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Abstract 

The leaves of all plants use elaborate and inducible defence systems to protect themselves. 

A wide variety of such defences are known and they include defence chemicals such as 

alkaloids, phenolics and terpenes, physical structures ranging from fibre cells to silica 

deposits, and a wide variety of defence proteins many of which target digestive processes 

in herbivores. It has long been known that the defence responses of plants under attack by 

insects are not restricted to the site of attack. Instead, if a leaf is damaged, defence can be 

triggered in other parts of the plant body, for example in distal leaves or even in roots and 

flowers. This raises the question of what are the organ-to-organ signals that coordinate this 

process. Several hypotheses have been proposed. These include the long-distance transfer 

of chemical signals through the plant vasculature, hydraulic signals that may transit 

through the xylem, and electrical signals that would move through living tissues such as 

the phloem. Much evidence for each of these scenarios has been published. In this thesis 

we took advantage of the fact that many plant defence responses are regulated by a signal 

transduction pathway based on a molecule called jasmonic acid. We used this molecule, 

one of its derivatives (jasmonoyl-isoleucine), and some of the genes it regulates as 

markers. Using these we investigated the possible role of the electrical signals in the leaf-

to-leaf activation of the jasmonate pathway. We found that feeding insects stimulate easily 

detected electrical activity in the leaves of Arabidopsis thaliana and we used non-invasive 

surface electrodes to record this activity. This approach showed that jasmonate pathway 

activity and the electrical activity provoked by mechanical wounding occurred within 

identical spatial boundaries. Measurements of the apparent speed of surface potentials 

agreed well with previous velocity estimates for the speed of leaf-to-leaf signals that 

activate the jasmonate pathway. Using this knowledge we were able to investigate the 

effects of current injection into Arabidopsis leaves. This resulted in the strong expression 

of many jasmonate-regulated genes. All these results showed that electrical activity and the 

activation of jasmonate signalling were highly correlated. In order to test for possible 

causal links between the two processes, we conducted a small-scale reverse genetic screen 
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on a series of T-DNA insertion mutants in ion channel genes and in other genes encoding 

proteins such as proton pumps. This screen, which was based on surface potential 

measurements, revealed that mutations in genes related to ionotropic glutamate receptors in 

animals had impaired electrical activity after wounding. Combining mutation of two of 

these glutamate-receptor-like genes in a double mutant reduced the response of leaves to 

current injection. When a leaf of this double mutant was wounded it failed to transmit a 

long-distance signal to a distal leaf. This result distinguished the double mutant from the 

wild-type plant and provides the first genetic evidence that electrical signalling is 

necessary to coordinate defence responses between organs in plants.  
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Résumé 

Les feuilles des plantes disposent de systèmes de défense inductibles très élaborés. Un 

grand nombre de ces systèmes de défenses sont connus et sont basés sur des composés 

chimiques comme les alcaloïdes, les composés phénoliques ou les terpènes, des systèmes 

physiques allant de la production de cellules fibreuses aux cristaux de silice ainsi qu'un 

grand nombre de protéines de défense ciblant le processus digestif des herbivores. Il est 

connu dépuis longtemps que la réponse défensive de la plante face à l'attaque  pas un 

insecte n'est pas seulement localisée au niveau de la zone d'attaque. A la place, si une 

feuille est attaquée, les systèmes de défense peuvent être activés ailleurs dans la plante, 

comme par exemple dans d'autres feuilles, les racines ou même les fleurs. Ces observations 

soulèvent la question de la nature des signaux d'organes à organes qui régulent ces 

systèmes. Plusieurs hypothèses ont été formulées; une ou plusieures molécules pourraient 

être véhiculées dans la plante grâce au système vasculaire, un signal hydraulique transmis 

au travers du xylème ou encore des signaux électriques transmis par les cellules comme 

dans le phloème par exemple. De nombreuses études ont été publiées sur ces différentes 

hypothèses. Dans ce travail de thèse, nous avons choisi d'utiliser à notre avantage le fait 

que de nombreuses réponses de défense de la plante sont régulées par une même voie de 

signalisation utilisant l'acide jasmonique. Nous avons utilisé comme marqueurs cette 

molécule, un de ses dérivés (le jasmonoyl-isoleucine) ainsi que certains des gènes que 

l'acide jasmonique régule. Nous avons alors testé l'implication de la transmission de 

signaux électriques dans l'activation de la voie du jasmonate de feuille à feuille.  Nous 

avons découvert que les insectes qui se nourrissent de feuilles d'Arabidopsis thaliana 

activent un signal électrique que nous avons pu mesurer grâce à une technique non-

invasive d'électrodes de surface. Les enregistrements ont montré que la génération de 

signaux électriques et l'activation de la voie du jasmonate avaient lieu aux mêmes endroits. 

La mesure de la vitesse de déplacement des impulsions électriques correspond aux 

estimations faites concernant l'activation de la voie du jasmonate. Grâce à cela, nous avons 

pu tester l'effet d'injection de courant électrique dans les feuilles d'Arabidopsis. La 
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conséquence a été une forte expression de nombreux gènes de la voie du jasmonate, 

suggérant une forte corrélation entre l'activité électrique et l'activation de la voie du 

jasmonate. Afin de tester le lien de cause entre ces deux phénomènes, nous avons entrepris 

un criblage génétique sur une série de mutants d'insertion à l'ADN-T dans des gènes de 

canaux ioniques et d'autres gènes d'intérêt comme les gènes des pompes à protons. Ce 

criblage, basé sur la mesure de potentiels de surface, a permis de montrer que plusieurs 

mutations de gènes liés aux récepteurs au glutamate ionotropique présentent une baisse 

drastique de leurs activités électriques après une blessure mécanique des feuilles par 

rapport au type sauvage. Par la combinaison de deux mutations de ces récepteurs au 

glutamate en un double mutant, on obtient une réponse à la stimulation électrique encore 

plus faible. Quand une feuille du double mutant est blessée, elle est incapable de 

transmettre un signal à longue distance vers une feuille éloignée. Ce résultat permet de 

distinguer le double mutant de la plante sauvage et amène la première preuve génétique 

que l'activité électrique est nécessaire pour coordonner les réponses de défense entre les 

organes chez les plantes. 
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Abbreviations 

 
Abbreviation Name 

WT Wild-type 

Col-0 Arabidopsis thaliana accession Columbia-0 

Ler Landsberg erecta 

Ws Wassilewskija 

AGI Arabidopsis Genome Initiative 

NASC Nottingham Arabidopsis Stock Centre  

SALK Salk Institute For Biological Studies 

JA Jasmonic acid 

MeJA Methyl jasmonate 

JA-Ile Jasmonoyl-L-isoleucine 

qRT-PCR Quantitative real time polymerase chain reaction 

SP  Surface potentials 

WASP Wound activated surface potential change 

ci Current injection 

COI1 Coronatine insensitive 1 

JAZ Jasmonate ZIM-domain proteins 

VSP vegetative storage protein 
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TPC1 Two pore channel 1 

fou Fatty acid oxygenation up-regulated 

GLR Glutamate receptor-like 

AOS Allene oxide synthase 

AOC Allene oxide cyclase 

CNGC Cyclic nucleotide-gated channel 

VHA Vacuolar ATP synthase  

AHA Plasma membrane H+-ATPase 
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  Chapter 1 

 

Introduction: Wound signalling and plant survival 

 

 

 

Most leaves have large surface-to-volume ratios and they lack thickened protective 

barriers. This makes them particularly prone to wounding. But despite this, leaves are very 

abundant in nature. Why is this? Clearly there are several reasons. Firstly, the numbers of 

leaf-eating organisms (herbivores) are controlled by carnivorous organisms. Secondly, 

leaves defend themselves (Walters 2011). These are not the only two reasons for the 

success of the leaf, but they are both important factors in leaf survival. In this thesis I have 

studied wound signalling in leaves. Inducible wound responses, first discovered as 

damage-induced defence protein accumulation occurring in leaves (Green and Ryan 1972) 

are now known to involve much transcriptional reprogramming (Reymond et al. 2004). 

During the period of 1972 until 1990 the nature of the signal pathway that controls defence 

gene expression in plants was unknown but it was eventually shown that a small lipid 

called 'jasmonic acid' mediates some of the key molecular responses of leaves to wounding 

(Farmer and Ryan 1990, Farmer and Ryan 1992). Using developments based on this 

discovery the role of wound-activated defence gene expression, particularly which is 

regulated by jasmonate, has been investigated extensively. We now know that jasmonate 

signalling in response to herbivory is critical for plant survival against numerous arthropod 

herbivores (Kessler and Baldwin 2002, Howe and Jander 2008). Furthermore, there are 
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recent indications that the output of the signal pathway may also protect plants from 

vertebrate herbivores (Bricchi et al. 2013). Finally, the jasmonate pathway seems to 

protects plants from detritivores organisms that normally only feed on dead plants or 

animals. A crustacean that normally only eats dead or dying plant tissues ate a living 

jasmonate mutant (Farmer and Dubugnon 2009). Today we know that the process of 

perceiving and responding to wounding is important in plant survival and that the 

jasmonate pathway plays a major role in wound-activated plant defence. We also know 

much about jasmonate synthesis and signalling but we know relatively little about other 

wound signal pathways. 

Wound signal pathways 

The wound response of plants involves the action of multiple signal pathways. Common 

sense tells us that wounding is expected to trigger touch gene expression  (Braam 2005). It  

also leads to water loss and the activation of several associated pathways some of which 

involve the hormone abscisic acid (Urano et al. 2009). Not surprisingly, water-stress gene 

expression is indeed seen in wounded leaves (Reymond et al. 2004). There are yet other 

wound-response signal pathways. One recently described pathway requires the NADPH 

oxidase gene RBOH-D to transmit organ-to-organ signals in Arabidopsis. These signals 

lead to the expression of a reactive oxygen species (ROS)-regulated gene called ZAT12 

(Miller et al. 2009). Also, wounding causes the rapid activation of many genes that have 

promoters containing the 'rapid wound responsive' cis-regulatory element CGCGTT 

(Walley et al. 2007). None of these pathways has been investigated in the context of 

wounding as much as the jasmonate pathway which is based on the synthesis of the small 

fatty acid-derived regulator called jasmonic acid (JA), and is known to control and 

coordinate a particularly large number of responses to wounding (Browse 2009, Koo and 

Howe 2009). In Arabidopsis, the jasmonate pathway regulates the expression of over one 

thousand wound-response genes (Reymond et al. 2004). These genes are typically 

upregulated by various chewing insect herbivores (such as lepidopteran larvae) and by 

mechanical wounding. 
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Jasmonate synthesis 

Jasmonates (Wasternack 2007, Browse 2009, Schaller and Stintzi 2009) are derived from 

plastidial fatty acids, and include the powerful regulatory ligand jasmonoyl-isoleucine (JA-

Ile) (Staswick and Tiryaki 2004, Fonseca et al. 2009b). A first striking feature of jasmonate 

synthesis is that it is complex, requiring at least three cellular compartments, at least 10 

intermediates, and several inter-organellar transport steps (Wasternack 2007, Acosta and 

Farmer 2010). The process begins in plastids with the dioxygenation of fatty acids in 

reactions catalysed by 13-lipoxygenases. This is a crucial and potentially regulatory step in 

jasmonate synthesis (Chauvin et al. 2013), although it is not known whether or not the fatty 

acids that are oxygenated by all of the four jasmonate-producing 13-LOXs in A. thaliana 

are free or esterified in vivo. Arabidopsides, secondary metabolites that contain the 

jasmonate intermediates 12-oxophytodienoic acid (OPDA) and dinor OPDA, are made 

directly from galactolipids without prior de-esterification of the substrate fatty acids 

(Nilsson et al. 2012). But these two compounds are, to our knowledge (Glauser et al. 

2009), not signalling molecules, so they will not be discussed again. In any case, the first 

steps of jasmonate biosynthesis start with the oxygenation of fatty acids and proceed from 

lipoxygenase action through a dehydration step catalysed by allene oxide synthase (AOS), 

followed by a cyclization step directed by the allene oxide cyclase (AOC) protein which 

produce OPDA and dinor OPDA in plastids. OPDA and its 16-carbon homolog dinor 

OPDA, both cyclopentenones, are reduced to cyclopentanones (by OPDA reductase 3; 

OPR3) and thereafter shortened by successive -oxidation steps leading to the 12-carbon 

prohormone jasmonic acid (JA). Finally, the process of biosynthesis of regulators like JA-

Ile is terminated when JA is exported from the peroxisome for conjugation to L-isoleucine 

as shown in figure 1.1 and 1.2. 
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Figure 1.1. Jasmonate biosynthesis. Jasmonates are produced by oxygenation and 
cyclisation of triunsaturated fatty acids, chiefly -linolenic acid (either in a free or 
bound form). The first steps leading to the production of 12-oxophytodienoic acid 
(OPDA) take place in plastids. OPDA is reduced and shortened to the prohormone 
jasmonic acid (JA) in the peroxisome and finally conjugated to amino acids such as 
isoleucine in the cytosol. The resulting product, JA-Ile, is a biologically active 
jasmonate. 

Jasmonate signalling 

In the resting state, when JA-Ile concentrations are low, JASMONATE ZIM-DOMAIN 

(JAZ) proteins, of which there are 12 encoded in the Arabidopsis genome (Browse et al., 

2009), act as repressors by binding transcription factors such as MYC2 and preventing 

their function as activators of jasmonate-responsive genes. Stimuli such as wounding 



13 
 

promote jasmonate biosynthesis leading to active (+)-7-iso-JA-Ile (Fonseca et al. 2009b). 

This hormone is then perceived by the protein CORONATINE INSENSITIVE1 (COI1) 

which is the F-box subunit of an E3 ubiquitin ligase of the type SKP1-CUL1-F-box (SCF). 

Hormone recognition by COI1 favours binding of COI1 to JAZ proteins via a conserved 

amino acid motif called the Jas motif. In this model which is supported by crystallographic 

data (Sheard et al. 2010) the JAZ proteins can be seen as co-receptors acting with COI1. 

This promotes ubiquitination of JAZ proteins and their subsequent degradation by the 26S 

proteasome. The transcription factors are now relieved from JAZ-mediated repression and 

free to recruit the RNA polymerase II transcriptional machinery to the promoter of 

jasmonate-responsive genes (Browse 2009, Acosta and Farmer 2010). All these processes 

take place in the nucleus and there are variations in the details depending on which of the 

12 JAZ proteins is involved (Withers et al. 2012). Furthermore, this pathway is hardwired 

into other signal pathways such as a gibberellic acid-requiring signalling that helps to 

control plant growth. The interplay of these two pathways regulates the balance of growth 

and defence in response to attack (Yang et al. 2012). 

 

Figure 1. 2. An overview of jasmonic acid (JA) synthesis and signalling after 
wounding in Arabidopsis. The signals that lead from wounding to the activation of JA 
synthesis are unknown. JA synthesis is initiated in the plastid, and then continued in 
the peroxisome. In the cytoplasm, JA is conjugated to hydrophobic amino acids and in 
particular to isoleucine (Ile) to form JA-Ile. JA-Ile then initiates jasmonate signalling 
in the nucleus and this leads to defence responses.  The question mark shows where 
the work in this thesis was focused.  
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Long distance signals: spatial and temporal aspects  

An additional notable feature of both wound-inducible jasmonate biosynthesis and 

jasmonate signalling is that these processes are not confined to the site of tissue damage 

(Koo and Howe 2009). The fact that the response of leaves to wounding is not restricted to 

the wound site has been known for a long time (Green and Ryan 1972). From the more 

recent literature we know that long-distance wound signalling from leaf to leaf depends, at 

least in some plants, on source-sink relationships.This was shown for the expression of the 

gene WOUND-INDUCED3 in poplar (Populus sp.) (Davis et al. 1991). In adult-phase 

Arabidopsis (Arabidopsis thaliana), the plant used throughout this thesis, the wound-

induced expression of the genes JAZ10 and LIPOXYGENASE2 (LOX2) follows 

intervascular connections termed parastichies (Glauser et al. 2009, Chauvin et al. 2013). 

Previous work suggested that the approximate limits of wound-induced gene expression 

should, in theory, be predictable if a plant’s vascular architecture is known. This past work 

also demonstrated that it is not the entire aerial parts of adult-phase plants that respond 

when one or even two leaves are wounded. The fact that wound-response domains are 

limited to certain parts of the plant probably reduces investment in defence to an extent that 

the plant does not expend all of its resources on defence and yet the response that is 

induced still has adaptive advantages. 

Knowing that there are wound-response domains in plants has been useful in the 

determination of leaf-to-leaf signalling speeds after wounding. For example, when a single 

leaf, leaf 8, is wounded, jasmonate levels in this leaf as well as in distal leaf 13 on the same 

plant increase (Glauser et al. 2009). This is because these two leaves share a connected 

vasculature: they are part of the same parasthichy (Dengler 2006). Furthermore, previous 

research has shown that when leaf 8 is wounded, JA accumulates in this leaf and also in 

leaf 13, but to a far lesser extent in leaf 9 which is not directly coupled through the 

vasculature to leaf 8 (Glauser et al. 2009). This means that when leaf 8 is wounded leaf 9 

can be used as a kind of negative control. In theory it should either not receive long-

distance wound signals or it should receive different signals than does leaf 8.  
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Next there is the question of timing. How long does it take for jasmonate accumulation to 

start in wounded leaf 8 and in unwounded leaf 13? Can the answer to this be used to derive 

an estimate of long distance signal speed? We know that approximately 40 seconds after 

completion of wounding (a process that takes < 10 s; (Chauvin et al. 2013) statistically 

robust increases in JA concentrations occur in the wounded WT leaf 8. Significant JA 

accumulation began at c. 90 s in leaf 13. Taking into account the size of the Arabidopsis 

rosette the calculated speed of the signal(s) that triggers JA accumulation in the distal leaf 

13 was 7.5 cm min-1 (Chauvin et al. 2013). A previous estimate from experiments in which 

two leaves were wounded gave a slightly lower estimate (Glauser et al. 2009) raising the 

possibility that the signal speed might be somewhat variable but being in the range of 3 - 8 

cm min-1. When JA-Ile concentrations in leaves 8 and 13 were measured they were found 

to increase after 90 s in leaf 8 after wounding this leaf and at 190 s in distal leaf 13. 

Therefore, it takes 50 s to convert JA to JA-Ile in the wounded leaf, while it appears to take 

longer than 100 s in a distal connected leaf (Chauvin et al. 2013). These velocity estimates 

and a closely similar speed estimate from independent experiments on leaf-to-inflorescence 

stem signalling that may not be related to jasmonate pathway activation (Miller et al. 2009) 

provide a useful starting point with which to investigate the nature of the long distance 

wound signal(s). In the figure we use the term 'wound-activated surface potential change' 

(WASP). This term will be used later in the thesis when we use surface electrodes to record 

electrical activity both in wounded and in distal leaves.   

Possible long distance wound signals in jasmonate pathway activation 

Transport of jasmonates 

One obvious way of activating the jasmonate pathway at a distance from a wound is to 

transport a jasmonate or a jasmonate precursor to distal sites. This has been one of the 

major hypotheses for long-distance wound signalling for many years and received strong 

experimental support from radiotracer experiments (Sato et al. 2011) and from grafting 

experiments in tomato (Li et al. 2005, Schilmiller and Howe 2005). Some of these grafting 
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experiments involved fusing WT tissues onto tissues of mutants that could not make 

jasmonates such as the acx1 -oxidation mutant in tomato that cannot complete jasmonate 

synthesis (Li et al. 2005). This mutant was used as either a rootstock or a scion and then 

plants were wounded and the expression of inducible jasmonate-regulated proteinase 

inhibitor (PI) genes was assessed. The outcome of these extensive experiments was that 

jasmonate synthesis was necessary for production of long-distance wound signals leading 

to PI gene expression. The authors concluded that a product of the jasmonate pathway was 

likely to be a component of the long distance signal (Schilmiller and Howe 2005). More 

recent experiments with inducible OPR3 genes in Arabidopsis showed that events 

downstream of OPDA production were necessary for jasmonate signalling in distal leaves 

but not in the wounded leaf itself (Koo et al. 2009). This suggests that immediate 

jasmonate precursors or derivatives do not move from leaf to leaf to stimulate rapid 

jasmonate-regulated gene expression in Arabidopsis.  

The authors of this work have recently proposed that the long-distance jasmonate transport 

route is only one route to the activation of jasmonate signalling far from a wound (Koo and 

Howe 2009). Their new model describes cell-autonomous and cell non-autonomous signal 

routes. The former comprises signals that do not move from cell to cell, while the latter can 

move over distances in the plant and might include jasmonate precursors. This perspective 

indeed does fit with much earlier data and many authors have always kept open the 

possibility that there is more than one mechanism involved in long distance wound 

signalling. Finally, regarding other chemicals that could activate jasmonate 

synthesis/signalling there is the peptide hormone systemin from tomato (McGurl et al. 

1992). Despite its name, genetic experiments with a systemin perception mutant named 

spr1 in tomato showed that systemin is likely to act locally in and near wounds to 

somehow amplify other long distance signals (Lee and Howe 2003).  
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Hydraulic signals 

Much of the bodies of small plants like Arabidopsis is held up by the turgor pressure 

exerted by cells on their cell walls. Cells share connections between their cytoplasms 

(plasmodesmata) and they have two principle types of vascular cell that transport fluids 

over long distances: xylem and phloem. Any wound to a plant is expected to cause water 

loss from the wound site and to alter the pressure of water columns such as those in 

vascular tissues. Therefore, wounding could well lead to hydraulic pressure waves that 

would convey information about the wound to distal sites. Hydraulic signals do not need to 

pass through living tissue (Stahlberg et al. 2006). They could be transmitted through the 

xylem, for example, or could even transit through dead tissue. It is almost certain that any 

form of rapid physical damage to a plant will cause pressure changes and these could, in 

theory, be inseparably linked to the generation of electrical activity.  

Among the most informative studies on the transmission of hydraulic signals is work on 

the effects of severing the roots and/or hypocotyls of cucumber (Cucumis sativa) by 

Stahlberg and Cosgrove (1997). These authors showed that the immediate effect of cutting 

cucumber tissues was to generate a hydraulic pressure drop in the xylem and that this 

proceeded any changes in electrical activity as recorded with surface electrodes. Wounding 

changes the turgor pressure of cells and leads to change the xylem tension and this is 

suggested to underpin the production of hydraulic signals that then induce a type of 

electrical activity to be discussed below: variation potentials (Malone and Stankovic 1991, 

Malone 1992). Additionally, the mass flow generated by wounding could theoretically 

transport chemical wound signals through xylem (Malone et al. 1994). Vodeneev et al. 

(2012) proposed that hydraulic signals intensify the propagation of variation potentials and 

these authors also concluded that the velocities of hydraulic signals are faster than those of 

variation potentials. Finally, there are already established links between hydraulic signals 

and hormone signalling in plants. Christmann et al. (2007) showed that hydraulic signals 

from roots caused the distal synthesis of a hormone that functions in water stress - abscisic 

acid. 
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Electrical signals 

Plants generate electrical activity in response to environmental changes including biotic 

and abiotic stresses. For instance, herbivores or mechanical wounding, heat or cold, touch 

or water stress can evoke electrical activity in plants. Starting well over a century ago, 

Burdon-Sanderson (1873), Darwin (1875) and Bose (1926) all recorded electrical signals 

from Mimosa or Dionaea. In plants, electrical signals are currently divided into three 

categories, action potentials (APs), variation potentials (VPs) and system potentials (SPs). 

It is believed that, in general, non-damaging stimuli favour the generation of action 

potentials, while damaging stimuli favours VP production (Fromm and Lautner 2007). 

Electrical signals might transmit information over long distances in the response to 

wounding. For example, tomato (Wildon et al. 1992), tobacco, barley and bean 

(Zimmermann et al. 2009), wheat (Vodeneev et al. 2012), Mimosa (Kaiser and Grams 

2006) and maize (Grams et al. 2009) all generate readily detectable electrical activity after 

mechanical damage. But, so far, links between electrical signals and physiological events 

are poorly understood. However, electrical signals were proposed to underlie the induction 

of distal PROTEINASE INHIBITOR II (PIN2) gene activation after wounding tomato 

leaves (Wildon et al. 1992) and current injection stimulated the expression of this gene 

(Peña-Cortés et al. 1995). The main features of three categories of electrical activity in 

plants can now be summarized briefly. 

Action potentials: APs are initiated when cell membrane potentials reach a certain 

threshold in plants and animals. In animals, APs carry information in the nervous system 

and in cells in muscles and other tissues such as heart tissue. Na+ and K+ are the two ions 

involved in animal cells in AP generation where Na+ influx into the cytoplasm leads to 

depolarization of the plasma membrane. However, most plant cells cannot tolerate high 

levels of Na+ and contain only low levels of this ion. In plants, Ca2+ influx into the 

cytoplasm leads to small depolarisations that, above certain thresholds, are thought to 

initiate APs followed by anion (possibly Cl-) efflux to enhance the depolarization phase. 

Subsequently, K+ efflux leads to membrane repolarization (Fromm and Lautner 2007). The 
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velocities of APs in plants vary and are reported to be in the range of 20–400 cm min−1 

(Zimmermann et al. 2009). A feature of APs generated in response to a specific stimulus in 

a given plant species is constant speed and amplitude over distance (Malone and Stankovic 

1991, Fromm and Lautner 2007).  

Variation potentials: VPs have only been observed in plants and their generation depends 

on the deactivation of plasma membrane H+-ATPases (Fromm and Lautner 2007). It has 

been suggested that hydraulic waves are involved in VP propagation over long distances 

(Malone and Stankovic 1991, Stanković et al. 1998, Stahlberg et al. 2006, Vodeneev et al. 

2012). Unlike APs, the velocities of VPs decrease with increasing the distance from the 

stimulus (Stahlberg et al. 2006). The electrical signals generated from cutting maize and 

barley roots were associated with hydraulic signals, and led to decreasing H+ efflux and 

reduced K+ influx (Shabala et al. 2009). In M. pudica, VPs were also generated after 

cutting the tips of leaf pinnae (Fromm and Lautner 2007). In this plant, electrical signals 

recorded after heating were associated with changes in photosystem II fluorescence 

(Koziolek et al. 2004). This means that electrical signals may affect plastids, the site of 

initiation of jasmonate synthesis.  

System potentials: Recently, ‘system potentials (SPs)’ were suggested by Zimmermann et 

al. (2009) as a new type of electrical signal. It was suggested that they propagate from leaf 

to leaf and they were proposed as long distance electrical signals in plant. SPs were 

observed in both monocots such as H. vulgare and Z. mays and in dicots including  N. 

tabacum and the bean species P. lunatus and V. faba. In contrast to APs and VPs, 

system potentials involve plasma membrane hyperpolarisations and they are triggered by 

activation of the plasma membrane H+-ATPase. Fusicoccin and orthovanadate, activators 

and inhibitors of plasma membrane H+-ATPase, respectively, accentuated or suppressed 

the propagation of SPs (Zimmermann et al. 2009). Self-propagation of SPs is the only 

similarity that they share with APs. The speed of SPs is reported to be between 5–10 cm 

min−1 which is slower than reported for APs (Zimmermann et al. 2009).  
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In summary, while we do not yet know the nature of the long distance wound-activated 

signals that lead to distal activation of the jasmonate pathway there is increasing evidence 

that long-distance wound signalling is complex and could involve multiple pathways. 

Initial experiments with tomato (Wildon et al. 1992), although they have not been extended 

to genetic approaches, imply a role for electrical signals in wounding. This in turn suggests 

roles for ion channels. 

 

Ion channels and pumps in the regulation of jasmonate synthesis and 

signalling 

Prior to discussing membrane proteins that may regulate transmembrane ion balance 

during wounding it is necessary to highlight the fact that plant and animal cells differ 

greatly in the way they use ions to generate gradients across membranes. This is 

summarized in figure 1.3 which shows several features that distinguish animal and plant 

cells. Three key points are a) that plants cells rely heavily on ATP-driven pumps to 

establish proton gradients across membranes, b) that levels of sodium (Na+) are normally 

low both inside and outside most plant cells, and c) the two major reservoirs of 

extracellular calcium in plants are the extracellular matrix and the vacuole-both of which 

are large compartments in most plant cells. There are of course many other differences to 

discuss but I will continue to focus on the plant cell rather than discuss electrical signal 

transmission in animals since it cannot be completely homologous between the two cell 

types. However, one parallel will be touched on briefly at the end of the thesis. 

Damage-associated molecular patterns (DAMPs) are host-derived molecules that tell the 

organism that it is wounded. In plants such molecules include oligogalacturonides derived 

from the extracellular matrix, and a variety of peptide signals (Koo and Howe 2009). The 

best known example of a peptide DAMP is from plants in the Solanaceae family. This 

molecule, named systemin, is necessary for the activation of the jasmonate pathway after 
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wounding tomato leaves (McGurl et al. 1992, McGurl et al. 1994). The Arabidopsis 

genome does not encode systemin but it does encode 'plant elicitor peptides' (Peps) that, 

while they show no structural homology with systemin, cause the activation of defence 

gene expression (Ma et al. 2012). It is not yet clear which, if any, of the six putative Peps 

encoded in the Arabidopsis genome function in the activation of jasmonate synthesis but 

they are strong candidates, although they have not been investigated in this thesis. 

 

Figure 1.3: Main ion channels and transporters involved in the control of the 
membrane potential in animal and plant cells and intra- and extracellular ion 
concentrations. Ion concentrations are indicated in mM except for cytoplasmic Ca2+ 
concentrations (in nM). A-, anions; C+, cations; V, voltage-dependent; ATP, ATP-
dependent; resting membrane potential (in mV) is indicated relative to extracellular 
compartment. 
 

Several other lines of evidence suggest that ion channels and proton pumps might regulate 

jasmonate synthesis or signalling. One such report concerns a vacuolar H+-ATPase subunit 

a3 (VHA-a3). Mutations that inactive the gene encoding this proton pump subunit cause 

increased levels of the jasmonate synthesis intermediate OPDA (Brüx et al. 2008). Another 

line of evidence, perhaps more directly linked to wounding, came from a forward screen 

conducted previously in our laboratory. The Arabidopsis fou2 (fatty acid oxygenation 

upregulated 2) mutant displayed a constitutively active jasmonate pathway (Bonaventure 

et al. 2007b, Bonaventure et al. 2007a). This mutant was found to have a G to A transition 

at the beginning of exon 14 of the TWO PORE CHANNEL 1 (TPC1) gene which predicted 

a missense mutation in the putative voltage sensor of the gene. TPC1 encodes a non-
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selective cation channel and patch-clamp analysis of fou2 vacuolar membranes showed 

faster time-dependent conductivity and activation of the mutated channel at lower 

membrane potentials than wild-type (Bonaventure et al. 2007b, Beyhl et al. 2009, Dadacz-

Narloch et al. 2011). The dimerization of TPC1 subunits most likely occurs in the 

endoplasmic reticulum. An N-terminal signal peptide is important for targeting to the 

vacuolar membrane (Larisch et al. 2012).  The results of genetic studies suggest that cation 

fluxes from the vacuole may exert strong control over jasmonate synthesis and/or 

signalling. TPC1 has been placed in figure 1.4 which shows a GLR protein, along with 

other types of channels, pumps and transporters that have been implicated in wound 

responses. 

 

Figure 1.4. Ion channels, transporters and pumps implicated in responses to 
wounding. Surface receptors can activate ion channels in the plasma membrane. These 
include the receptor pair PEPR1/R2 that after binding to peptide DAMPs, activate 
cyclic nucleotide-gated channels (CNGCs) through generating cGMP. Elevation of 
Ca2+ influx into the cytoplasm is regulated in part by ligand-gated cation channels 
such as glutamate receptor-like (GLRs) and CNGCs. Alkalization of the apoplast and 
acidification of the cytoplasm occurs through inactivation of plasma membrane and/or 
vacuolar H+-ATPases or activation of proton/anion antiporters. The TWO PORE 
CHANNEL 1 (TPC1) protein is implicated in cation release from the vacuole. Our 
work has highlighted the importance of GLRs in the activation of jasmonate synthesis 
and signalling.  
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There are many other strands of evidence leading to ion channels and transporters and 

potential roles in wounding. These include intriguing observations on heterologous 

expression of candidate ion channels. For example, the overexpression of a GLUTAMATE 

RECEPTOR-LIKE (GLR) gene from radish stimulated the expression of jasmonate-

regulated genes including VSP1 in Arabidopsis  (Kang et al. 2006). Evidence supporting 

direct or indirect roles for such proteins in the control of jasmonate synthesis or signalling 

also comes from experiments with chemical inhibitors or activators of proton pumps and 

channels. For example, hyperpolarization of the plasma membrane by treating tomato cells 

with fusicoccin represses the expression of some genes known to be regulated by 

jasmonate (Schaller and Frasson 2001). This thesis examines the possible involvement of 

ion channels in mediating long distance wound responses and electrical events elicited by 

wounding. 
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Hypotheses tested in the thesis  

This work takes a new look at long-distance wound signalling in Arabidopsis thaliana. 

Several questions and experimental approaches are listed in below.  

Question 1: Does herbivory or mechanical wounding generate surface potential changes 

(SPs) in Arabidopsis? 

Approach: Recording SPs on Arabidopsis leaves upon caterpillar feeding or mechanical 

wounding (Chapter 3).  

Question 2: What are the spatial and temporal patterns of wound associated surface 

potential changes (WASPs) in Arabidopsis? What are WASPs boundaries and speeds?  

Approach: Recording SPs with multiple electrodes in all leaves of Arabidopsis after 

wounding (Chapters 3 and 4). 

Question 3: Is there any relationship between WASPs and activation of JA pathway?  

Approach: Analysis of transcript levels of JA-markers genes after wounding and 

comparison to WASPs recorded in all leaves, as well as disrupting WASPs movement in 

Arabidopsis (Chapter 4). 

Question 4: Do WASPs directly induce activity of the jasmonic acid (JA) pathway?  

Approach: Mimicking SP changes by current injection into leaves, then analysis of JA, 

JA-marker gene expression levels and microarrays (Chapters 5 and 6).  

Question 5: Which genes regulate WASPs in Arabidopsis?  

Approach: Screening of T-DNA insertion lines for SP changes after wounding (Chapter 

5).  
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Chapter 2 

Materials and methods 

 

 

Plant material and growth conditions: 

Arabidopsis thaliana accession Col-0 and mutants in this background, were soil-grown 

(one seed per 7 cm diameter pot) for 5 to 6 weeks with 10 h light (100 E sec-1 m-2), 70% 

humidity; day 22°C, night 18°C. Prior to the experiments plants were moved into a 

Faraday cage (80 x 60 x100 cm in length, width and height) under the same conditions.  

Bioassay: 

For recording surface potential changes, two species of generalist and specialist caterpillars 

were used. Spodoptera littoralis (Egyptian cotton worm) and Pieris brassicae (cabbage 

white). P. brassicae was from P. Reymond and F. Schweizer. S. littoralis eggs were 

produced by Syngenta (Stein, Switzerland) and were stored at 10 °C until use. The eggs 

were placed in a beaker covered with plastic film in a growth chamber (28 °C, 65% relative 

humidity, light (100 μmol m−2 s−1),10/14 h light/dark photoperiod) to allow hatching. The 

larvae (4th or 5th instar) of both caterpillar species were applied to the plants for 

electrophysiology. For feeding bioassays, S. littoralis larvae (2d old) were placed on 4 

week-old plants, 4-5 larvae per plant, 11 plants per replicate, 4 replicates per genotype. 

After 7 d the larvae were recovered and weighed.  

Wounding 

Five-week old plants were wounded as described (Reymond et al. 2004). The apical parts 

of the leaves (40% surface area) were crushed with plastic forceps. A plastic support was 

used to stabilize the wounded leaf during the experiments. 
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Surface potential recordings and current injection 

For surface potential recordings, silver electrodes 0.5 mm in diameter (World Precision 

Instruments, Sarasota, FL) were chloridized with HCl (0.1M), stored at room temperature 

and rechloridized after several uses. Experiments were conducted in an air-conditioned 

room without changing the growth conditions. Two 2-channel amplifiers (FD 223 and Duo 

773, World Precision Instruments, Sarasota, FL) were simultaneously used to record the 

surface potential at 4 positions. The electrode-leaf interface was a drop (10 l) of 10 mM 

KCl in 0.5% (w/v) agar placed so that the Ag electrode did not contact and damage the 

cuticle. The interelectrode distance was the distance between the nearest edges of these 

agar droplets. The ground electrode was placed in the soil. For experiments on interrupting 

signals, ceramic scissors (CS-250 Kyocera, Kyoto, Japan) were used. For current injection 

two platinum wire electrodes (Advent Research Materials, Oxford, UK), 0.1 mm diameter 

were inserted in the midrib 1 cm apart so that the end of the wire was visible from the 

abaxial leaf side but did not make contact with the soil (Fig. 3A). After insertion of the Pt 

wires the plants were rested for 24h prior to experiments. For current injection the two Pt 

wires were connected to a homemade current source that was controlled by the acquisition 

program.  In the current injection experiments, surface potentials were recorded as 

described above. In these combined experiments, the Chartmaster program via the 

InstruTECH LIH 8+8 interface (HEKA Electronic, Lambrecht-Pfalz, Germany) was used 

to record the induced surface potential changes and to control the time and duration of 

current injection. In the experiments without current injection, surface potentials were 

recorded with Datatrax2 software via the LabTrax-4/16 interface (World Precisions 

Instruments, Sarasota, FL). The sampling interval was 10ms.  Control plants were 

implanted with Pt wires in all current injection experiments. Trypan blue staining (van 

Wees 2008) was used to assess the extent of damage caused by implanting Pt wires in 

petioles.  
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Numbering Arabidopsis leaves 

In order to experiment with defined leaves, we numbered them (excluding cotyledons) 

from old to young (Fig. 2.1). The angle between successive leaves was calculated as 137º. 

The direction of growth of Arabidopsis is clockwise or counter clockwise of which the 

ratio is around 50% (Dengler 2006). Adult rosette plants at 5 weeks old have 17-20 leaves. 

The old leaves are small, rounded and have less trichomes, later leaves in the juvenile 

phase are narrower and have more trichomes. Adult leaves have an intermediate shape, but 

they have more abaxial trichomes. These characteristics allow us to easily distinguish the 

leaf number. 

 

Figure 2.1. Arabidopsis leaf numbering. In Arabidopsis, the direction of growth is 
clockwise or counterclockwise (50% for both). Numbering starts from the first leaf 
emerging after the cotyledons. Cotyledon leaves are not counted in the leaf numbering.  

 

Calculation of speed of electrical activity 

Three electrodes were placed on the midrib, petiole/midrib junction and petiole and one 

electrode on the lamina (Fig 3.1). The distance between each electrode was 1 cm. The 

distance of the wound site to the electrode on the midrib was also 1 cm. Then, we wounded 
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40% of the apical part of the leaf containing electrodes. In experiments, we placed one 

electrode on wounded leaf 8, and three electrodes were placed on the petiole, the 

petiole/midrib junction and the midrib of leaf 13. The distance between electrodes on leaf 8 

from the wound was 2 cm. For leaf 13, electrodes were placed 1 cm from each other and 1 

cm from the centre of the plant rosette. Then, the data of the latency of surface potential 

changes for each electrode were used to calculate the speed of surface potential changes in 

the wounded leaf, within connected leaves or from wounded to connected leaves.   

 

Quantitative PCR  

Total RNA was extracted with an RNeasy Plant Mini Kit (Qiagene, Germany) or with 

DNA-free RNA isolation protocols (Onate-Sanchez and Vicente-Carbajosa 2008). Total 

RNA (1 µg) was copied into cDNA with M-MLV Reverse Transcriptase, RNase H Minus, 

Point Mutant first strand synthesis system (Promega, Madison WI) and oligo(dT) primers 

according to the manufacturer’s instructions. Quantitative real time PCR (qRT-PCR) 

analysis was performed on 100 ng of cDNA in a final volume of 20µl according to the 

FullVelocity SYBR Green instruction manual (Stratagene, La Jolla, CA) or with a home-

made master mix containing GoTaq polymerase (Promega, WI) and its buffer, 0.2 mM 

dNTPs, 2.5 mM MgCl2, ROX dye and SYBR green in a final volume of 20µl. qRT-PCR 

was performed in an Mx3005P spectrofluorometric thermal cycler (Stratagene, La Jolla, 

CA). The data were standardized in relation to ubiquitin-conjugating enzyme (UBC21) 

At5g25760(Czechowski et al. 2005). The thermal cycle conditions were: an initial 

denaturation at 95 °C for 2 min, followed by 40 cycles of 20 s at 95 °C, 30s at 60 °C and 

45s at 72 °C.  Three or four biological replicates were used for each experiment. Primers 

used were: UBC21 (At5g25760), 5ʹ-CAGTCTGTGTGTAGAGCTATCATAGCAT and 5ʹ-

AGAAGATTCCCTGAGTCGCAGTT; JAZ10 (At5g13220), 5ʹ-

ATCCCGATTTCTCCGGTCCA and 5ʹ-ACTTTCTCCTTGCGATGGGAAGA; VSP2 

(At5g24770), 5ʹ-CCGTGTGCAAAGAGGCTTA and 5ʹ-CACAACTTCCAACGGTCAC.  
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GUS staining  

Transgenic Arabidopsis plants expressing β-glucuronidase (GUS) were stained as 

described by Jefferson (Jefferson et al. 1987). The leaves of 5-week old plants were 

collected after treatment. The leaves were stained with 1 mM X-Gluc (X-Gluc Direct, from 

x-gluc.com, http://www.x-gluc.com) in a pH 7.0 phosphate buffer containing 10 mM 

EDTA, 0.1 mM potassium ferricyanide, 10% (v/v) Triton X-100 at 37 °C overnight. The 

tissue was destained in 70% (v/v) ethanol.  

Transcriptomics 

Total RNAs from leaves were isolated and purified with RNeasy Plant Mini Kit (Qiagene, 

Germany). All RNA quantities were assessed with a NanoDrop®ND-1000 

spectrophotometer and the RNA quality was assessed using RNA 6000 NanoChips with 

the Agilent 2100 Bioanalyzer (Agilent, Palo Alto, USA). For each sample, 300ng of total 

RNA were amplified using the MessageAmp™ II-Biotin Enhanced Single Round aRNA 

Amplification Kit (AM1791, Ambion). 12.5g of the resulting biotin-labelled cRNA was 

chemically fragmented. Affymetrix ATH1 (batch 1211501)  arrays (Affymetrix, Santa 

Clara, CA, USA) were hybridized with 11g of fragmented target, at  45°C for 17 h and 

washed and stained according to the protocol described in Affymetrix GeneChip® 

Expression Analysis Manual (Fluidics protocol FS450_0007). The arrays were scanned 

using the GeneChip® Scanner 3000 7G (Affymetrix) and raw data was extracted from the 

scanned images and analyzed with the Affymetrix Power Tools software package 

(Affymetrix). Statistical analysis was performed using the free high-level interpreted 

statistical language R and various Bioconductor packages (http://www.Bioconductor.org). 

Hybridization quality was assessed using the Expression Console software (Affymetrix). 

Normalized expression signals were calculated from Affymetrix CEL files using the RMA 

normalization method. Differential hybridized features were identified using the 

Bioconductor package “limma” that implements linear models for microarray data (Smyth 

Gordon 2004). The P values were adjusted for multiple testing with Benjamini and 

Hochberg’s method to control the false discovery rate (FDR) (Benjamini and Hochberg 
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1995). Probe sets showing at least 2-fold change and a FDR < 0.05 were considered 

significant. The microarray data with Affymetrix chips have been deposited in the Gene 

Expression Omnibus (GEO), (GEO accession; GSE41779).  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=rlwndeamikgiaxc&acc=GSE41779 

 

JA and JA-Ile quantification 

Isopropanol and methanol were obtained from VWR Prolabo (Leuven, Belgium) and used 

for extraction analysis. Liquid chromatography mass spectrometry-grade acetonitrile and 

water from Biosolve (Dieuze, France) were used for the high-performance liquid 

chromatography. The internal standards used were [18O]2-jasmonic acid synthesized with 

the method of Mueller et al.(Mueller et al. 2006) and [13C]6-jasmonoyl L-isoleucine 

synthesized according to Kramell et al.(Kramell et al. 1997). Jasmonates were extracted 

according to Glauser et al.(Glauser et al. 2008). Frozen leaves (200mg, from 5 week-old 

plants) were ground in a ball mill extractor with internal standards (40ng/ml) prior to 

extraction with isopropanol. Chlorophyll was removed with a C18 solid-phase extraction 

cartridge using MeOH:H2O (85:15, v/v) for elution. The eluate was concentrated and 

dissolved in 100μl MeOH:H2O (85:15, v/v). Separation was carried out on a Phenomenex 

Kinetex (Torrance, CA) 2.6mm C18 100A column (100 x 3.0mm). A gradient elutation 

was run at a flow rate of 0.4mL/min with the following solvent system: A= 0.1% formic 

acid / water, B= 0.1% formic acid/ acetonitrile; 5% B for 3min, 5-75% B in 11min, 75-

95% B in 2min, 95% B for 2min and 95-5%B in 2 min. The electrospray ionisation 

conditions were as follows: capillary voltage 3300V; cone voltage 24V; extractor 3V; RF 

Lens 0V; source temperature 120°C; desolvation temperature 350°C; cone gas flow 900L/h 

and desolvation gas flow 27L/h. Jasmonates were monitored with quantitative multiple 

reaction monitoring (MRM) in a Quattro microTM API mass spectrometer (Waters, 

Milford, MA, USA) with an electrospray ionization interface coupled with the Agilent LC 

system (Hewlett Packard). Detection was performed in negative ion mode over an m/z 

range of 100-1000. The MRM transitions were: JA: 209.1 > 58.7, 18O2JA: 213.1 > 62.8, 
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JA-Ile: 322.2 > 130.0 and JA-[13C]6Ile: 328.2> 136.0 (parent> daughter). The limit of 

quantification (LOQ = 3x limit of detection) could reach up to 9.2pmol/g FW for JA and 

4.5pmol/g FW for JA-Ile. Data below LOQ were considered as non-informative. 

VSP2Pro:GUSPlus plant transformation 

The VSP2  (At5g24770) promoter, amplified using 5'-TTC TCT CTG GTT ATA TTT TGT 

TGC TG-3' and 5'-TGT TTA TAT GTG TGA CGC AAA GG -3' primers) was cloned with 

XmaI and KpnI (New England Biolabs, Ipswich, MA, USA) into the pUC57-L4-

KpnI/XmaI-R1 plasmid producing a pEN-L4-VSP2Pro-R1 as an pENTRY clone. The 

pUC57-L4-KpnI/XmaI-R1 plasmid was generated by Joop Vermeer (DBMV, University of 

Lausanne) by introducing L4-KpnI/XmaI-R1 att recombination and restriction sites into 

pUC57 (Invitrogen, Paisley, UK). pEN-L1-GUSPlus-L2 plasmids were obtained with 

Gateway technology according to manufacturer instructions (Invitrogen) with GUSPlus 

cDNA (amplified from pCAMBIA1305.2 (CAMBIA, Australia) and pDONRTM/ZEO 

(Invitrogen). The final VSP2Pro:GUSPlus constructs were generated by using a double 

Gateway reaction into pEDO097pFR7m24GW. pEDO097pFR7m24GW was generated by 

inserting the FAST (fluorescence-accumulating seed technology) cassette(Shimada et al. 

2010) into pH7m24GW (Invitrogen) by Ester M.N. Dohmann (DBMV, University of 

Lausanne). WT plants were transformed using Agrobacterium tumefaciens cells as 

described by Berberich et al.(Berberich et al. 2008). Transformed seeds expressing red 

fluorescence protein (RFP) were selected by florescence microscopy. The T1 generation 

was used for experiments.  

Genotyping of T-DNA insertion lines 

T-DNA insertion lines were obtained from the Nottingham Arabidopsis Stock Centre 

(NASC). Homozygosity was confirmed prior to experiments. For genotyping, 5 mg fresh 

leaf samples were placed into 96-well microtiter plates and tissues were ground using a 

Qiagen TissueLyser II (Retsch Technology GmbH, Haan, Germany). Then, 60 µl of 
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extraction buffer (200 mM Tris HCl pH 7.5, 250 mM NaCl, 25 mM Na2EDTA, 0.5 % 

SDS) was added to each well and the samples were centrifuged at 14000 g for 10 min. The 

supernatants were transferred into new microtiter plates and the same volume (50 µl) of 

isopropanol was added. The plates were then centrifuged at 14000 g for 5 min. The 

resultant pellets were washed with 70% ethanol (150 µl) and centrifuged at 14000 g for 5 

min. Finally, DNA was resuspended in 50 µl deionized water. 2 µl of this extracted DNA 

was used as template for each final 20 µl PCR reaction. The sequences of forward or 

reverse primers pairs used for genotyping are shown in Table 2.1. 

Table 2.1. Sequences of primer pairs used for genotyping of T-DNA insertion lines. 

Locus Gene Stock name Left primer (LP) Right primer (RP) 

At3g04110 glr1.1 salk_057748 ACCTCTTGACGCGTATGAAAG GTGAAAAAGAAAAGCCAAGGG

At3g07520 glr1.4 salk_129955 TATATTTGGCCAAGCTCAACG CTTATAGTGCGGGCTTTGTTG 

At2g24710 glr2.3 salk_113260 TATTTGCGGAAGTTCCATTTG AGAGCGACAAGAAACAGAACC

At2g29120 glr2.7 salk_121990 GGAAATCTTGCCGGTTAAAAG ACAAATTTGGGGACATTAGGG

At2g29110 glr2.8 salk_111695 GAGTACCTTTCCCTGACCCTG GAAGGGAGGAGAAGAATGGTG

At2g29100 glr2.9 salk_125496 TGACAAGGTGCTCCCATTATC AGAAATTCATGGTGACGGTTG 

At2g17260 glr3.1 salk_063873 AGATGAACAAACGTGACCACC TGGCTTTTTGTGGTTCTGATC 

At4g35290 glr3.2 salk_150710 TTTTGGATCCAGCATTAGTCG TTTTGCGGTTTTGTTTGTAGG 

At4g35290 glr3.2 salk_133700 TCCATTACTCAATTTCGGTGG AAACCCAAACCAAAATCATCC

At1g42540 glr3.3 salk_077608 TGCTGTTGATCTCTTGCAATG CACACAACCATATGCAGCATC 

At1g42540 glr3.3 salk-099757 GATGCTGCATATGGTTGTGTG GTTGAACGATAAGCTTGCGAG 

At1g05200 glr3.4 salk_079842 GGGTTAATCCGGCTTATGAAG GAAGTGAGACTGGCCGTGTAG

At2g32390 glr3.5 salk_035264 TGAAGTTGCTGCAAATGTGAG TGTCGACATGTCCACAGCTAG 

At3g51480 glr3.6 salk_091801 TTCGTTCAAAGGTGGCATAAC CGACTATGAGGAAAGACGCAG

At2g46450 cngc12 salk_092622 ATTGATGCATTGAAGTCAGGG TACTTTGGTTTCGAAGCTTGC 

At5g14870 cngc18 sail_191_H04 GTTTATCGCCAAGACTGCTTG TAGCATCTCATTCACCGGATC 

At3g17700 cngc20 salk_129133 AAAACAGTTACCTGGAAGCCC TGCCTTTACACCACCTTTTTG 

At3g57330 aca11 salk_121482 TTGCCTCACAAATTACGTTTTG ACAAACTCCCACGTTTGACAG 

At3g27170 clc-b salk_027349 TCAACCCGTGGAGTTCTGTAG GGAATTCTTGGGAGCCTGTAC 

At4g35440 clc-e salk_142812 ACAAAGAACAAAAATTGGCCC CTCAACCAATCTGAGGAGCTG 

At1g04690 kab1 salk_030039 GAGGGAATAGCTCCCTTGTTG GATGTGAAAGAAGCGAAATCG

At2g25600 akt6 salk_136050 GAGAGGAAGAAGAAGCCTTGC ATGGTCAGCAACATCATCCTC 

At3g02850 skor salk_097435 CCCATATCTCACTGGTTCACC CCAAACTTCAGCGAAACAGAG

At5g55630 tpk1 salk_146903 AAATGTCGAGTGATGCAGCTC TCAAGTTGCTCGAACTCATCC 

At4g18160 tpk3 salk_049137 ATTGATTACAGCCATTGCTGG CCGTATATCTCCATTCGGAAC 

At5g10220 annat6 salk_043207 TTCTATCCACTGTAGACAGCCTG AATACGCATCTCTCTCCGTTG 

At1g59870 pen3 salk_110927 GCGAGAGTTGGACTCACTTTG TCACCCAACTAAATCCTCACG 

At4g11150 vha-e1 salk_019365 AAGAGTTGGTCCTTGGAAAGC GTAGATCGGATTTTCACGACG 

At3g01390 vha-g salk_087613 GCTGTTACAATCGCTGAAAGC TTGAGCTTCTACCTCAGCAGC 

At2g21410 vha-a2 salk_142642 ACCTCTGGCTCAAAATTGTCC TCCACATGAATATAGCCCGAG 

At2g18960 aha1 salk_118350 TTCGATTCTCCCACACAGATC ACGGATTGTGATTGAGACTGC 
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At4g30190 aha2 salk_073730 GCGAAAACATATGAACTTTCGAC CTTAGGGAGCTGCACACACTC 

At5g57350 aha3 sail_810_C08 GTAGATTGCAACGGCTATTGC TTGTCGTGAAGAAGCTATGGC 

At5g62670 aha11 salk_152723 ATGACAGCGATTGAGGAAATG GGCAAAACAACATCATTGATG

At5g12080 msl10 salk_076254 GTTGGTTTCTGGGTTTAAGCC TACTTGGAGTAACCGGTGCTG 
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Chapter 3  

 

Insect feeding and mechanical wounding induce 

surface potentials in Arabidopsis thaliana leaves 

  

  

Introduction 

During their lives plants have to combat environmental stresses and predators. Jasmonic 

acid (JA) and its derives regulate a wide range of stress responses, including defence 

responses against insect herbivores, necrotrophic pathogens, wounding, and ozone 

exposure etc., (Browse 2009, Acosta and Farmer 2010). Additionally jasmonates have 

roles in development, fertility, water deficiency, and senescence  (Fonseca et al. 2009a). 

Plants activate jasmonate synthesis upon perceiving damage. Successful defence depends 

on these fast responses to stress, as well as on signalling from damaged tissues to distal 

organs.  

The level of induced defence depends on the strength of stress. Some stresses have a 

gradual effect on the plant and act slowly to reduce its vigour. This can occur in 

pathogenesis or water deficit. In contrast, herbivory and mechanical wounding destroy 

plant tissues and cause immediate effects on plants. In severe stress many plant tissues are 

involved in the synthesis of defensive products. Rapid reaction is crucial to minimize 
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damage. In Arabidopsis, JA is first produced after less than 30 s in the wounded parts of 

leaves and at less than 2 min in certain leaves distal to wounds (Glauser et al. 2009). In 

spite of our understanding of many details of JA biosynthesis and signalling, the early 

events after wounding that lead to JA biosynthesis in wounded and unwounded leaves are 

largely unknown. However, the velocity of long distance signalling leading to JA 

accumulation in Arabidopsis is estimated to be in the range of 4-8 cm min-1 (Glauser et al. 

2009, Chauvin et al. 2013) and less than 2 cm/min for JA-isoleucine accumulation (Koo et 

al. 2009). Miller et al. (2009) also showed that long distance signals propagate at 8.4 

cm/min along Arabidopsis stems after wounding leaves. Due to the fast speed of 

accumulation of JA in distal leaves, Glauser et al (2008) proposed that the long distance 

signal was unlikely to be JA or JA derivatives. Koo et al. (2009) experimentally confirmed 

this. 

Currently an interesting question concerns the nature of the long distance signals that lead 

to JA accumulation in unwounded parts of the plant. In other words, how are wound 

signals generated, transmitted and decoded? In water stress a hydraulic signal is the root-

to-shoot signal that stimulates abscisic acid (ABA) synthesis and stomata closure 

(Christmann et al. 2007). It has long been known that plants respond electrically to many 

environmental changes, including touch, darkness (Gurovich and Hermosilla 2009), cold 

(Minorsky 1989, Krol et al. 2004, Carpaneto et al. 2007), water deficiency, burning, heat, 

salt stress (Fromm and Lautner 2007), insect damage (Maffei et al. 2004, Bricchi et al. 

2013), wounding (Wildon et al. 1992, Favre et al. 2001, Favre and Agosti 2007, 

Zimmermann et al. 2009, Oyarce and Gurovich 2011), and that electrical activity can affect 

respiration and photosynthesis (Fromm and Lautner 2007, Grams et al. 2009). However, it 

remains unclear how electrical signals are generated and transmitted and what their 

physiological consequences are. The speeds of electrical signals in plants are in the range 

of 1-2 mm s-1 and 1-20 cm s-1 for variation potentials (VP) and action potentials (AP) 

respectively (Fromm and Lautner 2007). Wound-induced electrical potentials were 

reported to induce tomato proteinase inhibitor2 gene expression (Wildon et al. 1992, 
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Stanković and Davies 1996). This work suggested that electrical signals could regulate 

gene expression.  

The two commonly used methods for recording electrical activity in plants are intracellular 

and extracellular recording. In intracellular recording, a small glass microelectrode 

penetrates inside the plant cell or aphid stylets are used as electrodes. Alternatively whole 

aphids are used as electrodes (Tjallingii 1988). All intracellular electrodes record events in 

only one cell. Alternatively, in extracellular recording an electrode (Ag/AgCl) is placed on 

the surface of plant to record events from cell populations. We chose extracellular 

recording to monitor electrical activity upon wounding in Arabidopsis. Extracellular 

recording permits the recording of electrical activity for long durations without damaging 

cells and without interactions of electrode electrolytes with cell contents.  

This chapter describes the use of extracellular recording to measure electrical activity in 

wounded Arabidopsis leaves. First, we measured wound-activated surface potential 

changes (WASPs) induced by caterpillar feeding and then we used mechanical wounding 

to induce JA synthesis and activation of its signalling pathway. We also characterized 

surface potentials produced in response to touching and cutting. Furthermore, we 

calculated the velocities of surface potentials generated by wounding. The results show that 

wounding can generate surface potentials in Arabidopsis leaves and that these potentials 

are transmitted all over the wounded leaf and beyond.  
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Experimental design  

Electrode placements 

Surface potential (SP) activity was recorded on different parts of leaves with electrodes 

placed in four different positions. The electrodes were placed on the adaxial surface of the 

lamina (eL), midrib (e1), petiole/midrib junction (e2) or petiole (e3) as shown in Fig. 3. 1. 

The distance between electrodes was 1 cm, except for lamina to midrib electrodes which 

were 3 mm apart. The distance from the wound to the electrodes on the lamina and midrib 

was 1 cm (Fig. 3. 1).  

 

 

 
Figure 3. 1. Experimental design for detecting surface potential changes on leaf 8. 
The approximate length of leaf 8 (petiole included) from 5 week-old in Arabidopsis 
plants was 5 cm and 1.5 cm width. Measuring electrodes were placed at 1 cm intervals 
on this leaf: midrib (e1), petiole/midrib junction (e2), petiole (e3). The lamina 
electrode (eL) was 3 mm from e1. The apical part of the leaf was wounded with 
forceps, except for experiments with insect larvae in which only the insects damaged 
the leaves. 
 

Quantification analysis of electrical activity induced by mechanical wounding 

Due to the fact that a trend of change of the electrical signal was slow, it was difficult to 

determine the exact point of change. We defined the mid-amplitude points as the 

transitions in potential change. The time between damage and mid-point of amplitude 
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change was termed as latency. Duration was the time between the mid points of 

depolarization or hyperpolarization and the mid points of repolarization phase (Fig. 3.2). 

 

 

Figure 3. 2. Quantification of wound-associated surface potential changes 
(WASPs). Three distinct variables, latency, duration and amplitude of WASPs were 
analysed. Duration is the time between amplitude change midpoints. Latency (Lat.) is 
the period between wounding and WASP detection. The signal, recorded from the e2 
position, typically did not recover to baseline during recording (unfilled arrowhead). 
Time of wounding is indicated with a filled arrowhead. 
 

Results: 

Spodoptera littoralis induces SP changes on Arabidopsis leaves 

In order to understand insect feeding-induced surface potential changes in Arabidopsis, 

three 1 cm long larvae of the generalist caterpillar Spodoptera littoralis were placed in a 

small plastic cage around leaf 8. The plastic cage did not damage the leaf. The S. littoralis 

had been starved for one day before the experiment. Two recording electrodes were placed 

on the leaf at distal (e2) and proximal (e3) positions (Fig. 3.1 and 3.3). Electrical recording 

was started before placing the insects. Results showed that when caterpillars walked on the 

surface of the leaf there were no detectable SP changes (Fig. 3.3).  
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Caterpillars started eating from the leaf edge or the inside of lamina a few min after 

placement on leaves. The insects did not feed on the main veins or midrib. Feeding led to 

changes in SP within the damaged leaf. The signals did not move to the other leaves unless 

the caterpillars damaged the midribs. Putting two electrodes 1 cm apart on the petiole 

allowed us to calculate the speed of SP changes generated by the caterpillars. The speed of 

SP changes caused by caterpillar feeding was 3.5 ± 0.3 cm min-1(n=5), although the 

amplitude and pattern of SP changes generated by caterpillars was varied (Table 3.1). 

 

Table 3. 1. WASPs generated by feeding Spodoptera littoralis. S. littoralis placed on 
leaf 8 for 6 independent replicates. Two recording electrodes (e2 and e3) were placed 
on leaf 8.  

Replicate  1 2 3 4 5 6 

e2 Latency (s) 1700 508 651 382 - 810 

Amplitude (mV) -37 -80 -15 -97 - -52 

e3 Latency (s) 1720 524 647 547 - 827 

Amplitude (mV) -35 -55 -12 -63 - -19 

Feeding on leaves by Pieris brassicae, a specialist caterpillar, also generated SP changes 

(not shown). A typical pattern of insect-induced SPs is shown in figure 3.3.  
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Figure 3. 3. Insect-induced electrical activity. a. The setup showing the ring cage 
around the insect (S. littoralis) and the position of the recording electrodes (e2 and e3) 
on leaf 8. b. Surface potential recording from electrode e2 while S. littoralis walked 
on the leaf. c. Typical surface potential changes recorded on electrode e3 during S. 
littoralis feeding. The arrowheads indicate periodicity in the signal. 
 

Since insects might affect plants in a variety of ways other than wounding, such as 

triggering touch responses or releasing chemical factors from the body or saliva, we tried 

to recapitulate the events we monitored using mechanical wounding. For this we used 

plastic forceps and routinely wounded 40 % of the laminar surface.  

Plastic and metal forceps have similar effects on the JAZ10 expression 

Metal forceps are routinely used to damage leaves to stimulate the JA activity pathways. 

We used homemade plastic forceps inside the Faraday cage to avoid electrical interference. 
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In initial experiments we compared gene expression levels after wounding leaves with 

plastic and metal forceps. 40% of the apical part of the leaf was wounded with metal 

forceps outside of the Faraday cage or plastic forceps inside of the Faraday cage. Leaf 8 

was wounded and harvested 1 hour after wounding. This showed that there is no significant 

difference between plastic and metal forceps for induction of JAZ10 as a primary 

jasmonate-responsive gene (Fig. 3.4).  

 

Figure 3. 4. Expression levels of JAZ10 1 h after wounding with plastic or metal 
forceps. Unwounded (U). The data are from four independent replicates ± S.D.  
 

Touching does not change the SP  

Mechanical wounding with forceps is a combination of touching and cell disruption. In 

order to understand whether touching also generates SP changes, an experiment was 

designed to record the SP while the leaf was touched. Leaf 8 was touched gently 3-4 times 

by moving it up and down with plastic forceps. The results show that touching leaves with 

forceps did not induce SPs unless the recording electrodes were moved (Fig 3.5 and Fig 

3.7).  
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Surface potentials in mechanically wounded leaves 

In unwounded plants, spontaneous surface potential changes were not observed in 

recording that lasted for more than 1 h (n=10) and simply touching of leaf 8 with plastic 

forceps did not generate surface potential changes (n=10). Wounding 40% of a leaf leads to 

changes in surface potentials in Arabidopsis. Such recordings made when leaf 8 was 

wounded are shown in Figure 3.5. We found that wounding leaf tips generated a large 

change in surface potential approximately 10 s after wounding the leaf (Fig. 3.5). The 

amplitude of this potential change ranged from -71 to -73 mV as shown in Table 3.2. The 

surface potential then recovered slowly to approach that of the resting state which was not 

reached within the time frame of our measurements (triangle in Fig. 3.2).  

 

 

 

 

Figure 3. 5. Examples of typical surface potential changes recorded on leaf 8. The 
arrowheads indicate when the leaf was either touched or wounded. For electrodes 
placement see Fig. 3.1. 
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The duration of WASPs was different from 96-164s. Electrode placed on the lamina 

showed shorter duration than those placed on midrib. SP changes first recorded in e1 with 

latency of 9 ± 3s, then e2 at 15 ± 3s. The latency of SP changes on the lamina was 24s 

while the electrode placed on midrib with same distance was 10s (table 3.2).  

 
Table 3. 2. Characterization of wound-induced surface potentials (SPs) in 
Arabidopsis leaves in the wounded leaf. x/n= number of experiments in which EPs 
were > -10 mV / total number of experiments. Values are means ± SD. See Fig. 3.1 for 
details of electrode placement. 

 

Depolarization vs. hyperpolarization 

To investigate whether the WASPs generated after wounding in Arabidopsis were due to 

depolarization or hyperpolarization, we recorded surface potentials of leaves under cold 

shock. Cold shock treatment was carried out by putting 150 µl of 0 ºC of water on the 

surface of the lamina of leaf 8 and recording the SP before and after this treatment in this 

leaf.  In this case the recording electrode was placed on the petiole (Fig. 3.1, position e3). 

Three out of 7 plants showed SP changes after cold treatment. In addition, the timing of SP 

changes was variable among plants. Figure 3. 6a shows a typical SP changes after cold 

shock. Figure 3. 6b shows the amplitude changes after wounding. Figure 3.6c shows the 

polarity and amplitude of SP changes after cold shock or wounding.  

 

Electrodes Latency (s) Amplitude (mV) Duration (s) Velocity (cm/min) x/n 

Lamina (eL) 24 ± 7 -73 ± 23 96 ± 14 2.6 ± 0.6 13/15 

Midrib (e1) 9 ± 3 -71 ± 15 143 ± 22 7.1 ± 1. 5 13/15 

Petiole/midrib junction (e2) 15 ± 3 -73 ± 14 164 ± 32 8.2 ± 1.4 15/15 

Petiole (e3) 23 ± 5 -71 ± 13 160 ± 28 7.9 ± 1.4 15/15 

Average  -72 ± 16    
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Figure 3. 6. Establishment of signal polarity using chilling-induced 
depolarization. a. Chilling-induced depolarization generated by gently placing water 
(150 l, 0°C) onto leaf 8 at the time indicated with the arrowhead. Chilling induced a 
change in surface potential in 3 out of 7 recordings. b. Typical WASP of the same 
polarity. In both cases the recording electrode was on leaf 8 at position e3 (Fig. 3.1). c. 
Amplitude of the change in surface potential induced by wounding or by cold water.  
 

 

Artefacts due to mechanical wounding  

To avoid moving electrodes during the experiment, the wounded leaf was stabilized with a 

plastic sheet before the experiment. Due to the small distance between recording electrodes 

and the surface of the plant (1-2 mm), mechanically damaging leaves with forceps 

sometimes led to leaf movement. Furthermore, the position and size of leaves in the pot 
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affected leaf movement during wounding. The artefacts generated by moving electrodes 

caused a sharp amplitude change with an irregular pattern. Figure 3. 7 shows the typical 

artifacts generated by electrode movement or touching the electrodes by forceps.  

 

 

Figure 3. 7. Electrode movement creates artifacts. An electrode was placed at 
position e3 (shown in Fig. 3.1) on leaf 8. A. Recordings were stable when leaves were 
touched without moving the electrode. B. Artefactual signal generated by touching the 
leaf abruptly to cause electrode movement. C. Electrode disturbance causes artefact 
generation prior to detection of the wound-induced SP change. Art = artefact. 

 

Periodicity of WASPs  

Figure 3.8 shows WASPs generated after wounding. In most cases we observed an 

irregular pattern of SP repolarization in leaves 8 and 13 which we termed as periodicity. 

This periodicity was observed in 63 % (n=110) of experiments. The amplitude of this 

phase was became smaller over time (Fig 3.8).   
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Figure 3.8. A proportion of WASPs induced by mechanical damage show 
periodicity. The recording electrode was placed on leaf 8 at position e3 (shown in Fig. 
3.1). The apical 40% of leaf 8 was wounded with forceps. Periodicity was seen in 61% 
(n=110) of experiments. The filled arrowhead indicates time of wounding. The 
unfilled arrowheads indicate periodicity. 
 

Cutting leaves lead to SP change 

In order to find out whether cutting induced SPs, leaves were cut with ceramic scissors in 

different ways. For example, leaf 8 was cut at 0.5 cm from the tip, or else the edge of leaf 8 

was cut in parallel or perpendicular to the midrib. Figure 3. 9 shows the effect of different 

types of cutting on SP changes. The results show that cutting of the end of leaf tip did not 

generate WASPs while cutting through the midrib generated large WASPs.  

 

Figure 3. 9. Leaf excision generates surface potentials in Arabidopsis. Typical 
pattern of surface potentials recorded on leaf 8 after cutting the leaf tip, parallel or 
vertical to midrib. Recording electrode was placed at position e3 (shown in Fig 3.1).  
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Jasmonate biosynthesis mutant displays similar WASPs to the WT 

In order to know if WASP generation was independent of the JA pathway the allene oxide 

synthase (aos) mutant (Park et al. 2002) in the JA biosynthetic pathway was examined. 

Figure 3.10 shows the WASPs recorded in the WT and aos mutant. The results show that 

there were no significant differences in amplitude changes between the WT and aos.  

 

 

Figure 3. 10. WASP generation in a jasmonate biosynthesis mutant. a. Typical 
recording from leaf 8 of the WT after wounding the leaf tip. b. A typical recording from 
leaf 8 of the allene oxide synthase (aos) mutant after similar mechanical damage. In both 
cases the recording electrode was placed at position e3 (shown in Fig. 3.1) prior to 
wounding the apical 40 % of leaf 8. Arrowheads indicate the time of wound infliction. c. 
WASP amplitude in WT and aos plants. W = wounded.  



51 
 

Discussion 

Herbivory and mechanical wounding induce electrical events in the undamaged part of 

plants (Wildon et al. 1992, Favre et al. 2001, Bricchi et al. 2013). We used extracellular 

recording to measure WASPs in leaves of Arabidopsis thaliana at the rosette stage after 

herbivory or mechanical wounding (Figs. 3.3 and 3.5). Surface potential changes were 

generated in response to insect feeding with velocity of 3.5 ± 0.3 cm min-1. As shown 

in figures 3.2, 3.3 and 3.5, WASPs of the same polarity were generated by mechanical 

wounding and caterpillar feeding. Caterpillars cause both mechanical damage and they also 

release oral secretions. Although oral secretions can affect defence pathways in damaged 

plant (Mattiacci et al. 1995, De Vos and Jander 2009, Consales et al. 2012), there is a 

strong overlap of genes that respond to herbivores and to mechanical wounding (Reymond 

et al. 2000). 

The depolarization of membranes is an early step in many stress responses (Schaller and 

Frasson 2001, Maffei et al. 2006, Maffei et al. 2007, Maischak et al. 2007). In the resting 

state, plant plasma membrane potentials are between -80 to -200 mV (Fromm and Lautner 

2007). Knight et al. (1991) showed that cold shock increased the level of free Ca2+ in the 

cytosol (Knight et al. 1991), and this is thought to lead to membrane depolarization (Tracy 

et al. 2008, Meimoun et al. 2009, Jeworutzki et al. 2010). It has been already shown that 

cold treatments induce depolarization in Arabidopsis (Krol et al. 2004, Carpaneto et al. 

2007). The same polarity of WASPs and SP changes generated by chilling (Fig. 3.6) 

suggests that WASPs are due to membrane depolarization. 

Zimmerman et al. (2009) found that electrical signals generated from wounding in barley 

and bean reflect hyperpolarisations (Zimmermann et al. 2009), while our finding showed 

that WASPs are due to membrane depolarisations. This suggests that WASPs might be due 

to action potentials (APs) or variation potentials (VPs) both of which have been proposed 

as two type of electrical signals in plants (Homann and Thiel 1994, Fromm and Lautner 

2007). APs have been generated in response to wounding small parts of Arabidopsis leaves 
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and applying KCl (> 0.25 M) to the wounded part (Favre and Agosti 2007). Given that our 

findings are based on extracellular recording without analysing ion exchange across 

membranes, further data collection is required to know whether the SPs we detect are APs 

or VPs.  

It has been reported that touching can induce electrical signals in plants (Fromm and 

Lautner 2007). Mimosa pudica and Dionaea muscipula are good examples of plants that 

are sensitive to mechanical stimulation or touching (Koziolek et al. 2004, Escalante-Pérez 

et al. 2011). In these plants, fast leaf movement is initiated by electrical signals (Volkov et 

al. 2008). However, touching Arabidopsis leaves did not generate detectable SPs, while 

cutting leaves did produce SPs (Fig. 3.9). Cutting leaves of Hordeum vulgare or Vicia faba 

also led to electrical potential changes in distal tissues (Zimmermann et al. 2009).  

Having four recording electrodes allowed us to calculate the velocity of WASPs in the 

wounded leaf. Electrodes were placed on the lamina, midrib, midrib/petiole junction and 

petiole of wounded leaf. SPs were first observed in the position of e1 which was the closest 

electrode to the wound. The SPs then reached the other more distal electrodes. The speeds 

of SPs were calculated from data in table 3.2. These calculated speeds are in agreement 

with the results of Favre et al. (2007) who reported the speed of electrical signals generated 

in response to current injection in Arabidopsis as 4.6-6.9 cm min-1 (Fromm and Lautner 

2007). We found WASP velocities were slower in the lamina with a mean of 2.6 ± 0.6 cm 

min-1 than in the midrib with a mean of 8.2 ± 1.4 cm min-1. This suggests that the fastest 

route of WASPs transmission is through major veins. Indeed, Grams et. al. (2009) showed 

that electrical signals moved faster within the veins than through the intervein region of the 

lamina of maize leaves.  

Previous work showed that JA or its active derivative jasmonoyl-isoleucine are mobile 

signals in tomato (Howe 2004, Matsuura et al. 2012). It has been demonstrated that JA is 

not likely to be a highly mobile long distance wound signal in Arabidopsis (Glauser et al. 
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2009, Koo et al. 2009). Wounding leaves leads to accumulation of JA within about  30 s 

(Glauser et al. 2009). However, WASPs were detected less than 10s after wounding in the 

wounded leaf. Production of WASPs earlier than JA accumulation would be consistent 

with WASPs being wound signals in Arabidopsis. In addition, the similarity of WASP 

patterns between WT and aos demonstrates that JA synthesis is not required for WASP 

generation. In conclusion, our results indicate that WASPs generated in Arabidopsis leaves 

lead to plasma membrane depolarisations. Touching does not induce SPs while mechanical 

wounding or herbivory generates reproducible WASPs in Arabidopsis leaves.  
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Chapter 4 

 

Leaf surface potential changes in wounded Arabidopsis  

 

  

 

Introduction 

All multicellular organisms need fast and reliable routes to distribute information 

concerning the health status of different parts of their bodies. Unicellular organisms use 

intracellular and interorga nismal communication while multicellular organisms 

additionally need intercellular and interorgan communication. Unlike animals that have a 

well-developed nervous system including central and peripheral elements, plants do not 

appear to have specific structures dedicated to exclusively transferring information over 

long distances. Instead, vascular tissues that conduct fluid and nutrients are a feature of 

vascular plants (ferns, gymnosperms, angiosperms, etc) and can serve as long distance 

information transfer networks. Vascular tissue cells are typically long and slender and 

connected end to end to make the equivalent of cellular pipe lines. In Arabidopsis, 

parastichies connecting leaves are a critical factor. In the adult phase a major parastichy 

follows an n+5 and n+8 rule. For example, leaf 10 is connected directly through vascular 

flow to leaves 15 and 18 and to leaves 5 and 2 (Dengler 2006). Consistent with this, when 
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leaves 5 and 8  of adult phase Arabidopsis plants were wounded, the expression of the 

JASMONATE-ZIM DOMAIN 10 (JAZ10) gene was stronger in leaf 13 than in the non-

connected leaves 9 and 12, as was the accumulation of JA (Glauser et al. 2009).  

The velocity of wound-induced long distance signals leading to the accumulation of 

jasmonate has been estimated in Arabidopsis thaliana in several experiments. By 

combining JA accumulation measurements with a knowledge of vascular connections in 

Arabidopsis provided by Dengler (2006), it has been possible to refine the speed 

measurements and to set temporal boundaries. Such experiments led to speed estimates 

ranging from 3-8 cm min-1 for the JA accumulation-inducing signal moving from wounded 

leaves to distal parastichious leaves (Glauser et al. 2009, Chauvin et al. 2013). In 

independent experiments a slightly slower speed was estimated for wound-stimulated 

signalling leading to jasmonoyl-isoleucine (JA-Ile) accumulation in leaves distal to 

wounded (Koo and Howe 2009). Additionally, a different experimental setup involving a 

reporter gene construct that responds to the wound-stimulated accumulation of reactive 

oxygen species, indicated the speed of (a) signal(s) travelling from wounded leaves to 

floral stems in Arabidopsis at 8.4 cm min-1 (Miller et al. 2009).   

In this chapter, our goal was to better understand wound-associated surface potential 

changes (WASPs) in distal leaves to mechanical wounding. To test possible correlations 

with the activation of jasmonate signalling, we mapped the expression of the jasmonate-

responsive gene JAZ10 (Yan et al. 2007) throughout the rosette after wounding leaf 8 and 

compared this to a spatial map of surface potential changes (SPs). These two maps 

correlated well and revealed new information on parastichies followed by wound signals. 

Using these two methods we were able to solve the issue of whether signal displacement is 

source-sink dependent. Further investigation of wound-to-distal leaf signalling showed that 

interrupting the signal necessary to generate surface potentials also interrupted JAZ10 

expression. 
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Results  

Parastichious leaves display surface potential changes (SPs) different to those 

from nonparastichious leaves 

The pattern of vascular connections between leaf primordia is conserved within species but 

can depend on developmental stages and can differ between juvenile and adult phases. A 

knowledge of phyllotaxis helps to predict the vascular pattern in plants and to understand 

long distance transport of water, minerals or signalling molecules. In addition, it is usually 

easy to predict the position of the next leaf primordium. In Arabidopsis, there are more 

than 20 leaves in the rosette phase of 5-week old plants. The leaves are contacted in the 

pattern of n+5 or n+8 as connected parastichies and n+3 as contact parastichies (Dengler 

2006). For example, the vascular system of leaf 13 is connected to that of leaf 5 (n+8) and 

leaf 8 (n+5). Figure 4.1 shows the mathematical prediction of leaf placement in 

Arabidopsis thaliana in the rosette stage.  

 

Figure 4.1. Leaf placement in the Arabidopsis rosette. The angles were calculated 
between leaves from leaf 5 to leaf 18. Note, the angles for n+3, n+5 and n+8 are 
closest. Leaf 8 is in position 0°.  
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Vascular connections and jasmonate signalling in distal tissues 

To assess the role of vascular connections in Arabidopsis rosettes, jasmonyl isoleucine 

(JA-Ile) and jasmonic asid (JA) were measured.1 Leaf 8 and leaf 13 were harvested 20 and 

60 min after wounding leaf 8. To get enough material for JA quantification, five leaves of 

control or wounded plants were pooled as one biological replicate. High-performance 

liquid chromatography-tandem mass spectrometry in the multiple reactions monitoring 

(MRM) mode was used for JA and JA-Ile quantification. The results showed that at both 

time points, the levels of JA and JA-Ile increased in the wounded leaves and leaves 13 in 

respect to unwounded leaves (Fig. 4.2).  

 

Figure 4. 2. Levels of JA and JA-Ile after wounding. In each case leaf 8 was 
wounded and this leaf as well as leaf 13 was harvested for jasmonate analysis 1h after 
wounding.  a. JA level in leaves 8 and 13. b. JA-Ile level in leaves 8 and 13. U = 
unwounded . W = wounded. *** = P<0.001 (n=4 ± SD).  

 

WASPs are limited to a part of the Arabidopsis rosette 

With a knowledge of leaf placement and vascular connections between leaves, we 

attempted  to record WASPs in all leaves of Arabidopsis after wounding 40% of the apical 

part of leaf 8. Leaf 8 was chosen for wounding due to the leaf that it is the first adult leaf in 

the rosette and it allowed us to conduct experiments aimed at studying signalling from 

                                                 
1- This experiment was performed by Adeline Chauvin, University of Geneva.  
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younger or older leaves. At 5-weeks old in short day growth conditions, Arabidopsis 

usually has approximately 20 leaves.  

Measurements to map surface potentials throughout the rosette were then performed with 

four electrodes placed on different parts of plant. One electrode was always on the 

wounded leaf 8 at position of e2 (Fig. 3.1), an electrode was placed on leaf 9, 1 cm from 

the centre of rosette as non-connected leaf. The two other electrodes were placed on 

different leaves from leaf 5 to leaf 18 on 1 cm from the centre of rosette. Characteristic 

surface potential patterns for each of these leaves are shown in Figure 4. 3. Leaves 5, 11, 

13 and 16 showed responses similar to those in the wounded leaf (Fig. 4.3, Table 4.1). For 

example, after wounding leaf 8, a WASP with a duration of 78 ± 20 s and a peak amplitude 

of -51 ± 9 mV was reached in leaf 13 after a latency of 66 ± 13s (n=61). Other leaves (7, 9, 

10, 12, 14, 15 and 18) showed responses of opposite polarity responses as small positive 

changes in surface potential. For example, leaf 9 showed a 20 ± 5 mV change in surface 

potential with a latency of 54 ± 12 s (n=46). WASP values for leaf 16 (n+8) were 56 ± 14 s 

duration, -45 ± 10 mV for amplitude with a latency of 73 ± 14s (n=27). We also noted 

large changes in surface potential for leaf 11 (n+3). Additionally, we recorded changes in 

surface potentials in the n-2 leaf (leaf 6) that were similar to those in wounded leaf 8 in 

63% (13 out of 19) recordings. The remaining recordings from leaf 6 (Fig. 4.3) resembled 

traces from leaves such as leaf 9. In contrast to leaf 6, variable wound-stimulated electrical 

activity was not observed in leaf 10 (the n+2 leaf relative to wounded leaf 8). Initial 

hypothesis that proved to be wrong was SPs travels to leaf n+5+5. In other words, signals 

from wounding leaf 8, first go to leaf 13 and then go to leaf 18. However, as mentioned 

previously, the changes of surface potentials in leaf 18 was similar to those in non-

connected leaves (Fig. 4.3). 
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Figure 4. 3. Representative surface potential changes generated on distal leaves 
after wounding leaf 8. One electrode was located on the petiole (2 cm from wounded 
part) of wounded leaf 8 (W). The other electrodes were on the petioles of the non-
wounded leaves 1 cm from centre of plant. The arrowhead shows when leaf 8 was 
wounded. The data are representative of 8-10 independent replicates. Two types of 
surface potential change were observed on leaf 6. The solid line shows a representative 
trace from 63% (n=19) of events and the dashed line indicates an opposite polarity 
change in surface potential seen in 37% of cases. 
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Table 4. 1. Wounding leaf 8 causes surface potential changes in connected leaves 
5, 11, 13 and 16. Leaf 8 was wounded and surface potentials were monitored in distal 
leaves with electrodes placed on these leaves at position e3’ (see Fig. 3.1 for details of 
electrode placements). For leaf 8 the monitoring electrode was at position e2. W = 
wounded, x = number of experiments in which amplitudes of surface potentials 
exceeded -10 mV. Values are means ± SD.  
 

Electrodes Latency (s) Amplitude (mV) Duration (s) x/n 

Leaf 5  66 ± 14 -57 ± 14 64 ± 16 26/27 

Leaf 8 W 22 ±3 -76 ± 11 163 ± 30 33/33 

Leaf 9 54 ± 12 20 ± 5 21 ± 9 46/46 

Leaf 11 69 ± 14 -56 ± 13 36 ± 18 41/48 

Leaf 13 66 ± 13 -51 ± 9 78 ± 20 61/61 

Leaf 16 73 ± 14 -45 ± 10 56 ± 21 24/27 

 

Mapping JAZ10 expression levels in distal leaves 

To better understand the role of WASPs in the activation of the jasmonate pathway, 

quantitative electrophysiological data (Table 4.1) were compared with transcript levels for 

JASMONATE-ZIM DOMAIN 10 (JAZ10), a robust marker for activity of the jasmonate 

pathway (Yan et al. 2007). We studied JAZ10 expression levels for 14 leaves (leaves 5-18) 

of 6-week Arabidopsis thaliana that were either unwounded or wounded on leaf 8. To do 

this, 40% of apical part of leaf 8 was wounded and then, after 1 h, leaves (5-18) were 

harvested separately. Leaves from 5-18 in the unwounded plant were also harvested 

separately as controls. Four biological repeats and three technical repeats were used for 

both unwounded and wounded plant.  One h after wounding leaf 8 we detected >100 fold 

increases in JAZ10 transcript levels in leaves 5, 8, 11, 13 and 16. In contrast, at this time 

leaves 7, 9, 10, 12, 14, 15, 17 and 18 showed levels of expression similar to or only slightly 

higher than those in the cognate leaves of the unwounded plants (Fig. 4.4). JAZ10 

transcript induction in leaf 6 was variable and below the significance threshold (p>0.05) 
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and, as for WASP generation, we did not observe increases in JAZ10 transcripts in leaf 10. 

Heat maps from quantitative data show that JAZ10 expression at 1h postwounding and 

WASP durations covered identical territories, spanning 137° of the rosette when variable 

leaf 6 (n-2) is included (Fig. 4.5). In addition, we found that leaves 5 and 11 (n+3) which 

are apparently contact parastichy and not connected directly by the vascular system 

(Dengler 2006) showed a high level of JAZ10 expression which indicates that n±3 is 

another route for transmitting long distance signal in Arabidopsis rosette.  

 

 

 

Figure 4. 4. Relative expression levels of JAZ10 1h after mechanical wounding of 
leaf 8. The data are from four independent replicates ± SD. ***, P≤0.001. 
W=wounded.  
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Figure 4. 5. Heat maps representing the level of JAZ10 expression and the 
duration of WASPs produced after wounding leaf 8. Data for JAZ10 levels are from 
figure 4. 4. WASP durations are from Table 4.1. V = variable in leaf 6.  
 

N+3 is a new long distance route in Arabidopsis 

To investigate whether there were direct n+3 vascular connections between leaves, we 

employed the catalase inhibitor 3-amino-1,2,4-triazole (3-AT) which moves through the 

vascular system and causes chlorosis in the leaves (Kiefer and Slusarenko 2003). The 

abaxial surface of leaf 8 of four week-old plants was infiltrated with an insulin syringe with 

10 µl of 2 mM of 3-AT dissolved in water. For control plants, 10 µl of water were 

infiltrated into leaf 8. Figure 4.6 shows that leaf 11 (n+3) did not develop chlorosis 

symptoms. This indicates that leaf 11(n+3) might not be connected directly to leaf 8.  

 

Figure 4.6. The morphological effect of 3-amino-1,2,4-triazole (3-AT) on 
Arabidopsis leaves after 2 weeks. The abaxial of leaf 8 was infiltrated with 2 mM of 
3-AT at 4-week old plant.  
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New estimations of wound-induced signal speed 

The speed of signals leading to surface potential changes after wounding was estimated by 

placing electrodes e1’, e2’ and e3’ on leaf 13 and e2 on leaf 8 (Fig. 4.7). The distance 

between electrodes on leaf 8 from the wound was 3 cm. In leaf 13, electrodes were placed 

1 cm from each other and 1 cm from the centre of the plant. Table 4. 2 presents data for 

speed estimation in a quantitative form. An average velocity of 8.5 cm min-1 was found 

between midrib and petiole of leaf 13 when leaf 8 was wounded. The amplitude changed in 

leaf 8 to -73 ± 14 mV at 15 ± 3 s after wounding. The electrical potentials in leaf 13 were 

 -53 ± 17 mV at 70 ± 16 s after wounding, -58 ± 15 mV at 63 ± 15s and -56 ± 18 mV at 53 

± 15 s for electrodes e1’, e2’ and e3’ respectively (n=17) (Fig. 4.7). The distance from the 

electrode placed ion the petioles of the wounded leaf 8 to the electrode placed on petiole of 

leaf 13 was 3 cm. Therefore, the velocity of signals that lead to changes in surface potential 

moved from the wounded leaf to the unwounded, connected leaf at 5.4 ± 1.5 cm min-1.   

 
Table 4.2. Characterization of surface potentials (SPs) in Arabidopsis leaves in 
parastichious leaf 13 after wounding leaf 8. x/n= the number of experiments in SPs 
were > -10 mV / total number of experiments. Values are means ± SD. See Fig. 4.7 for 
details of electrode placement.  

 

 

Electrodes Latency (s) Amplitude (mV) Duration (s) Velocity (cm/min) x/n 

Midrib (e1’) 70 ± 16 -53 ± 17 76 ± 15 5.8 ± 1.1 17/17 

Petiole/midrib junction (e2’) 63 ± 15 -58 ± 15 77 ± 25 5.7 ± 1.1 16/17 

Petiole (e3’) 53 ± 15 -56 ± 18 65 ± 17 5.5 ± 1.2 17/17 

Average  -56 ± 15    
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Figure 4.7.  Estimation of apparent WASP velocities. Leaf 8 or 12, the largest 
rosette leaves in 6 week-old plants, were chosen for estimating velocities within a 
wounded leaf. For estimating the apparent velocities of signals that travel from leaf to 
leaf, leaf 8 was wounded and recordings were made both on this leaf and on leaf 13. 
ANOVA, followed by Bonferroni post-hoc test showed that the WASP speed indicated 
in cm/min along the midrib and petiole within a leaf was not significantly different 
between leaves 8, 12 and 13, but was faster than the overall signalling speed from leaf 
8 to leaf 13, and the speed of the signal from the wound to the electrode placed in the 
lamina of the wounded leaf. All data are from 13 replicates (± SD). W = wounded.  
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Leaf 8 is not unique: Long distance signal transfer patterns are conserved in 

other leaves 

In order to understand whether parastichies function similarly in WASP propagation in 

leaves other than leaf 8, leaf 10 was wounded. The electrodes were placed on leaves 10 

(wounded leaf), the non-connected leaf 11 and leaf 15 as a connected leaf. The pattern of 

WASPs generated from wounded leaf 10, leaf 11 and leaf 15 were similar to wounded, 

non-connected and connected leaves when leaf 8 was wounded (data not shown). 

Moreover, the JAZ10 expression levels in leaf 15 1 h after wounding leaf 10 were similar 

to JAZ10 levels in leaf 13 when leaf 8 was wounded (Fig. 4.8).  

 

 

Figure 4.8. Relative expression level of JAZ10 1 after wounding leaf 10.  The data 
are from four independent replicates ± SD. *, P≤0.05. U= unwounded, W=wounded.  
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The accessions Ws (Wassilewskija) and Ler (Landsberg erecta) have similar 

wound SPs to Col-0 (Columbia-0) 

In order to investigate the electrical activity in different accessions of Arabidopsis, 

Ws (Wassilewskija) and Ler (Landsberg erecta) were also assessed for the ability to 

produce measurable surface potential changes after leaf wounding. Two electrodes 

were placed on leaf 8 at position of e2 and e3 (Fig 3.1), one electrode on leaf 9 

and one on leaf 13 1cm from the rosette centre. The results showed that both 

accessions were similar in WASP duration and amplitude in the wounded leaf 8, 

leaf 9 and leaf 13 with respect to Col-0. Moreover, there was no significant difference of 

velocities of WASPs among these accessions (data not shown).  

  

 

WASPs are bidirectional 

Next we asked the question of whether wound-stimulated signals can travel downwards 

from younger to older leaves. In other words, if we wounded leaf 13 (Fig. 4.9a), would we 

find the highest induction of JAZ10 in leaf 8? We wounded leaf 13 and recorded surface 

potentials on leaves 8 (connected), 9 (non-connected) and 13 (wounded).  The duration and 

amplitude of WASPs in leaf 8 when leaf 13 was wounded was similar to duration of leaf 

13 when leaf 8 was wounded (Fig. 4. 9 b). WASPs duration and amplitude in the wounded 

leaf 13 were similar to wounded leaf 8. In addition, in the connected leaf 8 when leaf 13 

was wounded, WASP duration and amplitudes were similar to leaf 13 when leaf 8 was 

wounded (Fig 4.9 c and d). Leaves 8, 9 and 13 were harvested 1 h after wounding leaf 13 

for JAZ10 expression level measurement. Figure 4.9e shows the high expression of JAZ10 

in the connected leaf 8 when leaf 13 was wounded.   
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Figure 4. 9. Wounding young leaves triggers WASPs and JAZ10 expression in 
older leaves. a. Electrode placement positions on leaves 8 (e3), 9 (e4) and 13 (e5). b. 
Typical changes in surface potential in leaves 8, 9 and 13 after wounding leaf 13. The 
arrowhead shows the time of wounding. c. WASP amplitudes after wounding of leaf 
13 (n=8). d. WASP durations after wounding of leaf 13 (n=8). e. JAZ10 expression 1h 
after wounding leaf 13 (n=4 ± S.D). Unwounded leaves (U), wounded leaf 13 (W). 
*** = P<0.001 (n=4, ± SD).   
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WASPs are not transmitted to distal leaves after limited leaf damage 

Crushing leaves leads to breakage and destruction of cells. An experiment was designed to 

access the effect of wound size on WASP generation and JAZ10 expression.  10%, 40% 

and 80% of apical part of leaf was wounded with forceps. Wounding 80% of leaf 8 showed 

similar patterns of WASPs duration and amplitude to wounding 40 % in both leaves 8 and 

13. But, when 80% of leaf 8 was wounded, wounding leaf 9 showed depolarization about -

23±8 mv and duration of 11±5 s in 40% (4 out of 9) of replicates. In 10 percent wounding 

of leaf 8, WASPs was similar to 40% wounding for the electrode which placed on e2 (Fig. 

3.1) in leaf 8, but WASPs was not recorded in leaf 13. The samples of 10% and 40% 

wounding were harvested for 1 h after wounding to measure the JAZ10 transcript level. 

Figure 4.10 shows that the leaf 13 that did not receive WASPs after wounding 10% of leaf 

8 also did not display an increased level of JAZ10 expression (Fig. 4.10).  

 

 

Figure 4. 10 JAZ10 expression level 1h after wounding of leaf 8. Leaf 8 was 
wounded 10 or 40 percent of apical part. The data are from four independent replicates 
± S.D. Unwounded leaves (U), wounded leaves (W).  
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Experiments to interrupt surface potential generation 

To test the relation between surface potential generation and JAZ10 expression, the petiole 

of the wounded leaf 8 was cut with zirconia ceramic scissors (CS-250 Kyocera, Japan) 

which do not act as strong capacitors and therefore do not interfere with surface potential 

measurements. Two electrodes were placed on the petiole of wounded leaf 8; e2 was 

placed on the midrib and e3 was closer to centre of plant as shown in Figure 4. 11A. Two 

other electrodes were placed on leaf 9 (e4) and 13 (e5). 40% of the apical part of leaf 8 was 

wounded by crushing. The petiole of leaf 8 was cut immediately when a surface potential 

change was recorded in e2 but before it reached e3 (Figure 4.11B). At this time the 

recording was stopped due to disconnecting of wounded part with e2 to ground and surface 

potential decline sharply (due to cut). No surface potential changes were recorded on 

leaves 9 (E4) and 13 (E5) after cutting petiole of leaf 8 (cut no WASP, Fig 4.11B) and 

shown the pattern of SP changes similar to control unwounded plants (cut no WASP). 

Likewise, when leaf 13 did not receive any wound signal from leaf 8, the expression level 

of JAZ10 was low and similar to that recorded from an unwounded plant (Fig 4.11C). Due 

to the speed of signals resulting in surface potential changes within wounded Arabidopsis 

leaves (8.4 cm min-1) and the short distance between e2 and e3 (less than 2.5 cm) the time 

of cutting was critical, although this procedure took less than 5s. Sometimes, a delay in 

cutting did not prevent surface potential migration and we recorded surface potential 

change of e3, thus the pattern of surface potential recorded of e4 and e5 was similar to non-

cut plants (cut WASP) in Fig. 4.11B). In other words, cutting after surface potential 

changes were monitored at e3 did not inhibit their appearance in distal leaves. In these 

cases leaf 13 showed greater JAZ10 inductions than did leaf 9. In control experiments, leaf 

8 was wounded without cutting its petiole and leaves 8, 9 and 13 showed their 

characteristic electrical behaviour and JAZ10 expression levels.  
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Figure 4.11. Effects of interrupting WASP propagation on JAZ10 expression. a. 
Experimental design: two electrodes were placed on leaf 8, one of these (e2) was 
placed on the midrib and the second electrode (e3) was at the base of the petiole. 
Electrodes were also placed on leaf 9 (e4) and on leaf 13 (e5). 40% of leaf 8 was 
wounded. b. WASP traces for leaves 9 (non-parastichious) and leaf 13 (connected) 
that were provoked by wounding leaf 8. The first pair of traces was recorded when leaf 
8 was severed upon detection of a signal at e2 and before a WASP was detected at e3. 
The second pair of traces was recorded when the WASP generated by wounding leaf 8 
was allowed to reach e3 and the leaf was then severed immediately. c. JAZ10 
expression in unwounded leaves (U), wounded leaf 8 (W) and leaves 9 and 13. The 
left side of the dashed line shows JAZ10 transcript levels in leaves 8, 9 and 13 of 
intact control plants 1 h after wounding leaf 8. Data on the right side of the dashed line 
are from plants in which the wounded leaf 8 was severed when WASPs were detected 
at e2 but were not allowed to reach electrode e3 (cut no WASP) or when WASPs were 
allowed to reach e3 prior to severing leaf 8 (cut WASP). *** = P<0.001 (n = 4, ± SD).  
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Discussion:  

In this chapter, we have demonstrated the correlation between WASP generation and 

activation of the JA pathway. In response to wounding leaf 8 an increased expression of 

JAZ10 was observed in leaves 5, 8, 11, 13, and 16. This was consistent with the pattern of 

WASP generation in the rosette and indicated that WASPs and JAZ10 expression are 

highly correlated. Accumulation of JA after 120 s in vascularly interconnected leaves 

(Glauser et al. 2009) is comparable with the change of surface potential that we monitored 

in such leaves within 60-90s of wound infliction to leaf 8.  

There are many reports of mobile electrical signals generated in response to wounds. These 

include action potentials as well as variation potentials, wound potentials and system 

potentials (Wildon et al. 1992, Stahlberg et al. 2006, Favre and Agosti 2007, Zimmermann 

et al. 2009). However, it is important to note that we have no evidence that the surface 

potential changes we monitored correspond to signals that move through the plant. Instead, 

they might reflect the arrival of other types of signals that then cause ion fluxes in 

populations of cells in the leaf. Additionally, multiple different long distance signals may 

be generated in response to a wound and among the evidence that is consistent with this is 

the fact that genes regulated through multiple signal pathways can be activated in tissues 

distal to wounds (Onkokesung et al. 2010, Walley and Dehesh 2010). What we measure 

may, like the accumulation of JA, or the expression of genes like JAZ10, be the 

consequence of arrival of such unknown signals. The events we record with surface 

electrodes probably reflect the behavior of populations of cells in which events are 

summed to produce the output which we have exploited in connection with gene 

expression, to map wound-related events in the rosette. 

From measurements in which electrodes were placed out on the wounded leaf and on distal 

leaves we were able to look at surface potential changes throughout the rosette. These 

correlated well with the n+5, n+8 parastichies (Dengler 2006) that we previously reported 

to be relevant to the spatial pattern of JA accumulation in rosettes of wounded plants 
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(Glauser et al. 2009). A new finding to emerge from the present study is that n+3 signal 

transfer was elicited on wounding. The n+3 parastichy was defined as a non-contact 

parastichy by Dengler (2006). These type of contact parastichies are defined by interleaf 

vascular strand proximity rather than vascular strand interconnection. Therefore, the 

wound signal(s) that gives rise to changes in surface potential in n+3 leaves may be able to 

'jump' between vascular strands. Alternatively, the n+3 parastichy might be a truly 

connected parastichy, although this could not be demonstrated in experiments using 3-AT 

to bleach leaves. Also related to the spatial distribution of surface changes following 

wounding is directionality. Signals generated by wounding leaf tips move basipetally to the 

centre of the rosette and then disperse acropetally into certain distal leaves to activate JA 

accumulation and JAZ10 expression (Glauser et al. 2009).  

Now, the question arises as to whether signal transfer is only from older leaves to younger 

leaves (e.g from wounded leaf 8 to unwounded leaves 11, 13 and 16). To test this we 

monitored JAZ10 gene expression in leaves preceding and anteceding leaf 8. The pattern 

was clear, strongest JAZ10 expression took place in both leaf sets, i.e. the response 

corresponded to n± 3, 5 and 8 parastichies. Similarly, surface potential changes followed 

these same parastichies i.e. JAZ10 expression corresponds to surface potential changes. 

This result is consistent with the literature. Firstly, plasma membrane depolarization causes 

the expression of genes known to be regulated by the jasmonate pathway (Schaller and 

Oecking 1999, Frick and Schaller 2002) whereas hyperpolarization of cells by fusicoccin 

treatment repressed the expression of some of these genes (Schaller and Frasson 2001). 

Secondly, the activation of proteinase inhibitor genes in tomato that are regulated by 

jasmonates (Farmer and Ryan 1992) is reported to correlate with strong depolarizations of 

the plasma membrane of phloem sieve tube and companion cells (Rhodes et al. 1996). We 

also note that both slow wave potentials (SWPs) and wound potentials (WPs) are 

bidirectional i.e. moving both basipetally and acropetally away from a wound (Stahlberg et 

al., 2006). Summarizing, severely wounding one leaf in the rosette leads to the activation 

of JAZ10 in both older and younger leaves in parastichies that, spatially, correspond to a 
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sector covering approximately (137º) 38 % of the rosette area. A similar coverage is 

observed from changes in surface potential. It would be interesting if insects avoid 

repeated feeding in these sectors.  

Additionally, we recorded changes in surface potentials in the n-2 leaf (leaf 6) that were 

similar to those in wounded leaf 8 in 63% recordings. The remaining recordings from leaf 

6 (Fig. 4.3), resembled traces from leaves such as leaf 9. In contrast to leaf 6, variable 

wound-stimulated electrical activity was not observed in leaf 10 (the n+2 leaf relative to 

wounded leaf 8). We termed leaf 6 the variable leaf and noted that we could increase the 

proportion of large depolarisations in this leaf if a greater surface area of leaf 8 was 

wounded.  

By measuring the speed it took for surface potential changes to occur in parastichious 

leaves we were able to provide new indirect estimates for the speed of signal displacement 

in the wounded Arabidopsis rosette. These similar apparent velocities for surface potential 

changes in the midribs of wounded leaves and distal leaves suggest that related 

mechanisms control electrical signalling in these leaves. Previous estimates based on this 

approach and using JA accumulation as output placed the signal velocity in the range of 4-

8 cm min-1 (Glauser et al. 2009, Chauvin et al. 2013). This fits with the observations of the 

present study. However, signals from the wounded leaf appeared to slow to 5.4±1.5 cm 

min-1 at the centre of the plant prior to accelerating again in the distal leaf that 8.4±1.5 cm 

min-1, bringing the average signal speed from wounded leaf 8 to receiver leaf 13 to 5.8±1.1 

cm min-1 (n=13). This overall velocity estimate is concordant with conservative estimates 

of signal speeds that were based on JA accumulation within parastichies in Arabidopsis 

(Glauser et al. 2009). 
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Chapter 5 

Glutamate Receptor-Like genes mediate long distance 

electrical signalling after wounding 

 

 

 

 

Introduction 

Wounding the leaves of Arabidopsis induces the expression of a wide range of genes and 

the synthesis of many chemical compounds. These events take place both close to and 

distal to the wound. Jasmonic acid (JA) levels also increase upon wounding in the local 

and distal part of plants. JA regulates a broad variety of physiological responses and plays 

central roles in wounding responses and in defence (Browse 2009, Acosta and Farmer 

2010). At present the nature of the long distance signal(s) needed to activate distal JA 

synthesis and defence gene expression is/are unknown. Two sets of hypotheses have 

emerged.  Firstly, jasmonates themselves may be translocated from leaf to leaf or their 

synthesis may be required throughout the path of signal propagation (Schilmiller and Howe 

2005). Alternatively, the long distance signal(s) may be independent of jasmonate 

synthesis (Koo et al. 2009, Koo and Howe 2009). Several models for long distance 
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signalling have emerged with the serial production of reactive oxygen species along the 

path of signalling leaves being a recent model (Miller et al. 2009). However, a larger body 

of literature makes reference to various types of electrical signalling (eg. Wildon et al., 

1992).  

Environmental stresses largely alter plant physiology and metabolism and they can also 

trigger the production of electrical signals. The effects of wounding on the generation of 

electrical activity have been widely studied among others species such as tomato (Wildon 

et al. 1992), tobacco, barley and bean (Zimmermann et al. 2009), Mimosa pudica (Kaiser 

and Grams 2006) and maize (Grams et al. 2009). Wildon et al. (1992) found a correlation 

between electrical signal production and proteinase inhibitor II (Pin2) gene activation after 

wounding tomato (Wildon et al. 1992). Moreover, electrical signals generated by current 

injection activated JA accumulation and Pin2 expression in tomato leaves (Peña-Cortés et 

al. 1995). However, in Arabidopsis, the generation of electrical signal following wounding 

is the subject of only a few studies (Favre et al. 2001, Favre and Agosti 2007). So far, there 

is no evidence that electrical activity and jasmonate-regulated gene expression are causally 

linked in Arabidopsis. Moreover, no genes reported to regulate electrical activity have been 

found to effect wound physiology. The identification of channel or transporters genes 

shown to have a role in wounding would be a crucial step in proving the relevance of 

electrical signals.  

Twenty genes encoding glutamate receptor-like (GLR) non-selective cation channels are 

annotated in the Arabidopsis genome. These fall into three distinct clades (Lacombe et al. 

2001). The function and physiology of GLR genes is poorly understood, however, it is 

already reported that they regulate photomorphogenesis, calcium homeostasis, aluminum 

toxicity, root elongation hypocotyl elongation, floral stem and vascular bundle 

development, senescence, carbon and nitrogen metabolism, and salt and cold stress 

(Gilliham et al. 2006). GLRs are thought to be localized in the plasma membrane. 

However, GLR3.4 localized to both plasma membrane and to plastids (Teardo et al. 2011). 
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It has been shown that some GLRs regulate Ca2+ influx to the cytoplasm (Qi et al. 2006, 

Michard et al. 2011). For instance, glutamate application transiently increases the level of 

Ca2+  in WT but not the glr3.3 mutant (Qi et al. 2006). Furthermore, depolarization phase 

of electrical signals was reduced as compared to WT in the glr3.4 mutant after application 

of either of the 6 amino acids glutamate, glycine, alanine, serine, asparagine, and cysteine 

(Stephens et al. 2008). Overexpression of glr3.2 from radish in Arabidopsis increased JA 

and VSP1 expression levels (Kang et al. 2006). There is very little known about the subunit 

composition of GLR channels in plants. Stephans et al. 2008 concluded that GLR channels 

may form heteromers and each GLR might be activated by a different amino acid  

In this chapter we show that wound-associated surface potential changes (WASPs) are 

essential for long-distance wound signalling in Arabidopsis leaves. JA and JA-Ile levels 

and VSP2 and JAZ10 transcripts levels were increased strongly in response to surface 

potential changes generated by current injection. In addition, several mutants in which 

WASPs were altered upon wounding were isolated through the reverse screening of  

T-DNA mutant lines. Furthermore, a double mutant derived from crossing two glr single 

mutants was unable to propagate WASPs from leaf 8 to leaf 13. Consequently, transcript 

levels for JAZ10 in this glr3.3glr3.6 mutant were not increased in leaf 13 when leaf 8 was 

wounded. Finally, glr3.3glr3.6 mutant might have a higher susceptibility to Spodoptera 

litteralis than the WT.   
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Experimental design:  

Electrode placement and current injection: 

Platinum (Pt) wires were inserted into the petiole of leaf 8. The distance between these 

wires was 1 cm and the distance to the proximal (eP) recording electrode was also 1 cm 

(Fig. 5. 1). Surface potential activity was recorded on different parts of leaves with 

electrodes placed in three different positions. The recoding electrodes were placed on the 

proximal (eP), distal midrib (eD) and lamina (eL) of leaf 8 as shown in Fig. 5. 1. The 

distance between electrodes eP and eD was 1 cm.  

 

 

Figure 5. 1. Experimental design for current injection (ci) into leaf 8. Placement of 
Pt wires, proximal electrode (eP), distal electrode (eD) and laminar electrode (eL) for 
ci experiments. The leaf blade to the left of the dashed line was used for transcript 
measurements and quantitation of jasmonate levels. 
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Results:  

Ionophores and inhibitor infiltration 

The expression of JA-inducible genes can be affected by ionophores and ion channel 

blockers (Schaller and Frasson 2001). We applied several ionophores and ions channel 

inhibitors to Arabidopsis leaves in order to attempt to disrupt surface potential changes 

after wounding, or to generate surface potential changes without wounding. 6,7-

dinitroquinoxaline-2,3-dione (DNQX), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 

tetraethylammonium (TEA), orthovanadate, fussicoccin, alamathicin, gramadicin were 

infiltrated into the lamina or injected into the petioles of leaves in different concentrations.  

These compounds and ionophores which have effects on the activity of ion channels and 

proton pumps did not eliminate SPs after wounding in the wounded or connected leaves. 

However, some of them had minor effects on the amplitude or duration of SPs in the 

connected leaves. Moreover, the JAZ10 transcript level was not significantly different in 

the leaves that had shown SP changes (data not shown).   

Current injection induces surface potentials in Arabidopsis leaves 

In order to generate electrical signals in Arabidopsis leaves and to monitor their effects in 

plant function, we injected current into leaves and recorded SPs. To do this, we inserted 

two platinum wires in the petiole of leaf 8 and we injected current the following day. We 

found that 40 µA current for 10 s could reproducibly generate surface potential changes in 

leaf 8 (Table 5.1). Surface potentials generated by current injection were detected by all 

three electrodes (eP, eD and eL) were placed on leaf 8 (Fig 5.2). SPs were first detected in 

the proximal electrode with an amplitude of -79 ± 12 mV and duration of 75 ± 20s (Table 

5.2). The speeds of SPs generated by current injection were calculated between eP and eD. 

Duration of SPs were decreased with increasing distance from platinum wires.  

During current injection a large amplitude (5-9 V) voltage spike was observed at all 

electrodes placed on leaf 8. This artefact corresponded to the time of starting and finishing 



80 
 

of current injection (Fig. 5.2, ‘art’). For further experiments on leaf 8, the leaf lamina was 

harvested after current injection starting at a distance of 3-4 mm from the platinum wires. 

The harvested area is indicated with a vertical dashed line in figure 5.1.  

 
 
Table 5.1. Optimization of current injection to generate surface potential 
changes. The experimental setup is shown in Fig. 5.1. Current was injected into the 
petiole region and surface potentials were measured with an electrode placed on the 
midrib in position eD (see Fig. 5.1). n = number of experiments.  
 

 

 

 

 

 

 
 
 
Table 5.2. Characterization of surface potential changes in different parts of leaf 
8 generated by current injection. Current (40 µA, 10 s) was injected into the petiole 
of leaf 8 (see Fig. 5.1 for electrode placements). eL, laminar electrode; eP, proximal 
electrode and eD, distal electrode. x/n= the number of experiments in which signal 
amplitudes exceeded -10 mV / total number of experiments. Values are means ± SD. 
 

Electrodes Latency (s) Amplitude (mV) Duration (s) x/n 

Lamina (eL) 22 ± 9 -87 ± 21 47 ± 21 33 /47 

Midrib (eP) 6 ± 3 -79 ± 12 75 ± 20 44/47 

midrib (eD) 15 ± 3 -80 ± 24 52 ± 23 43/47 

Average  -81 ± 19 59 ± 25  

Note: An apparent velocity of surface potential displacement of 6.4 ± 1.9 cm/min-1 was 

estimated from recordings at eP and eD. 

Current (µA) Time (s) Surface potential change/n 

0 0 0/5 

10 1 0/3 

10 10 0/3 

20 1 1/3 

20 10 0/3 

40 1 1/3 

40 10 5/5 
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Figure 5. 2. Current injection (ci) induces surface potentials. Surface potential 
generation following ci (40 µA for 10 s). Art = artefacts recorded in the leaf during ci. 
(10 s, indicated with a bar). See fig. 5.1 for electrode placements. Note that the signal 
amplitude at eP reaches a maximum before that at eD and eL. 

 

Current injection induces JA, JA-Ile and JA-responsive genes 

To confirm that SPs generated after ci could induce jasmonate synthesis, we measured the 

levels of both JA and JA-Ile in leaf 8 at 20 min and 1 h after ci. Figure 5.3 shows that 

current injection stimulated JA and JA-Ile accumulation at both time points (Fig. 5.3)2. 

Two jasmonate-responsive genes, the regulatory gene JAZ10 (Yan et al. 2007) and 

VEGETATVE STORAGE PROTEIN 2 (VSP2), an anti-insect defence gene (Liu et al. 

2005), were also monitored after ci. Leaf samples were harvested 1h after ci or wounding 

for JAZ10 transcript measurement, and 4h after stimulation or wounding for VSP2 

measurements. Transcript levels for both genes increased strongly in response to ci (Fig. 

5.4).  

                                                 
2 This experiment was performed by Adeline Chauvin, University of Geneva. 
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Figure 5. 3. Current injection (ci) induces jasmonate accumulation. a. Levels of 
JA 20 min and 1 h after ci. b. Levels of JA-Ile 20 min and 1 h after ci (40 µA, 10s). 
Limits of quantitation (LOQs) are indicated with dashed lines. U=unwounded. 
Significant differences from the unwounded WT are indicated, *** = P<0.001. Error 
bars indicate standard deviation. 
 

             a                                                                    b 

  

Figure 5. 4. Levels of JAZ10 and VSP2 transcripts in leaves after wounding or ci. 
For wounding, leaf 8 was wounded and leaves 8, 9 and 13 were harevested. a. Relative 
expression levels of JAZ10 in the wounded and current injected leaves (40µA, 10s). In 
all cases leaves were harvested 1h after wounding or current injection. b. Relative 
expression levels of VSP2 in the wounded and current injected leaves (40µA, 10s). 
Leaves were harvested 4h after wounding or current injection. U=unwounded; 
W=wounded; ci=current injection. Significant differences from the unwounded WT 
are indicated, *** = P<0.001. Error bars show standard deviation.  
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Current injection induces GUS reporter plants  

We used the JAZ10 and VSP2 promotors to control GUS expression in Arabidopsis. 

VSP2:GUSPlus plants were generated by Stephanie Stoltz and the JAZ10:GUSPlus plants 

were generated by Dr. Ivan Acosta. These transgenic Arabidopsis plants were injected with 

40 µA current for 10s.  Leaf 8 was also wounded as control for current injection. Figure 5.5 

shows the expression pattern of VSP2:GUSPlus 4 h after current injection or wounding. 

We did not detect GUS activity in the non-current injected leaves or in the unwounded 

leaves. But there was a strong activation of VSP2:GUSPlus in the wounded and ci leaves. 

Figure 5.6 shows the pattern of JAZ10:GUSPlus expression 4 h after wounding or current 

injection. The unwounded plant and the no ci plant (control) showed no JAZ10 expression. 

Similar to VSP2:GUSPlus, a strong activation of JAZ10:GUSPlus was detected in the 

wounded and ci leaves.  

 

 
 
Figure 5. 5. Histochemical staining of GUS in Arabidopsis  (Col-0) plants under 
control of VSP2-GUSplus. a. Expression pattern in VSP2:GUSPlus reporter line in 
leaf 8 from an unwounded Arabidopsis  plant, and 4h after wounding. b. 
VSP2:GUSPlus activity in leaf 8 of control plants (no ci) and 4h after ci.  
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Figure 5. 6. Histochemical GUS staining of Arabidopsis (Col-0) plants under 
control of JAZ10:GUSplus. a. Expression pattern of a JAZ10:GUSPlus reporter line 
in leaf 8 from an unwounded Arabidopsis  plant, and 4h after wounding. b. 
JAZ10:GUSPlus activity in leaf 8 of control plants (no ci) and 4h after ci.  

 

No cell death detected after current injection  

High electrical currents can cause cell and organ damage. In order to ensure that the 

surface potentials generated by ci were not due to burned cells or to heat generated during 

ci, we used two approaches; first, plants expressing β-glucuronidase under the promoter of 

small heat shock protein (HSP) 18.2 (At5g59720) (Takahashi et al. 1992) were used to 

control for leaf heating during current injections. The positive control was treated for 1.5 h 

at 37 °C and then rested at 22 °C for 7.5 h. The current injected plants were maintained 

throughout at 22 °C for 7.5 h after current injection. One leaf of each control plant and the 

current-injected leaves were harvested for GUS staining for 15 h at 37 °C and the tissue 

was then destained in 70% ethanol (Jefferson et al 1987). Figure 5. 7 show that current 

injection did not activate the heat shock gene.  
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Figure 5.7. Histochemical GUS staining of Arabidopsis (Col-0) plants under 
control of HSP18.2: GUS.  a. Expression pattern of a HSP18.2: GUS reporter line in 
leaf 8 from an unwounded Arabidopsis plant, and in leaf 8 4h after heat treatment.  
b. HSP18.2: GUS activity in leaf 8 of control plants (no ci) and 4h after ci.  
 

Second, we used trypan blue staining for detecting cell death after current injection. No 

current injected (but harbouring Pt wires as a control), current injected or unwounded-

leaves were stained with trypan blue 1h after stimulation. Figure 5.8 shows that there was a 

slight blue colour throughout the unwounded leaf 8. However, the midrib and petiole of 

unwounded leaf 8 stained blue with respect to lamina. In the ‘no ci’ leaves into which 

platinum wires had been inserted, a few cells around the wires showed a strong blue colour 

which indicated cell death due to the insertion of the wires (Fig 5.8b). A similar pattern of 

trypan blue staining was detected in the current-injected leaves (Fig 5.8c).  
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Figure 5.8. Current injection does not cause cell death as detected by trypan blue 
(TB) staining. A. Undamaged leaf. B. Leaf in which Pt wires were inserted but no 
current was injected. C. current injected leaf. Lefthand side: overview of leaves with 
placement of Pt wire electrodes. Righthand side: enlargements showing damage where 
Pt wires were inserted. Leaves were harvested 1h after current injection. Note that a 
small area of cells was killed around the Pt wires (see arrows). Current injection did 
not cause addition TB staining. 
 

Current injection does not induce JAZ10 in coi1-1 

The coronatine‐insensitive1 (COI1) gene plays a central role in the JA signalling pathway 

(Xie et al. 1998). To test the hypothesis that SPs generated by current injection were 

independent of JA perception, we injected current into the homozygote coi1-1 mutant. 

Platinum wires were first inserted in the petiole of leaf 8 and recording electrodes were 

placed in positions eP and eD on the midrib and lamina of leaf 8 (Fig. 5.1). 40 µA current 

injected over 10 s generated surface potentials that were similar to those in the WT (Fig. 

5.9a). The ‘no ci’ and ‘ci’ leaves were harvested 1 h after current injection to measure 

JAZ10 induction. Unwounded and wounded leaf 8 were harvested 1h after wounding this 
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leaf in both the WT and coi1-1. Figure 5.9b shows that JAZ10 expression was not induced 

by ci in the coi1-1 mutant as the JAZ10 expression was no significantly differenct between 

‘no ci’ and ‘ci’. The expression of JAZ10 was slightly increased in the wounded coi1-1 leaf 

with respect to unwounded coi1-1 leaf. However, the expression level of JAZ10 in the 

wounded leaf 8 of coi1-1 was still much lower than in unwounded WT.  

 

Figure 5. 9. Current injection does not induce JAZ10 transcript accumulation in 
the coronatine-insensitive 1-1 (coi1-1) jasmonate perception mutant. a. Surface 
potential changes following ci (40 µA for 10 s) in the coi1-1 mutant. Art = artefacts 
recorded in the leaf during ci (10 s, indicated with a bar). Note that the signal 
amplitude at eP reaches a maximum before that at eD and eL. For electrode 
placements see Fig. 5.1. b. Relative expression levels of JAZ10 in the wounded WT 
and in the coi1-1 mutant that had been wounded or into which current (40µA, 10s) had 
been injected. In all cases leaves were harvested 1h after wounding or current 
injection. U=unwounded; W=wounded; ci=current injection. Significant differences 
from the unwounded WT are indicated, * = P<0.05, *** = P<0.001.  

 

WASPs move slower in the fou2 mutant 

A gain-of-function mutant, fatty acid oxygenation upregulated 2 (fou2) in the two pore 

channel 1 (TPC1) gene has higher amounts of JA in the resting state (Bonaventure et al. 

2007b). This plant therefore resembles a wounded plant. Having higher JA levels and a 

mutation in an ion channel made this mutant a useful tool for the study of WASPs after 
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wounding. fou2 has small and epinasic leaves with shorter petioles and more anthocyanin 

than the Col-0 WT. Epinastic leaves in fou2 appear after three weeks of growth, about the 

time of emergence of leaves 7 to 9. Surface recordings were made on the wounded leaf 8 

and the parastichous leaf 13 in fou2. We also tested the effects of different leaf morphology 

in fou2. In order to assess the possible effect of epinastic leaves on WASP generation and 

JAZ10 transcript level, we recorded WASPs in leaves 8 and 13 of fou2 from both epinastic 

and normal leaves. Three possible combinations of epinastic and regular leaves 8 and 13 

were investigated: 1) leaf 8 and 13 were both epinastic. 2) Leaf 8 and 13 were both normal. 

3) Leaf 8 was normal and leaf 13 is epinastic. Furthermore, WASP generation and JAZ10 

expression levels were also analysed in the fou2 heterozygote. FOU2/fou2 has a phenotype 

between Col-0 and fou2 and leaf epinasty in these plants develops later than in fou2, 

therefore the number of epinastic leaves in the heterozygote is lower than in the fou2 

homozygote. FOU2/fou2 was used when leaves 8 and 13 had normal phenotype and leaf 8 

was normal and leaf 13 was epinastic. Figure 5.10 shows the phenotype of the fou2 

homozygote and heterozygotes relative to the WT.  

In fou2 and FOU2/fou2, the amplitudes and durations of WASPs were similar to WT for 

leaves 8 and 13 after wounding leaf 8 (data not shown). However, in fou2, the speed of 

WASP movement within the wounded leaf was 2.6 ± 0.6 cm min-1and from wounded leaf 

to connected leaf 13 was 2.1 ± 0.5 cm min-1 . This was 2-3 times slower than in WT. The 

velocities of WASPs movement in FOU2/fou2 in the wounded leaf 8 and in the connected 

leaf 13 were similar to those in WT (data not shown). Table 5.3. shows the characteristics 

of wound-activated surface potential changes in fou2 leaves.  
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Figure 5. 10. Rosette morphology of WT, FOU2/fou2 (heterozygote) and fou2. 
Notice that fou2 has more epinastic leaves than fou2 heterozygote. WT does not have 
epinastic leaves.  
 

 

Table 5.3. Characteristics of wound-activated surface potential changes (WASPs) in 
fou2 leaves. a. WASPs in the wounded leaf. b. Signals recorded in leaf 13 after wounding 
leaf 8. x/n= the number of experiments in which surface potential amplitude changes 
exceeded -10 mV / total number of experiments. See Figs. 3.1 for details of electrode 
placement and measurement of signal parameters. Velocity was calculated from the 
wounding site to the respective electrode. Values are means ± SD. 

 

 

  

Electrodes Latency (s) Amplitude (mV) Duration (s) Velocity (cm/min) x/n 

a. wounded leaf  8 

midrib (e2) 24 ± 5.8 -49 ± 26 125 ± 58 2.6 ± 0.6 5/5 

Petiole (e3) 47 ± 7.5 -50 ± 17 167 ± 20 2.6 ± 0.6 5/5 

Average  -49 ± 21 146 ± 47 2.6 ± 0.6  

b. From leaf 8 wounded to leaf 13 

Petiole (e2) 128 ± 30 -22 ± 19 83 ± 23 2.1 ± 0.5 4/5 
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JAZ10 expression levels in fou2  

In order to assess JAZ10 expression levels, unwounded leaf 8 and leaves 8, 9 and 13 of the 

WT and fou2 mutants were harvested at 1 h after wounding. Figure 5.11 shows the relative 

expression level of JAZ10 in the WT, FOU2/fou2 (heterozygote) and fou2/fou2.  The 

expression level of JAZ10 was found to be significantly increased 5-fold in both the 

epinastic and the normal leaves of unwounded fou2 compared to the WT and FOU2/fou2. 

The level of JAZ10 in the wounded leaf 8 was found to be similar between WT and the 

fou2 mutant. Interestingly, in fou2, the expression level of JAZ10 in leaf 13 was 

independent of epinastic or normal shape of the leaf and the JAZ10 expression level was 

lower in comparison to WT or FOU2/fou2. FOU2/fou2 showed similar behaviour of JAZ10 

induction to the WT in unwounded leaves, in wounded leaf 8 and in leaf 13 when leaf 8 

was wounded.  

 

Figure 5. 11. JAZ10 expression level in fou2.  The expression level of JAZ10 1h after 
wounding of leaf 8 in the WT, FOU2/fou2 (heterozygote) and fou2.U= unwounded, 
W= wounded, epi=epinastic and nor= normal. Error bars show standard deviation for 4 
independent replicates.  
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Reverse genetic screening of T-DNA insertion lines 

In order to identify genes that are required for the generation and propagation of electrical 

potentials in plants, we used a reverse genetic approach based on monitoring SPs after 

wounding of leaf 8. WASPs were recorded on a total of 32 T-DNA insertion lines 

annotated for ion channels, proton pumps and aquaporins. Prior to experiments, the 

homozygosity of these T-DNA lines was confirmed by PCR. Two recording electrodes 

were placed on the wounded leaf 8 (Fig. 3.1) and two other electrodes were placed on the 

petioles (1cm from plant centre) one each on leaves 9 and 13 to monitor SPs events in the 

distal leaves. Table 5.4 presents WASP durations and amplitudes from the screening of the 

homozygote T-DNA insertion lines.  

 

Table 5.4 . Characterisation of wound-activated surface potential changes (WASPs) 
in homozygous T-DNA insertion lines. In all experiments leaf 8 was wounded and the 
surface potential was monitored in leaf 8 and distal leaf 13. For leaf 8, an electrode was 
placed 2 cm from the leaf apex wound (Fig. 3.1, position e2). All measurements for leaf 13 
were from electrodes placed on the petiole 1 cm from the centre of the rosette (position e3' 
in Fig. 4.7). n = the number of experiments. Values are means ± SD. Mutants displaying 
reduced WASP durations of <60s in leaf 8 or <40s in leaf 13 are highlighted. 

Locus annotation Stock name 

Leaf 8 Leaf 13  

Amplitude Duration Amplitude Duration n 

- WT Col-0 -76±11 163±30 -51±9 78±20 33 

At3g04110 glr1.1 salk_057748 -78±12 459±42 -46±5 63±18 6 

At3g07520   glr1.4 salk_129955 -81±23 149±66 -54±14 81±9 5 

At2g24710 glr2.3 salk_113260 -78±20 140±12 -32±11 79±8 7 

At2g29120   glr2.7 salk_121990 -96±12 213±34 -43±10 74±11 5 

At2g29110 glr2.8 salk_111695 -84±17 272±32 -55±8 92±15 5 

At2g29100 glr2.9 salk_125496 -59±14 219±29 -43±4 103±23 4 

At2g17260 glr3.1 salk_063873 -81±18 110±25 -48±13 10±8 9 

At4g35290 glr3.2 salk_150710 -87±7 37±6 -46±11 34±4 8 

At4g35290 glr3.2 salk_133700 -86±10 99±26 -29±14 33±23 8 

At1g42540 glr3.3 salk_077608 -71±15 36±6 -40±18 23±5 9 

At1g42540 glr3.3 salk_099757 -91±11 51±10 -47±10 36±18 9 

At1g05200 glr3.4 salk_079842 -75±16 70±9 -36±10 59±16 7 

At2g32390 glr3.5 salk_035264 -83±9 94±15 -58±16 63±13 7 
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At3g51480 glr3.6 salk_091801 -73±12 116±18 -44±6 16±7 9 

At2g46450   cngc12 salk_092622 -69±16 299±31 -36±4 87±14 6 

At5g14870   cngc18 sail_191_H04 -87±6 430±14 -46±6 74±12 6 

At3g17700 cngc20 salk_129133 -70±8 >400 -40±10 88±11 4 

At3g27170 clc-b salk_027349 -91± 3 309±11 -42±12 55±6 5 

At4g35440   clc-e salk_142812 -86±18 148±31 -50±9 48±4 6 

At1g04690 kab1 salk_056819 -83±15 156±25 -47±10 78±27 7 

At2g25600 akt6 salk_136050 -84±16 144±24 -52±10 93±25 6 

At3g02850 skor salk_097435 -71±16 209±56 -47±12 74±20 7 

At5g55630 tpk1 salk_146903 -81±11 125±12 -33±12 45±35 8 

At4g18160   tpk3 salk_049137 -82±14 117±13 -51±12 48±9 9 

At5g10220 annat6 salk_043207 -81±12 146±21 -39±12 64±21 7 

At1g59870 pen3 salk_000578 -91±10 147±25 -53±12 80±8 7 

At4g11150 vha-e1 salk_019365 -81±7 >400 -42±4 81±15 5 

At3g01390 vha-g salk_087613 -87±10 232±76 -71±9 87±18 5 

At2g21410 vha-a2 salk_142642 -79±9 177±17 -53±9 118±19 7 

At2g18960 aha1 salk_118350 -63±20 109±31 -36±19 70±28 9 

At4g30190 aha2 salk_073730 -76±19 118±38 -46±9 78±35 8 

At5g57350 aha3 sail_810_08 71±17 127±38 -58±10 79±19 7 

At5g62670 aha11 salk_152723 -77±15 101±33 -53±14 87±20 9 

At5g12080 msl10 salk_076254 -81±12 243±44 -52±7 28±10 7 

At5g47910 rbohD salk-070610 -92±9 98±36 -53±12 61±13 9 

At2g18960 

At5g57350 
aha1aha3 

salk_118350 
sail_810_08 

-79±13 202±47 -41±11 126±29 7 

At4g30190 

At5g57350 
aha2aha3 

salk_073730 

sail_810_08 
-82±10 128±33 -44±15 72±30 8 

At4g35290 

At1g42540 
glr3.3glr3.6 

salk_099757 

salk_091801 
-55±18 8.5±1.7 0±0 0±0 11 

  

Glutamate Receptor-Like genes mediate WASPs in Arabidopsis 

Twenty glutamate receptor-like (GLR) genes are predicted in Arabidopsis genome and they 

fall into three clades (Lacombe et al. 2001). In this study reverse genetic screening showed 

that the third clade of GLRs plays an important role in surface potential 

generation/propagation after wounding Arabidopsis rosette.  glr3.1, glr3.2 (two alleles), 

glr.3.3 (two alleles) and glr3.6 showed lower WASP duration in the leaf 8 or 13 or both 
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than did the WT (Fig. 5.13 and table 5.4). For instance, the durations of WASPs in leaf 13 

when leaf 8 was wounded were decreased in glr3.1 and glr3.6 to 10±8 s and 16±7 s 

respectively. For glr3.2 (Salk_150710) and glr3.3 (two alleles), the duration of WASPs 

was decreased in both of wounded leaf 8 and leaf 13. In order to assess the effects of 

WASP duration on JAZ10 expression, leaves 8, 9 and 13 were harvested 1 h after 

wounding leaf 8. Fig. 5.12 shows that the expression level of JAZ10 in leaf 13 for both 

glr3.1 and glr3.2a (Salk_150710) single mutants were significantly decreased with respect 

to WT.  

 
Figure 5.12. JAZ10 expression after wounding leaf 8 in the WT, glr3.1 
(Salk_salk_063873) and glr3.2 (Salk_150710). For RNA samples were collected 1 h after 
stimulation and levels of JAZ10 transcripts were normalized to the resting WT control. 

WASPs and JAZ10 expression levels were not fully suppressed in glr single mutants. 

Therefore, we attempted to make double mutants in all combinations of glr single mutants 

that had shown reduced WASP durations in leaf 8 or 13 after wounding leaf 8. In the first 

attempt, I could only produce a glr3.3a glr3.6a double mutant. The process of making the 

other of double mutants is in progress. glr3.3 showed a decrease of WASP duration in both 

leaf 8 and leaf 13 and glr3.6 showed a decrease duration in leaf 13 (Table 5.4). The 

glr3.3glr3.6 double mutant showed reduced WASP durations in leaf 8 and prevented 

WASP production in leaf 13 after wounding of leaf 8 (Fig. 5. 13).  
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Figure 5. 13. glr mutants reduce the duration of WASPs. A. Typical WASPs from 
the wounded leaf 8 of the WT, glr3.3a (At1g42540, Salk line 099757), glr3.6a 
(At3g51480, Salk line 091801) and the double mutant glr3.3a glr3.6a. B. Surface 
potential recordings from leaf 13 of the same genotypes wounded on leaf 8. For leaf 8, 
an electrode was placed 2 cm from the leaf apex wound (Fig. 3.1, position e2). All 
measurements for leaf 13 were from electrodes placed on the petiole 1 cm from the 
centre of the rosette (position e3' in Fig. 4.7). 
 

Leaves 8, 9 and 13 were harvested 1 h after wounding leaf 8 to measure JAZ10 transcript 

level. The expression level of JAZ10 in the unwounded and wounded leaf 8 were similar 

among the WT, the glr3.3a and glr3.6a single mutants and the double mutant glr3.3a 

glr3.6a. Interestingly, the transcript level of JAZ10 in leaf 13 when leaf 8 was wounded 

was reduced for the single mutants of glr3.3 and glr3.6 and almost abolished for the double 

mutant (Fig. 5.14).  
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Figure 5.14. JAZ10 expression after wounding leaf 8 in the WT, glr single mutants, 
and the glr3.3a glr3.6a double mutant. For RNA samples were collected 1 h after 
stimulation and levels of JAZ10 transcripts were normalized to the resting WT control.  
** = P<0.01, *** = P<0.001. 

 

The glr3.3b phenotype 

No different phenotypes were observed for glr3.1, glr3.2, glr3.3a, glr3.6a or glr3.3a 

glr3.6a double mutants in comparison with the WT. However, relative to these plants, the 

petioles of the glr3.3b (Salk_077608) were longer and the leaves were curled in short day 

growth condition (Fig. 5.15). We assume that this may be due to secondary mutations in 

this mutant. In order to test the level of JAZ10 transcript leaves 8, 9 and 13 were harvested 

1 h after wounding leaf 8. Figure 5.16 shows that the expression levels of JAZ10 in 

unwounded and wounded leaf 8 were not significantly different between glr3.3b and the 

WT. But, as we predicted, the level of JAZ10 transcript in leaf 13 were between those of 

leaf 8 and unwounded leaves. The expression levels of JAZ10 increased 20-fold in leaf 13 

of glr3.3b which is 4 times lower than leaf 13 in WT (Fig. 5. 16).  
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Figure 5.15. Rosette morphology of glr3.3b mutant (salk_077608) of 5 week old 
plant. Plants were grown in short day conditions.  
 

 

 

Figure 5.16. A second glr3.3 allele reduces wound-stimulated JAZ10 
expression. Plants (WT or glr3.3 mutant salk_077608, glr3.3b) were wounded on 
leaf 8 (W). One h later leaves 8 and 13 were harvested and JAZ10 expression 
measured by PCR. ***=P<0.001 (n=4 ± SD). 
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Current injection did not generate SPs in a glr3.3a glr3.6a double mutant 

40 µA of current for 10 s were applied to leaf 8 through platinum wires that were inserted 

into the petiole of this leaf (see Fig. 5.1 for electrode placement). Figure 5.17a shows that, 

for this genotype, there were no SP changes detected after current injection (n=11). The 

artefact change in amplitude was however detected in the glr3.3a glr3.6a double mutant as 

it was in the WT. Then, current injected and non-current injected leaves were harvested 1 h 

later to measure JAZ10 transcript levels. Figure 5.17b shows that there was a slight 

induction (5-fold) of JAZ10 transcript level after ci in the double mutant which is 

substantially lower than in WT in which JAZ10 levels were increased 38-fold.    

a                                                                                   b   

 

 
 
 
 
 
 
 
 

 
 
Figure 5. 17. Electrical activity and JAZ10 expression in leaf 8 of glr33.a glr3.6a 
double mutant after current injection. a. typical Surface potential changes 
following ci (40 µA for 10 s) in the glr3.3a glr3.6a double mutant.  b. JAZ10 
expression after current injection (ci) in the WT and the glr3.3a glr3.6a double 
mutant. For RNA samples were collected 1 h after stimulation and levels of JAZ10 
transcripts were normalized to the resting WT control. For electrodes placement see 
figure 5. Art = artefacts recorded in the leaf during ci. (10 s, indicated with a bar). X. 
** = p<0.01. Error bars indicate standard deviation.  

 

glr3.3a glr3.6a shows increased susceptibility to a chewing herbivore 

Four 2nd instar S. littoralis larvae were placed on the rosette leaves of the glr3.3a glr3.6a 

double mutant and WT of 4-week old Arabidopsis. Weight gain of the larvae was 
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measured 7 days later. The weight of S. littoralis caterpillars fed on glr3.3a glr3.6a double 

mutant leaves was increased by 43% (P < 0. 05) in comparison to WT (Fig. 5.18). This 

was a single experiment and therefore needs repetition. 

 

Figure 5. 18. Spodoptera littoralis larval weight after feeding on WT, glr3.3a glr3.6a. 
Four freshly hatched S. littoralis larvae were placed on WT and glr3.3a glr3.6a and weight 
after 7 days of feeding. Error bars shows standard deviation for 4 biological replicates. * 
P<0.05.  
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Discussion 

This study, is as far as we aware, the first to identify genes that regulate wound-induced 

electrical activity in Arabidopsis were identified. In addition, we demonstrated that surface 

potential changes (SPs) generated by current injection could activate many regulatory 

genes in the JA pathway. The activation of defence pathways in undamaged parts of plants 

is key to defending against further attacks. Therefore, having a long distance signalling 

pathway that is able to transmit signals between leaves is necessary. It has already been 

suggested that long distance wound signalling could be chemical, hydraulic or electrical 

(Malone and Stankovic 1991, Malone 1992, Wildon et al. 1992, Rhodes et al. 1996, Howe 

2004). Several lines of evidence and chiefly the speed of the putative leaf-to-leaf signal 

which are estimated to be in the order of 4-8 cm min-1 (Glauser et al. 2009, Chauvin et al. 

2013) led us to test the hypothesis that electrical activity is linked to jasmonate signalling. 

Two of the approaches to find causal links between electrical signals and their effects on 

wound response gene expression are: to generate electrical activity without wounding or to 

find mutants in which wounding does not generate electrical activity. In plant 

electrophysiology, most studies have focused on pharmaceutical approaches in order to 

alter SPs.  

JA pathway activation by surface potential changes 

Current injection was shown previously to activate JA and abscisic acid accumulation and 

Pin2 expression in tomato leaves (Herde et al. 1996). Low voltage also led to movement of 

petioles and pinnae in Mimosa pudica (Yao et al. 2008, Volkov et al. 2010).  Favre et al. 

(2007) showed that applying electrical current into Arabidopsis leaves can generate 

electrical activity in other parts of leaves distal to the site of current injection. We found 

that low current (40 µA for 10s) was able to trigger reproducible SP changes in parts of the 

leaf distal to the platinum current injection wires. SPs through ci were not due to heat 

produced during ci or to cell death. This was confirmed by the absence of activation of a 

GUS reporter gene in plants that expressed this gene under the promoter of a small heat 
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shock protein. In addition, only a few cells were damaged around the platinum wire 

implantation site as detected by trypan blue staining. The amplitude changes with a mean 

of -81±19 mV and duration a mean of 59±25 s of SP due to ci were similar to those 

generated in leaf 13 when leaf 8 was wounded. From these data we estimated the apparent 

velocity of the surface potentials resulting from ci to be 6.4±1.9 cm min-1. This was close 

to an average velocity of 7 cm min-1 that has been observed after ci in Arabidopsis (Favre 

and Agosti 2007) and was similar to unrelated signal velocity estimats from our laboratory 

(Glauser et al. 2009, Chauvin et al. 2013).  

The most striking result to emerge from current injection is the activation of the JA 

pathway as evidenced by the measured accumulation of JA and JA-Ile in current injected 

leaves. In addition, the levels of JAZ10 and VSP2 transcripts were increased after ci. 

Plasma membrane depolarization is an early step in the signalling defence pathway (Maffei 

et al. 2004, Stahlberg et al. 2006, Fromm and Lautner 2007). Plasma membrane 

depolarization generated by current injection may induce the cascades that lead to 

accumulation of JA. This result is consistent with Herde et al. (1996) who showed that ci 

increased the level of JA in tomato leaves. Furthermore, the induced expression of GUS in 

JAZ10:GUSPlus and VSP2:GUSPlus transformed plants demonstrated that ci induces early 

and late JA-responsive genes. The insensitivity of JAZ10 expression to ci in the coi1-

1 mutant demonstrated that SP changes can only lead to the expression of this gene through 

the canonical JA signalling pathway. 

Ion channels regulate the JA pathway 

The fou2 mutant is a wound mimic mutant which has higher levels of JA than WT and 

displays a K+ starvation phenotype (Bonaventure et al. 2007a). We investigated SP 

changes generation in this mutant. Leaves 7-9 in fou2 display a transition of epinasty 

(Bonaventure et al. 2007b). We showed that leaf epinasty did not affect JAZ10 expression 

levels and WASP generation after wounding in leaf 13 in both homozygote and 

heterozygote fou2. In fou2, the velocity of WASPs in the wounded leaves and from 
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wounded leaf to connected leaf 13 were decreased 2-3 times in respect to WT. This lower 

velocity might be due to the lower vacuolar K+ levels known in fou2 (Beyhl et al. 2009). 

This could indicate that ion channels in the tonoplast may play roles in WASP propagation.  

Proton pump deactivation does not affect WASP changes after wounding 

Action potentials (APs) are generated in animal and plants cells but variation potentials 

(VPs), a another type of electrical signal, are known only from plants and are transmited 

through the xylem as hydraulic pressure waves (Fromm and Lautner 2007). It is believed 

that plasma membrane proton pumps are involved in VP generation (Stahlberg et al. 2006). 

Fussicoccin and orthovandate, an activator and an inhibitor of plant plasma membrane H+-

ATPase s respectively, altered electrical activity in barley and bean (Zimmermann et al. 

2009). However, fussicoccin, a compound of fungal origin, permanently activates plant 

plasma membrane H+-ATPases, and this chemical can induce JA pathway activity 

(Schaller and Frasson 2001). We found that, applying fussicoccin and other ion channel 

activity modifying chemicals did not abolish SP changes after wounding nor did they 

generate SP changes without wounding. Additionally, we found that WASPs, were not 

eliminated in four T-DNA insertion lines in plasma membrane H+-ATPase (aha1, aha2, 

aha3, and aha11) all of which were highly expressed in shoots and in the vascular system 

of Arabidopsis. Moreover, the aha1aha3 and aha2aha3 double mutants also did not affect 

WASPs. Several attempts to make a double mutant of aha1aha2 failed. This double mutant 

is lethal (Haruta et al. 2010). Since there is a high redundancy in plasma membrane 

H+-ATPase s, we cannot conclude whether WASP changes are VPs, APs or other type of 

electrical signals.  

Glutamate receptor-like (GLR) proteins mediate leaf-to-leaf signalling 

The GLR genes we studied encode putative cation channels, and GLR3.3 has been 

implicated in agonist-stimulated plasma membrane depolarization (Qi et al. 2006, Stephens 

et al. 2008). This gene, as well as several GLRs expressed in pollen (Michard et al. 2011), 

can control cytosolic Ca2+ influxes, and GLRs have also been implicated in mediating 
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calcium influxes in response to the perception of microbe-associated molecular patterns 

(Kwaaitaal et al. 2011). Cold and mechanical stresses including wounding and touching 

induced GLR3.4 expression (Meyerhoff et al. 2005). Reduction of WASP duration in the 

wounded leaf 8 and and elimination of WASPs in leaf 13 when leaf 8 was wounded in the 

glr3.3glr3.6 double mutant suggested that these genes play an essential role in WASP 

propagation. However, detection of WASPs in the wounded leaf 8 of the double mutant 

suggests that there are still other ion channel(s) involved in WASP propagation in the 

wounded leaves.  

In plants, action potentials are generated after depolarization of cell membranes by Ca2+ 

influx into the cytoplasm and subsequent Cl- efflux (Fromm and Lautner 2007). With 

regard to the suggested roles of plant GLR channels in Ca2+ movement across the plasma 

membrane (Qi et al. 2006, Michard et al. 2011) it is possible that WASPs might reflect 

APs. Our results are consistent with a previous report by Favre et al. (2007) that showed 

wounding-generated APs in Arabidopsis. The induction of JA-responsive genes like JAZ10 

and VSP2 indicates the activation of JA signalling. The low level of JAZ10 transcripts in 

leaf 13 when leaf 8 was wounded in glr3.3glr3.6 showed that JA-Ile synthesis far from a 

wound depends on GLR-mediated signals. The low level of JAZ10 transcript of leaf 13 in 

glr3.3glr3.6 is comparable to the JAZ10 expression level in leaf 9 of WT which also did 

not receive WASPs. Taken together, these results support a role of electrical signals as 

major elements in the long distance wound signalling neccesary to activate JA synthesis 

and signalling.  

Electrical signals are part of the long distance wound signalling mechanism in 

plant 

Due to the fast accumulation of JA in tissues distal to wounds, this molecule was 

considered as a mobile wound signal for many years (Li et al. 2002, Howe 2004). Evidence 

for roles of other possible long distance wound signals like hydraulic or electrical signals 

has not been supported genetically. For example, a reported correlation between electrical 
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signal and proteinase inhibitor II (Pin2) (Wildon et al. 1992), has not been followed up. 

The present study has now allowed us to reinvestigate the phenomenon of organ-to-organ 

wound signalling. 

The glr3.3glr3.6 double mutant we produced provides a powerful tool for the study of 

electrical signals in plants. We believe that our results may improve the knowledge of the 

role of ion channels in the process of generation, propagation and translation of electrical 

signals in development and in stress responses. We are in the process of investigating the 

roles of other double mutants and triple mutants from the combination of glr single 

mutants shown in table 5.4. Finally, GLRs are related to ionotropic glutamate receptors 

(iGluRs) that are important for fast excitatory synaptic transmission in the vertebrate 

nervous system (Traynelis et al. 2010). It has been proposed that iGluRs and their plant 

relatives may control signalling mechanisms that existed prior to the divergence of animals 

and plants (Chiu et al. 2002). If so, a deeply conserved function for these genes might be to 

link the perception of damage to distal protective responses.  
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Chapter 6 

 

Transcriptme of current injected and wounded leaves 

 

 

 

 

Introduction 

Wounding elicits massive changes in the cellular, physiological, biochemical and genetic 

activities of plant tissues both near the wound itself and also distal from the wound. Many 

of these responses are controlled by jasmonates, phytohormones that have major roles in 

plant defence against herbivores (Browse 2009). Jasmonate biosynthesis and signalling has 

been investigated for several decades. However, the more we know about jasmoante 

function, the less we appear to know about early steps that lead to induction of jasmoante 

synthesis. Physical events like hydraulic or electrical signals along with jasmonic acid (JA) 

or jasmonayl isoleucine (JA-Ile) have been proposed as long distance wound signals 

(Wildon et al. 1992, Stanković and Davies 1996, Howe 2004, Matsuura et al. 2012). It is 

not yet known which of the proposed signals can activate JA synthesis in the wounded or 

distal parts of Arabidopsis. It is also not known whether one or multiple signals are 

involved in activating JA synthesis near the wound and distal parts of plant.   

Many genes are induced upon herbivory or mechanical damage in Arabidopsis leaves 

(Reymond et al. 2000, Kilian et al. 2007, Walley et al. 2007, Yan et al. 2007, Miller et al. 

2009). Hundreds of these genes have been found to be regulated by jasmonates (Reymond 



106 
 

et al. 2000, Reymond et al. 2004, Walley et al. 2007, Yan et al. 2007), and also through the 

ethylene (Van Zhong and Burns 2003) and ABA pathways (Yang et al. 2008). Wound-

induced genes regulated by jasmonates have been shown to have peaks of expression that 

differ in timing. For instance, transcripts for the JAZ10 gene, an early jasmonate-

responsive gene reaches a peak of expression 1h after wounding (Glauser et al. 2009). 

VSP2, a late wound-responsive gene, produces maximum transcripts levels at 4 h after 

wounding leaves (Wang et al. 2008). Previous studies have overlooked the genes that 

regulate long distance wound signalling. Moreover, for years, experiments did not take into 

account vascular connections in leaves. This is important in leaf-to-leaf signalling. 

The aim of this chapter is to understand how transcript levels in leaves are regulated distal 

to a wound. We first analysed transcript levels in parastichious leaf 13 when leaf 8 was 

wounded. Transcript levels in leaf 8 were also analysed after generation of surface 

potentials (SPs) with current injection (ci). Furthermore, we compared our results to the 

expression profiling data from independent microarray data from 18-day old wounded 

Arabidopsis (Kilian et al. 2007).  
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Results 

Transcriptional changes due to long distance wound signalling 

To investigate whether SPs produced following current injection and wounding had similar 

effects on gene expression, transcript levels were assessed in current injected leaves and 

also in connected leaf 13 when leaf 8 was wounded. Leaf samples from five weeks-old 

plant were harvested 1h after wounding, a time at which the JAZ10 expression level is high 

(Yan et al. 2007, Glauser et al. 2009). Gene expression was analysed with ATH1 

Affymetrix GeneChips. To reduce plant-to-plant variation we pooled RNA from three 

different plants for each triplicate sample. We then compared our results with published 

data from 18 day-old plants that had been wounded 1h prior to harvest (Kilian et al. 2007). 

To facilitate comparison, normalization of our experiments and published data were done 

in the same way. Genes were selected on the basis of a P-value < 0.05 and a mean 

induction ratio greater than 2-fold. We compared transcript levels between control leaves 

and current injected leaf 8 and leaf 13 from a plant on which leaf 8 had been wounded. 

Figure 6.1 shows a Venn diagram of genes that were up-regulated.  

A total of 1960 genes were found to be significantly differentially expressed (P ≤ 0.05) and 

a mean induction ratio greater than 2-fold in current injected leaf 13 when leaf 8 was 

wounded and wounded leaf. We identified 1153 (59%) genes that were significantly 

upregulated, and 807 (39%) genes that were significantly downregulated (Fig. 6.1). In leaf 

13, 755 genes were significantly upregulated, and 402 genes were significantly 

downregulated (Fig. 6.1 and 6.2). A total of 379 genes were found to be significantly 

differentially expressed (P ≤ 0.05) 1 h after 40µA current injection (Table 6.1 and 6.2). We 

identified 313 genes that were significantly upregulated, and 66 genes that were 

significantly downregulated (Fig. 6.1). A large number of upregulated genes (218 genes; 

70% of genes activated by ci) were common among the three treatments. Moreover, 76 

upregulated genes (24% of genes activated by ci) were also common to ci and leaf 13 (Fig 

6.1). The expression levels of the genes common to all samples are shown in Table 6.1. In 
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contrast to the overlap of transcript populations for genes unregulated wounding and 

current injection, the downregulated genes showed less overlap among the three 

experiments. Of 66 genes that were downregulated following current injection only 20% of 

genes activated by ci (13 genes) were common to the three experiments (Fig 6.2 and Table 

6.2). Current injection down regulated 3 genes between wounded rosette and ci and 26 

genes which were exclusively downregulated in the current injected leaf.  

 

 

 
Figure 6. 1. Current injection and wounding elicit overlapping transcript expression 
patterns. Venn diagram illustrating the number of transcripts upregulated >2-fold 
compared to unstimulated plants (P ≤ 0.05) for current injected leaf 8 (this study), for leaf 
13 of plants that had been wounded on leaf 8 (this study), and for wounded Arabidopsis 
rosettes (from Kilian et. al, 2007).  
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Table 6. 1. Gene expression in response to current injection or wounding. List of genes 
that were upregulated more than 2-fold (P ≤ 0.05) in leaf 8 1h after injecting current into 
leaf 8 (this study), in leaf 13 1h after wounding leaf 8 (this study), and in wounded leaves 
of 18 d-old plants 1 h after wound infliction (Kilian et. al, 2007), FC=fold change 
(upregulated), ci = current injection, no ci = no current injection, W= wound.   

locus annotation ci/ no ci Leaf 13/control W/control 

FC P-value FC P -value FC P -value 

At1g43160 RAP2.6 (related to AP2 6); DNA binding / transcription factor 39.6 2.4E-10 177.3 2.7E-12 100.7 6.6E-07

At5g13220 JAZ10 (JASMONATE-ZIM-DOMAIN PROTEIN 10) 28.2 1.9E-10 123.1 1.5E-12 28.8 8.4E-06 

At5g63450 CYP94B1 27 5.2E-10 59.3 3.1E-11 32.5 1.4E-07 

At2g34600 JAZ7 (JASMONATE-ZIM-DOMAIN PROTEIN 7) 25.9 9.0E-12 143 3.2E-14 18.6 7.5E-04 

At1g17420 LOX3 24.8 1.2E-10 72.9 2.7E-12 68.4 7.5E-08 

At1g61120 TPS04 (TERPENE SYNTHASE 04) 20.1 7.9E-09 49.8 2.7E-10 11.4 2.1E-05 

At1g17380 JAZ5 (JASMONATE-ZIM-DOMAIN PROTEIN 5) 13.6 6.4E-09 102.8 3.6E-12 22 4.7E-06 

At3g25780 AOC3 (ALLENE OXIDE CYCLASE 3) 11.8 2.7E-08 42.2 1.3E-10 59.5 3.2E-06 

At4g10390 Protein kinase superfamily protein 11.4 1.0E-08 40.9 4.5E-11 5.6 1.2E-05 

At2g27690 CYP94C1 10.9 5.1E-10 38.2 2.0E-12 86.1 3.1E-08 

At1g72520 LOX4 (LIPOXYGENASE 4) 10.8 1.0E-08 81.6 3.4E-12 27.9 7.1E-06 

At4g34410 RRTF1 (REDOX RESPONSIVE TRANSCRIPTION FACTOR 1) 10.2 1.6E-08 59.4 1.1E-11 18.9 2.2E-07 

At3g25180 CYP82G1 10 3.0E-07 51.2 3.6E-10 6.7 1.2E-06 

At2g29440 ATGSTU6 (GLUTATHIONE S-TRANSFERASE TAU 6) 10 3.7E-09 32.9 1.7E-11 20.1 2.1E-05 

At2g24850 TAT3 (TYROSINE AMINOTRANSFERASE 3) 9.6 2.8E-05 38.6 1.3E-07 13 7.5E-04 

At3g48520 CYP94B3 9.4 3.5E-06 42.8 7.6E-09 54.6 1.2E-07 

At5g65280 GCL1 (GCR2-LIKE 1); catalytic 8.2 1.1E-08 21.2 8.8E-11 10.2 4.7E-05 

At1g51780 ILL5; IAA-amino acid conjugate hydrolase 7.9 5.2E-09 30 8.0E-12 14 8.5E-06 

At1g44350 ILL6; IAA-amino acid conjugate hydrolase 7.5 1.1E-08 30.3 1.2E-11 22.2 8.7E-06 

At2g06050 OPR3 (OPDA-REDUCTASE 3) 7.5 2.8E-10 22 9.8E-13 25.6 8.5E-08 

At5g05600 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase  7.3 1.7E-08 55.8 1.8E-12 42.4 2.5E-07 

At1g70700 JAZ9 7 1.1E-07 24.8 2.0E-10 6.1 1.6E-05 

At1g30135 JAZ8 (JASMONATE-ZIM-DOMAIN PROTEIN 8) 6.9 1.6E-07 51 1.9E-11 16.8 5.8E-06 

At3g51450 Calcium-dependent phosphotriesterase family 6.8 7.3E-07 27.3 9.0E-10 30.3 1.1E-05 

At1g19670 CORI1 (CORONATINE-INDUCED PROTEIN 1) 6.8 1.1E-08 8.2 3.3E-09 7.4 1.3E-05 

At1g53885 Protein of unknown function (DUF581) 6.7 8.5E-08 23.5 1.4E-10 25.2 1.7E-07 

At4g01080 member of the TBL (TRICHOME BIREFRINGENCE-LIKE) 6.7 1.2E-08 12.9 2.6E-10 7.2 1.4E-04 

At5g56980 unknown protein 6.4 4.0E-09 27.4 2.1E-12 10.8 3.7E-07 

At2g22860 ATPSK2 (PHYTOSULFOKINE 2 PRECURSOR) 6.3 1.1E-08 11.1 3.3E-10 11.4 3.4E-05 

At1g52890 ANAC019 (NAC domain containing protein 19) 6.2 7.3E-07 44.6 7.2E-11 8.8 8.4E-07 

At2g22880 VQ motif-containing protein 6.2 7.2E-06 24.5 9.4E-09 9 1.5E-03 

At1g61610 S-locus lectin protein kinase family protein 6.2 5.6E-07 10.5 2.7E-08 3.1 8.9E-05 

At1g16370 OCT6 (ORGANIC CATION/CARNITINE TRANSPORTER 6) 6.1 3.1E-06 16.2 1.8E-08 18 7.4E-06 

At3g09940 MDHAR (MONODEHYDROASCORBATE REDUCTASE) 6.1 3.3E-05 6.4 2.4E-05 2.1 2.1E-02 

At3g44860 Encodes a farnesoic acid carboxyl-O-methyltransferas 6 1.3E-07 15.9 5.3E-10 65.4 2.9E-07 

At2g34930 disease resistance family protein  6 1.5E-10 13.5 1.1E-12 63.1 7.3E-08 

At1g80840 WRKY40; transcription factor 5.7 7.2E-06 31.6 2.1E-09 3.8 6.6E-03 
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At2g38750 ANNAT4 (ANNEXIN ARABIDOPSIS 4) 5.7 1.8E-08 7.6 2.7E-09 5.1 1.8E-05 

At1g32640 MYC2; transcription factor 5.5 1.0E-08 21.6 5.0E-12 8 8.0E-07 

At1g74950 JAZ2 5.5 5.1E-08 19 4.6E-11 8 1.6E-06 

At5g60890 MYB34 (MYB DOMAIN PROTEIN 34) transcription factor 5.5 5.7E-10 8.2 3.7E-11 8.6 7.6E-06 

At5g54170 Polyketide cyclase/dehydrase and lipid transport superfamily  5.3 4.4E-08 13.5 1.6E-10 3 4.1E-04 

At2g42760 unknown protein 5.3 5.5E-08 12.1 3.6E-10 7.6 1.8E-06 

At4g39950 CYP79B2 5.3 2.0E-10 5.5 1.6E-10 4.3 3.6E-03 

At2g46370 JAR1 (JASMONATE RESISTANT 1) 5.3 1.5E-08 5.4 1.4E-08 7.6 2.5E-05 

At1g74430 MYB95 (myb domain protein 95) 5.2 1.5E-07 28.4 2.0E-11 12.8 2.4E-06 

At4g15210 BAM5 (BETA-AMYLASE 5) 5.1 7.5E-05 5.4 5.2E-05 38.5 1.3E-06 

At1g61890 MATE efflux family protein 4.9 2.5E-09 21.5 4.9E-13 13 5.1E-07 

At2g39420 alpha/beta-Hydrolases superfamily protein 4.8 1.2E-05 11.6 7.2E-08 12.8 4.6E-06 

At1g19180 JAZ1 (JASMONATE-ZIM-DOMAIN PROTEIN 1) 4.7 8.4E-07 61.5 3.6E-12 22.7 5.3E-04 

At5g38120 AMP-dependent synthetase and ligase family protein 4.7 1.6E-08 23.2 1.6E-12 3.3 3.3E-03 

At2g38760 ANNAT3 (ANNEXIN ARABIDOPSIS 3); calcium ion binding  4.7 6.1E-08 15.5 4.2E-11 5.3 2.4E-05 

At1g52720 unknown protein 4.7 3.7E-07 13.7 5.5E-10 3.1 1.6E-04 

At1g64200 VHA-E3 (VACUOLAR H+-ATPASE SUBUNIT E ISOFORM 3) 4.7 4.1E-07 7.7 1.4E-08 2 5.8E-04 

At1g10585 basic helix-loop-helix (bHLH) DNA-binding  4.7 7.6E-07 3.3 1.3E-05 19.4 4.5E-06 

At1g28480 GRX480; electron carrier/ protein disulfide oxidoreductase 4.6 1.7E-05 15.7 1.9E-08 3.5 5.3E-04 

At2g22330 CYP79B3 4.6 2.4E-09 7.1 9.4E-11 4.9 1.4E-05 

At1g06620 protein is similar to a 2-oxoglutarate-dependent dioxygenase 4.5 1.1E-06 15.2 7.1E-10 6.8 1.3E-04 

At5g38130 HXXXD-type acyl-transferase family protein 4.5 8.0E-06 11.5 2.9E-08 2.2 5.5E-03 

At3g19970 alpha/beta-Hydrolases superfamily protein 4.5 2.1E-06 7.1 9.8E-08 3.9 4.5E-06 

At5g27520 PNC2 (PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2) 4.4 5.3E-07 19.9 7.4E-11 12.9 4.9E-06 

At5g67210 Encode a DUF579  4.4 7.6E-08 13.8 5.1E-11 6.7 2.5E-05 

At4g24350 Phosphorylase family protein 4.4 4.6E-07 8.5 5.2E-09 2.9 4.8E-04 

At5g24780 VSP1 (VEGETATIVE STORAGE PROTEIN 1) 4.3 5.4E-03 33.8 1.8E-06 12.6 1.1E-04 

At1g66760 MATE efflux family 4.3 2.7E-07 14.4 1.5E-10 4.5 3.3E-05 

At1g72450 JAZ6 (JASMONATE-ZIM-DOMAIN PROTEIN 6) 4.3 3.9E-08 12.8 2.7E-11 5 5.7E-06 

At5g24420 6-phosphogluconolactonase 5 (PGL5) 4.3 2.1E-07 4.7 9.2E-08 2.3 2.4E-02 

At2g38240 Oxidoreductase, 2OG-Fe-oxygenase 4.2 2.0E-05 34 4.7E-10 44.2 4.2E-07 

At5g47220 ERF2 (ETHYLENE RESPONSIVE ELEMENT BINDING 4.2 4.1E-07 31.6 6.3E-12 2.5 1.4E-03 

At4g15440 HPL1 (HYDROPEROXIDE LYASE 1) 4.2 2.9E-07 23.5 1.3E-11 12.2 1.0E-05 

At5g10300 MES5 (METHYL ESTERASE 5); hydrolase 4.2 2.5E-06 14.5 1.5E-09 4.7 7.7E-05 

At2g30360 SIP4 (SOS3-INTERACTING PROTEIN 4); kinase/ protein kinase 4.2 2.7E-07 12.4 2.6E-10 4 5.5E-05 

At3g23250 MYB15 (MYB DOMAIN PROTEIN 15) 4.2 1.9E-04 9.2 2.1E-06 5 1.5E-03 

At5g38710 Methylenetetrahydrofolate reductase family protein 4.2 1.3E-05 7.4 3.1E-07 10.6 4.5E-06 

At5g44050 MATE efflux family protein 4.1 1.1E-06 10.1 3.1E-09 6.9 8.5E-04 

At5g06870 PGIP2 (POLYGALACTURONASE INHIBITING PROTEIN 2) 4.1 3.1E-08 9.2 8.6E-11 6.5 2.7E-05 

At2g29450 ATGSTU5 (GLUTATHIONE S-TRANSFERASE TAU 5) 4.1 3.5E-09 7.9 2.5E-11 3.3 3.3E-05 

At4g24340 Encodes a F-box protein induced by various biotic or abiotic stress 4.1 1.3E-07 7.6 1.4E-09 2.7 2.7E-04 

At1g54020 GDSL-like Lipase/Acylhydrolase superfamily protein 4 2.6E-09 7.6 1.7E-11 8.9 6.7E-03 

At4g18440 L-Aspartase-like family protein 4 4.2E-07 3.8 6.4E-07 2.6 5.3E-05 

At4g08170 Inositol 1,3,4-trisphosphate 5/6-kinase 3.9 4.1E-07 14 1.1E-10 14.3 2.9E-07 



111 
 

At5g47240 atnudt8 (Arabidopsis thaliana Nudix hydrolase homolog 8) 3.9 9.1E-07 13.3 3.2E-10 11.3 3.8E-05 

At5g63970 Copine (Calcium-dependent phospholipid-binding protein) family 3.9 7.0E-08 12.1 2.8E-11 2.7 2.8E-04 

At3g47960 Major facilitator superfamily protein 3.9 2.5E-07 6.6 5.1E-09 3.5 9.8E-06 

At5g43180 Protein of unknown function, DUF599 3.9 2.2E-07 2.6 1.2E-05 2.1 6.4E-03 

At5g67300 MYBR1 (MYB DOMAIN PROTEIN R1); transcription factor 3.8 6.3E-09 7.7 2.7E-11 3.8 3.7E-05 

At5g46590 anac096 (NAC domain containing protein 96); transcription factor 3.8 2.7E-08 3.7 3.2E-08 3.7 3.8E-04 

At3g21890 B-box type zinc finger family protein 3.8 1.0E-04 3 6.3E-04 4.3 5.3E-06 

At3g55970 jasmonate-regulated gene 21 (JRG21) 3.7 3.4E-04 15.3 1.4E-07 10.9 3.3E-04 

At5g55120 VTC5 (VITAMIN C DEFECTIVE 5)  3.7 6.8E-07 12.6 1.6E-10 2.6 3.9E-04 

At1g20510 OPCL1 (OPC-8:0 COA LIGASE1); 4-coumarate-CoA ligase 3.6 2.0E-07 12.5 3.3E-11 10.2 1.3E-05 

At5g12340 unknown protein 3.6 2.2E-03 11.3 5.8E-06 5.1 1.9E-05 

At1g31550 GDSL-like Lipase/Acylhydrolase superfamily protein 3.6 8.9E-07 6.7 7.0E-09 3.2 7.6E-05 

At4g39980 DHS1 (3-DEOXY-D-ARABINO-HEPTULOSONATE 7- 3.6 9.2E-09 4.5 1.2E-09 2 8.3E-04 

At1g29330 ERD2 (ENDOPLASMIC RETICULUM RETENTION 3.5 1.9E-07 10.8 6.5E-11 4.1 5.6E-05 

At1g73080 Encodes a leucine-rich repeat receptor kinase 3.5 1.5E-07 6.9 6.7E-10 5.3 5.3E-06 

At5g22630 ADT5 (arogenate dehydratase 5) 3.4 8.4E-08 13.6 4.8E-12 5.5 4.7E-05 

At2g46510 ATAIB (ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION 

FACTOR) 

3.4 4.8E-07 10.5 1.2E-10 4.4 3.1E-06 

At1g12240 ATBETAFRUCT4 3.4 9.7E-08 5.4 1.9E-09 2.7 8.1E-04 

At2g44840 ERF13 (ETHYLENE-RESPONSIVE ELEMENT BINDING 

FACTOR 13) 

3.3 8.3E-04 17.2 9.0E-08 3 4.6E-04 

At4g17230 SCL13 (Scarecrow-like 13); transcription factor 3.3 5.6E-06 9.5 3.1E-09 2.5 8.6E-04 

At1g19640 JMT (JASMONIC ACID CARBOXYL 3.3 2.5E-08 8.7 1.3E-11 3.8 7.9E-03 

At2g22200 member of the DREB subfamily A-6 of ERF/AP2 transcription 

factor  

3.3 5.4E-05 8.5 8.5E-08 2.3 1.9E-04 

At1g60190 Encodes PUB19, a plant U-box armadillo repeat protein 3.3 9.9E-04 6.9 1.2E-05 2.3 2.2E-04 

At5g19110 Eukaryotic aspartyl protease family protein 3.3 1.2E-06 6.5 5.3E-09 3.6 1.9E-03 

At5g05730 ASA1 (ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1) 3.2 1.2E-07 5.8 5.8E-10 2.2 1.1E-02 

At3g50260 CEJ1 (COOPERATIVELY REGULATED BY ETHYLENE AND 

JASMONATE 1) 

3.2 4.5E-04 5.4 1.2E-05 3.6 1.7E-04 

At2g20340 Tyrosine decarboxylase, putative 3.1 1.7E-06 10 3.0E-10 2.4 1.7E-04 

At5g02940 unknown protein 3.1 8.7E-07 6.4 2.2E-09 4.1 3.4E-05 

At5g36220 CYP81D1 (CYTOCHROME P450 81D1) 3.1 7.1E-07 6.4 1.9E-09 2.4 2.7E-02 

At3g21230 4CL5 (4-coumarate:CoA ligase 5); 4-coumarate-CoA ligase 3.1 6.8E-06 5.8 4.0E-08 4 3.2E-04 

At4g27654 unknown protein 3.1 3.3E-04 5.4 5.9E-06 5.6 3.9E-06 

At2g46270 GBF3 (G-BOX BINDING FACTOR 3) 3.1 9.7E-05 2.2 1.9E-03 3.1 7.9E-04 

At4g17470 alpha/beta-Hydrolases superfamily protein 3 3.4E-04 25.3 1.8E-09 10.2 5.4E-07 

At4g02360 unknown protein 3 3.0E-05 18.1 2.9E-10 2.3 2.7E-04 

At4g27570 UDP-Glycosyltransferase superfamily protein 3 1.8E-06 9.6 2.8E-10 5.7 9.1E-06 

At1g52000 Mannose-binding lectin superfamily protein 3 3.5E-05 8.1 2.4E-08 3 2.5E-04 

At5g59730 ATEXO70H7 (EXOCYST SUBUNIT EXO70 FAMILY PROTEIN 

H7) 

3 2.3E-07 7.4 1.1E-10 2.4 8.8E-05 

At1g24070 ATCSLA10; cellulose synthase 3 1.0E-05 5.1 1.1E-07 2.4 3.4E-03 

At3g50280 HXXXD-type acyl-transferase family protein 2.9 1.3E-06 11.6 3.7E-11 2.3 3.7E-03 

At4g29700 Alkaline-phosphatase-like family protein 2.9 4.9E-06 9.2 7.1E-10 3.6 1.9E-03 
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At1g69370 CM3 (chorismate mutase 3); chorismate mutase 2.9 1.2E-06 5.9 2.1E-09 3.2 9.4E-06 

At1g23850 unknown protein 2.9 4.8E-07 4 1.9E-08 2.8 4.7E-03 

At1g18710 AtMYB47 (myb domain protein 47) 2.8 7.9E-06 43.6 5.8E-13 11.4 1.1E-06 

At5g66650 Protein of unknown function (DUF607) 2.8 5.3E-06 12.3 8.6E-11 2 2.3E-03 

At1g77450 anac032 (Arabidopsis NAC domain containing protein 32) 2.8 1.2E-05 8.7 1.8E-09 5.3 5.6E-05 

At2g47180 AtGolS1 (Arabidopsis thaliana galactinol synthase 1) 2.8 5.9E-06 7.4 2.1E-09 3 1.0E-04 

At5g52320 CYP96A4 2.8 3.3E-08 6.8 1.4E-11 12.9 2.5E-06 

At4g29740 CKX4 (CYTOKININ OXIDASE 4) 2.8 3.9E-05 6.5 5.0E-08 5.3 1.4E-05 

At2g34810 FAD-binding Berberine family protein 2.8 8.8E-06 3.9 4.5E-07 2.8 5.1E-05 

At5g52050 MATE efflux family protein 2.8 8.1E-06 3.1 2.2E-06 3.9 1.2E-04 

At1g14130 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily  2.7 2.4E-05 13.7 2.2E-10 2.8 1.5E-03 

At5g14700 NAD(P)-binding Rossmann-fold superfamily protein 2.7 2.2E-07 12.4 1.8E-12 2.5 1.2E-03 

At1g09970 LRR XI-23 2.7 4.1E-06 9.2 2.6E-10 4.2 3.9E-03 

At5g54300 Protein of unknown function (DUF761) 2.7 2.3E-05 6.7 1.1E-08 6.2 4.8E-06 

At5g01850 Protein kinase superfamily protein 2.7 8.8E-06 4.9 3.8E-08 2.1 1.8E-04 

At4g30530 Encodes a gamma-glutamyl peptidase, outside the GGT family 2.7 1.6E-06 3.8 4.3E-08 2.6 1.4E-03 

At5g61780 Involved in the regulation of AtGA20ox3 expression 2.7 2.2E-06 3.4 1.6E-07 3.5 3.8E-04 

At1g15010 unknown protein 2.7 3.2E-05 2.1 5.4E-04 61.5 8.6E-07 

At5g17490 RGL3 (RGA-LIKE PROTEIN 3); transcription factor 2.6 3.3E-04 18 1.6E-09 9.9 5.3E-06 

At2g33380 RD20 (RESPONSIVE TO DESSICATION 20); calcium ion 2.6 6.9E-05 15.7 2.3E-10 10 9.6E-05 

At1g75960 AMP-dependent synthetase and ligase family protein 2.6 2.8E-05 12.7 2.5E-10 2.4 2.4E-04 

At1g75230 DNA glycosylase superfamily protein 2.6 6.7E-06 10.7 1.1E-10 2.1 1.0E-04 

At1g76650 calcium-binding EF hand family protein 2.6 5.4E-04 8.6 8.5E-08 4.7 2.7E-05 

At3g27170 CLC-B (CHLORIDE CHANNEL B); anion channel 2.6 2.9E-04 5.6 6.7E-07 3.3 2.4E-05 

At4g36900 RAP2.10 (related to AP2 10); DNA binding / transcription factor 2.6 2.0E-05 5.1 3.8E-08 2.2 4.2E-04 

At5g42650 AOS (ALLENE OXIDE SYNTHASE) 2.6 2.8E-06 4.5 1.6E-08 9.6 3.0E-06 

At2g46520 cellular apoptosis susceptibility protein 2.6 6.3E-06 3.6 2.5E-07 2.7 8.7E-05 

At2g32210 unknown protein 2.6 3.3E-04 2.7 2.3E-04 5.6 2.3E-03 

At1g45145 ATTRX5; oxidoreductase 2.5 2.5E-04 8.1 2.6E-08 4.1 6.8E-03 

At3g47420 Encodes a Pi starvation-responsive protein AtPS3 2.5 2.2E-04 8 2.8E-08 2.6 2.5E-03 

At1g61340 Phosphorylase superfamily protein 2.5 8.9E-04 7.6 2.8E-07 2.8 2.5E-04 

At1g60270 BGLU6 (BETA GLUCOSIDASE 6) 2.5 2.4E-06 7.5 1.3E-10 3.4 1.1E-03 

At5g53050 alpha/beta-Hydrolases superfamily protein 2.5 1.3E-06 6.3 2.1E-10 3.5 1.9E-05 

At5g53760 MLO11 (MILDEW RESISTANCE LOCUS O 11) 2.5 6.1E-06 5 6.8E-09 2.9 4.6E-04 

At1g80820 CCR2 (CINNAMOYL COA REDUCTASE) 2.5 9.1E-04 4.4 7.6E-06 3 3.8E-03 

At3g49620 DIN11 (DARK INDUCIBLE 11); iron ion binding  2.5 3.3E-05 4 3.5E-07 3.4 4.4E-02 

At1g74100 SOT16 (SULFOTRANSFERASE 16) 2.5 7.3E-07 3.5 1.5E-08 2.8 2.1E-03 

At4g31500 CYP83B1 (CYTOCHROME P450 MONOOXYGENASE 83B1) 2.5 5.6E-08 3.1 4.2E-09 4 3.1E-03 

At4g31800 WRKY18; transcription factor 2.4 1.2E-03 33.4 2.5E-10 11.4 1.3E-06 

At4g39030 EDS5 (ENHANCED DISEASE SUSCEPTIBILITY 5) 2.4 1.5E-06 6.4 1.6E-10 4.1 1.5E-05 

At3g17860 JAZ3 (JASMONATE-ZIM-DOMAIN PROTEIN 3) 2.4 1.8E-06 5.9 3.9E-10 5.5 4.8E-06 

At3g06500 Plant neutral invertase family protein 2.4 1.2E-05 5.7 5.0E-09 5.4 2.0E-06 

At3g16470 JR1 2.4 1.4E-04 5.7 6.0E-08 2.1 2.9E-03 

At1g19380 Protein of unknown function (DUF1195) 2.4 1.0E-04 5.5 7.2E-08 2.8 1.2E-02 
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At3g25760 AOC1 (ALLENE OXIDE CYCLASE 1) 2.4 4.7E-06 5.2 1.8E-09 8.3 6.5E-07 

At4g32800 member of the DREB subfamily A-4 of ERF/AP2 transcription 2.4 6.7E-07 4.4 9.0E-10 11.4 2.1E-06 

At1g58200 MSL3 (MscS-LIKE 3) 2.4 5.7E-06 4.4 1.0E-08 3 1.3E-04 

At5g48880 PKT2 (PEROXISOMAL 3-KETO-ACYL-COA THIOLASE 2) 2.4 1.4E-06 4.1 5.0E-09 2.2 3.4E-03 

At1g11580 PMEPCRA (METHYLESTERASE PCR A) 2.4 2.7E-05 2.6 9.5E-06 3 5.6E-04 

At3g22740 HMT3; homocysteine S-methyltransferase 2.3 8.5E-05 9 1.2E-09 3.3 1.3E-03 

At5g13200 GRAM domain family protein 2.3 2.4E-05 6.3 1.7E-09 16.2 5.4E-05 

At2g39330 JAL23 (JACALIN-RELATED LECTIN 23) 2.3 8.2E-03 6 1.0E-05 4.3 7.0E-04 

At3g17120 unknown protein 2.3 4.4E-06 5.9 3.5E-10 3 4.9E-05 

At4g21850 methionine sulfoxide reductase domain-containing protein  2.3 8.4E-03 5.9 1.3E-05 2.5 3.3E-02 

At4g29780 unknown protein 2.3 1.4E-03 3.9 1.1E-05 2.8 2.2E-05 

At3g15210 ERF4 (ETHYLENE RESPONSIVE ELEMENT BINDING 2.3 5.1E-07 3.7 1.8E-09 3.3 1.0E-05 

At1g12610 DDF1 (DWARF AND DELAYED FLOWERING 1) 2.3 1.2E-04 3.4 2.1E-06 7.6 5.2E-06 

At5g56760 ATSERAT1;1 (ARABIDOPSIS THALIANA SERINE 2.3 3.0E-06 3.3 4.6E-08 3.5 5.8E-05 

At1g49530 GGPS6 (geranylgeranyl pyrophosphate synthase 6) 2.3 4.7E-05 3.3 9.2E-07 2.2 1.6E-03 

At3g02230 RGP1 (REVERSIBLY GLYCOSYLATED POLYPEPTIDE 1) 2.3 3.7E-06 2.6 8.3E-07 2.6 2.8E-03 

At4g36010 Pathogenesis-related thaumatin superfamily protein 2.2 3.0E-03 24.2 1.1E-09 27.5 9.8E-07 

At2g36590 ProT3 (PROLINE TRANSPORTER 3) 2.2 9.2E-05 10.4 3.9E-10 5.1 2.9E-04 

At3g55640 Mitochondrial substrate carrier family protein 2.2 3.6E-05 8.5 2.5E-10 2.4 4.4E-05 

At2g43520 ATTI2; serine-type endopeptidase inhibitor 2.2 2.8E-03 5.2 3.2E-06 3.2 1.6E-03 

At1g60260 beta glucosidase 5 (BGLU5) 2.2 2.6E-05 4.9 8.1E-09 3 4.2E-04 

At4g05100 AtMYB74 (myb domain protein 74); transcription factor 2.2 5.4E-03 4.8 1.9E-05 2.7 3.0E-04 

At3g28220 TRAF-like family protein 2.2 4.1E-03 4.8 1.3E-05 2.4 1.4E-02 

At2g43530 Encodes a defensin-like (DEFL) family protein 2.2 5.0E-06 4.7 1.6E-09 5.2 3.8E-05 

At2g32140 transmembrane receptors 2.2 1.1E-03 3.7 1.1E-05 2.9 3.3E-05 

At3g57450 unknown protein 2.2 1.1E-05 3.7 3.6E-08 2.6 1.7E-03 

At3g13110 ATSERAT2;2 (SERINE ACETYLTRANSFERASE 2;2) 2.2 2.9E-07 3.4 1.0E-09 2.2 1.6E-04 

At5g52120 AtPP2-A14 (Phloem protein 2-A14); carbohydrate binding 2.2 1.2E-03 3.3 2.7E-05 3.4 1.0E-05 

At5g48450 sks3 (SKU5 Similar 3); copper ion binding  2.2 4.4E-05 3.2 7.8E-07 2.7 4.8E-05 

At4g35110 Arabidopsis phospholipase-like protein (PEARLI 4) family 2.2 3.7E-06 3 7.3E-08 3.8 4.1E-04 

At5g60300 Lectin Receptor Kinase involved in protein-protein interactions 2.2 1.3E-06 2.8 7.1E-08 2.8 4.3E-05 

At1g69260 AFP1 (ABI FIVE BINDING PROTEIN) 2.2 7.5E-03 2.7 1.3E-03 3.3 5.4E-05 

At4g15660 Thioredoxin superfamily protein 2.2 2.7E-03 2.6 8.1E-04 2.4 2.7E-04 

At1g76390 ARM repeat superfamily protein 2.1 1.1E-05 7.7 4.7E-11 3 1.1E-05 

At5g53750 CBS domain-containing protein 2.1 1.0E-04 6.3 4.5E-09 3.2 2.7E-05 

At1g52410 TSA1 (TSK-ASSOCIATING PROTEIN 1); calcium ion binding  2.1 1.1E-04 5.9 6.6E-09 3.3 3.5E-03 

At4g34710 ADC2 (ARGININE DECARBOXYLASE 2) 2.1 1.8E-05 5.2 1.1E-09 4.7 1.7E-04 

At1g75450 CKX5 (CYTOKININ OXIDASE 5); cytokinin dehydrogenase 2.1 4.5E-04 4.8 1.2E-07 3.5 6.5E-06 

At5g61810 Encodes a mitochondrial ATP-Mg/Pi transporter 2.1 5.9E-07 4.4 1.0E-10 7 1.3E-05 

At5g41600 BTI3 (VIRB2-INTERACTING PROTEIN 3) 2.1 2.0E-07 4.4 3.3E-11 3.5 2.0E-05 

At4g31780 MGD1 (MONOGALACTOSYL DIACYLGLYCEROL 2.1 2.5E-05 3.7 3.5E-08 2.4 1.6E-04 

At3g08720 S6K2 (ARABIDOPSIS THALIANA SERINE/THREONINE 2.1 2.0E-04 3.6 4.3E-07 3 1.4E-04 

At3g17130 Plant invertase/pectin methylesterase inhibitor superfamily protein 2.1 3.5E-05 3.3 2.5E-07 6.6 6.3E-05 

At3g50910 unknown protein 2.1 1.8E-04 3.3 1.2E-06 2.6 6.8E-05 
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At4g22620 SAUR-like auxin-responsive protein family 2.1 2.4E-03 3.1 4.8E-05 6.6 2.6E-05 

At1g76040 CPK29 2.1 3.9E-07 3.1 3.7E-09 2.3 2.2E-03 

At1g09070 SRC2 (SOYBEAN GENE REGULATED BY COLD-2) 2.1 2.0E-05 2.5 2.1E-06 3.1 1.2E-05 

At4g18950 Integrin-linked protein kinase family 2.1 3.9E-05 2.3 1.4E-05 4.1 8.0E-05 

At1g50460 HKL1 (HEXOKINASE-LIKE 1) 2 2.2E-05 3.1 1.3E-07 2.1 1.6E-02 

At4g39940 AKN2 (APS-kinase 2) 2 1.1E-05 2.6 2.8E-07 2.1 3.7E-04 

At2g28550 RAP2.7 (RELATED TO AP2.7); transcription factor 2 6.6E-06 2.1 4.2E-06 3.8 6.2E-06 

At2g45680 TCP family transcription factor 2 4.0E-04 2.1 2.1E-04 2.4 2.3E-03 

At3g58790 GAUT15 (Galacturonosyltransferase 15)  2 5.5E-06 2 6.0E-06 4.5 2.9E-06 

 

 

 

 
Figure 6. 2. Genes downregulated in response to current injection and wounding. 
Venn diagram illustrating the number of downregulated (>2-fold, p<0.05) genes for 
current injected leaf 8 (this study), for leaf 13 from plants wounded on leaf 8 (this 
study), and for wounded rosette leaves ('wounded plant', from Kilian et. al, 2007 Plant 
J. 50, 347-363.).  
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Table 6. 2. Downregulation of gene expression in response to current injection and 
wounding. List of common genes that were downregulated more than 2-fold (P ≤ 0.05) 1h 
after current injection into leaf 8 (this study), in leaf 13 1h after wounding leaf 8 (leaf 13, 
this study), and in wounded leaves of 18 d-old plants (Kilian et. al, 2007), FC=fold change 
(downregulated). ci= current injection. no ci= no current injection. W= wound.  

Locus annotation ci/ no ci Leaf 13/control W/control 

FC P-value FC P -value FC P -value

At2g24762 AtGDU4 (GLUTAMINE DUMPER 4) -3.1 2.0E-06 -6.7 4.5E-09 -3.2 2.1E-03 

At1g80440 Member of the GDU (glutamine dumper) family  -2.8 2.6E-06 -6.9 1.3E-09 -14.1 2.7E-07 

At5g02760 Protein phosphatase 2C family protein -2.4 2.7E-02 ‐11.1 7.9E-06 -2.2 1.4E-04

At5g22920 RING-type Zinc finger protein -2.3 1.6E-05 -4.8 1.3E-08 -11.6 7.4E-05 

At1g12200 zinc finger (C3HC4-type RING finger) family 

i

-2.3 6.9E-05 -2.1 2.4E-04 -2.2 8.2E-04 

At1g73830 BEE3 (BR ENHANCED EXPRESSION 3) -2.2 3.9E-03 -2.7 5.3E-04 -5.8 5.7E-05 

At2g44130 Galactose oxidase/kelch repeat superfamily 

i

-2.2 1.7E-08 -2.3 8.1E-09 -7.1 7.8E-06 

At2g40610 ATEXPA8 (EXPANSIN A8) -2.1 8.8E-03 -5.4 5.9E-06 -3.8 2.4E-03 

At4g30110 HMA2; cadmium-transporting ATPase -2.1 5.2E-06 -4.7 9.8E-10 -2.2 5.7E-03 

At2g15890 MEE14 (maternal effect embryo arrest 14) -2.1 1.4E-03 -3.0 3.7E-05 -4.0 1.9E-05 

At3g46130 MYB111 (MYB DOMAIN PROTEIN 111) -2.1 1.4E-07 -2.3 2.2E-08 -2.0 3.5E-03 

At1g23390 Kelch repeat-containing F-box family protein -2.0 3.0E-05 -4.9 2.0E-09 -12.3 5.1E-07 

At5g51560 Leucine-rich repeat protein kinase family protein -2.0 2.6E-05 -2.5 1.2E-06 -2.2 5.3E-03 

 

JA pathway activation through current injection 

Among significantly upregulated genes, we found a high proportion of JA-responsive 

genes in the samples produced after current injection (Table 6.1). Several genes in the JA 

biosynthetic pathway including LOX2, LOX3, LOX4, OPR3, AOC and AOS and in the 

jasmonate signalling pathway (e.g. MYC and JAZ genes) were found to be significantly 

upregulated in all three treatments. Notably, 10 of the 12 JAZ genes in the JA signalling 

pathway were upregulated in all three stimuli (Table 6.3). For example, JAZ10 which is an 

early responsive gene after wounding (Yan et al. 2007) was induced 28-fold compared to 

the non-current injected plant (Table 6.3).  
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Table 6.3. Nine of the 12 Arabidopsis JAZ transcripts are upregulated by current 
injection and wounding. List of the JAZ genes that were upregulated in leaf 8 1h after 
current injection (this study), in leaf 13 1h after wounding leaf 8 (this study), or in 
wounded leaves of 18 d-old plants (Kilian et. al, 2007), FC=fold change in transcript level. 
ci=current injected leaf 

locus annotation ci/ no ci Leaf 13/control W/control 

FC P-value FC P -value FC P -value 

At1g19180 JAZ1 4.7 8.4E-07 61.5 3.6E-12 22.7 5.3E-04 

At1g74950 JAZ2 5.5 5.1E-08 19 4.6E-11 8 1.6E-06 

At3g17860 JAZ3 2.4 1.8E-06 5.9 3.9E-10 5.5 4.8E-06 

At1g17380 JAZ5 13.6 6.4E-09 102.8 3.6E-12 22 4.7E-06 

At1g72450 JAZ6 4.3 3.9E-08 12.8 2.7E-11 5 5.7E-06 

At2g34600 JAZ7 25.9 9.0E-12 143 3.2E-14 18.6 7.5E-04 

At1g30135 JAZ8 6.9 1.6E-07 51 1.9E-11 16.8 5.8E-06 

At1g70700 JAZ9 7 1.1E-07 24.8 2.0E-10 6.1 1.6E-05 

At5g13220 JAZ10 28.2 1.9E-10 123.1 1.5E-12 28.8 8.4E-06 

At5g20900 JAZ12 1.8 1.9E-05 2.9 2.0E-08 2.5 6.2E-05 

 

 

Electrical signal-induced transcripts 

A total of 379 genes were found to be differentially expressed more than 2-fold (P ≤ 0.05) 

1 h after current injection (40µA for 10s). We detected 300 genes that were significantly 

upregulated (Fig. 6.1), and 66 genes were significantly downregulated (Fig. 6.2). 76 

upregulated genes overlapped between leaf 13 and the current injected leaf which indicated 

that the expression of these genes was unlikely to be affected by chemical components 

released from crushed tissues. Interestingly, genes known to be induced by crushing were 

not expressed in current injected leaf; RNS1 is one such example (Reymond et al. 2000). 

Surprisingly, 60% of current injection - downregulated genes (40 genes) were not common 

to leaf 13 or the wounded leaf. Seventeen genes were upregulated by current injection 

alone.   
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WASP-independent transcript changes: 

About 61% (461 out of 755) of upregulated transcripts in leaf 13 when leaf 8 was wounded 

were not significantly affected by current injection. Among them, 291 genes (39% of 

genes) were specifically induced in leaf 13, and 170 genes (23% of genes) were 

differentially regulated in common with genes in the wounded rosette (Kilian et al.  2007). 

Table 6.4 shows the list of the genes that exclusively upregulated in leaf 13. For example, 

TPS10, a gene that encodes a putative terpene synthase, is the most upregulated transcript 

with a 25-fold change. An ERF/AP2 transcription factor and ATCSLA15, a cellulose 

synthase, were also highly upregulated in leaf 13 when leaf 8 was wounded.   

Table 6.4. Exclusive upregulation of gene expression in leaf 13 after wounding leaf 
8. List of the 25 genes that were most highly upregulated (> 2-fold; P ≤ 0.05) specifically 
in leaf 13 1h after wounding 8 from a 5 weeks-old plant wounded on leaf 8. FC=fold 
change (upregulated). 

locus annotation W/control 

FC P -value 

At2g24210 TPS10 (terpene synthase 10) 25.3 1.4E-12 
At4g13410 ATCSLA15; cellulose synthase/ transferase 14.7 4.3E-09 

At4g11310 cysteine proteinase precursor-like protein 8.9 2.5E-12 

At3g53600 C2H2-type zinc finger family protein 8.4 3.3E-07 

At4g28140 member of the DREB subfamily A-6 of ERF/AP2 transcription factor  7.2 1.3E-06 

At1g76640 Calcium-binding EF-hand family protein 6.9 9.5E-11 

At3g57520 AtSIP2 (Arabidopsis thaliana seed imbibition 2) 6.9 7.5E-08 

At4g16590 ATCSLA01; cellulose synthase/ glucosyltransferase 6.5 7.7E-08 

At4g25780 CAP (Cysteine-rich secretory proteins 6.5 1.7E-10 

At2g27310 F-box family protein 6.3 7.7E-10 

At2g15760 Protein of unknown function (DUF1645) 5.8 4.4E-09 

At3g15720 Pectin lyase-like superfamily protein 5.8 4.9E-06 

At1g59640 ZCW32; DNA binding / transcription factor 5.4 2.0E-10 

At3g55110 ABC-2 type transporter  5.2 6.3E-10 

At3g50930 BCS1 (CYTOCHROME BC1 SYNTHESIS) 5.1 2.6E-07 

At5g64120 encodes a cell wall bound peroxidase 5.1 8.0E-08 

At2g44580 zinc ion binding 5.1 3.5E-09 

At4g29950 Ypt/Rab-GAP domain of gyp1p superfamily  5 2.7E-10 

At3g51440 Calcium-dependent phosphotriesterase superfamily  4.8 3.0E-08 

At3g59710 NAD(P)-binding Rossmann-fold superfamily  4.8 7.3E-07 

At5g50335 unknown protein 4.8 1.3E-05 

At2g44500 O-fucosyltransferase family protein 4.8 5.4E-08 

At1g74420 FUT3 (FUCOSYLTRANSFERASE 3) 4.8 1.8E-10 

At5g07440 GDH2 (GLUTAMATE DEHYDROGENASE 2) 4.8 6.9E-09 

At2g20880 Encodes ERF53 4.8 2.7E-09 
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Genes induced by long distance wound signals 

A total of 1216 genes were found to be significantly differentially expressed more than 2-

fold (P ≤ 0.05) 1 h after current injection (40µA for 10s) or in leaf 13 after wounding leaf 8 

(Fig. 6.1 and 6.2). We identified 774 genes that were significantly upregulated, and 442 

genes that were significantly downregulated by these two experiments. A large number of 

upregulated genes (294 genes) were in common between current injected and leaf 13 that 

include of 94% of genes activated by ci (Fig. 6.1). The expression levels of the 30 most 

upregulated genes common for current injection and leaf 13 are shown in Table 6.5. 

Surprisingly, only 19 genes (6 %) were downregulated in common between current 

injection and leaf 13.  

Table 6. 5. Upregulation of gene expression in response to current injection or leaf 13 
when leaf 8 was wounded. List of the 30 genes that were most highly upregulated in leaf 
13 1h after wounding for leaf 8 from 5 week-old plants, and were also upregulated in 
current injected leaf 8 of a 5 week-old plant. FC=fold change (upregulated), ci=current 
injected leaf. 

locus annotation leaf 13 ci/ no ci 

  FC P-value FC P -value 

At1g56650 PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1) 5.3 1.3E-05 11.7 1.5E-07 

At4g16740 ATTPS03; (E)-beta-ocimene synthase 4.5 1.8E-04 3.9 4.3E-04 

At2g39030 GCN5-related N-acetyltransferase (GNAT) 4.4 8.3E-04 12.3 5.3E-06 

At2g30830 protein whose sequence is similar to 2-oxoglutarate-dependent 4.2 3.2E-06 30.2 7.4E-11 

At4g17500 ATERF-1 (ETHYLENE RESPONSIVE ELEMENT BINDING 4.2 2.0E-06 26.2 7.7E-11 

At5g20230 ATBCB (ARABIDOPSIS BLUE-COPPER-BINDING PROTEIN)  4 3.1E-07 11.2 2.6E-10 

At4g27860 vacuolar iron transporter (VIT) family protein 3.7 3.8E-06 3.9 2.5E-06 

At5g67080 MAPKKK19 3.6 1.2E-03 20.8 2.1E-07 

At1g06000 flavonol-7-O-rhamnosyltransferase involved in the formation of 3.6 1.1E-06 6.2 1.5E-08 

At2g25820 member of the DREB subfamily A-4 of ERF/AP2 transcription 3.6 3.8E-09 5.6 7.9E-11 

At1g70130 Concanavalin A-like lectin protein kinase family protein 3.6 4.8E-04 3.3 8.6E-04 

At4g04840 methionine sulfoxide reductase domain-containing protein  3.6 1.2E-05 2.4 4.9E-04 

At1g74930 ORA47; DNA binding / transcription factor 3.5 2.4E-06 10.2 1.5E-09 

At5g23820 MD-2-related lipid recognition domain-containing protein 3.4 3.2E-05 6.5 2.9E-07 

At3g61890 ATHB-12 (ARABIDOPSIS THALIANA HOMEOBOX 12) 3.2 3.5E-04 3.4 2.1E-04 

At4g27410 RD26 (RESPONSIVE TO DESICCATION 26) 3.1 2.1E-05 26.7 5.2E-11 

At1g28370 ERF11 (ERF DOMAIN PROTEIN 11) 3 2.4E-05 7.1 3.2E-08 

At5g64260 EXL2 (EXORDIUM LIKE 2) 3 2.1E-07 7.1 1.5E-10 

At4g20860 FAD-binding Berberine family protein 3 3.1E-05 6.8 6.8E-08 

At5g59760 Protein of unknown function (DUF1635) 3 2.6E-04 3.8 5.1E-05 

At2g32150 Haloacid dehalogenase-like hydrolase 2.9 2.6E-06 9.6 2.1E-10 

At5g52570 BETA-OHASE 2 (BETA-CAROTENE HYDROXYLASE 2) 2.9 1.1E-05 7.2 7.2E-09 
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At5g52410 CONTAINS InterPro DOMAIN 2.9 1.3E-05 6.8 1.1E-08 

At1g65890 AAE12 (ACYL ACTIVATING ENZYME 12) 2.9 9.3E-05 4 7.4E-06 

At2g30040 MAPKKK14 serine/threonine kinase 2.8 2.6E-05 9 3.2E-09 

At2g28400 unknown protein 2.8 3.2E-05 3.4 4.9E-06 

At5g40350 MYB24 (myb domain protein 24) 2.7 3.3E-04 22.9 8.9E-10 

At1g76380 DNA-binding bromodomain-containing protein 2.7 1.6E-05 8.3 2.0E-09 

At3g22160 VQ motif-containing protein 2.7 3.6E-05 7.5 8.3E-09 

At4g08870 (ARGAH2) ARGININE AMIDOHYDROLASE 2 2.7 2.1E-04 4.2 5.7E-06 

 

Discussion  

This study provides support for wound activated surface potential changes (WASPs) as 

long distance wound signals that activate JA synthesis. Studies performed so far have 

focused mainly on mechanically damaged leaves (Reymond et al. 2000, Yan et al. 2007, 

Glauser et al. 2008, Miller et al. 2009) or damage induced by insect herbivores (Reymond 

et al. 2000, Reymond et al. 2004) without regard to vascular connections. Glauser et al. 

(2009) and Chauvin et al. (2012) did, however examine the importance of interleaf 

connections. It is critical to take these into account in long distance signalling studies 

performed on rosettes. In the present work we focused on the analysis of the transcriptome 

of a current injected leaf and of a leaf that was connected through vasculature to a 

wounded leaf. We also compared our work to the wounded rosette transcriptome from 

Kilian et al 2007.  

Leaf 13, which is connected through the vasculature to leaf 8, receives WASPs from leaf 8 

when this leaf is severely damaged. Consistent with this, leaf 13 is known to make higher 

amounts of JA and JA-Ile than do non-connected or unwounded leaves (Glauser et al. 

2009). The expression level of JAZ10 in leaf 13 after wounding leaf 8 was found to be 

increased by more than 100-fold with respect to unwounded leaves (Fig. 4. 4 in chapter 4). 

In addition, both the wounded leaf 8 and leaf 13 displayed strong depolarisations after 

wounding (Fig. 4. 3 chapter 4). However, in the wounded leaf, many additional factors are 

released from broken cells, and lysed vacuoles or cell wall components could, in theory 
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influence wound responses. Reactive oxygen species (ROS) and ions from the extracellular 

matrix (apoplast) might also have an impact the wound response in the vicinity of damaged 

cells (Maffei et al. 2007). Therefore, in the wounded leaf, wound responses are probably 

not exclusively due to the wound long distance signalling. 

Among the 196 transcripts that exhibited upregulation in all three treatments, (Table 6.1), 

were those encoding JA biosynthesis genes, such as OPDA-reductase (OPR3), 

lipoxygenase2 (LOX2) and LOX3 and LOX4, allene oxide cyclase 3 (AOC3) and allene 

oxide synthase (AOS). The upregulation of these genes is consistent with the known 

activation of JA biosynthesis distal to the wound. In addition, the expression of 9 out of 12 

JAZ genes in response to wounding and current injection indicates that WASPs are likely 

to be long distance wound signals in Arabidopsis.  

Cytochrome P450 transcripts are induced by wounding and can be jasmonate regulated 

(Koo et al. 2011). CYP94B1, and CYP94C1 showed high expression among the treatments 

we examined (current injection, leaf 13 and wounded rosette). Koo et al. (2011) showed 

that CYP94B3 has a physiological role in downregulating jasmonate responses in 

vegetative tissues.  CYP94B3 controls JA-Ile levels through converting JA-Ile to 12-

hydroxy-JA-Ile in Arabidopsis (Kitaoka et al. 2011). Overexpression of CYP94B3 

decreased the level of JA-Ile in the wounded leaves and these plants display phenotypes 

indicative of JA-Ile deficiency (Koo et al. 2011). Additionally, CYP94C1 is reported to be 

involved in JA-Ile oxidation in Arabidopsis (Heitz et al. 2012).  

Current injection stimulated the expression of a large number of genes encoding 

transcription factors (Table 6.1). These were from the AP2 family, the DREB family, the 

MYC family, the ERF family, the zinc finger family, the WRKY family, the MYB family 

and two bHLH families.  There were also upregulated members of the bZIP family and 

NAC family among the three treatments. However, some zinc finger family transcription 

factors showed downregulation. ANAC019 from the NAC family regulates JA-induced 
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expression of defence genes (Bu et al. 2008). MYB transcription factors regulate hair 

differentiation and trichome initiation and also regulate anthocyanin biosynthesis (Zhu et 

al. 2009, Qi et al. 2011).  SA, JA, ethylene, and pathogen attack can induce AP2 

transcription factor gene expression (Maleck et al. 2000, Schenk et al. 2000). RAP2.6 

showed a high induction after current injection as well as in leaf 13 of plants wounded on 

leaf 8. RAP2.6, an AP2/ERF family member, is responsive to abscisic acid (ABA) and has 

important roles in many biological functions including response to biotic stress such as 

high salt, osmotic stress, and cold (Zhu et al. 2010). RAP2.6 is also induced upon 

pathogens infections (Chen et al. 2002). 

The SPs recorded in the current-injected leaf were similar to those recorded in leaf 13 

when leaf 8 was wounded (Table 5.2 and Fig. 5.2). While, in leaf 13, 473 genes were 

upregulated that are not in common with current injected leaf. Just 4% (19 genes) of 

downregulated genes were in common between leaf 13 and current injected leaf. These 

differences of unregulated genes can be explained by; 1) the smaller amplitude of SPs 

generated in the current injected leaf in compared to WASPs recorded in leaf 13 after 

wounding leaf 8. 2) Other signals in addition to WASPs are probably involved in long 

distance wound signalling. 3) WASPs may be the first long distance signal after wounding 

to reach connected leaves, then other signals might amplify WASP effects.  

We have devised strategies with which we can investigate the role of electrical signals in 

controlling defence gene expression in Arabidopsis. Our results indicate that the electrome 

produced in response to WASPs and SPs generated in response to current injection are 

highly similar. Furthermore, a large proportion of transcripts induced by these stimuli are 

known to participate in JA synthesis and signalling. We have confirmed that WASPs have 

pivotal roles in long distance wound signalling in Arabidopsis.  
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Chapter 7 

 

General Conclusions and perspectives 

 

 

The nature of the long distance signals that activate defence responses after wounding in 

plants is largely unknown. Signalling substances such as hormones can act in parts of the 

plant other than where they are synthesized. Either they themselves move through the plant 

or they are made in response to the arrival of other signals. Among the possible long 

distance signal mechanisms in plants, electrical and hydraulic signals are potentially the 

fastest. The transport of active chemical signals or their precursors is a slower means of 

information transfer from leaf to leaf. Our evidence from this study points towards the idea 

that long distance wound signalling over centimetre distances in plants depends on 

electrical activity as it does in animals. However, many questions remain regarding the 

initiation, propagation and decoding of electrical activity in plants.  

The non-invasive measurement of surface potential changes is suitable to follow wound-

associated electrical activity after herbivory or mechanical wounding. The advantage of 

this technique that we used in our work is its simplicity and the feasibility of recording 

electrical activity in plants without wounding. However, this technique clearly has some 

limitations. Recording of electrical activity from the surface of leaf does not reflect what 

happens in single cells. Moreover, the surface covered with surface potential recording 

consists of different cell types including mesophyll, parenchyma, guard cells, phloem or 
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xylem cells. Single-cell recording with aphids for example using electrical penetration 

graphs (EPG) (Tjallingii 1988) or glass microelectrodes could disclose the type of cells that 

are involved in the process of generation, propagation or decoding of electrical activity. In 

addition, the main route of signal transmission could be investigated with these techniques. 

For example, do WASPs move through the apoplast or symplast, the phloem or xylem? 

Wounding initiates complex reactions in the wounded zone including membrane 

depolarization and electrical activity. Wounding even a few cells triggers JA synthesis and 

defence responses. Small wounds only influence the neighbouring cells, while severe 

wounds have effects over much of the plant. Severe leaf damage by herbivores induces 

electrical activity while, in nature, most insect herbivores feed only on small parts of the 

leaf then move to other leaves. This is in part due to toxic defence compounds produced in 

and near the wound which prohibit insect feeding or at least reduce feeding duration. 

During evolution these compounds have probably reduced the occurrence of big wounds 

and long distance signalling to stimulate defence responses in distal leaves. Further 

investigation of surface potential changes (SPs) in response to herbivore wounding and its 

consequences for the activation of the JA pathway should help to better understand how 

plants defend themselves against attack. Furthermore, the possible effects of insect saliva 

compounds on ion channels and electrical activity should be investigated in order to reveal 

more about plant-herbivore interactions. Finally, it would also be interesting to know 

whether the depolarization phase of SPs is a stimulant that causes insects to move from one 

leaf to another.  

Membrane depolarization is one of the earliest events after wounding in plants (Maffei et 

al. 2007). We found that in Arabidopsis wounding alters surface potentials in the wounded 

leaf, likely due to depolarization of the plasma membrane. Distal leaves that are connected 

through the vasculature to damaged leaves also receive SPs with the same polarity, while 

membranes in non-connected leaves are slightly hyperpolarized. The leaves that showed 

depolarization or hyperpolarization after wounding showed correspondingly large or small 
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increases in JAZ10 expression levels respectively. In the non-connected leaves it was not 

clear whether the slight increases in JAZ10 transcript levels that we detected were caused 

by hyperpolarization or by other unknown signals such as diffusion of JA or its precursors, 

hydraulic signals or ROS. It was shown that leaf-to-inflorescence stem wound signalling 

occurs (Miller et al. 2009). The present study has only investigated WASP changes in the 

rosette of Arabidopsis. Therefore, a study of the spatial and temporal dynamics of changes 

in the inflorescence stem and measuring JA and the expression of JA-responsive genes like 

JAZ10 could expand our knowledge of long distance wounding signalling.  

The velocity of WASPs in the wounded leaf was 8.5 cm min-1, and from wounded to 

connected leaves was 5.5 cm min-1. The speed of the long distance signal from the 

wounded leaf to connected leaves that lead to the activation of JA synthesis was shown to 

be in the range of 3-8 cm min-1 (Glauser et al. 2009, Chauvin et al. 2013). This velocity 

was decreased to 2.1 cm min-1 in fou2, the ion channel mutant in TPC1. Therefore, it is 

possible that TPC1 plays a role in WASP propagation. This would need to be investigated 

in a tpc1 null mutant.  

Vascular connections play important roles in the transportation of photosynthetic products, 

water, nutrients and hormones in plants. The importance of n+5 and 5+8 vascular 

connections in the induction of JA synthesis was demonstrated previously (Glauser et al. 

2009). Furthermore, we found that an n+3 contact parasthichy can also transmit long 

distance electrical signals in Arabidopsis. The current study did not investigate the 

structural architecture of this new transmission route in Arabidopsis. In addition, we found 

that an n-2 connection in Arabidopsis which has not previously been defined in this plant 

can be active in severe damage, while n+2 did not show changes either WASP or JAZ10 

transcript levels after wounding.  

Our study has uncovered the casual relation between surface potential changes (SPs) and 

the activation of the JA pathway. Generation of SPs by current injection (ci) and induction 
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of JAZ10, VSP2 and JA and JA-Ile reveal a fascinating relationship between physical 

signals and physiological function in plants. Furthermore, the induction of many genes by 

ci, many of them in the JA biosynthetic or signalling pathways by supported the role of 

WASPs as long distance wound signals in plants. In addition, genes which are involved in 

stress responses such as transcriptional factors or in ethylene response were regulated by 

ci. Finally, our results suggested that the electromes that resulted from ci and wounding are 

essentially identical. However, the functions of some ci-inducible genes remain unknown. 

Therefore, it will be important to analyse their function. They might play roles in other 

physiological responses. Besides global gene analysis after ci, it will be worth conducting 

global metabolite analysis after this procedure.  

We show that genes annotated as calcium channels, Glutamate Receptor-Like (GLR3.1, 

GLR3.2, GLR3.3 and GLR3.6) are involved in long distance electrical signalling in 

Arabidopsis and that the combined mutation of both glr3.3 and glr3.6 can almost abolish 

WASP propagation to organs distal to wounds. GLR proteins can now be indicated in our 

general model of wound signalling in Arabisopsis as shown in figure 7.1.We hope that 

further tests on other alleles in these mutants and additional double mutants will reconfirm 

and extend the roles of these channels in WASP generation and propagation. Further 

studies are needed to determine whether these genes are involved in Ca2+ movement across 

the membrane. To expand our knowledge we are planning to use a triple mutant that we 

made from the combination of glr3.1, glr3.3 and glr3.6 or glr3.2, glr3.3 and glr3.6. In 

addition, measuring the level of JA and JA-Ile in the wounded and connected leaves at 

early and late stages after wounding could allow us to establish the kinetics of JA 

accumulation in relation to WASPs. Furthermore, the transcriptome of wounded leaf 8 and 

connected leaf 13 could reveal the genes that are specifically regulated by WASPs. Finally, 

slight induction (2-3 fold) of JAZ10 in a connected leaf of glr3.3glr3.6 which did not 

receive WASPs suggests that there is at least another long distance wound signal. 

However, here we showed that an electrical signal is the major long distance signal after 

wounding. 
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Figure 7. 1. GLR proteins in the general scheme of events leading to the distal 
activation of the JA pathway after wounding. WASPs are wound-associated surface 
potential changes. We have placed GLRs in the propagation route of the long distance 
wound signal. More work is needed to clarify if GLRs also contribute to the initiation 
of long distance wound signalling.  
 

Electrical signals in plants are mainly categorized as action potentials (APs) or variation 

potentials (VPs). The surface potentials that we recorded after wounding were similar to 

VPs which are proposed to be conducted via plasma membrane proton pumps and 

hydraulic pressure changes (Fromm and Lautner 2007). However, we found that WASPs 

of T-DNA insertion lines in plasma membrane (PM) H+-ATPases were not different from 

those of WT. Infiltration of the lamina or injection into petioles of PM proton pump 

inhibitors or activators also did not have detectable effects on WASPs. The similarity of 

amplitude and duration of WASPs from those T-DNA lines to the WT therefore suggested 

that WASPs might not be variation potentials. In addition, the influence of GLR genes in 

WASP propagation and the fact that they are annotated as Ca2+ channels indicates that 

WASPs might result from APs. However, without identification of function of those GLR 

gene products it is too early to confirm that WASPs results from AP detection. Chloride 

and potassium channels might also be involved in AP generation. But, our WASP 

screening in T-DNA insertion lines did not reveal any differences in K+ and Cl- channels 



128 
 

mutants. Further work needs to be done to test other T-DNA insertion lines for K+ and Cl- 

channels to test the possible role of these ions in WASP generation.  

In conclusion, our research showed that electrical activity can influence gene expression 

and metabolite levels after wounding. We are confident that our research will serve as a 

base for future studies not only in long distance wound signalling, and it might help in 

other domains of plant physiology and stress responses.  
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