and simulation 

The parameter estimates of the final population PK model, except for indomethacin, remained 

within the bootstrap 95% CI and differed by less than 9% from the median parameters obtained 

with the bootstrap analysis, suggesting that the model was acceptable. Since the indomethacin 

Figure 3.1.1. Major steps of model building 
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coefficient 95% CI included 0, it was omitted from the final model. It appeared that it did not affect 

the model as the relative difference in parameter estimates between the model with and without 

indomethacin was less than 3% (data not shown). The structural and the final model parameter 

estimates as well as the bootstrap are presented in Table 3.1.2. The results of pcVPC supported the 

predictive performance of the model and are presented in Figure 3.1.2. Goodness-of-fit plots are 

presented in Figure 3.1.3. The external validation showed a small bias of −3% (95% CI −1, −4%) in 

the individual predictions, with an imprecision of 12% (supporting information Figure 3.SII). A 

similar bias of −6% (95% CI −3, −9%) was calculated for population predictions, with an 

imprecision of 22%. Only one patient received dopamine among the newborns of the validation 

dataset. Average concentration−time profiles for the different GAs and dosing schedules are 

presented in Figure 3.1.4. These results 

confirm that higher doses and longer dosage 

intervals are needed in very preterm 

newborns compared with term infants to reach 

target concentrations (Cmin ≤ 1mg l−1 and 

Cmax ≈ 8mg l−1). The dosing recommendations 

that came forth from these simulations were 

identical to those proposed by reference drug 

guidelines used in neonatology, namely 5mg 

kg−1 every 48 h for GA ≤ 29 weeks, 4.5 mg kg−1 

every 36 h for 30 ≤ GA ≤ 34 and 4mg kg−1 every 

24 h in the first days of life [30]. 

  

Figure 3.1.2. Prediction-corrected visual predictive 

check of the final model with gentamicin prediction-

corrected concentrations (circles) and population 

prediction (solid line) with the corresponding 95% 

prediction interval (dotted lines). Semi-transparent 

grey fields represent the model-based percentile 

confidence interval 
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Comparison of dosage adjustment methods 

Table 3.1.3 presents the proportion of subjects reaching target trough and peak concentrations at 

steady state, according to both methods (i.e. the guidelines and the two point linear regression). 

One subject was excluded because the C12h concentration was missing and the dosage adjustment 

using the two points approach could not be performed. A broader range of target concentrations 

was also considered in this comparison to account for different thresholds proposed in the 

Table 3.1.2. Parameter estimation of structural and final pharmacokinetic models, with final model associated bootstraps 

 Structural model Final model Final model bootstrap (n=2000 samples) 

Parameters Estimates SE (%) Estimates** SE (%) Estimates** CI (2.5%) CI (97.5%) 

CL (L/h) 0.087 1 a 0.089 1a 0.089 0.084 0.098 

θCLBW   0.75 - 0.75 - - 

θCLGA   1.870 3 a 1.879 1.638 2.010 

θCLPNA   0.054 6 a 0.054 0.024 0.082 

θCLDOPA   -0.120 22 a -0.118 -0.198 -0.034 

Vc (L)  0.825 1 a 0.908 2 a 0.895 0.481 0.950 

θVcBW   1 - 1 - - 

θVcGA   -0.922 8 a -0.940 -2.276 -0.816 

Q (L/h)  0.185 9 a 0.157 7 a 0.172 0.108 0.737 

θQBW   0.75 - 0.75 - - 

Vp (L) 0.714 16 a 0.560 4 a 0.580 0.472 0.678 

θVpBW   1 - 1 - - 

BSV CL (%) 65 5 b 28 3 b 28 22 30 

BSV Vc (%) 45 5 b 18 1 b 19 12 39 

Correlation CL-Vc (%)   87 3* 86 54 111 

Additive residual error (mg/L) 0.89 14 0.10 24 a 0.10 0.03 0.19 

Proportional residual error (%) 18 11 18 1 a 18 16 19 

a Standard errors of the estimates (SE),defined as SE/estimate and expressed as percentages.  b Standard errors of the coefficient of 

variation, taken as                   and expressed as percentage. * Standard error of the correlation estimate directly retrieved 

from the NONMEM® output file and expressed as percentages. CL = Clearance; Vc = Central volume of distribution; BW = Body weight; 

GA = Gestational age; PNA = Postnatal; DOPA = Dopamine; Q = Intercompartmental clearance; Vp = Peripheral volume of distribution; 

BSV = Between subject variability 

TVCL         
  

    
 
    

                
     

  
                    

     

 
                  

TVVc      
  

  

    
 
 

               
     

  
   

** Value estimates for the median body weight 2.170 kg from the current study 
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literature (trough concentration <2mg l−1 and peak concentration between 5–12 mg l−1 [31, 32]). 

This analysis reveals that the application of guidelines would lead to similar, if not better results in 

terms of target achievement of peak and trough concentrations than the linear regression based on 

a systematic TDM. 

 

 

 

 

Figure 3.1.3. Goodness-of-fit plots of observations (DV) versus the 

population (PRED, left up panel) and individual predictions (IPRED, right 

up panel), absolute individual weighted residuals (|IWRES|) versus 

IPRED (left down panel) and conditional weighted residuals (CWRES) 

versus Time after dose (right down panel). The solid line represents the 

line of identity while the dashed line represents the smoothing line 
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Table 3.1.3. Model-based simulated proportion of patients reaching target concentration according to dosing adjustment method * 

GA 

(weeks) 
BW (g) 

< 1 mg/l 

(% [CI95%]) 

< 2 mg/l 

(% [CI95%]) 

 > 6 mg/l 

(% [CI95%]) 

> 8 mg/l 

(% [CI95%]) 

> 10 mg/l 

(% [CI95%]) 

Guidelines Linear 
regression 

Guidelines Linear 
regression 

 Guidelines Linear 
regression 

Guidelines Linear 
regression 

Guidelines Linear 
regression 

24-42  

  n=68 

600-4200 64  

[52-73] 

42  

[32-52] 

94  

[89-99] 

82  

[73-89] 

 93 

[86-99] 

83  

[75-91] 

69 

[58-79] 

55  

[45-65] 

37  

[26-49] 

28  

[18-38] 

GA = Gestational age; BW = Body weight 

* Guidelines were as follows: 

GA ≤ 29 weeks 5 mg/kg  every 48 hours 

30 ≤ GA ≤ 34 weeks 4.5 mg/kg  every 36 hours 

GA ≥ 35 weeks 4 mg/kg  every 24 hours 

* Linear regression provides an individualized dosing regimen based on a two-points method 

Results are based on a small group of 68 patients that were simulated 1000 times each according to both methods of dosing adjustment 
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Figure 4. Model-based predicted 

concentration-time profiles (solid line) 

and the 90% prediction interval (dotted 

lines) for five gestational ages and body 

weights using the dosage regimen 

allowing target concentration to be 

reached (Cmin ≤ 1 mg/l and Cmax   8mg/l). 

GA = Gestational Age, BW = Body Weight 
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III.1.4. Discussion 

To our knowledge, this is the largest study evaluating the population PK of gentamicin in a cohort of 

unselected neonates covering a wide range of body weight and gestational age. The PK of 

gentamicin has been previously described using one [33-46] two [47-50] and three [51, 52] 

exponential disposition terms, which probably illustrate the deep compartments and tissue 

accumulation of gentamicin. Our PK estimates of CL and Vc are in good accordance with previously 

published studies in a similar population [34, 35, 37, 38, 43, 46]. The half-life of the terminal phase 

was estimated to be 12.5 h, much lower than the values derived by others based on three 

compartment models (87 to 173 h [48], 27 to 693 h [49], 94 h [51] in adults and 425 h [52] in 

neonates). This discrepancy is most probably related to differences in study design, with short 

treatment courses and lack of gentamicin concentration measurements beyond 72 h, preventing 

adequate characterization of the slowest distribution component of the drug in peripheral tissues 

and thus, of a third exponential term. Description of gentamicin PK confirmed that the primary 

factors influencing newborns’ exposure are size and age (BW, GA and PNA) [53]. Gentamicin is a 

hydrophilic drug that is rapidly and predominantly distributed into extracellular fluid. Extracellular 

fluid represents approximately 65% of BW at 35 weeks of gestation and falls to 40% at term [16]. 

At the same time, fat mass and intracellular water increase. Decrease in body water also continues 

after birth and extracellular fluid becomes closely related to BW [54], supporting our observations 

of an effect of body weight on Vc. Gentamicin CL increases with age. Because renal maturation 

progresses before birth [18], it was advocated that PMA would be a better predictor than PNA [53, 

55, 56]. In the present study, PMA was found to be a good predictor of gentamicin CL, but the use of 

GA and PNA described gentamicin disposition better than PMA alone. Our results are in excellent 

agreement with the study of Nielsen et al. [52], who found an influence of both GA and PNA on CL 

and GA on Vc. Dopamine was found to be a relevant factor associated with a 12% decrease in CL. 

The impact of dopamine on GFR in neonates is not well documented [57-59] and, has never been 

observed for gentamicin in others studies. Only a few patients were treated with dopamine (9%). 

Its influence on gentamicin elimination appears small and of limited clinical significance in this 
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analysis. It might principally reflect cardiovascular instability in critically ill newborns. Several 

studies have shown the potential effect of ibuprofen and indomethacin on glomerular filtration 

reflected by a reduction of renal excretion of drugs such as aminoglycosides [15, 42, 60-62]. Our 

results also suggest an influence of indomethacin on gentamicin CL, although this effect was not 

validated. The small number of patients (n = 27) might have limited the power to detect true effect. 

It is also possible that confounding factors were reflected this way, since those newborns had a very 

low body weight, (mean 852 g, range 440–1390 g), as well as haemodynamically significant PDA, 

which is associated with poor renal perfusion [63]. Even so, PDA had no significant impact on CL 

per se in this analysis. Furosemide was not found to significantly reduce gentamicin CL, as opposed 

to one study which suggested an increase in gentamicin concentrations as a result of furosemide co-

administration [64]. Only five patients received it, four of whom were on concomitant dopamine 

treatment. This might have limited the possibility to detect an independent effect of furosemide. In 

addition, some studies found a relation between respiratory disorders or invasive and non-invasive 

ventilation with gentamicin CL or V [34, 65, 66]. No influence of respiratory support on gentamicin 

kinetics was observed in our study. Several limitations of this analysis should be acknowledged, in 

particular the use of routine TDM data involving for the most part only two concentration 

measurements collected after the first dose, thus limiting the possibility to characterize deep 

compartment kinetics. In addition, due to the retrospective design, errors coming from inaccurate 

times or dosage recording could not be systematically traced and corrected. Model-based 

simulations suggest that most infants born at a GA above 34 weeks are expected to reach target 

concentrations (peak above 8mg l−1 and Cmin below 1mg l−1 [67, 68]) with a standard dosage of 

4mg kg−1 once daily. Preterm neonates require longer dosing intervals, up to 48 h and extremely 

preterm neonates (below 28 weeks of GA) will also require higher doses of 5mg kg−1. These 

observations are in accordance with dosing recommendations issued since the mid-1990s [30, 69] 

that advocate high doses and extended intervals to reach sufficient peak concentrations whilst 

minimizing toxicity. Proposed dosing regimens were designed assuming fixed values of 

concentration thresholds for effect and toxicity, in accordance with numerous studies 
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demonstrating the importance of a high ratio Cmax: MIC for aminoglycosides. One study suggested 

that the area under the curve (AUC) might be of clinical importance for extreme preterm newborns 

[70]. Target concentrations can also be challenged, as adaptive resistance can arise within the first 

hours of therapy, probably through a down regulation of the active transport of gentamicin into the 

bacteria. The use of extended interval dosing seems thus preferable to improve clinical efficacy, as it 

allows adaptive resistance to resolve while taking advantage of the post-antibiotic effect [31, 70, 

71]. Considering that a priori dosage regimen recommendations [30] appear appropriate to ensure 

effective and safe concentration exposure, and that most gentamicin treatments will be stopped 

after 48 h, TDM has a limited role at treatment initiation in this population. However, the use of 

TDM to optimize target achievement will still be needed for some patients, since a large variability 

in drug exposure remains after adjustment for age and body weight, and a proportion of patients 

will still fail to reach adequate PK targets. This should be particularly considered for those patients 

receiving prolonged treatment. In conclusion gentamicin kinetics in newborns are very variable and 

mostly dependent on growth status (represented by BW) and maturation (represented by GA and 

PNA). The influence of comedications, such as dopamine, as direct or indirect factors influencing 

renal function should be confirmed. Recent dosing recommendations showed a benefit in terms of 

target concentration achievement and reduction of TDM need at treatment initiation. Our model 

will serve to elaborate a Bayesian tool for dosage individualization based on a single measurement 

[72], that could be ideally suited for dosage individualization of neonates at particular risk of sub-

optimal dosing during prolonged therapy.  
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Figure 3.SI. Distribution of the normalized prediction distribution 

error (NPDE) method. (a) Histograms of the distribution of the 

NPDE and the solid line representing the normal distribution. 

Distribution of the NPDE (b) versus time and (c) versus predicted 

concentrations. 

(a) 

(b) 

(c) 
(c) 
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Supplementary Material 2 

 

Figure 3.SII. Individual gentamicin predicted 

concentrations versus observed concentrations (circles) 

with the smoothed relationship (dotted line) from the 

final model from the external validation dataset. 
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Supplementary Material 3 

Table 3.SI. Parameter estimation of one-compartment allometric model and two-compartment allometric 

model 

 One-compartment 

allometric model 

Two-compartment 

allometric model 

Parameters Estimates ** SE (%) Estimates ** SE (%) 

CL (L/h) 0.100 1 a 0.089 1 a 

 CLBW 0.75 - 0.75 - 

Vc (L)  1.041 1 a 0.547 2 a 

 VcBW 1 - 1 - 

Q (L/h)    0.216 11 a 

 QBW 0.75 - 0.75 - 

Vp (L)   0.635 8 a 

 VpBW 1 - 1 - 

BSV CL (%) 25 8 b 28 4 b 

BSV Vc (%) 12 15 b 11 24 b 

Additive residual error (mg/L) 0.52 19 a 0.26 16 a 

Proportional residual error (%) 17 7 a 19 5 a 

a Standard errors of the estimates (SE),defined as SE/estimate and expressed as percentages.  b Standard 

errors of the coefficient of variation, taken as                   and expressed as percentage. CL = 

Clearance; Vc = Central volume of distribution; BW = Body weight; Q = Intercompartmental clearance; Vp = 

Peripheral volume of distribution; IIV = Interindividual variability. ** Value estimates for the median body 

weight 2.170 kg from the current study 
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III.2.1. Objective 

The association between gentamicin treatment and development of sensorineural hearing loss 

(SNHL) is controversial in newborns. Early studies have found an association between 

aminoglycoside treatment and SNHL in newborn infants [1, 2]. However, since the early 1990s, a 

number of studies have suggested that gentamicin administered in controlled therapeutic doses is 

not associated with ototoxicity in newborn infants [3-9]. Gentamicin is still a first-line treatment for 

infection suspicion: for instance, about 3000 newborns received it between 2000 and 2010 in the 

service of neonatology of Lausanne. A systematic Therapeutic Drug Monitoring (TDM) was 

performed after first dose administration. Safety use appears as a public health issue. Our main 

contribution was to evaluate the role of gentamicin exposure in SNHL in preterm neonates. 

III.2.2. Method 

Infants that presented a SNHL during the first 5 years of life, born between 1993 and 2010 at a 

gestational age < 32 weeks and/or with a birth weight < 1500g and hospitalized at Lausanne 

University Hospital during their neonatal period were identified. For each case, two controls 

matched for gender, gestational age, birth weight, and date of birth were retrieved. 

Gentamicin administration and TDM measurements were recovered from medical records. 

Different parameters reflecting gentamicin exposure were determined. Cumulative dose, 

cumulative dose per kg were then calculated. Based on the previously described population 

pharmacokinetic (PK) model, gentamicin individual PK parameters were retrieved by maximum a 

posteriori Bayesian estimation. Calculated parameters were: cumulative area under the curve 

(AUC), maximum predicted trough concentration (Ctrough) during treatment, clearance per kg with:  

AUC =                   

Additionally, weighted AUC for a saturable accumulation in the inner ear was also calculated, 

according to Michaelis constant (KM) defined as 0.5, 1 and 2 mg/l, as follow: 
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AUCear =  
                

                
    

Possible contribution of gentamicin exposure 

was analysed by logistic regression. Odds ratio 

and p-value were generated based on the z score.  

III.2.3. Results 

Twenty-five infants diagnosed with a SNHL were 

identified for the period of search. The 

proportion of patient treated with gentamicin 

was 76% in the study group and 70% in the 

control group. Patients’ characteristics are 

shown in table 3.2.1. Individual concentrations 

predicted by the population PK model were 

consistent with observations as shown in figure 

3.2.1.  

Table 3.2.1. Patients characteristics 

 Study group Control group p value 

Total patients 

Count (n) 25 50 NS 

Female/Male, n (%) 12 (48) / 13 (52) 24 (48) / 26 (52) NS 

Median gestational age, weeks [range] 28  [24-32] 28  [25-33] NS 

Median birth weight, grams [range] 780  [475 - 2030] 835  [510 - 2060] NS 

Patients that received gentamicin 

Count (n) (%) 19 (76) 35 (70) NS 

Female/Male, n (%) 11 (56) / 8 (44) 13 (56) / 22 (44) NS 

Median gestational age, weeks [range] 28  [24-32] 27  [25-31] NS 

Median birth weight, grams [range] 780  [550-1670] 750  [510 - 1670] NS 

Figure 3.2.1. Observed concentrations versus 
predicted concentrations. Points: control group, 
cross: study group 
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Cumulative doses and individual pharmacokinetic parameters are presented in Table 3.2.2, and a 

visual comparison per group is proposed in figure 3.2.2.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The univariate analysis did not show any significant difference between two groups, neither in 

cumulative dose nor in the derived PK parameters.  Finally, effect of a saturable accumulation in the 

inner ear at a concentration of 0.5 mg/l (AUC0.5), 1 mg/l (AUC1) and 2 mg/l (AUC2) did not show any 

difference between the two groups. Statistics are presented in table 3.2.2. 

  

Figure 3.2.2. Boxplots of cumulative dose and derived PK parameters of 
gentamicin exposure per group 
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Table 3.2.2. Descriptors of gentamicin exposure 

Parameters Study group Control group Odds ratio p value 

Cumulative dose (mg) 10  [0 - 33] 8 [0 - 118] 0.99 0.6 

Cumulative dose per kg (mg/kg) 12  [0 - 30] 10  [0 – 74] <0.01 0.7 

Cumulative AUC (mg/l.h) 386  [45 - 966] 373  [63 - 888] 1.00 0.8 

Clearance per kg (l/h/kg) 0.037 [0.022 – 0.054]  0.036 [0.026 – 0.120] <0.01 0.4 

Maximum trough concentration (mg/l) 1.5  [1 – 2.6] 1.6  [0.9 – 2.1] 2.36 0.2 

Cumulative AUC0.5  (mg/l.h) 57  [13 - 154] 59  [17 - 121] 1.00 0.9 

Cumulative AUC1  (mg/l.h) 95  [19 - 255] 98  [25 -201] 1.00 0.9 

Cumulative AUC2  (mg/l.h) 148  [25 - 391] 151  [35 - 314] 1.00 0.9 

 

One may notice two higher cumulative doses in the control group due to two patients that received 

a second subsequent treatment of gentamicin. Analysis was also performed ignoring these two 

individuals to assess if they could have influenced our results. Again, no statistical difference was 

observed between the two groups (data not shown). Consequently, no further analyses were 

undertaken. 

III.2.4. Conclusion 

While multiple risk factors have been identified in SNHL [10-18], the association with gentamicin 

exposure was not confirmed in our study. 
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ABSTRACT 

Imipenem is administered to critically ill neonates with severe infections after failure of first lines 

antibiotic treatments. The objectives of our study was to evaluate imipenem pharmacokinetic (PK) 

in a cohort of neonates treated in the Neonatal Intensive Care Unit of the Lausanne University 

Hospital in order to characterize the relationship between imipenem disposition and patients’ 

characteristics. PK data were analyzed using non linear mixed-effect modeling. Infants who had at 

least one imipenem concentration measurement between 2002 and 2013 were retrieved. A total of 

144 plasma samples from 68 neonates was collected. Infants were predominantly preterm 

newborns, with a median gestational age of 27 weeks (range: 24 – 41 weeks) and a median 

postnatal age of 21 days (range: 2 – 153 days). A two-compartment model best characterized 

imipenem disposition Population PK parameters estimates for clearance, central volume of 

distribution, intercompartmental clearance, peripheral volume of distribution were 0.27 L/h/kg0.75, 

0.57 L/h, 0.05 L/h/kg0.75, 0.18 L/h. Actual body weight exhibited the greatest impact on PK 

parameters, followed by age (gestational age and postnatal age) and serum creatinine on clearance. 

It explains 19%, 9%, 14% and 9% of the interindividual variability in clearance respectively. The 

elimination half-life was estimated to 3.3 hours for a typical patient.  

Imipenem is characterized by an important variability, and dosage adjustment according to body 

weight and age is recommended in premature and septic neonates. Further work will assess 

adequate imipenem dosing regimen for this population.  
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III.3.1. Introduction 

Imipenem is a broad-spectrum carbapenem antibiotic, active against a wide range of Gram-positive, 

Gram negative and anaerobic organisms. Carbapenems are used in severe and complicated 

bacterial infections that are encountered in neonatal intensive care units [1-4]. The drug is 

distributed into tissues compartment [1, 5] and protein binding is only about 20%. [6, 7]. Imipenem 

is mostly eliminated by renal pathway, essentially by glomerular filtration and to some extent by 

tubular secretion. About 25% of a dose is eliminated by non renal pathway. Because imipenem is 

rapidly hydrolysed by a brush border dehydropeptidase I of the renal proximal tube, it is 

administered in combination with cilastatin, a dehydropeptidase I inhibitor, to increase urinary 

recovery and plasma concentration [8, 9].  

It has been well described that developmental physiology, related to age and size dependant 

factors, [10, 11] have an impact on drug absorption, disposition, metabolism and excretion in 

neonates and children. Such considerations are important for the safe and effective management of 

imipenem. Seizure, a serious side effect of imipenem, has been previously associated with 

inadequate dosing adjustment in adult patients with renal impairment and pre-existing 

neurological disorder [12, 13]. A correlation between high imipenem concentration and seizure 

apparition has also been suggested in a case report of an adult patient with mild renal dysfunction 

[14]. In terms of efficacy, beta-lactam antibiotics, including carbapenems, requires that free-drug 

concentrations stay above the minimum inhibitory concentration (MIC) for at least 40% of the 

dosing interval [1, 3, 15], but 50 – 60% is sometimes preferred in neonates due to the immaturity of 

their immunity [16]. Although imipenem dosing is well established in adults, in patients with 

impaired renal function, in geriatric patients and in infants ≥ 3 months of age [17], only few studies 

have evaluated the pharmacokinetics (PK) of imipenem in neonates [18-23]. In the present work, 

we aimed at characterizing imipenem PK in a larger cohort of neonates and to define clinical and 
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demographic factors that might influence the disposition of this drug in this fragile population of 

premature and severely ill infants.  

III.3.2. Method 

Study population 

All neonates admitted in the Service of Neonatology of the Lausanne University Hospital that had at 

least one imipenem concentration measurement within the framework of a routine therapeutic 

drug monitoring (TDM) program were retrieved between 2002 and 2013 from the laboratory and 

medical charts. Imipenem co-formulated with cilastatin (Tienam®, MSD Merck Sharp & Dohme AG, 

Kenilworth, USA) was administered intravenously over a 30 min infusion. The conventional initial 

dosing regimen was 15 to 20 mg/kg every 8 to 24 hours according to birth weight and postnatal 

age. Individualized dosage regimen could be applied for maintenance dose, according to imipenem 

concentration measurements. 

For each patient, time of sampling, time of last dose preceding blood sampling and dosing history 

was collected. Blood samples were collected at peak (29%) with sampling made between 1 and 2 

hours after the start of infusion and at trough (71%) between 5 to 24 hours after the start of 

infusion. The median number of samples per patient was 2 (range 1 - 8) for a median number of 

occasion of 1 (range 1 - 4). One patient was removed because of missing information on dosing time 

and two concentrations were discarded due to suspected sampling bias. The following clinical and 

demographic characteristics were collected: sex, birth body weight (bBW), body weight at the time 

of blood sampling (BW), birth height (bHT), height at the time of blood sampling (HT), gestational 

age (GA), postnatal age (PNA), creatininemia (CRT), concomitant treatment with furosemide, 

spironolactone, hydrochlorothiazide, vancomycine, metronidazole and erythromycin. If CRT or HT 

were not available on the day of sampling, they were calculated by linear interpolation between 

two closest known adjacent values of PK sampling. For 3 patients, interpolation was not possible 

http://www.compendium.ch/comp/mnr/3330/fr
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and the CRT value of the previous day was used. For 7 patients, interpolation was not possible to 

obtain HT. Since BW and HT were highly correlated (R2 = 0.88), we derived HT based on the linear 

regression model of BW and HT. This retrospective study was approved by the ethics committee of 

the Faculty of Biology and Medicine of the University of Lausanne.  

Bioanalytical Assays 

From 2002 until March 2010, free fraction of imipenem plasma concentrations was determined by 

high-performance liquid chromatography (HPLC). The calibration curves were linear in the range of 

0.25 to 200 mg/L and coefficient of variation (CV) was < 5%. After March 2010, total plasma 

imipenem concentrations were determined by liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS). The calibration curve was linear in the range of 0.1 to 100 mg/L and the 

method was precise (inter-day CV < 7%) and accurate (biais <12%). 

Plasma creatinine measurements were performed using the modified Jaffe reaction on a Cobas 

8000 analyser (Roche Diagnostics, Rotkreuz, Switzerland). The LOQ was 15 μmol/L and the CV was 

3.0%.  

Pharmacokinetic modeling 

Base model 

The population PK analysis was performed using a nonlinear mixed effect modeling approach with 

NONMEM® (version 7.1.0, ICON Development Solutions, Ellicott City, MD, USA). Free and total 

plasma imipenem concentration were analysed together considering that imipenem is little bound 

to proteins, that total serum concentration protein is low and binding affinity is reduced in 

neonates [24] and from the observation that free and total plasma concentrations were within the 

same range. Analytical method was also evaluated as covariate in the model. Additionally stepwise 

procedure was used to identify the model that best fitted the data. One-, two- and three-

compartment model were tested with linear and nonlinear elimination. Inter-individual variability 
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was modeled on the PK parameters assuming exponential errors following a log-normal 

distribution. Additive, proportional and combined proportional and additive error model were 

tested to describe the intra-individual (residual) variability.  

Covariate model 

The correlation between individual PK parameter estimates and the available covariates was first 

explored graphically. Potentially influencing covariates were then included in the model. The 

rationale for covariate modeling was elaborated based on developmental pharmacokinetics [24, 25] 

and include size, age in the initial model developments.  

Since BW is obtained more reliably and easily than HT [26, 27], and considering the good 

correlation between both parameters, BW was used as a proxy of HT. Its influence on the PK 

parameters was quantified using an allometric power model defined as      B 
P  , where    is 

the typical value of the parameter P, and PWR was set to 0.75 for clearance parameters (clearance 

and intercompartmental clearance) and 1 for volume parameters (central and peripheral volume of 

distributions). Other covariates: GA, PNA, postmenstrual age (PMA) defined as GA plus PNA in 

weeks, CRT, concomitant treatment (furosemide, spironolactone, hydrochlorothiazide, 

vancomycine, metronidazole and erythromycin), gender and analytical method were included in 

the model following a sequential forward selection and backward elimination. Continuous 

covariates were tested for potential relationship using linear, exponential and power model, except 

for CRT for which only a power function of CRT was used to quantify its influence on clearance (CL). 

Postnatal age was also tested using a piece-wise function on clearance CL and PMA was tested as 

well using a Hill equation [28, 29]. When more than one covariate describing totally or partially the 

same age effect was included (GA and PNA versus PMA), the second age variable was not 

investigated. Concomitant treatment, gender and analytical method were evaluated using a 

categorical model.  
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Parameter Estimation and Model Selection 

Model estimation was performed using the first-order conditional estimation with interaction 

(FOCE-I). Imipenem concentration measurements below the LOQ were handled with the M3 

likelihood based approach described by Ahn et al [30]. As a goodness-of-fit statistic, NONMEM® 

uses an objective function. The likelihood ratio test, based on the difference in objective function 

value (ΔOF) was used to compare two models. Since -2 log likelihood, approximate χ2 distribution, 

it was considered statistically significant if it exceeded 3.8 (p<0.05) and 6.6 (p<0.01) points, for one 

additional parameter during model-building and backward deletion procedures, respectively. 

Model assessment was also based on goodness-of-fit plots along with precision of the PK 

parameters estimations, and the reduction of inter- and intra- individual variability of the 

population PK parameters. Apart from BW and age that were initially introduced in the model, 

covariates were retained if they were judged clinically significant based on an effect of at least 20% 

and on the importance of the reduction in inter-individual and/or residual variability. Besides, 

shrinkage was examined. A sensitivity analysis was performed for patients with absolute values for 

conditional weighted residuals (CWRES) greater than 3 to test for potential bias in parameter 

estimation and in covariate exploration. Because creatinine often reflects maternal creatinine 

during the first days of life, another sensitivity analysis was performed ignoring patients that had 

imipenem concentration measurements during the first 3 days after birth [31]. 

Evaluation method 

The final model stability was assessed by the bootstrap method using the PsN-Toolkit [32] (version 

3.5.3, Uppsala, Sweden). The median and the 95% confidence interval (CI95%) estimated from 

2000 re-sampled data sets were compared to the original model estimations. In addition, 

prediction-corrected visual predictive checks (pcVPC) [33] were performed with PsN-Toolkit and 

Xpose4 [34] (version 4.3.5, Uppsala, Sweden) by simulations based on the final pharmacokinetic 

estimates using 2000 individuals. To perform the pcVPC, imipenem below the LOQ were recorded 
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as half of the LOQ. Mean prediction-corrected concentrations with their 95% percentile interval 

(PI95%) at each time point were retrieved. Plot was generated using R (version 2.15.1, R 

Development Core Team, Foundation for Statistical Computing, Vienna, Austria). 

III.3.3. Results 

Study data 

A total of 144 imipenem plasma concentrations were obtained from 68 babies of whom 59 (87%) 

were preterm babies (median gestational age 26.7 weeks, range 24.3 – 35.6 weeks; median birth 

body weight 800 g, range 500 – 2500 g) and 9 (13%) were term newborns (median gestational age 

38.7 weeks, range 37.1 – 41.4 weeks; median birth body weight 3540 g, range 2300 – 3720 g). 

Plasma concentrations were comprised between 0.1 and 57.9 ng/mL. Data below the LOQ 

constituted 15% of the samples. Most patients were critically ill and previously treated with various 

other antibiotics before switching to imipenem and therefore mean postnatal age at first 

concentration measurement was 21 days. Characteristics of the study data are presented in Table 

3.3.1. 

Base model 

The data were best described by a two-compartment open model parameterized in terms of 

clearance (CL), inter-compartmental clearance (Q), volume of distribution of the central 

compartment (Vc) and peripheral volume of distribution (Vp) (ΔOF from the one-compartment 

model was -38.0, p<0.001).  An interindividual variability was assigned to CL and no further 

variability on any other parameters could be detected (ΔOF<-0.9, p>0.3). Intrapatient variability 

was best described by a proportional residual error model. The final base population parameters 

with interindividual variability (CV%) were a CL of 0.311 L/h (43%), a Vc of 0.519 L, a Q of 0.077 

L/h and a Vp of 0.427 L. Residual unexplained variability was 47%.  
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Table 3.3.1. Characteristics of patient at first concentration measurement and of imipenem 

concentration 

Patients Median (range) or count (%) 

Total 68 

Gender (male / female) 32  (47%)  /  36  (53%) 

Gestational Age (weeks) 27.3  (24.3 – 41.4) 

Postnatal Age (days) 21  (2 – 153) 

Postmenstrual Age (weeks) * 31.6  (29.6 – 48.3) 

Body Weight (g) 1195  (500 – 4120) 

Height (centimeters) 38  (30 – 54) 

Plasma creatinine (μmol/l) 46  (9 - 243) 

Concentrations  

Total 144 

Below the limit of quantification 22  (15%) 

Trough (count / value (mg/l)) † 102  (71%)  /  1.2  (0.1 – 8.2) 

Peak (count / value (mg/l)) 42  (29%)  /  21.1 (7 – 57.9) 

Per patient 2  (1 - 4) 

Dose before concentration (mg/kg) 20  (12 - 30) 

Medications††  

Furosemide 16  (24%) 

Spironolactone 5  (7%) 

Hydrochlorothiazide 5  (7%) 

Vancomycine 41  (60%) 

Metronidazole 12  (18%) 

Erythromycine 3  (4%) 

* Postmenstrual Age (weeks) is defined as the sum of gestational age and postnatal age 

† Trough concentration values without taking into account data below the limit of quantification 

†† Only relevant medication have been searched; count on total concentration measurements 

 

 
Covariate model 

The incorporation of BW on all parameters following an allometric model markedly improved the 

description of the data (ΔOF=-55.3, p<0.001). It explains 19% of the interindividual variability on 

CL. Among age parameters tested, significant linear relationships were observed between PNA 

(ΔOF=-21.0, p<0.001) and GA and CL (ΔOF=-22.1, p<0.001) that provided a further improvement of 

the model fit. GA was centred on 40 weeks, representing the full term GA. PMA also showed a 

significant linear relationship with CL, providing the same parameters estimation with the same 

drop of objective function as PNA and GA. The model integrating PMA according to the Hill equation 

did not converge. Separating the influence of each age component was rather preferred, and PMA 
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was thus discarded from the model. Addition of age-dependant covariates explains 23% of the 

interindividual variability on CL. Creatininemia was a significant covariate on CL (ΔOF=-9.1, 

p=0.002), explaining 9 % of the remaining interpatient variability. An additional improvement of 

the data description was observed by introducing vancomycin coadministration in the model (ΔOF 

= -9.2, p=0.002). However, its effect was of limited clinical relevance, since the reduction CL was 

only of 14%, with almost no impact on reducing the inter-individual or residual unexplained 

variability. It was thus no kept in the final model. No other covariates showed any significant effect 

on imipenem disposition, including different analytical methods over time. Extend of ƞ-shrinkage 

was low (11% in the final model, which was the highest value observed during model-building). 

The model described the observed data well, as indicated by the goodness-of-fit plots in Figure 

3.3.1. A summary of the major step during covariate building is given in Table 3.3.2. According to 

the model, a term neonate (GA 40 weeks, PNA 3 weeks, BW 3.1 kg, CRT=46 μmol/l) would have a 

clearance of 0.76 L/h, while a very preterm neonate (GA 24 weeks, PNA 3 weeks, BW 0.520 kg, 

CRT=46 μmol/l) would have a clearance of 0.14 L/h (81% reduction). The half-lives of the 

disposition phase and of the terminal phase for a typical individual (GA 27 weeks, PNA 3 weeks, BW 

1.2 kg, CRT=46 μmol/l) are 1.1 and 3.3 hours, based on an estimated clearance of 0.28 L/h. Renal 

failure in a typical patient, with CRT=200 μmol/l, would decrease clearance to 0.21 L/h (20 % 

reduction).  
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Figure 3.3.1. Goodness-of-fit plots of observed imipenem, concentrations versus the 
population model-predicted (pred, left) and individual model-predicted (ipred, right) 
concentrations from the original dataset. 

 

 

 

 

Table 3.3.2. Significant step in imipenem population PK model building 

Model Equation of CL ΔOF IIV CL(%) 
Proportional 

residual error (%) 

Base model          43 47 

Allometric 

model 
                -55.3 35 39 

PNA on CL                              -21.0 31 36 

GA on CL                                              -22.1 25 36 

CRT on CL† 
                                            

          
-8.9 21 37 

VANCO on CL* 

                                            

          
    

            
-8.6 20 37 

CL = Total clearance; BW = Actual body weight (kg); PNA = Postnatal age (weeks); GA = Gestational age (weeks); CRT = plasma 

creatinine (μmol/l); VANCO = coadministration of vancomycin; IIV =  inter-individual variability 

The change in OF is relative to prior model  

† Final model 

*Effect of vancomycine coadministration was not kept in the final model 
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Model Evaluation 

The median parameter estimates obtained with the bootstraps with the 95% CI are presented in 

Table 3.3.3. Median parameters differed in less than 1% from those obtained with the original 

dataset. The parameter estimates of the final population pharmacokinetic model lied within the 

95% CI of the bootstrap results suggesting that the model was acceptable. The sensitivity analysis 

concerned 2 data points. It showed that none of these concentration values affected the 

pharmacokinetic estimates with a maximum difference in parameter estimates of 14% for 

creatinine factor (data not shown). Impact of the 4 patients that received treatment during the first 

3 days of life was of little importance. A maximum difference of 21% was observed on Q estimate 

when they were removed. The results of pcVPC supported the predictive performance of the model 

and are presented in Figure 3.3.2.  

 

Table 3.3.3. Estimated population pharmacokinetic parameters and bootstrap 95% confidence interval 

Parameters (units) Parameters 
Base parameter 

estimates (SE) 

Final parameter 

estimates (SE) 

Bootstrap model 

estimates (95% CI) 

CL (L/h/kg0.75/μmol.l-0.2)  1 0.31 (35.0%) 0.27 (10.1%) 0.27  (0.22 , 0.33) 

Effect of BW on CL  5  0.75 0.75 

Effect of PNA on CL  9  0.07 (31.8%) 0.07  (0.03 , 0.13) 

Effect of GA on CL  10  0.02 (22.7%) 0.02  (0.01 , 0.03) 

Effect of CRT on CL   11  -0.20 (39.4%) -0.20  (-0.33 , -0.03) 

Vc (L/kg)  2 0.52 (46.2%) 0.57 (7.8%) 0.57  (0.46 , 0.68) 

Effect of weight on Vc  6  1 1 

Q (L/h/ kg0.75)  3 0.08 (26.5%) 0.05 (39.0%) 0.05  (0.01 , 1) 

Effect of BW on Q  7  0.75 0.75 

Vp(L/kg)  4 0.43  (59.0%) 0.18  (27.6%) 0.18  (0.09 , 0.28) 

Effect of weight on Vp  8  1 1 

Residual error (% CV)  12 47 (7.0%) 37 (6.3%) 37  (31 , 41) 

IIV CL (% CV) Ƞ1 43 (5.0%) 21 (13.8%) 21  (14 , 26) 

CL = Total clearance: BW = Actual body weight (kg); PNA = Postnatal age (weeks) ; GA = Gestational age (weeks); CRT = 

plasma creatinine (μmol/l); Vc = central volume of distribution; Q = intercompartmental clearance; Vp = peripheral 

volume of distribution; IIV = inter-individual variability 
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Figure 3.3.2. Prediction-corrected visual predictive check of the 
final model with imipenem prediction-corrected concentrations 
(circles) and median observation (solid line) with the 
corresponding 95% observation interval (dotted lines). Semi-
transparent grey fields represent the model-based percentile 
confidence interval. 

 

III.3.4. Discussion 

This study is the first population pharmacokinetic study of imipenem performed in a cohort of 

mostly very preterm neonates suffering from severe clinical conditions. It allows identification of 

key pathophysiological factors, BW, age, and renal function status, which showed clinically 

important influence on imipenem disposition in this fragile population. This is of major importance 

in order to define adequate dosage regimen for neonates, which have been little studied.  

The primary factor influencing imipenem PK was BW, which explained an important percentage of 

the interpatient variability in drug concentrations. An allometric model described the effect of BW 
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at best, accounting for the gradual increase in imipenem distribution and elimination with body 

weight and thus size [35, 36]. Since neonates have an immature organ system and nephrogenesis is 

incomplete in preterm newborns below 36 weeks [37], renal function is expected to influence 

imipenem elimination. Although quite low at birth, renal function changes rapidly after birth, even 

in preterm neonates [38, 39]. Inclusion of age descriptors (GA and PNA) allowed accounting for this 

maturation process starting before birth, apart from size effect. It showed that both GA and PNA are 

good predictors of concentrations and that they both should be used for initial dosage adjustment. 

Eventually, creatininemia seems to have an additional impact on imipenem elimination. Although 

CRT is generally a good predictor of GFR in adults, it is not considered a good predictor in very 

preterm neonates due to differences in muscle, age, or size compared to older infants [40, 41]. The 

use of GFR estimators such as Schwartz formulae was thus not possible in our study population. 

Nevertheless, creatininemia seemed to influence imipenem PK in addition to growth and 

maturation components, offering further description of the effect of acute renal failure on 

imipenem elimination in neonates with high CRT levels. 

None of the other covariates tested had a relevant impact on drug disposition. No difference was 

found according to the analytical methods used, confirming the very low protein binding of 

imipenem. Finally a small effect of vancomycin could be observed based on statistical criterion that 

was considered marginal once other covariates were included in the model.  

To our knowledge, only one population analysis of imipenem PK has been published in term 

neonates so far [23]. Our results suggest a reduction by about half of imipenem elimination in 

premature neonates (1.5 h vs 3.3 hours) compared to term neonates, which is mostly related to a 

larger volume of distribution (0.466 L/kg vs 0.75 L/kg for a typical patient: GA 27 weeks, PNA 3 

weeks, BW 1.2 kg). The volume of distribution is also larger than in older children (0.46 L/kg for a 

mean age of 3 years old [42] or 0.260 L/kg for a mean age of 9 years old [23] and in adult patients 

(about 0.22 L/kg) [43-47]. Changes in the ratio between total body water and fat tissue occurs 
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during gestation and continues after birth. Since imipenem is a polar drug that is predominantly 

distributed in the intra- and extra- vascular fluid, the larger volume of distribution might thus the 

be the consequence of the larger extracellular fluid in neonates [9]. In addition, the high prevalence 

of sepsis can explain the larger distribution due to increased capillary permeability during the 

inflammatory response, fluid flow to the extracellular compartment and third spacing [48]. 

Compared to adult and children for which imipenem half-life range from 1 to 3 hours [43-47, 49-

52] and from 0.5 to 1.2 hours, respectively [23, 53]. Our study shows that elimination is lower in 

our population of neonates, which seems to be explained by the immaturity and small size of 

elimination organs and to a larger volume of distribution in preterm infants.  

The main limitation of our results is the retrospective design, fostering errors in the recollection of 

information. In addition, concentration samples were measured within the routine clinical setting 

and few samples per patient and on very limited occasion were available, thus limiting the power to 

differentiate inter from intra-individual variability. Finally, cilastatin concentration was measured 

only since 2012, and its influence could not be evaluated. 

In conclusion, the present study described the disposition of imipenem in a cohort of 

predominantly premature neonates. The large variability in its concentrations could be explained 

by physiologic and pathologic variables, including body weight, gestational age, post-natal age and 

organ capacity based on creatininemia. This model will serve to simulate concentration-time 

profiles for various dosage regimens in order to provide a priori dosing recommendations to reach 

predefined target concentration, with respect to relationship with the MIC of the most often 

organism encountered in nosocomial infections and sepsis. The results will be implemented in 

EzeCHieL, a Bayesian computer tool for dosage individualization based on a single measurement. 
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Chapter IV in the thesis context 

The benefits of a Bayesian TDM approach rely on accurate popPK models. Most of popPK models 

use data gathered during routine TDM, and assume steady-state and full adherence. However, non-

adherence might be common, particularly in chronic diseases, and thus represent an additional 

cause of unexplained variability. 

In the other side, interpretation of a single patient concentration may also suffer from ignoring 

adherence issues. 

Only a limited number of studies have investigated the pharmacokinetics in relation to adherence 

data, in particular the influence of poor adherence on population model elaboration or its impact on 

TDM measurement interpretation. In our institution, patient at risk of non-adherence for their 

antiretroviral therapy are addressed to the adherence-enhancing program of the Outpatient 

Medical Clinic, which recourse to electronic monitoring. TDM along with electronic monitoring offer 

a unique opportunity to evaluate impact of the precise drug dosing history on population model 

development and thus its reliability for concentration forecasting. It also gives the possibility to 

assess its impact on sample interpretation against patient self-reported data.  

 

Own contribution: Protocol elaboration. Assembly of data. Population pharmacokinetic and 

statistical analysis. Interpretation of the data. Drafting of the article.  
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ABSTRACT 

Non-adherence is common during chronic diseases, such as HIV infection. Therapeutic drug monitoring is 

one way of monitoring antiretroviral therapy that usually relies on steady-state and full adherence 

assumptions, while neglecting non- or partial medication adherence. This study evaluates the impact of 

adherence measurement by electronic monitoring, which allows recording of longitudinal adherence data. 

Precise dosing history was compared with patient self-reported information on the estimation of lopinavir, 

atazanavir, efavirenz and etravirine population pharmacokinetic parameters. Influence of “pocket-doses” 

escaping electronic monitoring was also searched. In addition, the study evaluates the impact of adherence 

issues on clinical interpretation of individual drug levels. Population pharmacokinetic modeling, based on 

previously published studies, was performed with NONMEM® on paired datasets i.e. dosing times based on 

steady-state with full adherence assumption versus electronic dosing history, from 140 HIV-patients taking 

part in a medication-adherence enhancing program, providing 384 drug concentrations. Clearance 

estimates and likewise predicted concentrations did not markedly differ between approaches. Self-reported 

last dose intake appears to be reliable enough for concentration prediction in most patients. However, 

specific patterns of non-adherence lead to suboptimal exposure that will escape to TDM interpretation.  
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IV.1. Introduction 

Non-adherence is a common issue in the treatment of chronic diseases: up to 40% of patients who begin a 

long-term treatment stop it during the first year [1, 2]. In HIV infection management, medication adherence 

is crucial to control the viral load, to limit the emergence of resistant strains and to prevent the 

dissemination of the virus throughout the community [3-6]. Poor adherence is a significant problem in this 

population with 40% patients, who do not achieve 90% adherence worldwide[7]. Indeed, this often 

stigmatized population has to cope with a lifelong and sometimes complex treatment, associating several 

pills with up to two daily administrations. The actual clinical consequences of insufficient adherence vary 

depending on drug regimens and non-adherence patterns [8-10]. 

Although no gold standard method is universally established for the assessment of adherence, electronic 

monitoring of medication events is considered among the most reliable approaches. It records pill bottle 

openings, assumed to correspond to the times of dose intake by the patient. However, electronic monitoring 

may still underestimate adherence [11]. Actually, a not infrequent misuse of this system consists in the 

removal of more than one dose per opening for later use, called pocket-doses (PDs). Therefore, a 

combination of several adherence measurement methods probably represents the best option to assess the 

patient’s medication behaviour [12-15].  

To support patient adherence to treatment, the Community Pharmacy of the Department of Ambulatory 

Care & Community Medicine in Lausanne (Switzerland) has implemented an adherence-enhancing 

program, as previously described [16, 17]. Briefly, it combines (i) electronic recording of bottle openings 

with a Medication Event Monitoring System (MEMSTM, Aardex, MWV Healthcare, Switzerland), (ii) manual 

pill count, (iii) regular motivational interviews and (iv) feed-back to physicians and nurses. Eligible patients 

are referred to the program by their physician; all drugs prescribed in their combined antiretroviral 

therapy are monitored individually, which allows the collection of medication adherence data for each 

single molecule. At each interview and before showing the adherence electronic report to the patient, this 

latter is asked about the time usually elapsing between electronic monitor opening and medication 
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swallowing, whether any PDs were taken during the last period, and if so when they were actually 

swallowed.  

The use of therapeutic drug monitoring (TDM) has been advised and incorporated into guidelines to watch 

over and possibly optimize antiretroviral therapy (ART). Actually, consistent concentration-efficacy and -

toxicity relationships have been shown for both protease inhibitors (PIs) and non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) [18, 19], while their pharmacokinetics (PK) are characterised by large 

inter-individual variability for PIs and in a less extend for NNRTIs. Although evidence to support routine 

TDM use is still debated, particularly in ART-naive patients, it is generally admitted that individual patients 

can benefit from this intervention in specific clinical situations [20, 21], to ensure desired drug exposure 

and response. The Laboratory of Clinical Pharmacology in Lausanne offers the determination of numerous 

antiretrovirals including ritonavir boosted-PIs (e.g. lopinavir and atazanavir) and NNRTIs (e.g. efavirenz 

and etravirine). This service is complemented with the interpretation of concentration measurements with 

a Bayesian-inspired approach based on population pharmacokinetic (popPK) models, applicable to 

concentrations measured at random sampling times [22].  

Population pharmacokinetic modeling has been largely applied to ART, mostly to relate treatment 

outcomes with pharmacokinetic variations [23]. Among other advantages, popPK approaches can handle 

sparse data, such as those collected from TDM interventions. However, this requires reliable information 

about the time of last dose intake. Moreover, it generally assumes full adherence in patients under steady-

state regimen. Thus, knowing in particular that a frequent reason for TDM request is uncertain adherence, 

popPK models built up on TDM data may be flawed due to inaccurate dosing history [23-25]. Biases due to 

adherence issues may thus occur both during the elaboration of reference information for TDM 

interpretation, and during the specific interpretation of a single patient sample.  

Therefore, we aimed to evaluate whether electronic measurement of adherence would influence popPK 

parameter estimation, compared with the mere assumption of steady-state with full adherence. We also 

wanted to determine to what extent neglecting PDs might impact on parameter estimation that 
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incorporates electronic adherence data. Our second objective was to assess the importance of adherence 

measurement in terms of individual concentration prediction, as it is usually performed during TDM 

interpretation. 

IV.2. Method 

Study and subjects 

This retrospective observational study included all naïve or experienced patients enrolled in the Swiss HIV 

Cohort Study (SHCS, www.shcs.ch) and referred to the above mentioned adherence-enhancing program 

between 2004 (establishment of the program) and 2011, who had at least one TDM measurement for any of 

the following antiretroviral agent: Lopinavir (LPV) co-formulated with ritonavir, Atazanavir (ATV) co-

prescribed with ritonavir, Efavirenz (EFV) and Etravirine (ETV). It received approval from the local Ethics 

Committee for clinical research number 25/14.  

Analytical method 

Blood samples (5ml) were collected into lithium-heparinate or potassium-EDTA syringes (Monovette®, 

Sarstedt, Nümbrecht, Germany). Plasma was isolated by centrifugation, virus inactivated in a 60°C water 

bath for 60 min, and stored at -20°C until analysis. Total plasma drug concentrations were determined by 

liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) according to validated 

methods [26-29]. Calibration curves are linear up to 20 μg/ml for LPV, up to 10 μg/ml for ATV and EFV, and 

up to 4 μg/ml for ETV. 

Dosing data 

Patient self-reported last drug intake before TDM was recorded on the day of blood sampling. In parallel, 

electronic monitor data were retrieved on a period of 5  literature half-lives before each blood sample[25], 

a sufficient time to assume steady-state in case of full adherence, i.e. 10 days for LPV, ATV and ETV and 15 

days for EFV. This period thus always included a weekend, when drug intake is known to be less accurate 

[30, 31]. Electronic data were reconciled with interview notes and pill count according to an operational 
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manual. PDs identified during the reconciliation process were added into electronic monitor dosing history. 

We thus obtained three paired datasets for each molecule considered: (A) a first one assuming steady-state 

with full adherence, with the time of last dose intake before drug level measurements as reported by the 

patient, and (B) a second one built up with the detailed history of drug intake over the last 10 to 15 days, 

reconciled from electronic monitor records and patients’ allegations. The last dataset (C) was built up , 

incorporating exclusively the raw electronic monitor information on dosing history but disregarding 

patients’ information on PDs.  

Data analysis 

Time differences between self-reported and electronic monitor recorded times of last dose intake before 

blood sampling for TDM were evaluated by calculating: 

Time interval difference (∆t) = Patient self-reported time – electronic monitor recorded time 

Population PK model parameters were estimated by nonlinear mixed effect modeling with NONMEM® 

(version 7.3.0, ICON Development Solutions, Ellicott City, MD, USA), using first-order conditional estimation 

with interaction (FOCEI). PopPK models were chosen based on previously published studies [32-35], 

without consideration for covariates. 

Shortly, all molecules were described according to a one compartment-model parameterized in terms of 

clearance (CL) and distribution volume (Vd). Absorption was described by a first order-process (constant 

Ka), except for ETV assumed to follow a zero-order process (constant D1). A lag time (ALAG) was defined 

for ATV. Residual variability was deemed proportional for EFV and ETV, while a mixed error model 

(combining proportional and additive residual variability) was used for LPV and ATV. Inter-individual 

variability on PK parameters was described with exponential errors.  

To evaluate the influence of pocket-doses (PDs) on PK parameter estimation, the use of PDs if any by 

patients was entered in the model as an index or dummy variable (Q1) as follow: 
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where    is the typical value of the PK parameter  ,    is the fractional change in parameter   associated 

with PDs use, and Q1 is equal to either 0 or 1. Different criteria were tried sequentially for coding PDs use 

with Q1 = 1: 

(i)  when PDs were identified at anytime during the recovered dosing history; 

(ii)  when PDs were identified in the two days preceding TDM; 

(iii) when identified PDs represented at least 50% of recovered dosing history. 

From the retained model, popPK estimation was compared between two types of datasets: (A) steady-state 

and full adherence assumption with self-reported last dosing time, versus (B) reconciliated adherence data 

from electronic monitors and patient interviews. A third, considering raw electronic data (C) was also 

analyzed, neglecting all PDs recovered from interviews and considering them merely as missed doses. The 

95% confidence intervals (CI95%) for parameters were estimated using the bootstrap method on 2000 re-

sampled data sets. Model-based population concentration profiles with their 95% prediction interval 

(PI95%) were generated as well from 2000 simulations for each drug, for the 3 types of datasets described 

above. 

Differences in post hoc Bayesian individual parameter estimates between dataset types A and B, and 

between dataset type A and C, were evaluated by Wilcoxon signed-rank tests for paired observations. 

Individual predicted concentrations (Cipred) based on both dataset types were compared with actual 

observations, and relative predictions errors (PEi) were computed as the difference of both these prediction 

errors. Relative bias was computed as the mean relative prediction error (MPE), and relative imprecision 

was calculated from the difference in mean squared error (MSE), expressed as root mean squared error 

(RMSE) [36]: 
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where subscript A refers to the steady-state and full adherence assumption dataset, whereas subscript B 

refers to the reconciled electronic data, Cobs is the observed concentration, Cipred is the individual predicted 

concentration by the corresponding model, n is the number of concentration values. Similar comparisons 

were calculated as well between datasets A and C, replacing subscript B by C. 

Finally, individual patients’ exposure profiles were simulated from their post hoc Bayesian individual PK 

parameters using parameter values obtained with datasets A and B or C. The minimum concentration 

(Ctrough) predicted at the end of the dosing interval was calculated for each patient according to both 

parameter sets. 
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IV.3. Results 

A total of 384 blood samples were collected in 140 patients. Data by drug are detailed in Table 4.1. The 

number of missed doses was higher for PIs than for NNRTIs but globally low, below 5% for all drugs. Time 

interval differences between both dosing data collection methods was almost centred around 0 and 

symmetrically distributed for all drugs, with a mean and standard deviation for LPV: -0.6 ± 4.7 hours, for 

ATV: 0.3 ± 7.9 hours, for EFV: 0.4 ± 3.4 hours, for ETV: -1.1 ± 5.7 hours. Histogram plots of time interval 

differences are depicted in Figure 4.1. The time interval difference was greater than ± 3 hours for 48 blood 

samples (LPV: 22 (17%); ATV: 13 (14%); EFV: 5 (9%) and ETV: 8 (28%)). 

Table 4.1. Summary of study data 

  Boosted-PIs  NNRTIs 

  LPV  ATV  EFV  ETV 

Patients (n)  65  40  55  28 

Samples (n) 

Concentrations range (ng/ml) 

 129 

0-24390 

 92 

0-4976 

 107 

535-12680 

 56 

147-840 

Visits per patient  (n) (median) 

[Range] 

 2 

[1-10] 

 2 

[1-9] 

 1 

[1-7] 

 1.5 

[1-9] 

Pocket-doses (n)  

Patients (n) (%) 

% of total doses  

 50 

11 (17%) 

2.0 % 

 26 

8 (20%) 

2.9% 

 44 

13 (23%) 

2.6% 

 11 

5 (18%) 

1.1% 

Missed doses (%)†  4.9%  4.3%  1.7%  1.5% 

Before concentration (%)  34.9%  22.8%  16.8%  19.6% 

Patients (%)  46.1%  37.5%  25.4%  25.0% 

Standard dosage  400 mg b.i.d.  300 mg q.d.  600 mg q.d.  200 mg b.i.d. or 
400 mg q.d. 

Half-life (h) ††  5-6  12  56-72  30-40 

†  Based on reconciled electronic monitor records 

†† Based on the summary of product characteristics 

LPV = Lopinavir; ATV = Atazanavir; EFV = Efavirenz; ETV = Etravirine 

The data were fitted with the popPK models selected for each drug using both (A) the patient self-reported 

dosing information with steady-state and full adherence assumption, and (B) the full electronic 

monitorreconciled dosing history and (C) neglecting all PDs recovered from interviews . Inter-individual 

variability was estimated solely for CL, which ensured model convergence for all drugs. The identification of 
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Figure 4.1. Histogram plot of the distribution of time interval differences 

between self-reported and electronic dose intake data 

 

PDs did not affect significantly the estimation of parameters for all drugs, irrespective of the way it was 

taken into account, and the corresponding term was thus not kept in the models. 

 

Population PK parameters estimates with their CI95% are presented in Table 4.2. Comparing the results 

from self-reported data and steady-state full adherence assumption with those from reconciled electronic 

data, population clearance (CL) was similar no matter the dosing history input, with a maximum difference 

of 4% for ETV. Conversely, population volume of distribution (Vd) could differ largely according to the 

dosing history input (discrepancy for LPV: 39%, for EFV: 47% and for ETV: 87%), which was also the case 

for absorption constant (discrepancy for LPV: 48% and for ETV: 24%). Only ATV retained similar 

population volume of distribution (relative difference of 3%), while its absorption parameters were fixed. 
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For all other population parameters, estimation was essentially similar whatever the dosing input (relative 

differences <20%), except for inter-individual variability on CL for ATV (difference of 80%). When the raw 

electronic monitor data were considered, without addition of the doses identified during the reconciliation 

procedure, LPV parameters where particularly affected regarding Vd, absorption constant and above all, 

residual error. By contrast, estimates did not vary so drastically for the other drugs.  

Table 4.2. Parameter estimates with their 95% confidence interval, according to dosage history input method 

  Boosted Protease Inhibitors 

  Lopinavir  Atazanavir 

 Steady-state and 
patient self-
reporting 

Reconciled 
electronic 

records 

Raw electronic 
records 

Steady-state and 
patient self-
reporting 

Reconciled 
electronic 
records 

Raw electronic 

records 

CL (L/h) 4.4 

[4.0-4.8] 

4.5 

[4.0-5.0] 

4.3 

[3.8-4.9] 

8.3  

[7.4-9.5] 

8.2 

[7.3-9.4] 

8.1 

[7.2-9.4] 

Vd (L) 62 

[23-173] 

38 

[22-55] 

29 

[18-56] 

103  

[77-134] 

106 

[81-155] 

101 

[77-184] 

Ka (h-1) 0.420 

[0.167-2.498] 

0.217  

[0.111-0.342] 

0.156 

[0.103-0.301] 

0.405  

FIXED 

0.405  

FIXED 

0.405  

FIXED 

ALAG (h) - - - 0.88 

 FIXED 

0.88  

FIXED 

0.88  

FIXED 

ωCL (%) 31  

[21-39] 

30 

[21-37] 

29 

[18-37] 

10  

[3-23] 

18 

[5-32] 

21 

[6-36] 

ωv (%) - - - - - - 
ωKa (%) - - - 122  

FIXED 

122  

FIXED 

122  

FIXED 

ωALAG (%) - - - - - - 
σprop (%) 35  

[24-44] 

33 

[16-40] 

24 

[8-40] 

46 

[14-58] 

42 

[23-60] 

43 

[0-63] 

σadd (ng/mL) 1095  

[383-1934] 

907  

[337-1931] 

2370 

[337-3195] 

444 

[31 – 787] 

445 

[24-666] 

452 

[-62-706] 

  Non-Nucleoside Reverse Transcriptase Inhibitors 

  Efavirenz  Etravirine 

 Steady-state and 
patient self-
reporting 

Reconciled 
electronic 
records 

Raw electronic 
records 

Steady-state and 
patient self-
reporting 

Reconciled 
electronic 
records 

Raw electronic 
records 

CL (L/h) 8.5  

[7.2-9.8] 

8.5 

[7.1-10.0] 

8.2 

[6.8-9.7] 

32.6  

[27.1-39.5] 

33.9 

[28.2-41.3] 

33.5 

[27.5-40.7] 

Vd (L) 240 

[137 -1131] 

352 

[215-649] 

370 

[210-654] 

705 

[425-1275] 

1315 

[493-2885] 

1320 

[481-2914] 

Ka (h-1) 0.62  

FIXED 

0.62  

FIXED 

0.62  

FIXED 

- - - 

D1 (h) - - - 3.4  

[2.7-4.4] 

2.6 

[2.0-9.4] 

2.6 

[2.1-9.8] 

ωCL (%) 55  

[43-64] 

57  

[45-72] 

59 

[46-76] 

41 

[22-52] 

41 

[21-61] 

41 

[20-64] 

ωv (%) - - - - - - 

ωKa (%) - - - - - - 

ωD1 (%) - - - - - - 
σprop (%) 24  

[19-28] 

25 

[19-29] 

25 

[20-30] 

28 

[20-33] 

31 

[23-36] 

31 

[23-35] 

95% confidence interval were calculated by bootstraps with 2000 datasets 

CL = Clearance; Vd = Volume of distribution; Ka = absorption constant, first-order; D1 = absorption constant, zero-order; ALAG = lag time; ω = 
interindividual variability; σadd = additive residual error; σprop = proportional residual error; FIXED = fixed value from the original publication. 
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Based on the final models estimated from each dosing history input, concentration profiles were simulated 

according to each scenario (see Figure 4.2). It shows essentially similar PK profiles and concentration 

ranges, independently of the method used to record the dosing history.  

 

Figure 4.2. Concentration versus time for self-reported (white circle) and electronic monitor 

recorded data (grey circle). Population predictions (solid line) with their 95% prediction intervals 

(dotted line) are represented for steady-state data (black), reconciled electronic data (grey) and 

raw electronic monitor data (red). Concentrations are normalized for the standard dosage 

Since the differences in paired individual CL estimates between the dose recording methods presented 

atypical values, a non parametric test was preferred for comparison. Differences in individual clearance 
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estimates did not reach statistical significance for LPV and ATV (median ∆CL= 0.0 L/h, P=0.06 and median 

∆CL= 0.1 L/h, P=0.07 respectively), while they did so for EFV and ETV (median ∆CL= - 0.1 L/h and -1.1 L/h 

respectively, P=0.02 for both drugs) if a level α=5% is considered. Using the raw electronic data, with all 

PDs considered as missed doses, only LPV showed a difference in individual clearance estimation (median 

∆CL = 0.1 L/h, P=0.001).  

A summary of the MPE between predictors calculated under steady-state full adherence assumption and 

reconciled electronic data is presented Table 4.3. All CI95% included 0, indicating no systematic differences 

of prediction between both approaches, neither did predictions with the raw electronic data. The 

comparison of MSE shows that reconciled electronic data produced more precise predictions than patient 

self-reporting for LPV, ATV and ETV, and particularly LPV. Only EFV predictions were slightly better with 

patient self-reported data. Predictions for all drugs based on raw electronic monitor data remained slightly 

more precise than those based on patient self-reporting.  

Table 4.3. Relative bias and precision of self-reported last dosing time against electronic monitor data dosing history 

  LPV  ATV  EFV  ETV 

Self-reported vs reconciled electronic data 

MPE (ng/ml)  -33.5  15.2  12.7  4.23 

[CI95%]  [-275.9;208.9]  [-60.4;90.7]  [-43.4;-68.9]  [-14.6;23.1] 

Range PEi (ng/ml)  [-3675.1;8972.7]  [-1096.3;1588.0]  [-1237.1;2043.1]  [-186.3;367.8] 

∆MSE (ng2/ml2)  1475748.2  73758.4  -15968.1  766.7 

∆RMSE (ng/ml)  1214.8  271.6  126.4  27.7 

Worst case scenario: self-reported vs electronic data without PDs 

MPE (ng/ml)  -131.5  18.5  6.6  4.3 

[CI95%]  [-422.2;159.2]  [-61.5;98.4]  [-68.0;81.3]  [-14.5;23.1] 

Range PEi (ng/ml)  [-3405.2;9610.6]  [-1084.4;1619.7]  [-1509.6;2069.5]  [-184.9;366.9] 

∆MSE (ng2/ml2)  610360.6  66396.1  14486.8  821.1 

∆RMSE (ng/ml)  781.3  257.7  120.4  28.6 

reconciled electronic data vs electronic data without PDs 

MPE (ng/ml)  -96.5  2.34  6.1  0.1 

[CI95%]  [-270.7;77.6]  [-20.9;25.6]  [-62.2;49.9]  [-2.2;2.3] 

Range PEi (ng/ml)  [-1319.0;8654.8]  [-303.2;738.2]  [-1717.8;1398.1]  [-26.5;34.7] 

∆MSE (ng2/ml2)  -868087.2  -9247.8  30454.9  54.4 

∆RMSE (ng/ml)  931.71  96.2  174.5  7.4 

MPE = mean relative prediction error; MSE = mean squared error; RMSE = root mean squared error 
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Figure 4.3. Individual concentration exposure profile for efavirenz (upper panel) and lopinavir (down panel) 

based on steady-state assumption (black) or reconciled electronic monitoring record (grey). Suggested target 

trough concentration by the FDA, in patients with HIV-1 (red line). Visit to the physician (triangle). Predicted Ctrough 

(red points). 

 

Even though predictions appear globally similar between the different methods used to record dosing 

histories in our datasets, they may significantly differ for specific patients according to their adherence 

patterns. To illustrate this issue, representative patient profiles, taken from the dataset used for this 

analysis, for LPV (patients 1, 2 and 3) and EFV (patients 4, 5 and 6) are depicted in Figure 4.3. 
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In the case of a large number of doses consecutively missed few days before the visit (patient 1and patient 

4), despite similar time interval  with respect to last dose intake according to self-report and electronic 

record, the predicted Ctrough vary greatly between the steady-state with full adherence assumption and the 

reconciled electronic monitor record. This is in accordance with individual CL estimation: for patient 1, the 

difference in predicted trough concentration (∆Ctrough) was 2380 ng/ml and a difference in individual CL 

was 0.74 L/h, while patient 4 showed ∆Ctrough of 1202 ng/ml and a difference in individual CL of 1.12 L/h. If 

a sparser pattern of missed dose is examined (one missed dose at a time), the differences in predicted 

trough concentration become much smaller: patient 2 and 5 had respectively a ∆Ctrough of 242 ng/ml and ∆C 

of 77 ng/ml. However, even one missed dose can show a drastic though transient drop in drug exposure. 

The last examples illustrate patients well adherent, taking all their doses regularly, but the time interval 

between dosing and sampling reported by the patient differ from the value recorded by the electronic 

monitor by more than 2 hours. The resulting differences on predicted Ctrough were of little importance for 

LPV and insignificant for EFV: patient 3 and patient 6 had a ∆Ctrough of 727 ng/ml and ∆Ctrough of 84 ng/ml, 

respectively. Difference in individual CL between both approaches for patients 3, 4, 5 and 6 were always 

smaller than 0.28 L/h. 

IV.4. Discussion 

In this observational study, popPK models based on dosing data either assuming steady-state with perfect 

adherence or using precise electronic monitor dosing records resulted in very similar estimations of 

population CL, which is the most important pharmacokinetic parameter determining average concentration 

exposure. Conversely, the type of dosing data tended to affect the population Vd as well as absorption 

parameters, known to correlate with one another. This was not the case for EFV and ATV, whose absorption 

constants were fixed according to the referred publication in order to achieve convergence. In contrast, for 

LPV, electronic monitor records revealed several measurements occurring in the first hours after the last 

dose intake, which were not reported by the patients. This probably explains the noticeable changes in 

absorption parameters and Vd estimation. Within-patient variability was said to be highly sensitive to 
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variable adherence [24]. In this study though, intra-individual variability seemed not affected by the type of 

dosing input. However, we had only few patients with several samplings. A study design that could collect 

several samples per patients would be of interest to evaluate this issue. 

The procedure of reconciliation of electronic monitor records with patients’ allegations, set up in the frame 

of our adherence program, made it possible to capture the majority of the PDs made by the patients, 

compared to raw electronic monitor data. This gives a more realistic picture of the patients’ adherence in 

routine care. In our observations however, only lopinavir popPK parameters estimation would have been 

largely affected by missing patient information about dosing history, even though the frequency of PDs was 

in the same range for the other drugs (see Table 4.1). Neglecting PDs and merely treating them as missing 

doses for popPK analysis is expected to overestimate inter-individual variability and to bias PK parameters. 

The underestimation of adherence by electronic monitor might be of importance for certain drugs, 

particularly those with a shorter half-life. Thus, as LPV typically exhibits a rather short half-life even with 

ritonavir boost, a thorough estimation of adherence taking PDs into account is of importance. The concept 

of forgivingness was invoked to account for viral suppression despite incomplete adherence under 

combined antiretroviral treatments. While an adherence rate of at least 95% was formerly advocated to 

achieve sustained viral suppression and to prevent the emergence of resistance mutations [37, 38], the 

advent of ritonavir-boosted PI regimens as well as more potent NNRTIs might alleviate this constraint to 

some extent [39-41]. Improved potency and longer half-lives of boosted-PIs and NNRTIs are indeed among 

the reasons for improved forgiveness [42], as these agents produce exposure levels much higher than HIV 

replication inhibiting concentrations (IC90), less likely to drop down to subtherapeutic levels with 

infrequent missed doses. Yet despite these considerations, any increase in the degree of adherence 

increases the probability of viral suppression [39, 43]. 

TDM is one tool among others that can support physicians in patient’s care, to prevent therapeutic failure 

due to insufficient drug exposure or limited adherence. The pre-dose concentration Ctrough is the classical 
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parameter to optimize by TDM interventions for PIs and NNRTIs. Target trough concentrations have indeed 

been proposed for most anti-HIV drugs in the control of wild-type HIV-1 infection [44]. Others predictors of 

efficacy have been promoted, such as maximal concentration (Cmax) or area under the curve (AUC)[45]. The 

inhibitory quotient (IQ), derived from the ratio of Ctrough over virological sensitivity (IC90), probably 

represents a promising alternative [19].  

Measuring true trough concentrations may be impractical in outpatients, hence the interest of Bayesian 

prediction of Ctrough based on popPK models. Still the interpretation of a concentration measurement 

requires a precise knowledge of the times of sample collection and of last dose intake. As expected, a small 

variation in the dosing to sampling interval showed no significant impact on concentration prediction. 

Conversely, some specific patterns of poor adherence may have an important impact on the estimation of 

individual PK parameters and thus on prediction, as shown by patients 1 and 4 in our examples. In general, 

TDM is not ideally suited as a measure of adherence, as it essentially reflects the intake of one or a few 

previous doses. The monitoring of pharmacokinetic as well as pharmacodynamic (viral load and CD4 count) 

markers may increase health literacy and patient adherence by impacting on patient’s motivation and 

management of treatment if such data are discussed emphatically with patients[46]. It has also been said 

that pharmacodynamic markers might benefit from more accurate recording of dosing history [47]. 

A major limitation of our study was the limited amount of data available, which prevented extensive 

modeling of the results. Still our analysis shows that, even though electronic monitor records are usually 

assumed to provide more reliable information on adherence than other methods, this information should 

be interpreted with caution, as it relies on uncertain assumptions: e.g. that each opening corresponds to a 

removed and directly ingested dose; or that the dose removed corresponds to the nominal dose prescribed 

(for instance, a nominal prescription of 400 mg of lopinavir q.d. means to remove and to ingest 2 pills of 

200 mg from the electronic monitor bottle). Thus, the approach of reconciling electronic monitor data with 

patients’ allegations should be privileged in such studies.  
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Another limitation was possibly that the study subpopulation did not reflect the overall population 

receiving ART. Patients referred to the adherence enhancing program have different characteristics than 

the entire HIV population: for example, besides problematic adherence, they were more often women with 

lower CD4 count [48]. The program showed successful results with 87% of persistence and 88% of 

execution [16].  

Patient non-adherence issues are tackled during the medication adherence program to ensure adherence 

and success of treatment. Therefore, monitored patient adherence is quite high with restrained deviation 

from prescription and few nonadherent patients, which is probably closer from the behaviour of the 

population under ART.  

In conclusion, this observational study showed that popPK analysis assuming steady-state with full 

adherence produced results similar to those based on precise electronic monitor recorded dosing history 

reconciled with patients’ allegations. This reconciliation is important to identify PDs and correct the raw 

electronic monitor data according to a standardized procedure. Some drugs, less forgivable, may specially 

suffer from unrecorded PDs. Self-reported last dose intake appears to be reliable enough for concentration 

prediction in most patients. However, specific patterns of non-adherence lead to suboptimal exposure that 

will escape to TDM interpretation. Thus, especially in problematic patients, it is probably a combination of 

monitoring methods that best captures the complementary aspects of patients’ exposure to therapeutic 

agents in routine care: longitudinal follow up of medication behaviour through electronic monitoring and 

actual quantitative measurement through TDM. 
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V.1. Discussion 

Therapeutic Drug Monitoring relying on population PK/PD currently represents the state-of-the-art 

of drug dosage individualization. Concentration measurement without clinical interpretation is of 

poor value. Because of limited data availability (one concentration marred by uncertainty) and 

difficulties to obtain exact Ctrough in clinical practice, PK interpretation largely benefits from 

Bayesian approach. Whereas, Bayesian forecasting can be mathematically demanding, we present 

the development of a new tool, EzeCHieL, to be used in clinical routine dedicated to this task. 

EzeCHieL provides essential information about expectedness and suitability of blood drug 

concentrations and gives dosage adjustment suggestion if needed. It offers a simple solution to 

develop patient tailored dosage regimen based on Bayesian feedback, which represents the gold-

standard currently. In the emerging field of personalized medicine, it allows maximising 

therapeutic benefits for patient being treated with drugs candidate for TDM. 

Implementation of Bayesian methods has also some limitations. It requires the right definition of 

the model, accurate and precise estimates of the PK model parameters, appropriate parameters 

distribution assumption, no change in individual PK parameters over time to trust a posteriori 

information, as well as quality of dosage. Finally, estimates should be obtained from data arising 

from the specific patient population, except if modeling and simulation allows extrapolating [1, 2]. 

Regarding special subpopulation, extrapolation cannot be performed for patients in early stage of 

life. There are also ethical and practical constraints related to the investigation of the fate of the 

drugs in this population. Therefore, dosing requirement and pharmacotherapy management 

continue to be a challenge in neonates. We present two population studies performed with data 

generated during routine clinical practice, providing in-house models to overcome those problems 

since it permits to characterise the PK of drugs and factors influencing drug exposure in this 

subpopulation. Their implementation in EzeCHieL allows Bayesian forecasting and drug dosage 
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regimen suggestion. Such quantitative pharmacological approaches have been recognised as a 

concept to enhance drugs development and appropriate routine use of drugs. In the last decade, 

regulatory agencies have recognized the role of modeling and simulations. In paediatrics, drug 

development programs have been growing and a number of initiatives have been undertaken [3, 4]. 

The reliability of the population models used along with adherence has been investigated in this 

thesis. In our study, Bayesian forecasting supported the use of population PK model and 

implementation in EzeCHieL. Since population PK models implemented in the software and 

simulations enable to derive expected concentration range (percentiles), it also allows evaluating 

some issues such as drug-interaction, specific individual PK characteristics or adherence. 

Practice of TDM relies on the correlation between plasma drug concentration and therapeutic 

outcomes. An important limitation of this work was the lack of pharmacodynamics (PD) data. Thus, 

the association between plasma concentration and therapeutic endpoints was not investigated. In 

the scope of anti-infective agents or other drugs, this following hypothesis is accepted, but not yet 

supported, that target concentration is the same in infants, children and adults [5]. Reason to not 

support entirely this theory yet is the lack of adequate PD studies in paediatric population (the MIC 

are often determined in vitro or in adults), the stage of development that can alter PK (absorption, 

elimination, protein binding, etc.) and response to drug, as well as differences in organ penetration 

of the drug. 

A number of issues arise from the development of new technologies in medicine. Acceptance among 

clinicians, in large and small facilities, has encountered considerable resistance [6]. Moreover, 

concerns for ethics and patient privacy are often raised [7, 8]. From the economic point of view, 

setting up Health Information Technology (HIT) would cause massive expenditure but it is believed 

that it would be compensate with the net saving awarded. So far, cost effectiveness has however not 

been demonstrated [9]. Use of new technologies should be adapted to literacy skills of the potential 
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users, and creating an intuitive interface appears to be critical. Ultimately, there is currently a lack 

of appropriate infrastructure and connectivity for a successful implementation [7, 10]. During the 

conception of EzeCHieL, we keep in mind those issues and as its development is performed in the 

scope of a multidisciplinary project, we attempt to address them at different levels (acceptance, 

privacy, user-friendliness, appropriate implementation in the existing structure, cost). 

V.2. Perspectives 

Since 1950, rate of drug introduction on the market remains constant, but drug industry is 

progressively less innovative [11] and more and more drugs are administered on long term. This 

largely fosters current TDM expansion. Monitoring of existing or new critical therapies and dosage 

individualization will transform clinical practice and patients care. There is a cultural change 

occurring. Particularly with the progress of embedded, miniaturized devices able to measure drug 

concentration of biomarkers directly on hand of the clinician and the availability of novel 

computing tools to support interpretation, drug monitoring will spread out.  

However, there are still room for improvements in monitoring drug therapy for practical care 

management of patients. Many monitoring strategies have been set up without critical assessment. 

There is a need for prospective controlled clinical trial [12]. Clinical research has not yet devoted 

sufficient attention to evaluate monitoring procedure. Improvement of concentration monitoring 

strategy will gain in increasing the aggregation of concentration and effect data at large scale and by 

redirecting PK/PD modeling towards monitoring question compared to sole clinical trial purpose. 

Such data should be aggregated in systematic reviews to retrieve the more information possible 

[13]. It would support better definition of necessary criteria for monitoring and rationalise the 

procedure. Central coordination and repositories should allow dissemination and facilitate clinical 

use. Efficient monitoring tool, such as EzeCHieL, will ensure wide access to monitoring procedure 

and to conceptual criteria of TDM application [14]. At the current stage, EzeCHieL is almost fully 
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developed software that will be under beta testing shortly. Larger diffusion is expected and support 

via a semi-private structure will ensure continuous evolution. Later, it will be embedded, to point-

of-care system currently under development in the frame of ISyPeM project.  

This work focus mostly on neonates, but in the other side, the population is aging and this trend is 

accelerating in the world. Elderly people are often neglected during drug development. Variability 

in drug response is increased at both sides of these age spectrum and that may warrant precise 

dosing modification also in older adults. Older adults also undergo age-specific change in 

physiological parameters that influence their pharmacokinetic profile. Frail geriatric patients are 

associated with polymorbidity and multiple treatments. There is no appropriate model using scaled 

parameters to describe the non linearity observed in this population as well. Modeling can provide 

the link necessary for developing safe and efficient treatments to those patients. Further studies 

should thus also focus on elderly [15, 16]. 

Current practice uses dosage regimen defined for population target intervals. However there is a 

lack of PD studies to define rational dosing, as, for example, for those subpopulation described 

above. PK variability is recognised as an important source of variability in drug response, but the 

inter-individual differences in PD aspects of drug response need also to be considered. Thus, the 

following step is to take into account individual PD sensitivity rather than the expected population 

response and the use of individual target along with individual TDM observation represents 

another move in the personalized medicine [17]. The concept of target concentration could be 

defined as the optimal concentration for achieving efficacy with the lower possible toxicity for an 

individual. This more active approach is already advocated and has been named Target 

Concentration Intervention (TCI) [18]. 

Thus, progress in many facets of drug monitoring is ongoing and represents a desired extension of 

drug development. In that context, the outcomes represent possible solutions to improve TDM. 
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