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Summary. The one-factor Gaussian model is well-known not to fit simultaneously
the prices of the different tranches of a collateralized debt obligation (CDO), leading
to the implied correlation smile. Recently, other one-factor models based on differ-
ent distributions have been proposed. Moosbrucker [12] used a one-factor Variance
Gamma model, Kalemanova et al. [7] and Guégan and Houdain [6] worked with a
NIG factor model and Baxter [3] introduced the BVG model. These models bring
more flexibility into the dependence structure and allow tail dependence. We unify
these approaches, describe a generic one-factor Lévy model and work out the large
homogeneous portfolio (LHP) approximation. Then, we discuss several examples
and calibrate a battery of models to market data.

1 Introduction

A collateralized debt obligation (CDO) can be defined as a transaction that
transfers the credit risk on a reference portfolio of assets. A standard feature
of a CDO structure is the tranching of credit risk. Credit tranching refers to
creating multiple tranches of securities which have varying degrees of seniority
and risk exposure. The risk of loss on the reference portfolio is then divided
into tranches of increasing seniority in the following way. The equity tranche
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is the first to be affected by losses in the event of one or more defaults in
the portfolio. If losses exceed the value of this tranche, they are absorbed
by the mezzanine tranche(s). Losses that have not been absorbed by the
other tranches are sustained by the senior tranche and finally by the super-
senior tranche. Each tranche then protects the ones senior to it from the risk
of loss on the underlying portfolio. When tranches are issued, they usually
receive a rating by rating agencies. The CDO issuer typically determines
the size of the senior tranche so that it is AAA-rated. Likewise, the CDO
issuer generally designs the other tranches so that they achieve successively
lower ratings. The CDO investors take on exposure to a particular tranche,
effectively selling credit protection to the CDO issuer, and in turn collecting
premiums (spreads).

We are interested in pricing tranches of synthetic CDOs. A synthetic CDO
is a CDO backed by credit default swaps (CDSs) rather than bonds or loans,
i.e. the reference portfolio is composed of CDSs. Recall that a CDS offers
protection against default of an underlying entity over some time horizon.
The term synthetic is used because CDSs permit synthetic exposure to credit
risk. By contrast, a CDO backed by ordinary bonds or loans is called a cash
CDO. Synthetic CDOs recently have become very popular.

It turns out that the pricing of synthetic CDO tranches only involves loss
distributions over different time horizons (see Section 4). Then, we may think
of using the large homogeneous portfolio (LHP) approximation to compute
the premiums of these tranches. This convenient method is well-known in the
credit portfolio field and permits to approximate the loss distribution which
is computationally intensive.

Assuming a one-factor model approach for modeling correlated defaults of
the different names in the reference portfolio together with the conditional
independence of these defaults on a common market factor leads to a simplifi-
cation of the calculation of the loss distribution (see Section 2). The one-factor
Gaussian model is well-known not to fit simultaneously the prices of the dif-
ferent tranches of a CDO, leading to the implied correlation smile. Recently,
other one-factor models based on different distributions have been proposed.
Moosbrucker [12] used a one-factor Variance Gamma model, Kalemanova et
al. [7] and Guégan and Houdain [6] worked with a NIG factor model and
Baxter [3] introduced the BVG model. These models bring more flexibility
into the dependence structure and allow tail dependence. We unify these ap-
proaches in Section 2, describe a generic one-factor Lévy model and work out
the LHP approximation. With such a model, the distribution function of any
name’s asset value is analytically known, bringing significant improvement
with respect to computation times. In Section 3, we discuss several examples,
including the Gaussian, shifted Gamma, shifted Inverse Gaussian, Variance
Gamma, Normal Inverse Gaussian and Meixner cases. Finally, we calibrate a
battery of one-factor LHP Lévy models to market quotes of a tranched iTraxx
and give the prices generated by these models.
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In 2004, the main traded CDS indices have been merged into a single family
under the names DJ iTraxx (Europe and Asia) and DJ CDX (North Amer-
ica and emerging markets). These indices provide established portfolios upon
which standardized tranches can be structured, allowing a more transparent
and liquid market for CDO tranches.

Take the example of the DJ iTraxx Europe index. It consists of a portfolio
composed of 125 actively traded names in terms of CDS volume, with an equal
weighting given to each, and remains static over its lifetime of 6 months, except
for entities defaulting which are then eliminated from the index. It is possible
to invest in standardized tranches of the index via the tranched iTraxx which
is nothing else but a synthetic CDO on a static portfolio. In other words, a
tranched CDS index is a synthetic CDO based on a CDS index, where each
tranche references a different segment of the loss distribution of the underlying
CDS index. The main advantage of such a synthetic CDO relative to other
CDOs is that it is standardized. In Table 1, we give the standard synthetic
CDO structure on the DJ iTraxx Europe index.

Table 1. Standard synthetic CDO structure on the DJ iTraxx Europe index.

Reference portfolio Tranche name K1 K2

Equity 0% 3%
125 Junior mezzanine 3% 6%
CDS Senior mezzanine 6% 9%

names Senior 9% 12%
Super-senior 12% 22%

We end with some notation. By f [−1], we mean the inverse function of f .
The indicator function of any set or event A is denoted by 1A. We use the
abbreviation a.s. for almost surely and the symbol a.s.−→ stands for almost sure
convergence. The gamma function is denoted by Γ(x) :=

∫ +∞
0

tx−1e−t dt,
x > 0. The modified Bessel function of the third kind with real index ζ is
denoted by Kζ(x) := 1

2

∫ +∞
0

tζ−1 exp
(−x(t + t−1)/2

)
dt, x > 0. The notation

X ∼ F means that the random variable X follows the distribution F .

2 Generic One-Factor Lévy Model

2.1 Lévy Process

Suppose φ is the characteristic function of a distribution. If for every positive
integer n, φ is also the nth power of a characteristic function, we say that the
distribution is infinitely divisible. One can define for any infinitely divisible
distribution a stochastic process, X = {Xt, t ≥ 0}, called a Lévy process,
which starts at zero, has stationary independent increments and such that
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the distribution of an increment over [s, s + t], s, t ≥ 0, i.e. Xt+s −Xs, has φt

as characteristic function.
The function ψ := log φ is called the characteristic exponent and it satisfies

the following Lévy-Khintchine formula (see Bertoin [4]):

ψ(z) = iγz − ς2

2
z2 +

∫ +∞

−∞

(
exp(izx)− 1− izx1{|x|<1}

)
ν(dx), z ∈ R

where γ ∈ R, ς2 ≥ 0 and ν is a measure on R\{0} with
∫ +∞
−∞ min

(
1, x2

)
ν(dx) <

∞. From the Lévy-Khintchine formula, one sees that, in general, a Lévy pro-
cess consists of three independent parts: a linear deterministic part, a Brown-
ian part, and a pure jump part. We say that our infinitely divisible distribution
has a triplet of Lévy characteristics [γ, ς2, ν(dx)]. The measure ν(dx) is called
the Lévy measure of X and it dictates how the jumps occur. Jumps of sizes
in the set A occur according to a Poisson process with parameter

∫
A

ν(dx).
If ς2 = 0 and

∫ +1

−1
|x| ν(dx) < ∞, it follows from standard Lévy process the-

ory (e.g., Bertoin [4], Sato [16]) that the process is of finite variation. For
more details about the applications of Lévy processes in finance, we refer to
Schoutens [20].

2.2 Generic One-Factor Lévy Model

Next, we are going to model a portfolio of n obligors; each obligor has the
same weight in the portfolio. Later on, we will focus on a homogeneous port-
folio, but let us start with the general situation where each obligor has some
recovery value Ri in case of default and some individual default probability
term structure pi(t), t ≥ 0, which is the probability that obligor i will default
before time t.

Fix a time horizon T . For the modeling, let us start with a mother infinitely
divisible distribution L. Let X = {Xt, t ∈ [0, 1]} be a Lévy process based on
that infinitely divisible distribution, such that X1 follows the law L. Note
that we will only work with Lévy processes with time running over the unit
interval. Denote the distribution function of Xt by Ht, t ∈ [0, 1], and assume it
is continuous. Assume further that the distribution is standardized in the sense
that E[X1] = 0 and Var[X1] = 1. In terms of ψ, this means that ψ′(0) = 0
and ψ′′(0) = −1. Then, it is not that hard to prove that Var[Xt] = t.

Let X = {Xt, t ∈ [0, 1]} and X(i) = {X(i)
t , t ∈ [0, 1]}, i = 1, . . . , n be

independent and identically distributed Lévy processes (so all processes are
independent of each other and are based on the same mother infinitely divisible
distribution L).

Next, we propose the generic one-factor Lévy model. Let ρ ∈ (0, 1). We
assume that the asset value of obligor i = 1, . . . , n at time T is of the form:

Ai(T ) = Xρ + X
(i)
1−ρ. (1)
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Each Ai(T ) has by the stationary and independent increments property the
same distribution as the mother distribution L with distribution function H1.
Indeed, the sum of an increment of the process over a time interval of length ρ
and an independent increment over a time interval of length 1− ρ follows the
distribution of an increment over an interval of unit length, i.e. is following
the law L. As a consequence, E[Ai(T )] = 0 and Var[Ai(T )] = 1. Furthermore,
the asset values of any two obligors i and j (i 6= j) are correlated with linear
correlation coefficient ρ. Indeed, one readily computes:

Corr[Ai(T ), Aj(T )] =
E[Ai(T )Aj(T )]− E[Ai(T )]E[Aj(T )]√

Var[Ai(T )]
√

Var[Aj(T )]

= E[Ai(T )Aj(T )] = E[X2
ρ ] = ρ.

So, starting from any mother standardized infinitely divisible law, we can set
up a one-factor model with the required correlation.

We say that the ith obligor defaults at time T if its firm value Ai(T ) falls
below some preset barrier Ki(T ), i.e. if Ai(T ) ≤ Ki(T ). In order to match de-
fault probabilities under this model with default probabilities pi(T ) observed
in the market, we have to set Ki(T ) = H

[−1]
1 (pi(T )). Indeed, it follows that

P[Ai(T ) ≤ Ki(T )] = P[Ai(T ) ≤ H
[−1]
1 (pi(T ))] = H1(H

[−1]
1 (pi(T ))) = pi(T ).

Notice that conditional on the common factor Xρ, the firm values and the
defaults are independent.

From now on, we assume that the portfolio is homogeneous, i.e.:

• All obligors have the same default barrier (Ki(T ) = K(T ), i = 1, . . . , n)
and hence the same marginal default distribution (pi(T ) = p(T ));

• All obligors have the same recovery rate (Ri = R, i = 1, . . . , n);
• All obligors have the same notional amount: denoting the total portfolio

notional by N , we then set Ni = N
n for all i = 1, . . . , n.

Let us denote the number of defaults in the portfolio until time T by DT,n.
The probability of having exactly k defaults equals:

P[DT,n = k] =
∫ +∞

−∞
P[DT,n = k|Xρ = y] dHρ(y), k = 0, . . . , n.

Conditional on Xρ = y, the probability of having k defaults is (because of
independence):

P[DT,n = k|Xρ = y] =
(

n

k

)
p(y; T )k (1− p(y; T ))n−k

where p(y; T ) denotes the probability that the firm’s value Ai(T ) is below the
barrier K(T ), given that the systematic factor Xρ takes the value y, i.e.:
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p(y; T ) := P[Ai(T ) ≤ K(T )|Xρ = y]

= P[Xρ + X
(i)
1−ρ ≤ K(T )|Xρ = y]

= P[X(i)
1−ρ ≤ K(T )− y]

= H1−ρ(K(T )− y).

Substituting then yields:

P[DT,n = k] =
(

n

k

) ∫ +∞

−∞
(H1−ρ(K(T )− y))k (1−H1−ρ(K(T )− y))n−k dHρ(y).

The loss fraction on the portfolio notional at time T given by:

LHP
T,n :=

1−R

n

n∑

i=1

1{Ai(T )≤K(T )} (2)

is clearly one-to-one related with the number of defaults. We then obtain the
following distribution function for the portfolio loss fraction:

P
[
LHP

T,n ≤
k(1−R)

n

]
=

k∑

i=0

P[DT,n = i], k = 0, . . . , n.

In the next subsection, we will consider a method to approximate the latter
distribution that turns out to be of prime interest in the CDO pricing (see
Section 4).

Now, denote for small x by λij(x) := P[Aj(T ) ≤ x|Ai(T ) ≤ x], i 6= j,
a measure for the dependence in the tail. Using (conditional) independence
arguments yields:

λij(x) =
P[Xρ + X

(j)
1−ρ ≤ x, Xρ + X

(i)
1−ρ ≤ x]

P[Xρ + X
(i)
1−ρ ≤ x]

=
E

(
P
[
Xρ + X

(j)
1−ρ ≤ x, Xρ + X

(i)
1−ρ ≤ x

∣∣∣ Xρ

])

H1(x)

=
∫ +∞

−∞

P[X(j)
1−ρ ≤ x− y, X

(i)
1−ρ ≤ x− y]

H1(x)
dHρ(y)

=
∫ +∞

−∞

H2
1−ρ(x− y)
H1(x)

dHρ(y).

The limit λij := limx→−∞ λij(x) is then the well-known lower tail dependence
coefficient of Ai(T ) and Aj(T ). Lower tail dependence is exactly capturing
the probability of concordant down movements of the underlying asset values.
The formula being stated in terms of the distribution Ht, the quantity λij(x)
and its limit can be evaluated for any one-factor Lévy model.
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2.3 The Large Homogeneous Portfolio Approximation

We are interested in approximating the distribution function of the portfolio
loss fraction LHP

T,n. This proves to be possible if the homogeneous portfolio gets
very large (i.e. n →∞).

When conditioned on the systematic factor Xρ, the default variables
1{Ai(T )≤K(T )}, i = 1, . . . , n, become independent. Hence, by the strong law of
large numbers, we obtain:

P
[

lim
n→∞

LHP
T,n = (1−R) p(Xρ; T )

∣∣∣Xρ

]
= 1 a.s.

and taking expectations on both sides gives:

LHP
T,n

a.s.−→ (1−R) p(Xρ;T ) as n →∞.

For large homogeneous portfolios, we then make the approximation:

FHP
T,n(x) := P[LHP

T,n ≤ x] = FHP
T

(
x

1−R

)
, x ∈ [0, 1−R] (3)

where FHP
T denotes the distribution function of p(Xρ; T ), that turns out to

be the loss fraction with a zero recovery rate (or equivalently the fraction of
defaults) on the limiting portfolio at time T . We easily compute:

FHP
T (x) = P[H1−ρ(K(T )−Xρ) ≤ x]

= P[Xρ ≥ K(T )−H
[−1]
1−ρ (x)]

= 1−Hρ

(
H

[−1]
1 (p(T ))−H

[−1]
1−ρ (x)

)
, x ∈ [0, 1] (4)

so that we obtain an explicit handy expression for the distribution FHP
T,n of the

portfolio fractional loss.
Note that if the portfolio contains a moderately large number of credits,

the approximation (3) turns out to be remarkably good.

3 Examples of One-Factor Lévy Models for Correlated
Defaults

3.1 Based on the Normal Distribution - Brownian Motion

The Vasicek [22] one-factor model assumes the following dynamics:

• Ai(T ) =
√

ρ Y +
√

1− ρ Xi, i = 1, . . . , n;
• Y , Xi, i = 1, . . . , n are i.i.d. standard normal random variables with com-

mon distribution function Φ.
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This model can be casted in the above general Lévy framework. The mother
infinitely divisible distribution is here the standard normal distribution and
the associated Lévy process is the standard Brownian motion W = {Wt, t ∈
[0, 1]}. Indeed, note that Wρ follows a Normal(0, ρ) distribution as does

√
ρ Y ;

similarly W
(i)
1−ρ follows a Normal(0, 1 − ρ) distribution as does

√
1− ρXi.

Adding these independent random variables leads to a standard normally
distributed random variable.

Using the classical properties of normal random variables, the distribution
function (4) of the fraction of defaulted securities in the limiting portfolio at
time T transforms into:

FHP
T (x) = 1− Φ

(
Φ[−1](p(T ))−√1− ρ Φ[−1](x)√

ρ

)

= Φ
(√

1− ρ Φ[−1](x)− Φ[−1](p(T ))√
ρ

)
, x ∈ [0, 1].

3.2 Based on the Shifted Gamma Process

The density function of the Gamma distribution Gamma(a, b) with parame-
ters a > 0 and b > 0 is given by:

fGamma(x; a, b) =
ba

Γ(a)
xa−1 e−xb, x > 0.

The distribution function of the Gamma(a, b) distribution is denoted by
HG(x; a, b) and has the following characteristic function:

φGamma(u; a, b) = (1− iu/b)−a, u ∈ R.

Clearly, this characteristic function is infinitely divisible. The Gamma process
X(G) = {X(G)

t , t ≥ 0} with parameters a, b > 0 is defined as the stochastic pro-
cess which starts at zero and has stationary independent Gamma-distributed
increments such that X

(G)
t follows a Gamma(at, b) distribution.

Table 2. Mean, variance, skewness and kurtosis of the Gamma(a, b) distribution.

Gamma(a, b)

mean a/b
variance a/b2

skewness 2/
√

a
kurtosis 3(1 + 2/a)

The properties of the Gamma(a, b) distribution given in Table 2 can be
easily derived from its characteristic function. Now, if X is Gamma(a, b)-
distributed and c > 0, then cX is Gamma(a, b/c)-distributed. Further, if
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X ∼ Gamma(a1, b) is independent of Y ∼ Gamma(a2, b) then X + Y ∼
Gamma(a1 + a2, b).

Let us start with a Gamma process G = {Gt, t ∈ [0, 1]} with parameters
a > 0 and b =

√
a, so that E[G1] =

√
a and Var[G1] = 1. As driving Lévy

process, we take the shifted Gamma process X = {Xt, t ∈ [0, 1]} defined as:

Xt =
√

at−Gt, t ∈ [0, 1].

The interpretation in terms of firm value is that there is a deterministic up
trend (

√
at) with random downward shocks (Gt).

The one-factor shifted Gamma-Lévy model is then in the form of (1):

Ai(T ) = Xρ + X
(i)
1−ρ, i = 1, . . . , n

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent shifted Gamma random vari-

ables defined as Xρ =
√

aρ−Gρ and X
(i)
1−ρ =

√
a(1− ρ)−G1−ρ. By construc-

tion, each Ai(T ) follows the same distribution as X1 and as such has zero
mean and unit variance.

As derived in general, we have that the distribution of the limiting portfolio
fractional loss with a zero recovery rate at time T is as in (4). The distribution
function Ht(x; a) of Xt, t ∈ [0, 1], can be easily obtained from the Gamma
distribution function. Indeed:

Ht(x; a) = P[
√

at−Gt ≤ x]
= 1− P[Gt <

√
at− x]

= 1−HG(
√

at− x; at,
√

a), x ∈ (−∞,
√

at).

For the inverse function, we have the following relation for each t ∈ [0, 1]:

H
[−1]
t (y; a) =

√
at−H[−1]

G (1− y; at,
√

a), y ∈ [0, 1].

3.3 Based on the Shifted IG Process

The Inverse Gaussian IG(a, b) law with parameters a > 0 and b > 0 has
characteristic function:

φIG(u; a, b) = exp
(
−a(

√
−2iu + b2 − b)

)
, u ∈ R.

The IG distribution is infinitely divisible and we define the IG process X(IG) =
{X(IG)

t , t ≥ 0} with parameters a, b > 0 as the process which starts at zero
and has stationary independent IG-distributed increments such that:

E[exp(iuX
(IG)
t )] = φIG(u; at, b) = exp

(
−at(

√
−2iu + b2 − b)

)
, u ∈ R
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meaning that X
(IG)
t follows a IG(at, b) distribution.

The density function of the IG(a, b) law is explicitly known as:

fIG(x; a, b) =
a eab

√
2π

x−3/2 exp
(−(a2x−1 + b2x)/2

)
, x > 0

and we denote its distribution function by HIG(x; a, b).
The characteristics of the IG distribution given in Table 3 can be easily ob-

tained. Now, if X is IG(a, b)-distributed then cX is IG(a
√

c, b/
√

c)-distributed
for any positive c. Further, if X ∼ IG(a1, b) is independent of Y ∼ IG(a2, b)
then X + Y ∼ IG(a1 + a2, b).

Table 3. Mean, variance, skewness and kurtosis of the IG(a, b) distribution.

IG(a, b)

mean a/b
variance a/b3

skewness 3/
√

ab
kurtosis 3(1 + 5(ab)−1)

Let us start with an IG process I = {It, t ∈ [0, 1]} with parameters a > 0
and b = a1/3, so that E[I1] = a2/3 and Var[I1] = 1. As driving Lévy process,
we take the shifted IG process X = {Xt, t ∈ [0, 1]} defined as:

Xt = a2/3t− It, t ∈ [0, 1].

The interpretation in terms of firm value is that there is a deterministic up
trend (a2/3t) with random downward shocks (It).

The one-factor shifted IG-Lévy model is then:

Ai(T ) = Xρ + X
(i)
1−ρ, i = 1, . . . , n

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent shifted IG random variables

defined as Xρ = a2/3ρ−Iρ and X
(i)
1−ρ = a2/3(1−ρ)−I1−ρ. Each Ai(T ) follows

the same distribution as X1 and as such has zero mean and unit variance.
The distribution of the fraction of defaulted securities in the limiting port-

folio at time T is therefore as in (4). The distribution function Ht(x; a) of Xt,
t ∈ [0, 1], can be easily obtained from the IG distribution function as follows:

Ht(x; a) = P[a2/3t− It ≤ x]
= 1− P[It < a2/3t− x]
= 1−HIG(a2/3t− x; at, a1/3), x ∈ (−∞, a2/3t).

For the inverse function, we have the following relation for each t ∈ [0, 1]:

H
[−1]
t (y; a) = a2/3t−H[−1]

IG (1− y; at, a1/3), y ∈ [0, 1].
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3.4 Based on the VG Process

The Variance Gamma (VG) distribution with parameters σ > 0, ν > 0, θ ∈ R
and µ ∈ R, denoted by VG(σ, ν, θ, µ), is infinitely divisible with characteristic
function:

φV G(u; σ, ν, θ, µ) = eiuµ
(
1− iuθν + u2σ2ν/2

)−1/ν
, u ∈ R.

We can then define the VG process X(V G) = {X(V G)
t , t ≥ 0} with param-

eters σ, ν > 0 and θ, µ ∈ R as the process which starts at zero and has
stationary independent VG-distributed increments such that X

(V G)
t follows a

VG(σ
√

t, ν/t, θt, µt) distribution. Note that a VG process may also be defined
as a Brownian Motion with drift time-changed by a Gamma process (e.g.,
Schoutens [20]).

The density function of the VG(σ, ν, θ, µ) distribution is given by:

fV G(x; σ, ν, θ, µ) =
(GM)C

√
π Γ(C)

exp
(

(G−M)(x− µ)
2

)

×
( |x− µ|

G + M

)C−1/2

KC−1/2 ((G + M) |x− µ|/2) , x ∈ R

where C, G, M are positive constants defined as:

C := 1/ν

G :=

(√
θ2ν2

4
+

σ2ν

2
− θν

2

)−1

M :=

(√
θ2ν2

4
+

σ2ν

2
+

θν

2

)−1

.

In Table 4, we give the values of the mean, variance, skewness and kurtosis
of the VG(σ, ν, θ, µ) distribution (the case θ = 0 is also included). This distri-
bution is symmetric around µ if θ = 0 whereas negative values of θ result in
negative skewness. Also, the parameter ν primarily controls the kurtosis.

Table 4. Mean, variance, skewness and kurtosis of the VG(σ, ν, θ, µ) distribution.

VG(σ, ν, θ, µ) VG(σ, ν, 0, µ)

mean θ + µ µ
variance σ2 + νθ2 σ2

skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2 0
kurtosis 3(1 + 2ν − νσ4(σ2 + νθ2)−2) 3(1 + ν)

The VG(σ, ν, θ, µ) distribution satisfies the following scaling property: if
X ∼ VG(σ, ν, θ, µ) then cX ∼ VG(cσ, ν, cθ, cµ) for all c > 0. Also, we have the



12 Hansjörg Albrecher, Sophie A. Ladoucette, and Wim Schoutens

following convolution property: if X ∼ VG(σ
√

ρ, ν/ρ, θρ, µρ) is independent
of Y ∼ VG(σ

√
1− ρ, ν/(1−ρ), θ(1−ρ), µ(1−ρ)) then X +Y ∼ VG(σ, ν, θ, µ)

under the constraint ρ ∈ (0, 1).
The class of VG distributions was introduced by Madan and Seneta [9].

A number of papers have developed the variance gamma model for asset re-
turns and its implications for option pricing. In Madan and Seneta [9, 10] and
Madan and Milne [8], the symmetric case (θ = 0) is considered. In Madan
et al. [11], the general case with skewness is treated. In equity and interest
rate modelling, the VG process has already proven its capabilities, see e.g.
Schoutens [20].

Moosbrucker assumes in [12] a one-factor VG model where the asset value
of obligor i = 1, . . . , n is of the form:

Ai(T ) = c Y +
√

1− c2 Xi

where Y , Xi, i = 1, . . . , n are independently VG-distributed random variables
with Xi ∼ VG(

√
1− νθ2, ν/(1 − c2), θ

√
1− c2,−θ

√
1− c2) for all i and Y ∼

VG
(√

1− νθ2, ν/c2, θc,−θc
)
. In this setting, the random variable Ai(T ) is

VG(
√

1− νθ2, ν, θ,−θ)-distributed. All these random variables have indeed
zero mean and unit variance but there is a constraint on the parameters,
namely νθ2 < 1. Further, we point out that the fractional loss distribution
obtained by Moosbrucker [12, Eq.(13) p.19] with the LHP method under the
above one-factor model approach is not correct. It should be in his notation:

Fportfolio loss(x) = 1− FM

(
C −√1− c2F−1

Zi
(x)

c

)

since the VG distribution function is not an even function if (θ, µ) 6= (0, 0).
For a variant of the VG model, extended with an additional normal factor,

we refer to Baxter [3].

Many variations are possible. For example, one could start with a zero
mean VG(κσ, ν, κθ,−κθ) distribution for Ai(T ), with κ = 1/

√
σ2 + νθ2 in

order to force unit variance. The one-factor VG-Lévy model is then in the
form of (1):

Ai(T ) = Xρ + X
(i)
1−ρ, i = 1, . . . , n

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent VG random variables with the

following parameters: the common factor Xρ follows a distribution VG(κ
√

ρσ,

ν/ρ, κρθ,−κρθ) and the idiosyncratic risks X
(i)
1−ρ all follow a distribution

VG(κ
√

1− ρσ, ν/(1− ρ), κ(1− ρ)θ,−κ(1− ρ)θ).

3.5 Based on the NIG Process

The Normal Inverse Gaussian (NIG) distribution with parameters α > 0,
β ∈ (−α, α), δ > 0 and µ ∈ R, denoted by NIG(α, β, δ, µ), has a characteristic
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function given by:

φNIG(u; α, β, δ, µ) = exp
(
iuµ− δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
, u ∈ R.

We clearly see that this characteristic function is infinitely divisible. Hence,
we can define the NIG process X(NIG) = {X(NIG)

t , t ≥ 0} with parameters
α > 0, β ∈ (−α, α), δ > 0 and µ ∈ R as the process which starts at zero and
has stationary independent NIG-distributed increments such that X

(NIG)
t is

NIG(α, β, δt, µt)-distributed.
The NIG distribution was introduced by Barndorff-Nielsen [1]. See also

Barndorff-Nielsen [2] and Rydberg [13, 14, 15]. Note that the density function
of the NIG(α, β, δ, µ) distribution is given for any x ∈ R by:

fNIG(x;α, β, δ, µ) =
αδ

π
exp

(
δ
√

α2 − β2 + β(x− µ)
) K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
.

If a random variable X is NIG(α, β, δ, µ)-distributed and c > 0, then cX
is NIG(α/c, β/c, cδ, cµ)-distributed. If β = 0, the distribution is symmetric
around µ. This can be seen from the characteristics of the NIG distribution
given in Table 5. Further, if X ∼ NIG(α, β, δ1, µ1) is independent of Y ∼
NIG(α, β, δ2, µ2) then X + Y ∼ NIG(α, β, δ1 + δ2, µ1 + µ2).

Table 5. Mean, variance, skweness and kurtosis of the NIG(α, β, δ, µ) distribution.

NIG(α, β, δ, µ) NIG(α, 0, δ, µ)

mean µ + δβ/
√

α2 − β2 µ

variance α2δ(α2 − β2)−3/2 δ/α

skewness 3βα−1δ−1/2(α2 − β2)−1/4 0

kurtosis 3

(
1 + α2+4β2

δα2
√

α2−β2

)
3(1 + δ−1α−1)

Guégan and Houdain propose in [6] a factor model based on a NIG-
distributed common factor but with standard normal idiosyncratic risks.

Kalemanova et al. [7] define a one-factor NIG model in the following way:

Ai(T ) = aY +
√

1− a2Xi, i = 1, . . . , n

where Y , Xi, i = 1, . . . , n are independent NIG random variables with the fol-
lowing parameters: the common factor Y follows a NIG(α, β, α,− αβ√

α2−β2
)

distribution and the idiosyncratic risks Xi all follow a NIG(α
√

1− a2/a,
β
√

1− a2/a, α
√

1− a2/a,− αβ√
α2−β2

√
1− a2/a) distribution. This leads to a

NIG(α/a, β/a, α/a,− αβ

a
√

α2−β2
) distribution for Ai(T ). Note that this distri-

bution does not have unit variance while the parameters δ and µ are fixed
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to obtain a zero mean distribution. Incidentally, we point out that the dis-
tribution of the fractional loss obtained by Kalemanova et al. [7, p.10] with
the LHP approximation under the above one-factor model approach is not
correct. It should be in their notation:

F∞(x) = 1− FNIG(1)




C −√1− a2F−1

NIG
(√

1−a2
a

)(x)

a




since the NIG distribution function is not an even function if (β, µ) 6= (0, 0).

Using our methodology, one can set up similar NIG models. E.g., let
X = {Xt, t ∈ [0, 1]} be a NIG process, where X1 follows a distribution
NIG(α, β, (α2− β2)3/2/α2,−(α2− β2)β/α2). Note that the parameters δ and
µ are chosen such that X1 has zero mean and unit variance. The one-factor
NIG-Lévy model is then:

Ai(T ) = Xρ + X
(i)
1−ρ, i = 1, . . . , n

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independently NIG-distributed random vari-

ables with X
(i)
1−ρ ∼ NIG(α, β, (1− ρ)(α2 − β2)3/2/α2,−(1− ρ)(α2 − β2)β/α2)

for all i and Xρ ∼ NIG(α, β, ρ(α2 − β2)3/2/α2,−ρ(α2 − β2)β/α2). By con-
struction, each Ai(T ) follows the same distribution as X1.

3.6 Based on the Meixner Process

The density function of the Meixner distribution (Meixner(α, β, δ, µ)) is given
for any x ∈ R by:

fMeixner(x;α, β, δ, µ) =
(2 cos(β/2))2δ

2απ Γ(2δ)
exp

(
β(x− µ)

α

) ∣∣∣∣Γ
(

δ +
i(x− µ)

α

)∣∣∣∣
2

where α > 0, β ∈ (−π, π), δ > 0 and µ ∈ R.
The characteristic function of the Meixner(α, β, δ, µ) distribution is:

φMeixner(u; α, β, δ, µ) = eiuµ

(
cos(β/2)

cosh((αu− iβ)/2)

)2δ

, u ∈ R.

The Meixner(α, β, δ, µ) distribution being infinitely divisible, we can then as-
sociate with it a Lévy process which we call the Meixner process. More pre-
cisely, a Meixner process X(Meixner) = {X(Meixner)

t , t ≥ 0} with parameters
α > 0, β ∈ (−π, π), δ > 0 and µ ∈ R is a stochastic process which starts
at zero and has stationary independent Meixner-distributed increments such
that X

(Meixner)
t is Meixner(α, β, δt, µt)-distributed.
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The Meixner process was introduced in Schoutens and Teugels [21]. See
also Schoutens [17]. It was suggested to serve for fitting stock returns in Grige-
lionis [5]. This application in finance was worked out in Schoutens [18, 19].

In Table 6, we give some relevant quantities for the general case and the
symmetric case around µ, i.e. with β = 0. Note that the kurtosis of any
Meixner distribution is greater than that of the normal distribution. Now, if X
is Meixner(α, β, δ, µ)-distributed and c > 0, then cX is Meixner(cα, β, δ, cµ)-
distributed. Further, if X ∼ Meixner(α, β, δ1, µ1) is independent of Y ∼
Meixner(α, β, δ2, µ2) then X + Y ∼ Meixner(α, β, δ1 + δ2, µ1 + µ2).

Table 6. Mean, variance, skweness and kurtosis of the Meixner(α, β, δ, µ) distribu-
tion.

Meixner(α, β, δ, µ) Meixner(α, 0, δ, µ)

mean µ + αδ tan(β/2) µ
variance (cos−2(β/2))α2δ/2 α2δ/2

skewness sin(β/2)
√

2/δ 0
kurtosis 3 + (2− cos(β))/δ 3 + 1/δ

Using our methodology, one can easily set up a Meixner model. E.g., let
X = {Xt, t ∈ [0, 1]} be a Meixner process, where X1 follows a distribution
Meixner(α, β, 2 cos2(β/2)/α2,− sin(β)/α). Note that again the parameters δ
and µ are chosen such that X1 has zero mean and unit variance. The one-factor
Meixner-Lévy model is then:

Ai(T ) = Xρ + X
(i)
1−ρ, i = 1, . . . , n

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent Meixner random variables

with the following parameters: the common factor Xρ follows a Meixner(α, β,

2ρ cos2(β/2)/α2,−ρ sin(β)/α) distribution and the idiosyncratic risks X
(i)
1−ρ all

follow a Meixner(α, β, 2(1− ρ) cos2(β/2)/α2,−(1− ρ) sin(β)/α) distribution.
By construction, each Ai(T ) follows the same distribution as X1.

3.7 Other Candidate Models

We hope the idea is clear and invite the reader to set up the CGMY, Gener-
alized Hyperbolic (GH), Generalized z (GZ) and other Lévy based models in
a similar way. For definitions, we refer to Schoutens [20].

4 Fair Pricing of a Synthetic CDO Tranche

In this section, we explain the procedure for valuing the tranches of synthetic
CDOs. Consider a synthetic CDO tranche on a given reference portfolio of n
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names defined by an interval [K1,K2] of loss fractions on the total portfolio
notional N that the tranche investor is responsible for. The endpoints K1 and
K2 of the interval are called attachment and detachment points respectively.
The tranche investor receives periodic spread payments from the CDO issuer
(the premium leg) and makes payments to the CDO issuer when defaults affect
the tranche (the protection leg). Note that for a synthetic CDO, any default
corresponds to a credit event under a CDS in the reference portfolio. It turns
out that the fair price of the tranche [K1,K2] can be calculated using the
same idea as for the pricing of a CDS, i.e. by setting the fair premium s such
that the expected present values of the premium leg and the protection leg
are equal.

The loss fraction on the portfolio notional at time t is given by:

Lt,n :=
1
N

n∑

i=1

1{τi≤t}(1−Ri)Ni

where τi, Ri and Ni denote the default time, the recovery rate and the notional
amount of name i respectively, i = 1, . . . , n. Under the factor model (1), we
have {τi ≤ t} = {Ai(t) ≤ Ki(t)} with Ki(t) = H

[−1]
1 (pi(t)), i = 1, . . . , n.

The loss fraction on the CDO tranche [K1, K2] at time t is simply expressed
by means of Lt,n as:

Lt,n(K1,K2) :=
max{min(Lt,n,K2)−K1, 0}

K2 −K1
.

We assume that the payments (premium and protection legs) occur on
periodic payment dates t1, . . . , tm. Further, we assume that the CDO issuer
receives compensation at the next scheduled payment date after a default has
occurred. Note that payments are only made as long as the effective notional of
the tranche at time ti is positive. Denote by τ(1), . . . , τ(n) the order statistics,
arranged in increasing order, of the random sample τ1, . . . , τn of default times.
Put t0 := 0, τ(0) := 0 and L0,n := 0. In what follows, expectations are taken
under a risk-neutral measure, i.e. risk-adjusted expectations.

The expected present value of the premium leg of the tranche is the present
value of all spread payments the tranche investor expects to receive:

PL(s) = sE




m∑

j=1

{
(tj − tj−1)D(0, tj)

(
1− Ltj ,n(K1,K2)

)

+
n∑

i=1

1{tj−1<τ(i)<tj}
(
τ(i) − tj−1

)
D

(
0, τ(i)

)

× (
Lτ(i),n(K1, K2)− Lτ(i−1),n(K1,K2)

)
}]

where D(0, tj) is the risk-free discount factor for payment date tj and s is the
spread per annum paid to the tranche investor. The term 1 − Ltj ,n(K1,K2)
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is the fraction of the tranche notional outstanding on payment date tj and
reflects the decline in notional as defaults affect the tranche. The second term
in the sum over j corresponds to the discounted sum of accrual payments the
tranche investor receives when defaults occur between payment dates. They
are paid at the next payment date and are based on the previous effective
tranche notional.

The expected present value of the protection leg of the tranche is the
discounted sum of the expected payments the tranche investor must make
when defaults affect the tranche:

LL = E




m∑

j=1

D(0, tj)
n∑

i=1

1{tj−1<τ(i)<tj}
(
Lτ(i),n(K1,K2)− Lτ(i−1),n(K1, K2)

)

 .

The fair tranche premium spar is then the spread s solving PL(s) = LL. As a
consequence, the periodic payment received by the tranche investor from the
CDO issuer in return for bearing the risk of losses is equal to spar times the
effective outstanding notional of the tranche.

Now, assume a homogeneous portfolio. Recall that all obligors have the
same default barrier Ki(t) = K(t), the same recovery rate Ri = R and the
same notional amount Ni = N

n . Each of the n obligors either takes no loss or
a loss of (1 − R)N

n so that multiplying the number of defaults by (1 − R)N
n

gives losses. Clearly, Lt,n reduces to the loss fraction LHP
t,n defined in (2). It

follows that the expected loss fraction on the portfolio at time t is:

E[LHP
t,n ] =

1−R

n

n∑

k=0

k P
[
LHP

t,n =
k(1−R)

n

]

and, denoting LHP
t,n (K1, K2) := Lt,n(K1,K2), that the expected loss fraction

on the CDO tranche [K1,K2] at time t is:

E[LHP
t,n (K1,K2)]

=
1

K2 −K1

n∑

k=0

P
[
LHP

t,n =
k(1−R)

n

]
max

{
min

(
k(1−R)

n
,K2

)
−K1, 0

}

where P
[
LHP

t,n = k(1−R)
n

]
is the probability that exactly k defaults occur by

time t, k = 0, . . . , n.
As soon as the expected loss fraction on the tranche is calculated, the com-

putation of the tranche premium becomes easy. Unfortunately, the derivation
of the fractional loss distribution on the reference portfolio is not trivial. How-
ever, under the above homogeneity assumptions, we know from Subsection 2.3
that this distribution can be approximated using the LHP approximation
method. As a consequence, this method provides an easy tool to compute
both the fractional loss distribution and the expected loss fraction on the
tranche over different time horizons.
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With the LHP approximation given in (3), i.e. FHP
t,n (x) = FHP

t (x/(1−R))
for x ∈ [0, 1−R], we compute the expected loss fraction on the CDO tranche
[K1,K2] at time t as:

E[LHP
t,n (K1,K2)]

= E

[
max

{
min

(
LHP

t,n ,K2

)−K1, 0
}

K2 −K1

]

= E

[
max

(
LHP

t,n −K1, 0
)−max

(
LHP

t,n −K2, 0
)

K2 −K1

]

=
1

K2 −K1

(∫ 1−R

K1

(x−K1) dFHP
t,n (x)−

∫ 1−R

K2

(x−K2) dFHP
t,n (x)

)

=
1−R

K2 −K1

(∫ 1

K1
1−R

(
x− K1

1−R

)
dFHP

t (x)−
∫ 1

K2
1−R

(
x− K2

1−R

)
dFHP

t (x)

)
.

Similarly, the expected loss fraction on the last tranche [K, 1] at time t is
given by:

E[LHP
t,n (K, 1)] = E

[
max

(
LHP

t,n −K, 0
)

1−K

]

=
1

1−K

∫ 1−R

K

(x−K) dFHP
t,n (x)

=
1−R

1−K

∫ 1

K
1−R

(
x− K

1−R

)
dFHP

t (x).

Finally, we report on a small calibration exercise of the Gaussian, shifted
Gamma, shifted IG, VG and NIG cases. We calibrate the model to the iTraxx
of the 4th of May 2006. In Table 7, one finds the market quotes together with
the calibrated model quotes for the different tranches. Note that for the 0-3%
tranche, the upfront is quoted with a 500 bp running.

Table 7. Pricing of iTraxx tranches of May 4, 2006 with LHP Lévy models.

Model/Quotes 0-3% 3-6% 6-9% 9-12% 12-22% absolute error

Market 17% 44.0 bp 12.8 bp 6.0 bp 2.0 bp
Gaussian 17% 105.7 bp 22.4 bp 5.7 bp 0.7 bp 73.7 bp

Shifted Gamma 17% 44.0 bp 19.7 bp 11.9 bp 6.0 bp 16.8 bp
Shifted IG 17% 44.0 bp 19.8 bp 12.2 bp 6.5 bp 17.7 bp

VG 17% 43.9 bp 21.8 bp 14.1 bp 7.8 bp 23.0 bp
NIG 17% 44.0 bp 24.1 bp 17.1 bp 11.7 bp 32.1 bp
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