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Abstract 

 
 

 

Key features 
• Computational analysis of paired scRNA-seq and scTCR-seq data 

• Characterizing T-cell functional state by reference-based analysis using ProjecTILs 

• Exploring T-cell clonal structure using scRepertoire 

• Linking T-cell clonality to transcriptomic state to study relationships between clonal expansion and functional 

phenotype 

 

 

Keywords: Single-cell analysis, T-cell receptor, TCR, Transcriptomics, T-cell clone, Reference projection, scRNA-seq, 

scTCR-seq 

 

 

This protocol is used in: eLife (2022), DOI: 10.7554/eLife.76339 

 

 

T cells are endowed with T-cell antigen receptors (TCR) that give them the capacity to recognize specific antigens 

and mount antigen-specific adaptive immune responses. Because TCR sequences are distinct in each naïve T cell, 

they serve as molecular barcodes to track T cells with clonal relatedness and shared antigen specificity through 

proliferation, differentiation, and migration. Single-cell RNA sequencing provides coupled information of TCR 

sequence and transcriptional state in individual cells, enabling T-cell clonotype-specific analyses. In this protocol, 

we outline a computational workflow to perform T-cell states and clonal analysis from scRNA-seq data based on 

the R packages Seurat, ProjecTILs, and scRepertoire. Given a scRNA-seq T-cell dataset with TCR sequence 

information, cell states are automatically annotated by reference projection using the ProjecTILs method. TCR 

information is used to track individual clonotypes, assess their clonal expansion, proliferation rates, bias towards 

specific differentiation states, and the clonal overlap between T-cell subtypes. We provide fully reproducible R code 

to conduct these analyses and generate useful visualizations that can be adapted for the needs of the protocol user.  

https://creativecommons.org/licenses/by/4.0/
mailto:santiago.carmona@unil.ch
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Graphical overview 
 

 

 

 

Background 
 

T cells are crucial players in the adaptive immune response with the capacity to recognize and eliminate infected 

and malignant cells. The antigen specificity of T cells is conferred by their T-cell receptors (TCRs). These are 

heterodimeric proteins in which each of the two protein chains—typically one alpha (α) and one beta (β)—is 

produced through somatic rearrangement of V, (D), and J gene segments, as well as the addition or deletion of 

nucleotides between spliced gene segments, to form a unique V(D)J exon. This recombination process is largely 

random and generates a large repertoire of TCRs, with an estimated diversity in the order of 10 8–1010 unique TCR 

chains in a single individual (Qi et al., 2014; Lythe et al., 2016). Such a large repertoire, and in particular the 

hypervariable complementary-determining region 3 (CDR3) of the TCR, allows recognizing with high specificity a 

vast array of foreign antigens, while maintaining tolerance to self-antigens. Due to this huge diversity, each naïve 

αβ T cell has a virtually unique combination of TCR α and β chains. Thus, paired αβ TCR sequences serve as 

molecular barcodes to track T-cell clones through processes such as proliferation, differentiation, and migration. 

The emergence of single-cell technologies has enabled the coupled sequencing of full-length TCRs with 

transcriptome-wide RNA sequencing in individual cells (Pai and Satpathy, 2021). This is achieved by either 

computationally reconstructing TCR chain transcript sequences from single-cell RNA sequencing reads (Eltahla et 

al., 2016; Stubbington et al., 2016; Bolotin et al., 2017) or by specifically amplifying the TCR locus, also known as 

single-cell TCR-seq (e.g., using Chromium 5′ V(D)J sequencing). Coupled with scTCR-seq, scRNA-seq enables 

the connection between T-cell states, clonotypes, and potential antigen specificity (Han et al., 2014). 

We have recently proposed computational pipelines for the analysis of single-cell T-cell repertoires (Borcherding 

and Bormann, 2020) and for reference-based analysis of single-cell transcriptomics data (Andreatta et al., 2021a), 

based on the tools scRepertoire and ProjecTILs, respectively. In this protocol, we describe how to combine these 

computational tools to analyze paired scRNA-seq and scTCR-seq data to track individual clonotypes projected in a 

reference map, assess their clonal expansion, proliferation rates, their bias towards specific differentiation states, 

and the clonal overlap between T-cell states. We will focus the examples on human CD8+ T cells from tumor biopsies, 

but the protocol is applicable to any single-cell transcriptomics data with TCR sequence information in humans and 

mice. We invite the reader to follow this protocol while interactively running the associated R Notebook (see 

Software and datasets section). 
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Equipment 
 

1. Personal computer (minimum 16 GB of RAM) or high-performance computing cluster. All software runs on 

Linux, Windows, or MacOS machines. 

 

 

Software and datasets 
 

This protocol requires basic R programming skills: installing packages, running an R notebook, and adapting the 

code to the needs of the user. 

All software used for this protocol is free and open source. 

1. R version 4.2 or higher 

2. scRepertoire (version  1.7) (Borcherding and Bormann, 2020) (https://github.com/ncborcherding/scRepertoire) 

3. ProjecTILs (version  3.0) (Andreatta et al., 2021a) (https://github.com/carmonalab/ProjecTILs) 

4. Seurat (version  4.3) (Hao et al., 2021) (https://github.com/satijalab/seurat) 

 

In addition, it is recommended to install R Studio Desktop (https://posit.co/downloads/) to interactively run the R 

Notebook that reproduces the results of this protocol (https://github.com/carmonalab/Tcell_clonal_analysis). 

To download the repository to your machine, run the following from command line: 

 

git clone git@github.com:carmonalab/Tcell_clonal_analysis.git 

 

Then, move to the newly created directory and open the project file (with .Rproj extension). Open the protocol 

notebook (protocol_CD8TIL_clonalAnalysis.Rmd) in R Studio and execute all commands in order. Note that the R 

Notebook makes use of the renv package (https://rstudio.github.io/renv/articles/renv.html) for straightforward 

installation of all required packages with the correct version and to ensure reproducibility of the results shown in 

this protocol. 

The protocol assumes the user has generated a single-cell transcriptomics dataset with TCR sequencing information 

for the same T cells or a subset thereof. There is no restriction on the sequencing technology used, if it generates i) 

a count matrix quantifying gene expression in single cells; and ii) TCR sequences, for paired αβ chains or single 

chains, with barcodes that can be mapped to transcriptomics measurements of the same cells.  

 

 

Procedure 
 

The protocol details all steps required to go from scRNA-seq and scTCR-seq count matrices to T-cell clonal analysis 

in the context of a T-cell reference map. Each step includes example code snippets that highlight the R commands 

that accomplish the step. For the complete list of R commands that reproduce the results of this protocol, refer to 

the accompanying R Notebook (see Software and datasets section). 

 

A. Single-cell data pre-processing 

 

1. scRNA-seq data 

Several protocols and technologies are available for transcriptomics quantification using scRNA-seq. 

Sequencing protocols differ in terms of library preparation, read alignment to a reference genome, and 

quantification of transcripts, as reviewed in multiple publications (Vieth et al., 2019; Mereu et al., 2020). 

Sequencing facilities commonly offer read mapping and gene expression quantification to obtain a raw 

count expression matrix (for instance, using the Cell Ranger pipeline from 10× Genomics). From a raw 

counts matrix, generate a Seurat (Hao et al., 2021) object to store the counts: 

 

https://github.com/ncborcherding/scRepertoire
https://github.com/carmonalab/ProjecTILs
https://github.com/satijalab/seurat
https://posit.co/downloads/
https://github.com/carmonalab/Tcell_clonal_analysis
mailto:git@github.com:carmonalab/Tcell_clonal_analysis.git
https://rstudio.github.io/renv/articles/renv.html
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seurat <- CreateSeuratObject(counts = matrix) 

 

Note that Seurat also implements functions to load data from specific technologies, for example the 

Read10X() function to read count matrices from the popular 10× sequencing platform (see 

https://satijalab.org/seurat/reference/read10x). 

2. scTCR-seq data 

Obtaining single-cell TCR sequences requires specific protocols for amplification and sequencing of the 

V(D)J locus, or their reconstruction from whole-transcriptome sequencing. For an overview of scTCR-seq 

sequencing approaches, see the comprehensive review by Pai and Satpathy (2021). 

We assume that the user has performed V(D)J sequences assembly and clonotype calling. For 10× 

Chromium 5′ V(D)J libraries, such annotated V(D)J sequences (“contigs”) are obtained from FASTQ files 

using the Cell Ranger V(D)J pipeline (https://support.10xgenomics.com/single-cell-

vdj/software/pipelines/latest/using/vdj). scRepertoire (Borcherding and Bormann, 2020) implements 

useful functions to process the V(D)J contigs annotation files generated by Cell Ranger. These files 

(usually named all_contig_annotations.csv for total, or filtered_contig_annotations.csv for high-

confidence filtered contigs) contain detailed information for each V(D)J contig, including its cell barcode, 

length, V-D-J-C segments, the number of reads and distinct UMIs aligned to the contig, and a clonotype 

ID to which the contig was assigned. 

 

Load TCR α and β chains from Cell Ranger output files and combine them by cell barcode, using function 

combineTCR() from scRepertoire: 

 

S1 <- read.csv("Sample1/outs/filtered_contig_annotations.csv") 

S2 <- read.csv("Sample2/outs/filtered_contig_annotations.csv") 

contig_list <- list(S1, S2) 

combined <- combineTCR(contig_list, cells ="T-AB") 

 

For V(D)J contigs generated using different pipelines, please see the loadContigs() function from 

scRepertoire, which allows data pre-processing for multiple formats including TRUST4, BD Rhapsody, 

WAT3R, and AIRR. 

 

Note 1: It is often useful for further processing steps to generate keys for unique clonotype–sample 

combinations. As it may occur by chance that the same clonotype is observed in different individuals, these 

keys will allow discriminating between T cells with identical TCR but from different samples. For example, 

generate a clonotype–sample key as a metadata column named “cdr3s_pat”: 

combined <- lapply(combined, function(x){x$cdr3s_pat <- paste(x$CTaa, 

x$sample, sep="_");  x})  

 

3. Combine scRNA-seq and scTCR-seq data 

Append the TCR information into the previously prepared Seurat object that stores the scRNA-seq counts. 

If the V(D)J data were processed using combineTCR() from scRepertoire, you may apply the 

combineExpression() function: 

 

seurat <- combineExpression(combined, seurat,  

                  group.by = "sample",  

                  cloneTypes=c(Single=1, Small=5, Medium=10, Large=20, 

Hyperexpanded=50)) 

 

For V(D)J data pre-processed using different pipelines, add the TCR chains as metadata to the Seurat 

object: 

seurat <- AddMetaData(seurat, tcr.chains)  

 

https://satijalab.org/seurat/reference/read10x
https://support.10xgenomics.com/single-cell-vdj/software/pipelines/latest/using/vdj
https://support.10xgenomics.com/single-cell-vdj/software/pipelines/latest/using/vdj


Cite as: Andreatta, M. et al. (2023). T Cell Clonal Analysis Using Single-cell RNA Sequencing and Reference Maps. Bio-

protocol 13(16): e4735. DOI: 10.21769/BioProtoc.4735. 

 

5 

 

Published:  Aug 20, 2023 

B. Reference-based analysis 

 

1. Load reference map 

Several reference single-cell maps for reference-based analysis are available from the ProjecTILs 

repository (https://github.com/carmonalab/ProjecTILs) and from SPICA (Andreatta et al., 2021b) 

(https://spica.unil.ch). For example, to analyze human CD8+ T cells, download and load the corresponding 

map (Figure 1): 

 

ref.file <- "CD8T_human_ref_v1.rds" 

download.file("https://figshare.com/ndownloader/files/38921366", 

destfile = ref.file) 

ref.cd8 <- load.reference.map("CD8T_human_ref_v1.rds") 

DimPlot(ref.cd8, cols = ref.cd8@misc$atlas.palette) 

 

 

 

Figure 1. Reference map for human CD8+ T cells 

 

2. Project data into the reference 

To embed query data into the reference space and obtain cell type annotations, apply the ProjecTILs 

pipeline (Andreatta et al., 2021a). If the query dataset is composed of different samples (e.g., from different 

patients or time points), we recommend splitting it and projecting each sample separately into the reference. 

In this way, ProjecTILs will assume that each sample represents a different experimental batch and will 

calculate and correct batch effects accordingly: 

 

seurat.list <- SplitObject(seurat, split.by = "patient") 

seurat.projected <- Run.ProjecTILs(seurat.list, ref.cd8) 

 

In this case, the output is a list of Seurat objects, each corresponding to a query sample projected in the 

reference map. 

Note 2: For this example, because we chose to use a CD8+ T cell reference map, ProjecTILs will 

automatically pre-filter CD8+ T cells from the input data (i.e., will remove CD4+ T cells and non-T cells). 

With ProjecTILs, it is also possible to conduct multi-reference map analysis, for instance using both CD8+ 

https://github.com/carmonalab/ProjecTILs
https://spica.unil.ch/
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T cells and CD4+ T cells reference maps. An example can be found in the following R notebook: 

https://carmonalab.github.io/ProjecTILs_CaseStudies/Bassez_BC.html. 

3. Compare marker gene expression profiles of query data with the reference map  

To verify the correspondence of transcriptional phenotypes between the reference and query dataset, 

visualize the average expression profile of each cell subtype for a panel of marker genes (Figure 2):  

 

which.patient <- "su009" 

plot.states.radar(ref.cd8, seurat.projected[[which.patient]], 

genes4radar = genes4radar) 

 

 

 

 

Figure 2. Expression profiles for reference and query dataset for a panel of marker genes.  Reference 

is a human CD8+ T-cell reference (see text); the query is a representative individual (“su009”) from a 

cohort of basal cell carcinoma (BCC) patients (Yost et al., 2019). 

 

4. Cell subtype composition of query data 

Reference projection of the query data allows embedding them into the same space of the reference. Cell 

types for the query dataset can be predicted by nearest-neighbor majority voting based on the annotated 

reference cells. Visualize low-dimensional embeddings and subtype composition for individual samples 

or other subsets of the projected data (Figure 3): 

 

which.patient <- "su009" 

a <- plot.projection(ref.cd8, seurat.projected[[which.patient]]) 

b <- plot.statepred.composition(ref.cd8, query = 

seurat.projected[[which.patient]])  

a | b 

 

https://carmonalab.github.io/ProjecTILs_CaseStudies/Bassez_BC.html
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Figure 3. Reference embeddings and cell subtype composition for query dataset. Reference is a human 

CD8+ T-cell reference (see text); query is a representative patient (“su009”) from a basal cell carcinoma 

(BCC) cohort (Yost et al., 2019). 

 

5. Exclude small samples 

Robust analyses require a minimum number of cells in each sample. After projection and annotation, 

remove all samples with a small number of cells (e.g., 100 cells):  

 

sizes <- as.vector(lapply(seurat.projected, ncol)) 

keep <- names(sizes)[sizes > 100] 

seurat.projected <- seurat.projected[keep] 

 

For large enough samples, we can compare their composition in terms of cell subtypes (Figure 4): 

 

plots <- lapply(names(seurat.projected), function(x) { 

  plot.statepred.composition(ref.cd8, query = seurat.projected[[x]], 

metric = "Percent") + ggtitle(x) 

}) 

wrap_plots(plots, ncol=4) 

 

6. Merge list of objects to obtain a single object 

For some analyses (including clonal analysis detailed below), it is useful to merge individual 

objects/samples (projected by patient) into a single object:  

 

merged.projected <- Reduce(merge.Seurat.embeddings, seurat.projected) 

Idents(merged.projected) <- "functional.cluster" 
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Figure 4. CD8+ T-cell subtype composition in individual tumor biopsies with at least 100 CD8+ T cells. 

Data are from basal cell carcinoma (BCC) tumor biopsies (Yost et al., 2019); plots are sorted by the fraction 

of CD8.TEX cells. 

 

C. Clonal analysis 

 

If the TCR information was loaded into the query Seurat object as outlined in section A, it will be available as 

metadata for the projected object. This allows linking the transcriptomics state to clonal information. A few 

examples of analyses are detailed below. 

1. Identify the most expanded clones 

Calculate the frequency of unique TCR chains per patient (e.g., as stored in “cdr3s_pat” metadata, see 

Note 1) to identify the most expanded clones per patient: 

 

freqs <- lapply(seurat.projected, function(x) { 

  table(x$cdr3s_pat) / sum(!is.na(x$cdr3s_pat)) 

}) 

freqs <- Reduce(c, freqs) 

sorted <- sort(freqs, decreasing = TRUE) 

largest.clones <- head(sorted, 6) 

 

2. Locate expanded clones on the reference low-dimensional space 

TCR chains can be used to subset clones of interest (e.g., the largest clones as identified above) and inspect 

their distribution on the reference UMAP space (Figure 5):  

 

plots <- list() 

for (i in 1:length(largest.clones)) { 

  ctype <- names(largest.clones)[i] 

  cells <- which(merged.projected[["cdr3s_pat"]]==ctype) 

  plots[[i]] <- plot.projection(ref.cd8, merged.projected[,cells])  

} 

wrap_plots(plots, ncol = 3) 
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Figure 5. Reference UMAP embeddings highlighting with contour lines the location of the six most 

expanded CD8+ T-cell clones in basal cell carcinoma (BCC) tumor biopsies (Yost et al., 2019) 

 

3. Clonal expansion by T-cell subtype 

scRepertoire implements several useful functions to visualize clonal expansion and clonal diversity. Plot 

the number of cells in different categories of expansions, from “Single” clones to large clones (here >50 

cells), by T-cell subtype (Figure 6): 

 

occupiedscRepertoire(merged.projected, x.axis = "functional.cluster") 

 

 

 

Figure 6. Occupied single-cell repertoire by cell subtype. The y-axis indicates the absolute number of 

cells, and colors identify the type of clone based on the number of cells it contains. Data from Yost et al. 

(2019). 
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4. Clonotype proliferation rate 

High proliferation rate of a specific clonotype may indicate that the T cells with shared specificity are 

actively recognizing antigens in situ. We can measure proliferation at the clonal level by calculating how 

many cells of a clone are cycling, according to transcriptomics readouts. ProjecTILs automatically 

calculates cell cycling signature scores using UCell (Andreatta and Carmona, 2021). These signature 

scores can be used to define cell cycle stage and proliferative status (Figure 7):  

 

merged.projected$is.cycling <- 

ifelse((merged.projected$cycling.score.G1_S > 0.1 | 

merged.projected$cycling.score.G2_M > 0.1), 

yes = "Proliferating", 

no = "Resting") 

#Only consider expanded clones 

clonotypes <- table(merged.projected$cdr3s_pat) 

expanded <- names(clonotypes)[clonotypes>=2] 

frequency.proliferating <- sapply(expanded, function(x) { 

  sub <- subset(merged.projected[[]], subset=cdr3s_pat == x) 

  sum(sub$is.cycling == "Proliferating") / ncol(sub) }) 

 

 

 

Figure 7. Most proliferative clones in pre-treatment biopsies from a basal cell carcinoma (BCC) 

cohort (Yost et al., 2019). A. Fraction of proliferating cells for the six most proliferative clones. B. 

Reference-embedding for the same six clones. Proliferating cells are calculated based on signature scoring 
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of the cell cycling signatures defined by Tirosh et al. (2016). 

 

Note 3: The user may want to use different gene signatures than those automatically applied by ProjecTILs, 

to quantify activity of additional gene programs. We refer to the UCell online documentation for interacting 

with Seurat objects and for custom gene signature scoring: 

https://bioconductor.org/packages/release/bioc/vignettes/UCell/inst/doc/UCell_Seurat.html. 

5. Clonal sharing between T-cell subtypes 

Metrics of clonal overlap [e.g., Horn-Morisita index (Horn, 1966)] can be used to assess clonal sharing 

between samples and between T-cell subtypes. Here, we analyze the clonal sharing between subtypes 

(Figure 8A): 

 

clonalOverlap(combined, cloneCall = "cdr3s_pat", method = "morisita") 

 

Several additional representations of clonal overlap are available in scRepertoire, for example as circos 

plots (Gu et al., 2014) (Figure 8B): 

circles <- getCirclize(merged.projected, 

cloneCall = "cdr3s_pat", 

group.by = "functional.cluster") 

circlize::chordDiagram(circles) 

 

 

 

 

Figure 8. Clonal overlap between CD8+ T-cell subtypes. A. Morisita index for T-cell receptors (TCR) 

sharing between CD8+ T-cell subtypes. B. Circos plot visualization of clonal sharing between subtypes. 

Data from Yost et al. (2019). 

 

Note 4: Cell type/state classification algorithms are not perfect, and there is generally some uncertainty 

in the predicted subtypes, especially among closely related subtypes (e.g., NaiveLike and CM/Central 

Memory). Moreover, some cells might display intermediate states of differentiation, transitioning from one 

state into another. These factors might lead to some background noise for TCR sharing/Morisita index 

between transcriptionally related cell states (e.g., in Figure 8, a Morisita index of 0.031 between NaiveLike 

and CM is very unlikely to be meaningful). It is strongly advised to analyze multiple independent samples 

to support hypotheses of TCR sharing between groups. 

6. Clonotype bias towards specific cell states 

In certain settings, it may be of interest to identify clones that are significantly composed of T cells of a 

certain subtype. We have previously devised a metric to measure clonotype bias and applied it to 

investigate if virus-specific naïve CD4+ T-cell clones were preferentially differentiating into a specific 

effector state, or whether multiple differentiation fates were equally likely (Andreatta et al., 2022). 

scRepertoire implements a function to calculate clonotype bias (Figure 9A): 

https://bioconductor.org/packages/release/bioc/vignettes/UCell/inst/doc/UCell_Seurat.html
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clonotypeBias(merged.projected, cloneCall = "cdr3s_pat", split.by = 

"patient", 

group.by = "functional.cluster", min.expand = 10) 

 

 
 

Figure 9. Clonotype bias towards specific cell states. A. Clonotype bias as a function of clonal size, for 

expanded CD8+ T-cell clones in basal cell carcinoma (BCC) tumors (Yost et al., 2019). The blue line 

approximates the upper bound of a 95% confidence interval of the expected clonotype bias distribution 

(i.e., the clonotype bias expected by chance if there was no biological association between clonotype and 

cell state). B. T-cell clones with most significant clonotype bias, ranked by Z-score. 
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The same function can be used to return a table, by setting exportTable=TRUE, from which we can extract 

the most significantly biased clones according to their Z-score (Figure 9B):  

 

biased <- clonotypeBias(merged.projected, cloneCall = "cdr3s_pat", 

split.by = "patient", 

group.by = "functional.cluster", min.expand = 5, exportTable=TRUE)  

 most.biased <- biased[order(biased$Z.score, decreasing = TRUE),] 

plots <- list() 

for (i in 1:6) { 

  ctype <- most.biased[i, "Clone"] 

  cells <- which(merged.projected [["cdr3s_pat"]]==ctype) 

  title <- sprintf("Clone %s - size %s - %s", i, size, patient) 

  plots[[i]] <- plot.projection(ref.cd8, merged.projected [,cells]) 

} 

wrap_plots(plots, ncol = 3) 

 

 

Data analysis 
 

Fully reproducible R code that generates the results and figures in this protocol, including all pre-processing steps, 

is available on GitHub: https://github.com/carmonalab/Tcell_clonal_analysis. A comprehensive vignette with more 

information on scRepertoire and its functions can be found at: 

https://ncborcherding.github.io/vignettes/vignette.html. Several case studies of applications of ProjecTILs for 

reference-based analysis of single-cell data are available at: https://carmonalab.github.io/ProjecTILs_CaseStudies. 

 

 

General notes and troubleshooting 
 

Commercially available single-cell RNA-sequencing technologies have opened the opportunity to study the 

association of T-cell states and clonality at large scale. However, scRNA-seq experiments typically produce less 

than 10,000 high-quality single-cell transcriptomes per sample. Depending on the tissue analyzed, and whether or 

not T cells have been specifically purified, the number of sequenced T cells obtained, even from inflamed tissues, 

can be very low. As a result, only a small fraction of the complete TCR repertoire is typically sampled. Under-

sampling leads to inaccurate estimations of clonal diversity (e.g., Shannon entropy). For this reason, in this protocol 

we suggest to exclude from analysis samples with very few cells and we avoided the use of clonal diversity metrics,  

such as Shannon entropy, Gini-Simpson index, and Gini coefficient, that are particularly sensitive to under-sampling 

(Chiffelle et al., 2020). Instead, we focused the analysis on the largest clonotypes in each sample. Clonal sharing 

between samples (e.g., Morisita index) is also affected by the low number of observations. Thus, clonal diversity 

and clonal sharing metrics should be interpreted with caution, and importantly, confirmed in independent samples.  

 

Troubleshooting 

 

Download of large objects in R (as in the case of single-cell datasets and reference maps) may occasionally fail due 

to connection timeout. This commonly manifests in errors such as “object X is invalid.” Try increasing download 

timeout using the following command within the R session: 

 

options(timeout = max(900, getOption("timeout"))) 
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