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ABSTRACT

The generation of ductile shear zones is essential for the formation of tectonic plate
boundaries, such as subduction or strike-slip zones. Ductile shear zones are one of the most
prominent geological features on the tectonic nappe, outcrop and micro-structural scales
too. However, the primary mechanism of ductile strain localization is still contentious.

In the first paper of this thesis we study the spontaneous generation of ductile shear
zones by thermal softening using thermo-mechanical numerical simulations for linear and
power-law viscous flow in one-dimension (1D), 2D and 3D. We provide a temperature
and thickness prediction that requires knowledge of only the boundary velocity, flow law
and thermal parameters, but no a priori information about the shear zone itself, such as
thickness, stress and strain rate. The prediction is valid for 1D, 2D and 3D shear zones in
bulk pure and simple shear. Applying typical flow laws for lithospheric rocks shows that
shear zone generation by thermal softening occurs for typical plate tectonic velocities of
few cm.yr−1 or strain rates between 10−16 and 10−14 s−1.

In the second paper of this study we present two-dimensional numerical simulations of
convergence at a hyper-extended passive margin with exhumed sub-continental mantle. We
consider visco-elasto-plastic deformation, heat transfer and thermo-mechanical coupling by
shear heating and associated thermal softening due to temperature dependent viscosity.
The simulations show subduction initiation for convergence velocities of 2 cm.yr−1, Moho
temperatures between 525 and 600 oC and reasonable maximal deviatoric stresses around
the Moho of ca 800 MPa. Subduction initiates in the region with thinned continental crust
and is controlled by a thermally-activated ductile shear zone in the mantle lithosphere. The
shear zone temperature can be predicted with a recently published analytical equation. The
modeled forced subduction agrees with geological data and reconstructions of subduction
during closure of the Piemont-Liguria basin during Alpine orogeny.

Tectonic nappes are observed for more than a hundred years. Although geological stud-
ies often refer to a “nappe theory”, the physical mechanisms of nappe formation are still
incompletely understood. In the third paper we present results of two-dimensional numer-
ical simulations of shortening of a passive margin, to investigate the thermo-mechanical
processes of detachment, transport and stacking of nappes. We apply a visco-elasto-plastic
rheology and we consider tectonic inheritance with two initial mechanical heterogeneities:
(1) lateral heterogeneity of the basement-cover interface due to half-grabens and horsts and
(2) vertical heterogeneities due to layering of mechanically strong and weak sedimentary
units. The model shows the detachment and horizontal transport of a thrust nappe and
stacking of this thrust nappe above a fold nappe. We apply our model to the Helvetic
nappe system in Western Switzerland. The modelled structures and temperature field
agree with data from the Helvetic nappe system, which is characterised by stacking of the
Wildhorn thrust nappe above the Morcles fold nappe.
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SUMMARY FOR THE GENERAL PUBLIC

Deformation is often observable in rocks, such as folds, or ruptures with noticeable
displacements. One of the most spectacular examples on the large scale (scale of mountains)
is located along the Rhone Valley near Martigny, in Switzerland. Here, a several km thick
and tens of km long packet of folded sedimentary rocks, the so-called Morcles fold nappe
can be found. It is easily observable for example on the Dent de Morcles and on the Dents
du Midi. On the top of the Morcles nappe another nappe, the Wildhorn, is located. The
Wildhorn nappe is a packet of rock that has been transported over the basal shear zone or
thrust (a sliding surface with intense shear deformation) several tens of km from its original
place. It is observable for example on the Wildhorn or on the Les Diablerets. Although
such nappes are observed for more than a hundred years, the physical mechanisms of nappe
formation are still incompletely understood.

On the global scale, rock deformation is characterized by zones of intense and localized
deformation separated by domains of little or no deformation. This deformation mode is
reflected by plate tectonics. The strong outermost shell of the Earth (lithosphere) con-
sists of several tectonic plates, that are floating on a weak shell (asthenosphere), each of
them moving in its own direction. Lithospheric deformation is typically localized at plate
boundaries, where two plates meet. Such localized deformation behavior is natural in the
brittle-frictional regime (when rocks break in an everyday sense). However, in the ductile
regime (when rocks flow or slowly creep, typically in a few tens of km depth) deformation
tends to be distributed. Understanding the physical processes that are promoting local-
ized ductile deformation over distributed ductile deformation is a key to understand plate
tectonics better.

The aim of this thesis is to formulate and apply models, based on continuum mechanics,
to understand spontaneous ductile strain localization and nappe formation. In the first
paper of the thesis we study spontaneous generation of ductile shear zones by thermal
softening and shear heating, that is the conversion of dissipative work into heat. Based on
a simple 1D model we determined a new analytical formula that could be used to estimate
temperatures of shear zones. In the second paper of this thesis we present result of 2D
numerical simulations on subduction initiation. Subduction initiation is when a new plate
boundary forms, where the two plates move towards each other, one of the two moves below
the other and sinks into the asthenosphere. We demonstrate that spontaneous generation
of ductile shear zones is a feasible mechanism of subduction initiation. We show that the
analytical formula, presented in the first paper is applicable for lithospheric scale scenarios
with complex rheology and geometry. In the third paper of this thesis we present a new
mechanical model of detachment, transport and stacking of tectonic nappes, applied to
the Helvetic Nappe System. The modeled structures and temperature field agree with the
data from the Helvetic Nappe System, which is characterized by stacking of the Wildhorn
thrust nappe above the Morcles fold nappe.
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RÉSUMÉ

La formation des zones de déformation ductile est essentielle pour la formation des
limites des plaques tectoniques, comme les zones de subduction ou les zones de failles
transformantes. Les zones de déformation ductiles sont l’une des formations géologiques
les plus importantes pour la compréhension des nappes tectoniques, y compris à l’échelle de
l’affleurement et de l’analyse structurale microscopique. Cependant, le mécanisme principal
de la localisation de la déformation ductile est toujours controversé.

Dans le premier article de cette thèse, nous étudions la génération spontanée des zones
de cisaillement ductile par ramollissement dû à la chauffe (thermal softening) à l’aide de
simulations numériques thermo-mécaniques en une dimension (1D), en 2D et en 3D pour
des lois de fluage visqueuses linéaire et de loi de puissance. La prédiction de la température
nécessite de connaître uniquement la vitesse des conditions de bordure, les lois de fluage et
les paramètres thermiques, mais a priori pas d’information sur la zone de cisaillent en elle-
même, comme l’épaisseur, le stress et le taux de déformation. La prédiction est valide pour
les zones de cisaillement en 1D, 2D et 3D dans un contexte de cisaillement pur à grande
échelle, et de cisaillement simple. L’utilisation de lois de fluage typique pour des roches
lithosphériques montre que la génération des zones de cisaillement par le ramollissement
dû à la chauffe (thermal softening) se produit pour des valeurs de vitesse de plaques
tectoniques typiques de quelques cm·an-1 ou pour un taux de déformation entre 10−16 et
10−14 s−1. Les résultats indiquent que la modification de la structure et des paramètres
physiques d’une roche uniquement à cause de la température est un mécanisme possible
pour la génération spontanée d’une zone de cisaillement dans la lithosphère.

Dans le second article de cette étude, nous présentons des simulations numériques
en deux dimensions de convergence de plaque à une marge passive hyper-étendue avec
exhumation de manteau subcontinental. Nous considérons une déformation visco-elasto-
plastique, un transfert de chaleur et un couplage thermo-mécanique par chauffe due au
frottement (shear heating) et par ramollissement thermique (thermal softening) dû à la
viscosité qui est dépendante de la température. Les simulations montrent une vitesse de
convergence de 2 cm/an, une température du Moho entre 525 et 600 oC ainsi qu’un stress
déviatorique maximal situé au Moho d’environ 800 MPa. Ces valeurs sont raisonnablement
concordantes avec des données observées dans la nature. La subduction s’initie dans la
région oú la croûte continentale est la plus fine et est contrôlée par l’activation thermique
d’une zone de cisaillement dans le manteau lithosphérique. La température de la zone de
cisaillement peut être prédite par une équation analytique publiée récemment. Le modèle
de subduction forcée est en accord avec les données géologique et les reconstructions de
subduction pendant la fermeture du bassin du Piemont-Ligurie durant l’orogenèse alpine.

Les nappes tectoniques sont observées depuis plus de cent ans. Bien que les études
géologiques se réfèrent souvent à la « théorie des nappes », les mécanismes physiques qui
forment ces nappes sont encore mal compris. Dans le troisième article, nous présentons
les résultats des simulations numériques en deux dimensions d’un raccourcissement d’une
marge passive pour investiguer le processus thermo-mécanique de détachement, de trans-
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port et d’empilement des nappes. Nous utilisons une rhéologie visco-elasto-plastique et
nous considérons des héritages tectoniques avec deux hétérogénéités mécaniques initiales :
(1) une hétérogénéité latérale de l’interface socle- couverture due aux demi-grabens et horst
et (2) une hétérogénéité verticale due à l’alternance de couches mécaniquement dures et
faibles des unités sédimentaires. Le modèle montre le détachement et le transport hori-
zontal d’une nappe chevauchante et de l’empilement de cette nappe sur une nappe plissée.
Nous appliquons notre modèle au système des nappes hélvétiques en Suisse occidentale. Les
structures modélisées et le champ de température concordent avec les données du système
des nappes helvétiques, caractérisé par l’empilement de la nappe de charriage du Wildhorn
au-dessus de la nappe plissée de Morcles.
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RÉSUMÉ GRAND PUBLIC

La déformation est souvent observée dans les roches, comme des plis, ou des ruptures
avec des déplacements notables. L’un des exemples les plus spectaculaires à grande échelle
(à l’échelle des montagnes) est situé le long de la vallée du Rhône, proche de Martigny, en
Suisse. On y trouve un paquet de roches sédimentaires plissées de plusieurs km d’épaisseur
et de dizaines de km de long, appelé pli de la nappe de Morcles. Il est facilement obser-
vable par exemple sur la Dent de Morcles ou sur les Dents du Midi. La nappe du Wildhorn,
autre nappe tectonique alpine, se trouve au-dessus de la nappe de Morcles. La nappe du
Wildhorn est un paquet de roche qui a été transportée par- dessus la zone de cisaillement
basale ou le chevauchement (une surface de glissement avec une déformation de cisaillement
intense) de plusieurs dizaines de km de sa place d’origine. Ce déplacement est observable
par exemple sur le Wildhorn ou sur les Diablerets. Bien que ces nappes sont observées
depuis plus de cent ans, les mécanismes physiques qui forment ces nappes sont encore mal
compris. A l’échelle globale, la déformation des roches est caractérisée par des zones de
déformations intenses et la localisation de la déformation est séparée par des domaines de
petites déformation ou des domaines sans déformation. Ce mode de déformation est reflété
par la tectonique des plaques. La couche dure la plus externe de la Terre (la lithosphère)
est constituée de plusieurs plaques tectoniques, qui flottent sur une couche plus faible (l’as-
thénosphère), chacune de ces plaques bougent entre elles en suivant leur propre direction.
La déformation lithosphèrique est typiquement localisée en bordure de plaque, oú deux
plaques se rencontre. Ce comportement de localisation de la déformation est naturel dans
le régime de déformation cassant (lorsque des roches se brisent au quotidien). Toutefois, en
régime ductile (lorsque les roches s’écoulent ou fluent lentement, généralement à quelques
dizaines de km de profondeur), la déformation a tendance à se répartir. Comprendre les
processus physiques qui favorisent la localisation de la déformation ductile par rapport à
la distribution de la déformation ductile est une clé pour mieux comprendre la tectonique
des plaques.

L’objectif de cette thèse est de formuler et d’appliquer des modèles, basés sur la mé-
canique des milieux continus, pour comprendre la localisation spontanée des contraintes
ductiles et la formation des nappes. Dans le premier article de cette thèse nous étudions
la génération spontanée des zones de cisaillement ductiles par ramollissement dû à la tem-
pérature (thermal softening) et par chauffe de frottement (shear heating) c’est-à-dire à la
conversion du travail dissipatif en chaleur. Sur la base d’un modèle simple 1D, nous avons
déterminé une nouvelle formule analytique pouvant être utilisée pour estimer la tempéra-
ture des zones de cisaillement. Dans le deuxième article, nous présentons les résultats de
simulations numériques 2D sur l’initiation de la subduction. L’initiation à la subduction se
produit lorsqu’une nouvelle limite de plaque se forme, oú les deux plaques se rapprochent
l’une de l’autre, et oú l’une des deux plaques passe en dessous de l’autre et plonge dans
l’asthénosphère. Nous démontrons que la génération spontanée des zones de cisaillement
ductile est un mécanisme possible pour l’initiation de la subduction. Nous montrons que
la formule analytique présentée dans notre premier article peut s’appliquer aux scénarios
à l’échelle lithosphérique avec une rhéologie et une géométrie complexe. Dans le troisième
article de cette thèse, nous présentons un nouveau modèle mécanique de détachement, de
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transport et d’empilement de nappes tectoniques, appliqué au système des nappes helvé-
tiques. Les structures modélisées et le champ de température concordent avec les données
du système des nappes helvétiques, caractérisé par l’empilement de la nappe de charriage
du Wildhorn au-dessus de la nappe plissée de Morcles.
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INTRODUCTION

Ductile shear zones are one of the most important geological features, that appear on most
geological length scales and their lifespan covers a significant range of the geologically
important time scales. Shear zones are not only interesting geological features, but the
physical processes involved in the formation of shear zone could possibly have great im-
plications for geodynamics, or lithospheric dynamics. A significant part of the lithosphere
is dominated by ductile deformation, mostly because with increasing confining pressure
brittle failure becomes increasingly unlikely (e.g. Burov et al., 2006). Therefore, the gen-
eration of ductile shear zones is essential for the formation of tectonic plate boundaries,
such as subduction or strike-slip zones (e.g. Regenauer-Lieb et al., 2001; Bercovici and
Ricard, 2012; Thielmann and Kaus, 2012). Although the importance of understanding
ductile strain localization is clear (Poirier, 1980), the primary mechanism of ductile strain
localization is still contentious.

In this thesis I am using models, based on continuum mechanics to investigate physical
mechanisms related to ductile strain localization. I focus on two scenarios: (i) spontaneous
ductile strain localization by shear heating and thermal softening and (ii) strain localization
(or partitioning) due to the presence of inherited mechanical heterogeneities during tectonic
nappe formation.

1.1 Definitions

Some of the terms in this thesis either do not have a clear definition or they might have con-
flicting meaning in different scientific communities, therefore I clarify the most important
ones here.

We use brittle deformation interchangeably with plastic deformation.

The term, detachment of a nappe, we use to describe the situation, when the rock
units, forming the frontal part of a thrust sheet are being separated from their original
position. After this a low angle shear zone, similar to a detachment zone (décollement),
can develop.

Dissipation happens when energy in some initial form is converted irreversibly into a
final form. In other words, all processes that result in entropy production are dissipative
(and irreversible too). After the first chapter we use dissipation as an abbreviation of
“dissipation due to the conversion of the mechanical work that is used for non-elastic shear
deformation into heat", which is interchangeable with shear heating.

Ductile deformation is, when the macroscopic (much larger than an individual dis-
location) deformation behavior is described mathematically by a relation between stress
and strain rate, such as by flow laws for diffusion, dislocation or Peierls creep (i.e. low
temperature plasticity). This is a scale independent definition!

Induced or forced subduction initiation (SI) is caused by forces originating far
away from the SI site, typically due to far-field plate motions.

A tectonic nappe is a rock packet not in its place, resting on a substratum that is not
its original one. The nappes discussed in this thesis, extend a few km vertically, and tens
of km horizontally.
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CHAPTER 1

Plastic deformation occurs, when the plastic yield strength (pressure sensitive for most
rock) is reached. In the numerical models, presented here, it is represented by Drucker-
Prager plasticity.

Spontaneous shear zone generation is, when the fundamental shear zone param-
eters, such as thickness, shear stress and strain rate, are not a priori prescribed by the
natural or model configuration.

Spontaneous subduction initiation (SI) is caused by forces originating at the site
of the SI. It is typically associated with significant lateral variation of buoyancy.

1.2 From fundamental laws of physics to continuum mechan-
ics

My goal here is to show, how the mathematical models that are most commonly used
in geodynamics can be derived from the fundamental laws of physics (with the help of
certain phenomenological laws). None of this material is a new scientific result. I use
the framework of classical irreversible thermodynamics (e.g. De Groot and Mazur, 1984;
Müller and Müller, 2009) to couple the laws of classical mechanics and thermodynamics.
Most importantly, I will check that the system of equations satisfies the fundamental laws
of physics. I derive a self-consistent system of equations, that describes shear heating
and thermal softening in a viscous material. Here I do not show more, but the realm of
possibilities extends much further.

1.2.1 Realm of applicability

In general, continuum mechanics is applicable if the characteristic length of the studied
process is much larger than the average mean free path of particles, that is ca 10−9 m

in liquids and solids (e.g. Chung, 1988). Our system of governing equations is based on
Newtonian mechanics, that is applicable for most processes on Earth (e.g. provided that
velocities are much smaller than the speed of light).

In this exercise I consider an isotropic, single phase (no percolating fluids) material,
that is deforming viscously in an external gravity field. Compositional differences are
possible, but they are only reflected in variable material properties. This means no chemical
interaction of any kind are permitted (i.e. diffusion or reactions). I also neglect nuclear
reactions (i.e. radioactive decay) and interactions between the model material and electro-
magnetic fields. I refer to all these assumptions as the axiom.

1.2.2 Index notation

I use a notation, where vectors and tensors are represented with the subscripts i,j,k...
that can take the values 1,2 and 3 representing components in the three directions of
orthonormal basis vectors. So instead of v = [vx, vy, vz] we use vi = [v1, v2, v3], similarly
for tensors. If indices are repeated within a term that implies summation: MijNij =∑3

i=1

∑3
j=1MijNij . If I use subscripts to distinguish similar quantities, the spatial indexes
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are displayed as superscripts, with no further implications (e.g. qjE = [q1
E , q

2
E , q

3
E ] is the

energy flux vector).

1.2.3 Conservation of mass (continuity equation)

Assume a continuum of a given density ρ(xj , t) and take an arbitrary volume of this
continuum, that is in rest (has a stationary shape and position). The total mass in this
volume can be given as the integral of the density inside this volume:

m(t) =

∫
ρ(xj , t) dV. (1.1)

Due to the conservation of mass, the total mass in this volume can change only if matter
flows in or out of this volume (i.e. it cannot be created or destroyed). We can calculate the
change of total mass by integrating the material flux through the surface of this volume:

dm = −
∮

(ρvjdt) dAj , (1.2)

where Aj is the surface vector with the length of its area and with the direction normal to
the surface, pointing outward (note that vjdtdAj gives a volume that crossed the boundary
surface). Now we can write an ordinary differential equation to describe change of mass
with time:

dm

dt
=

d

dt

(∫
ρ dV

)
= −

∮
ρvj dAj . (1.3)

This is the so-called integral form of the conservation equation.
Since V is not time dependent, we can use the Leibniz rule to change the order of differenti-
ation and integration in the middle term, and the Gauss-Ostrogradsky theorem (divergence
theorem) to reformulate the surface integral on the right hand side as a volume integral∫

∂ρ

∂t
dV = −

∫
∂ρvj
∂xj

dV. (1.4)

This can be reformulated as ∫
∂ρ

∂t
+
∂ρvj
∂xj

dV = 0. (1.5)

If this relationship is true for any arbitrary volume then this integral is satisfied if the
integrand is zero

∂ρ

∂t
+
∂ρvj
∂xj

= 0. (1.6)

This is the so-called divergence form of the conservation equation (also called conservative
form). An alternative form, using material time derivatives, is:

1

ρ

dρ

dt
= −ρ d

dt

(
1

ρ

)
= −∂vj

∂xj
. (1.7)

Using the chain rule one can show that the term in the middle equals to the left hand side.
This form will be more convenient later on.
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Leibniz integral rule
The derivative of an integral of a scalar field f(xi, t) is

d

dt

(∫ b

a
f(x, t) dx

)
=

∫ b

a

∂f(x, t)

∂t
dx,

if the integration bounds a and b are constants (with respect to t in this case).

Gauss-Ostrogradsky theorem (divergence theorem)
Let us assume that V is a finite volume of the three dimensional space (R3) and it is
bounded by piecewise smooth surfaces Aj . If Fj is a vector-field that is differentiable
on V , then the following relationship applies between volume and surface integrals of
Fj : ∫

∂Fj
∂xj

dV =

∮
FjdAj .

Chain rule

df(g(t))

dt
=

df(g(t))

dg(t)

dg(t)

dt

Example: Transition from material derivatives of ρ to material derivatives of 1/ρ in
the continuity equation

− ρ d

dt

(
1

ρ

)
= −ρdρ−1

dt
= −ρdρ−1

dρ

dρ

dt
= −ρ

(
−ρ−2

) dρ

dt
=

1

ρ

dρ

dt
.

1.2.4 Balance of any specific (per unit mass) physical quantity

In continuum dynamics, the balance of any specific (per unit mass) physical quantity (let
us call it M) can be written in the following (conservative or divergence) form:

∂ρM

∂t
+
∂(ρvjM + qjM )

∂xj
= QM , (1.8)

where qM is the non-convective flux of M and QM is the (local) source of M . This
formulation is preferable for conservative numerical schemes, but it is more convenient to
use material derivatives to derive fluxes and to check thermodynamic admissibility. Using
differentiation rules (sum and product rules) we get

ρ
∂M

∂t
+M

∂ρ

∂t
+ ρvj

∂M

∂xj
+ρM

∂vj
∂xj

+ vjM
∂ρ

∂xj
+
∂qjM
∂xj

= QM . (1.9)

Note that, the blue terms sum up to zero, due to the conservation of mass ( eq. 2.1), so

ρ

(
∂M

∂t
+ vj

∂M

∂xj

)
+
∂qjM
∂xj

= QM . (1.10)
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Now we can write our balance laws using material derivatives:

ρ
dM

dt
= −

∂qjM
∂xj

+QM . (1.11)

By definition, a conservation law is special case of a balance law, that has zero source
(QM = 0).

1.2.5 Ingredients (fundamental laws, constitutive equations and local
thermodynamic equilibrium)

Fundamental laws of physics:
Conservation (balance) of mass (Lomonosov et al. 1756; Euler 1757; Lavoisier 1773):

ρ
d

dt

(
1

ρ

)
− ∂vj
∂xj

= 0 (1.12)

Conservation (balance) of linear momentum (Newton 1687; Euler 1757):

ρ
dvi
dt

+
∂qijp
∂xj

= 0 (1.13)

Conservation (balance) of angular momentum (Newton 1687; Cauchy 1827):

ρ
dεijkrjvk

dt
+
∂qijL
∂xj

= 0 (1.14)

Conservation (balance) of total energy (Joule 1843, 1850):

ρ
dE

dt
+
∂qjE
∂xj

= 0 (1.15)

Balance of entropy and the second law of thermodynamics (Carnot, 1824; Clausius, 1854) :

ρ
dS

dt
+
∂qjS
∂xj

= Qs ≥ 0 (1.16)

Constitutive equations
Unlike the fundamental laws, that are valid regardless of model assumptions, for any ma-
terial, the fluxes of the conserved quantities can vary based on model assumptions. E.g.
a different stress-strain relationship is needed for viscous and plastic deformation. These
different behaviours of matter are described by the constitutive equations. Also, the con-
stitutive equations are usually involve some material properties, that is essential to include
in the model to have good predictive power for the considered material.

Fourier’s law of heat conduction Fourier (1822):

qjHeat = −λ ∂T
∂xj

. (1.17)
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Flow of viscous fluids (final form by Stokes, 1845) :

qijm = σij + δij

∫ xj

0
ρgidxj (1.18)

σij = −δijP + 2η

(
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
δij
∂vk
∂xk

)
, (1.19)

where Φ = f(xj) is the gravity potential.

Equation of state :

P = f(T, ρ) or T = f(P, ρ) or ρ = f(P, T ) (1.20)

Local Thermodynamic Equilibrium (LTE)
The fundamental laws of thermodynamics and the equations of state, were originally for-
mulated for closed systems, in equilibrium (pressure, temperature and composition - i.e.
stable phases - are uniform). The framework of classical irreversible thermodynamics is
the established way to quantify non-equilibrium processes, such as thermal conduction,
chemical diffusion or combustion dynamics (e.g. De Groot and Mazur, 1984; Müller and
Müller, 2009). This framework has been successfully applied to design many devices that
operate far from equilibrium, such as internal combustion engines or rocket nozzles. The
key assumption of LTE is that, even in systems that are not in global equilibrium, every
infinitesimal material point is in thermodynamic equilibrium locally and in every instant of
time. This allows us to use equilibrium-relationships in open systems, that are not in equi-
librium. One of these equilibrium concepts is the so-called fundamental thermodynamic
relationship, that says that the internal energy can be partitioned into different forms, in
this case as heat, gravitational potential energy or volumetric work:

dU = −gjdxj(t) + TdS − PdV, (1.21)

where xj(t) denotes the path of a material point. The exact terms we consider here are
always model specific, hence this relationship is an axiom that defines what type of a
thermodynamic system we consider (e.g. for an elastic model we should consider elastic
strain energy). The LTE says that this relationship is satisfied instantaneously, thus we
can write this relationship in terms of time increments

dU

dt
= −gj

dxj(t)

dt
+ T

dS

dt
− P dV

dt
. (1.22)

Finally, let us reformulate the fundamental thermodynamic relationship in terms of total
energy, so we can later relate it to the conservation of energy, using Etot = U + Ekin

dE

dt
=

d

dt

(vivi
2

)
− gjvj + T

dS

dt
− P dV

dt
. (1.23)
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Variable symbol units (SI)

spatial coordinates xj m

time t s
mass m kg

temperature T K
pressure P Pa

specific volume V, ρ−1 m3kg−1

specific energy E J.kg−1

specific entropy S J.K−1.kg−1

density ρ kg.m−3

velocity vj m.s−1

non-advective momentum flux qijp Pa
non-advective energy flux qjE W.m−2

non-advective entropy flux qjE W.K−1.m−2

specific entropy production QS J.K−1.kg−1s−1

gravitational acceleration gj m.s−2

total stress σij Pa
deviatoric stress τij Pa

thermal conductivity λ W.m−1K−1

viscosity η Pa.s
total strain rate ε̇ij s−1

symmetric, deviatoric strain rate ε̇ijsym s−1

antisymmetric, deviatoric strain rate ε̇ijasym s−1

volumetric strain rate ε̇ijvol s−1

thermal expansion coefficient α K−1

compressibility β Pa−1

specific heat capacity at const. P CP J.K−1kg−1

Kronecker delta δij -
Levi-Civita symbol εijk -
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1.2.6 Recipe for viscous flow, with gravity

Step 1 - Write a system of equations using the balance laws

ρ
d

dt

(
1

ρ

)
=
∂vj
∂xj

(1.24)

ρ
dvi
dt

= −∂q
ij
p

∂xj
(1.25)

ρ
dE

dt
= −

∂qjE
∂xj

(1.26)

ρ
dS

dt
= −

∂qjS
∂xj

+QS (1.27)

(For conservation of angular momentum see section 1.2.7)

Step 2 - Write the LTE specific to the model and bring it into a convenient
form

dE

dt
= T

dS

dt
− P dV

dt
+

d

dt

(
1

2
vivi

)
− vjgj . (1.28)

Let’s notice, that in the PdV term V = ρ−1 is the specific volume and also that the
kinetic energy term can be reformulated using the chain rule. After all of these changes
and multiplying by ρ we get an equation with all of the transient terms from the balance
laws:

ρ
dE

dt
= Tρ

dS

dt
− Pρ d

dt

(
1

ρ

)
+ viρ

dvi
dt
− vjρgj . (1.29)

Step 3 - Substitute the balance laws into the time derivatives

−
∂qjE
∂xj

= −T
∂qjS
∂xj

+ TQS − P
∂vj
∂xj
− vi

∂qijp
∂xj
− vjρgj (1.30)

Step 4 - Solve for TQS

TQS = −
∂qjE
∂xj

+ T
∂qjS
∂xj

+ P
∂vj
∂xj

+ vi
∂qijp
∂xj

+ vjρgj (1.31)

Step 5 - Cancel the potentials
Let us separate the momentum flux into parts that are related either to body forces (related
to potential fields, in this case gravity) or to surface forces (stresses)

qijp = −σij − δij
∫ xi

0
ρgjdxi, (1.32)

where the negative sign of σij is a convention. Since,

vi
∂qijp
∂xj

= −vi
∂σij
∂xj

− viρgi, (1.33)

if we substitute back to equation (1.31) we get:
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TQS = −
∂qjE
∂xj

+ T
∂qjS
∂xj

+ P
∂vj
∂xj
− vi

∂σij
∂xj

(1.34)

Kronecker delta (δij) and index notation

δi=j = 1 and δi 6=j = 0, alternatively δij =

 1 0 0
0 1 0
0 0 1


Example:

δij
∂vi
∂xj

=
∑
i

∑
j

δij
∂vi
∂xj

=
∑
i=j

∑
j

1
∂vi
∂xj

+
∑
i 6=j

∑
j

0
∂vi
∂xj

=
∑
j

∂vj
∂xj

=
∂vj
∂xj

.

Step 6 - Choose an energy flux such a way that all terms with divergences of
unknown fluxes cancel

We are trying to choose fluxes, that ensure non-negative entropy production. We do not
know much about the divergences of the fluxes, yet our equation is filled with these terms.
Let us use the product rule (∇(aq)− q∇a = a∇q) for the terms with the momentum and
entropy fluxes:

TQS =
∂

∂xj

(
−qjE + TqjS − viσij

)
− qjS

∂T

∂xj
+ P

∂vj
∂xj

+ σij
∂vi
∂xj

. (1.35)

A particular way to cancel the divergence of the energy flux is to use

qjE = TqjS − viσij . (1.36)

Now we are left with gradients and divergences of quantities that we can handle.

TQS = −qjS
∂T

∂xj
+ P

∂vj
∂xj

+ σij
∂vi
∂xj

. (1.37)

Step 7 - Apply the second law of thermodynamics

The second law of thermodynamics (translated to our problem) says that QS must
never be negative, so

TQS = −qjS
∂T

∂xj
+ P

∂vj
∂xj

+ σij
∂vi
∂xj
≥ 0, (1.38)

since we use an absolute temperature scale.
Step 8 - Determine the remaining fluxes and make sure that QS ≥ 0

The fluxes must satisfy our empirical knowledge, listed as the phenomenological laws
and we must check if the proposed ones are admissible (i.e. QS ≥ 0). One way to choose
QS ≥ 0 as some coefficient times the corresponding derivative from equation (1.38). This
way we will end up with sums of squares and we only have to choose a coefficient with the
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correct sign. Our motivation for the entropy flux is Fourier’s law of heat conduction

qjS = − λ
T

∂T

∂xj
. (1.39)

The factor 1/T is necessary to satisfy Fourier’s law once the heat transfer equation is
derived. Heat is TdS at constant volume and Fourier’s law describes the heat flux.

For the momentum flux we have to include that pressure differences induce fluid flow,
and we have to take into account viscosity, that is a "resistance" of fluids against defor-
mation. In other words viscous deformation is non-reversible. The most straightforward
solution to make viscous dissipation never negative, would be to simply merge Bernoulli’s
and Newton’s law and extend it into a tensor form:

σij = −δijP + η
∂vi
∂xj

. (1.40)

This is admissible for any non-negative η, but unfortunately it is not correct.
The strain rate tensor can be expressed as a sum of its symmetric and antisymmetric parts

∂vi
∂xj

=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
+

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
. (1.41)

The symmetric part can be further divided into volumetric and deviatoric parts (as the
antisymmetric is already deviatoric):

∂vi
∂xj

=

{
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
δij
∂vk
∂xk

}
+

1

3
δij
∂vk
∂xk

+
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
, (1.42)

The antisymmetric part of the strain rate tensor represents rigid body rotation, that should
not generate viscous dissipation, as there is no internal deformation. Also, here we consider
zero bulk viscosity (that is a good assumption in most cases), so we want to make sure
that volumetric deformation is reversible, therefore dissipation should depend only on the
symmetric, deviatoric strain rates:

σij = −δijP + 2η

(
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
δij
∂vk
∂xk

)
. (1.43)

The factor 2 in front of η is introduced by convention, to satisfy Newton’s law in simple
shear (τ = η ∂vx/∂y), when the flow velocities are parallel everywhere and only vary in a
flow-perpendicular direction.
Substituting these fluxes back into the entropy source equation (eq. 1.38), we get:

TQS =
λ

T

∂T

∂xj

∂T

∂xj
+ P

∂vj
∂xj

+

[
−δijP + 2η

(
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
δij
∂vk
∂xk

)]
∂vi
∂xj
≥ 0.

(1.44)
We already made sure that the entropy flux is admissible. Now we take a look at the mo-
mentum flux times strain rate term. For simplicity we are going to denote the strain
rate tensor as ε̇ij , that can be constructed as a sum of its symmetric-deviatoric and
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antisymmetric-deviatoric and volumetric parts

ε̇ij =
∂vi
∂xj

= ε̇ijsym + ε̇ijasym + ε̇ijvol (1.45)

ε̇ijsym =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
δij
∂vk
∂xk

(1.46)

ε̇ijasym =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
(1.47)

ε̇ijvol =
1

3
δij
∂vk
∂xk

. (1.48)

Using this notation, the entropy production terms will be

TQS =
λ

T

∂T

∂xj

∂T

∂xj
+ P

∂vj
∂xj

+
(
−δijP + 2ηε̇ijsym

) (
ε̇ijsym + ε̇ijasym + ε̇ijvol

)
≥ 0. (1.49)

Let us consider first the term:

− δijP
(
ε̇ijsym + ε̇ijasym + ε̇ijvol

)
= −P ∂vj

∂xj
, (1.50)

since δijP is a diagonal tensor and ε̇ijasym has zeros in its main diagonal

− δijP ε̇ijasym = 0 (1.51)

and ε̇ijsym is deviatoric, so the sum of its elements in the main diagonal is zero

− δijP ε̇ijsym = −P
(
δij ε̇

ij
sym

)
= 0. (1.52)

and finally

− δijP ε̇ijvol = −P
(
δij ε̇

ij
vol

)
= −P ∂vj

∂xj
. (1.53)

Now let us consider the second term:

2ηε̇ijsym

(
ε̇ijsym + ε̇ijasym + ε̇ijvol

)
= 2ηε̇ijsymε̇

ij
sym. (1.54)

Let us notice that the product of a symmetric and an antisymmetric tensor is always
antisymmetric, and the sum of the elements of an antisymmetric tensor is always zero

2ηε̇ijsymε̇
ij
asym = 0. (1.55)

The volumetric strain rate tensor is a diagonal tensor and the sum of the diagonal elements
of the symmetric-deviatoric tensor is zero:

2ηε̇ijsymε̇
ij
vol = ηε̇ijsym

2

3
δij
∂vk
∂xk

= η(δij ε̇
ij
sym)

2

3

∂vk
∂xk

= 0. (1.56)
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Now we can write a simplified form of the entropy source equation (1.49):

TQS =
λ

T

∂T

∂xj

∂T

∂xj
+ P

∂vj
∂xj
− P ∂vj

∂xj
+ 2ηε̇ijsymε̇

ij
sym ≥ 0, (1.57)

and simplifying further

TQS =
λ

T

∂T

∂xj

∂T

∂xj
+ 2ηε̇ijsymε̇

ij
sym ≥ 0. (1.58)

With all the previous steps we also ensured positive entropy production and we could make
sure that we only get viscous dissipation by non-volumetric internal deformation.
Note: In this case τij = 2ηε̇ijsym.

Step 9 - Substitute back fluxes and sources into the balance equations

ρ
d

dt

(
1

ρ

)
=
∂vj
∂xj

(1.59)

ρ
dvi
dt

= − ∂

∂xj

(
δijP − 2ηε̇ijsym − δij

∫ xi

0
ρgjdxi

)
(1.60)

ρ
dE

dt
= − ∂

∂xj

(
−λ ∂T

∂xj
− viσij

)
(1.61)

ρ
dS

dt
= − ∂

∂xj

(
− λ
T

∂T

∂xj

)
+

λ

T 2

∂T

∂xj

∂T

∂xj
+
τij ε̇

ij
sym

T
= − 1

T

∂

∂xj

(
−λ ∂T

∂xj

)
+
τij ε̇

ij
sym

T

(1.62)

So far we made sure to obey the fundamental laws of nature (conservation of mass, momen-
tum and energy, plus non-negative entropy production), and we made no other assumptions
than the LTE. If we count vi as one unknown, we have four equations for six unknowns
(ρ, vi, P, E, T, S). This is not a closed system of equations, to get one we need two more
equations. Here we are going to use equations of state to close the system, but an ultimately
correct way would be to know exactly T (ρ, U or S) and P (ρ, U or S) (i.e. thermodynamic
look-up table).

Step 10 - Close the system of equations with the suitable Equations of State
(EoS)

We do not have equations for P and T , so let us formulate dS and dV in a more
convenient way, as a function of T and P :

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP (1.63)

dV =

(
∂V

∂T

)
P

dT +

(
∂V

∂P

)
T

dP (1.64)

Now we have two extra equations, and three of these derivatives are actually the definitions
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of three material properties, that can be measured and found in the literature:

CP =

(
∂Q

∂T

)
P

=

(
∂U

∂T

)
P

= T

(
∂S

∂T

)
P

(1.65)

α =
1

V

(
∂V

∂T

)
P

(1.66)

β = − 1

V

(
∂V

∂P

)
T

(1.67)

On the use of specific and total quantities
We use S and V as specific quantities (per unit mass), although in classical ther-
modynamics the parameters α and β are usually expressed in terms of total volume
(Vtot = mV ). However, since these parameters are measured in closed system exper-
iments, the mass is constant, thus α and β are the same both in total and specific
volumes, e.g.:

α =
1

Vtot

(
∂Vtot

∂T

)
P

=
1

mV

(
∂mV

∂T

)
P

=
m

mV

(
∂V

∂T

)
P

=
1

V

(
∂V

∂T

)
P

.

Using a similar argumentation, one can show that:

Ctot
P

m
=
T

m

(
∂Stot

∂T

)
P

=
T

m

(
∂mS

∂T

)
P

=
mT

m

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
P

= CP .

Generally in continuum mechanics, it is better to use specific (intensive) quantities
than total (extensive) quantities because mass is variable in most cases.

For the second term of equation 1.63 we can use a Maxwell relationship:(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

(1.68)

If we substitute back to equations 1.63 and 1.65, we get (remember V = ρ−1):

dS

dt
=
CP
T

dT

dt
− α

ρ

dP

dt
(1.69)

ρ
d

dt

(
1

ρ

)
= α

dT

dt
− βdP

dt
(1.70)

Let us reorder them:

ρCP
dT

dt
= αT

dP

dt
+ Tρ

dS

dt
(1.71)

β
dP

dt
= −ρ d

dt

(
1

ρ

)
+ α

dT

dt
(1.72)

Now we have a closed system of equation in a convenient form. Notice, that there is a
nonlinear dependence between P and T .
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Step 11 - The final, self-consistent, closed system of equations

Usually, there is no need to track all the six variables:

1

ρ

dρ

dt
= −∂vj

∂xj
(1.73)

ρ
dvi
dt

= − ∂

∂xj

(
δijP − 2ηε̇ijsym − δij

∫ xj

0
ρgidxj

)
(1.74)

ρ
dE

dt
= − ∂

∂xj

(
−λ ∂T

∂xj
− viσij

)
(1.75)

ρ
dS

dt
=

1

T

∂

∂xj

(
−λ ∂T

∂xj

)
+
τij ε̇

ij
sym

T
(1.76)

ρCP
dT

dt
= αT

dP

dt
+ Tρ

dS

dt
(1.77)

β
dP

dt
=

1

ρ

dρ

dt
+ α

dT

dt
(1.78)

Instead we substitute the entropy term in the temperature evolution equation, plus the
mass conservation into the pressure evolution equation, and solve for only ρ, P , vi and T :

1

ρ

dρ

dt
= −∂vj

∂xj
(1.79)

ρ
dvi
dt

= − ∂

∂xj

(
δijP − 2ηε̇ijsym − δij

∫ xj

0
ρgidxj

)
(1.80)

ρCP
dT

dt
= αT

dP

dt
− ∂

∂xj

(
−λ ∂T

∂xj

)
+ τij ε̇

ij
sym (1.81)

β
dP

dt
= −∂vj

∂xj
+ α

dT

dt
(1.82)

Now we have a fully coupled thermo-mechanical model of viscous deformation.

1.2.7 Supplementary information - How angular momentum is conserved?

From mechanics of a material point we know that angular momentum is:

Li = εijkrj(mv)k (1.83)

Now let us take the conservation of linear momentum and take its cross product with rj

ρεijkrj
dvk
dt

+ εijkrj
∂qklp
∂xl

= 0 (1.84)

Using the chain rule we can write:

ρ

(
dεijkrjvk

dt
− εijk

drj
dt
vk

)
+
∂εijkrjq

kl
p

∂xl
− εijk

∂rj
∂xl

qklp = 0. (1.85)

Notice that
εijk

drj
dt
vk = εijkvjvk = 0, (1.86)

25



INTRODUCTION

so

ρ
dεijkrjvk

dt
+
∂εijkrjq

kl
p

∂xl
= εijk

∂rj
∂xl

qklp . (1.87)

Notice that the first term is the time derivative of the angular momentum, the second term
looks like the divergence of the torque. By analogy to the linear momentum, we can say
that

Li = εijkrjvk (1.88)

qijL = εijkrjq
kl
p (1.89)

QiL = εijk
∂rj
∂xl

qklp (1.90)

To conserve angular momentum we need zero source:

QiL = εijk
∂rj
∂xl

qklp = εijkδjl q
kl
p = εijkq

jk
p = 0, (1.91)

that is true if qjkp is symmetric. Since the only non-diagonal parts of qjkp come from the
stress tensor (eq. 1.32), that is symmetric (eq. 1.43), the angular momentum is conserved.

1.3 Aim and structure of the thesis

The aim of this thesis is to provide some insights to the thermo-mechanics of ductile strain
localization. The first aspect is to provide at least partial answers regarding the behavior
of ductile shear zones spontaneously generated by thermal softening, and estimating the
potential importance of such shear zones in nature. The second aspect is to investigate
some thermo-mechanical processes that could control tectonic nappe formation. A special
attention is paid on the application of the results for the Helvetic Nappe System, where
detailed data of geometry, kinematic evolution, deformational mechanisms and thermal
history is available as a constrain. For the following questions we provide either new an-
swers or we show some new aspects:
- How the thickness of shear zones generated by thermal softening develops?
- How the temperature of shear zones generated by thermal softening develops?
- Under what conditions could shear zone form by thermal softening?
- Can shear heating result in subduction initiation?
- How tectonic nappes are detached from their original position?
- How thrust sheets are transported?
- How rootless nappes form?
- What conditions enable stacking of fold nappes and thrust sheets?

In Chapter 2 we provide a criteria for the spontaneous generation of ductile shear
zones by thermal softening using thermo-mechanical numerical simulations for linear and
power-law viscous flow in one-dimension (1D), 2D and 3D. We present scaling laws for the
thickness and temperature of such shear zones, that require no a priori information about
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the shear zone itself, and that is valid for 1D, 2D and 3D, in bulk pure and simple shear.
In Chapter 3 we show with numerical simulations that subduction initiation by ther-

mal softening at a passive margin is feasible for reasonable conditions. The shear zone
temperature can be estimated by the scaling formula from Chapter 2. The model results
show similarities with geological data and reconstructions of subduction during closure of
the Piemont-Liguria basin during the Alpine orogeny.

In Capter 4 we present results of two-dimensional numerical simulations of shortening
of a passive margin, and show the detachment and horizontal transport of a thrust nappe
and stacking of this thrust nappe above a fold nappe. The model results show considerable
similarities to the geological data from the Helvetic nappe system in Western Switzerland.

The last chapter (Chapter 5) provides a summery of the most important results of the
thesis and also provides some perspectives.

References

Bercovici, D. and Y. Ricard
2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and
pinning. Physics of the Earth and Planetary Interiors, 202:27–55.

Burov, E., A. Watts, et al.
2006. The long-term strength of continental lithosphere:" jelly sandwich" or" crème
brûlée"? GSA today, 16(1):4.

Carnot, S.
1824. Reflections on the motive power of fire, and on machines fitted to develop that
power. Paris: Bachelier.

Cauchy, A.-L.
1827. De la pression ou tension dans un corps solide. Ex. de math, 2:42–56.

Chung, T.
1988. Continuum mechanics. Prentice-Hall Englewood Cliffs.

Clausius, R.
1854. Über eine veränderte form des zweiten hauptsatzes der mechanischen wärmetheorie.
Annalen der Physik, 169(12):481–506.

De Groot, S. and P. Mazur
1984. Non-equilibrium thermodynamics dover publications. Inc. New York.

Euler, L.
1757. Principes généraux du mouvement des fluides. Mémoires de l’Académie des Sciences
de Berlin, Pp. 274–315.

Fourier, J.
1822. Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils.

27



INTRODUCTION

Joule, J. P.
1843. Xxxii. on the calorific effects of magneto-electricity, and on the mechanical value of
heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
23(152):263–276.

Joule, J. P.
1850. Iii. on the mechanical equivalent of heat. Philosophical Transactions of the royal
Society of London, (140):61–82.

Lavoisier, A.
1773. Recherches de m. priestly sur les differentes especes d’air. Opuscules Physiques et
Chimiques.

Lomonosov, M. V., H. M. Leicester, et al.
1970. Mikhail vasil’evich lomonosov on the corpuscular theory.

Müller, I. and W. H. Müller
2009. Fundamentals of thermodynamics and applications: with historical annotations and
many citations from Avogadro to Zermelo. Springer Science & Business Media.

Newton, I.
1999. The Principia: mathematical principles of natural philosophy. Univ of California
Press.

Poirier, J.
1980. Shear localization and shear instability in materials in the ductile field. Journal of
Structural Geology, 2(1-2):135–142.

Regenauer-Lieb, K., D. A. Yuen, and J. Branlund
2001. The initiation of subduction: criticality by addition of water? Science,
294(5542):578–580.

Stokes, G. G.
1845. On the theories of the internal friction of fluids in motion. Transactions of the
Cambridge Philosophical Society, 8:287–305.

Thielmann, M. and B. J. Kaus
2012. Shear heating induced lithospheric-scale localization: Does it result in subduction?
Earth and Planetary Science Letters, 359:1–13.

28



CHAPTER 2

Spontaneous generation of ductile shear zones by
thermal softening: localization criterion, 1D to 3D

modelling and application to the lithosphere

Dániel Kiss, Yuri Podladchikov, Thibault Duretz
and Stefan M. Schmalholz

Published in Earth and Planetary Science Letters, 519 (2019) p. 284-296



SHEAR ZONE FORMATION BY THERMAL SOFTENING

Abstract

The generation of ductile shear zones is essential for the formation of tectonic plate bound-
aries, such as subduction or strike-slip zones. However, the primary mechanism of ductile
strain localization is still contentious. We study here the spontaneous generation of duc-
tile shear zones by thermal softening using thermo-mechanical numerical simulations for
linear and power-law viscous flow in one-dimension (1D), 2D and 3D. All models are
velocity-driven. The 1D model exhibits bulk simple shear whereas the 2D and 3D models
exhibit bulk pure shear. The initial conditions include a small temperature perturbation
in otherwise homogeneous material. We use a series of 1D simulations to determine a
new analytical formula which predicts the temperature evolution inside the shear zone.
This temperature prediction requires knowledge of only the boundary velocity, flow law
and thermal parameters, but no a priori information about the shear zone itself, such as
thickness, stress and strain rate. The prediction is valid for 1D, 2D and 3D shear zones
in bulk pure and simple shear. The results show that shear heating dominates over con-
ductive cooling if the relative temperature increase is > 50 ◦C. The temperature variation
induced by the shear zone is nearly one order of magnitude wider than the corresponding
finite strain variation so that no significant temperature variation occurs between shear
zone and wall rock. Applying typical flow laws for lithospheric rocks shows that shear zone
generation by thermal softening occurs for typical plate tectonic velocities of few cm.yr−1

or strain rates between 10−16 and 10−14 s−1. Shear stresses larger than 200 MPa can
already cause strain localization. The results indicate that thermal softening is a feasible
mechanism for spontaneous ductile shear zone generation in the lithosphere and may be
one of the primary mechanisms of lithospheric strain localization.

2.1 Introduction

The spontaneous generation of shear zones in ductile rocks is fundamental for the formation
of tectonic plate boundaries, such as subduction and strike slip zones, or the generation of
tectonic nappes during orogenic wedge formation. We refer here to spontaneous generation
of a shear zone when the fundamental shear zone parameters, such as thickness, shear stress
and strain rate, are not a priori prescribed by the natural or model configuration. We refer
to ductile deformation when the deformation behaviour is described mathematically by a
relation between stress and strain rate, such as by flow laws for diffusion, dislocation or
Peierls creep (i.e. low temperature plasticity). The conversion of dissipative work into
heat, the related local temperature increase and the associated decrease of temperature
dependent rock viscosities has frequently been suggested as a cause of spontaneous strain
localization and shear zone formation in the lithosphere (Yuen et al., 1978; Regenauer-Lieb
and Yuen, 1998; Leloup et al., 1999; Kaus and Podladchikov, 2006; Takeuchi and Fialko,
2012; Thielmann and Kaus, 2012; Duretz et al., 2015; Jaquet et al., 2015; Moore and
Parsons, 2015). We refer here to this thermally controlled strain localization mechanism as
thermal softening. Despite its fundamental thermo-mechanical feasibility (Hersey, 1936;
Brinkman, 1951; Gruntfest, 1963), shear heating and thermal softening is still contentious
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as important softening mechanism causing strain localization in ductile rock (Regenauer-
Lieb et al., 2001; Platt and Behr, 2011; Bercovici and Ricard, 2012; Ghazian and Buiter,
2013; Gueydan et al., 2014; Platt, 2015). This is, for example, different from physics-based
models of friction in rock where essentially all potential processes causing significant friction
weakening are considered to be related to shear heating, such as "flash heating", thermal
pressurization or temperature controlled chemical/phase changes, including melting and
formation of pseudotachylites (Sibson, 1975; Fialko and Khazan, 2005; Brown and Fialko,
2012; Aharonov and Scholz, 2018). For ductile strain localization, proposed alternative
mechanisms not related to shear heating are, for example, grain size reduction (Bercovici
and Ricard, 2012; Platt, 2015), reaction-weakening caused by infiltration of fluids along
precursor brittle faults (White and Knipe, 1978; Mancktelow and Pennacchioni, 2005) or
fabric development in rock with significant mechanical heterogeneities (Montési, 2013).
Out of the different mechanisms proposed for ductile strain localization, shear heating and
thermal softening (1) must occur in nature since dissipative deformation generates heat
and rock viscosity is temperature dependent and (2) requires the least assumptions since
no knowledge concerning grain size reduction and growth, fluid flow, reaction kinetics or
mechanical heterogeneities required for fabric evolution is needed. Hence, thermal softening
as mechanism itself is actually not contentious, but whether thermal softening alone can
be significant enough to generate shear zones in ductile rock under natural conditions is
debated, as well as its relative importance compared to other localization mechanisms.

A long-lived argument against the significance of thermal softening during ductile de-
formation in the lithosphere is that many natural shear zones with thickness ranging from
hundreds of meters to several kilometers do not indicate a sharp change in temperature
between the little-deformed wall rock and the highly-deformed shear zone. This argument
persists, despite the fact that several thermo-mechanical studies have shown that even if a
shear zone is caused by thermal softening, there are only small temperature gradients be-
tween the shear zone and the wall rock (e.g., Yuen et al. 1978; Takeuchi and Fialko 2012;
Schmalholz and Duretz 2015; Mako and Caddick 2018). Another argument against the
importance of thermal softening is that the required shear stresses or the required strain
rates are too large for typical lithospheric deformation conditions (e.g. Platt, 2015).

To test the validity of the above arguments against thermal softening and to quantify
thermal softening, we use a thermo-mechanical numerical model of ductile rock deforma-
tion based on the conservation equations of continuum mechanics and apply constitutive
equations for ductile creep. We perform a scaling analysis with results of a one-dimensional
(1D) model for which simple shearing is controlled by a boundary velocity and strain lo-
calization can be triggered by a temperature, hence viscosity, perturbation in the model
center. We apply a temperature perturbation because such perturbation diffuses away if
shear heating is not efficient. In contrast, a viscosity perturbation (i.e. perturbation of
material properties) would remain even if shear heating is insufficient and would, hence,
always generate a shear zone in the 1D model, with a thickness of the initial viscosity per-
turbation. The model configuration is based on the model of Yuen et al. (1978) because for
this configuration "No a priori assumption about slip-zone width or shear-stress magnitude
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Lithology A [Pa−(n+r)s−1] n fH2O [Pa] r Aeff [Pa−ns−1] Q [J.mol−1] λ [W.K−1.m−1] ρ [kg.m−3]

Wet quartzite1 6.31× 10−42 4.0 3.7× 107 1 2.91× 10−32 1.35× 105 2.5 2700
Westerly granite2 3.17× 10−26 3.3 - 0 1.67× 10−24 1.87× 105 2.5 2700

Wet albite3 2.51× 10−15 3.0 - 0 9.04× 10−14 3.32× 105 2.2 2900
Wet anorthite3 3.98× 10−16 3.0 - 0 1.43× 10−14 3.56× 105 2.2 2900
Dry anorthite3 5.01× 10−6 3.0 - 0 1.80× 10−4 6.56× 105 2.2 2900
Wet olivine4 5.68× 10−27 3.5 109 1.2 2.40× 10−14 4.80× 105 3.0 3400
Dry olivine4 1.10× 10−16 3.5 - 0 7.37× 10−15 5.30× 105 3.0 3400

Table 2.1 – Rheological and thermal parameters for the used lithologies. Aeff = FAfrH2Od
−p is an

effective pre-exponential factor (’A’ in the main text) that incorporates grain size (d) and water fugacity
(fH2O) dependence. In all cases we use dislocation creep therefore the grain size exponent is p = 0.
All of these flow laws describe stress and strain rate relationship in uniaxial compression experiments.
In order to convert them into strain rate dependent invariant forms we need to introduce a geometry
factor, which is F = 2n−13(n+1)/2 for all presented cases (see e.g. Gerya 2009). The rest of the
parameters are: power law exponent (n), water fugacity exponent (r), activation energy (Q), thermal
conductivity (λ), density (ρ) and finally heat capacity is constant for all (cp = 1050 J.kg−1K−1). The
sources of the rheological parameters are: 1Hirth et al. 2001, 2Carter and Tsenn 1987, 3Rybacki and
Dresen 2004,4Hirth and Kohlstedt 2003.

is necessary; the thermal-mechanical structure of the slip zone evolves in time and all its
characteristics are self consistently determined" (Yuen et al., 1978). These model features
are essential to study spontaneous generation of shear zones in a homogeneous material.
Yuen et al. (1978) considered linear viscous flow laws only whereas we also consider power-
law viscous flow laws to apply our results to lithospheric dislocation creep flow laws which
exhibit power-law stress exponents typically between 3 and 4 (Table 1).

The aims of our study are to (1) quantify the temperature increase required for sponta-
neous shear zone generation, (2) quantify the relation between the width of the temperature
variation across the shear zone and the width of the corresponding finite strain variation,
(3) quantify stresses, velocities and strain rates required for shear zone generation, (4)
derive an analytical formula which predicts the temperature inside a shear zone without a
priori knowledge of the thickness, stress and strain rate of the shear zone, (5) compare the
1D model for bulk simple shear with 2D and 3D models for bulk pure shear and (6) eval-
uate the importance of thermal softening for ductile strain localization in the lithosphere.
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2.2 Mathematical and numerical model

2.2.1 Governing system of equations

We assume incompressible viscous deformation in the absence of gravity and inertial forces.
The governing system of equations is

∂vi
∂xi

= 0 (2.1)

−δij
∂P

∂xi
+
∂τij
∂xj

= 0 (2.2)

ρcp
∂T

∂t
− ∂

∂xi

(
λ
∂T

∂xi

)
− τij ε̇ij = 0 (2.3)

τij = 2µeff ε̇ij (2.4)

µeff(ε̇II, T ) = A−
1
n ε̇

1
n
−1

II exp

(
Q

nRT

)
(2.5)

where equation (2.1), (2.2) and (2.3) are the equations for conservation of mass, linear
momentum and energy, respectively, equation (2.4) is the creep flow law (constitutive
equation) and equation (2.5) states the effective viscosity. The indices i and j correspond
to coordinate axes 1, 2 and 3 and repeated indices imply summation. In equation (2.3) we
assume that all dissipative work is converted to heat (so-called Taylor-Quinney coefficient
is 1.0) since we do not consider grain size reduction which consumes typically only a minor
fraction of the dissipative work (Herwegh et al., 2014; Thielmann et al., 2015). xi are
the components of the spatial coordinates [m], t is the time [s], vi are components of the
velocity vector [m.s−1], δij is the Kronecker delta, τij are components of the deviatoric
stress tensor [Pa], ρ is density [kg.m−3], cp is heat capacity at constant pressure [J.K−1], T
is temperature [K], λ is thermal conductivity [W.K−1.m−1], µeff is effective viscosity [Pa.s],
ε̇ij are components of the deviatoric strain rate tensor [s−1], ε̇II is the square root of the
second invariant of the strain rate tensor [s−1], n is the power law exponent [ ], A is the
pre-exponential factor [Pan.s−1], Q is activation energy [J.mol−1] and R is the universal
gas constant [J.mol−1.K−1].

Initial and boundary conditions are

T (
√
xixi > r, t = 0) = T0 and T (

√
xixi ≤ r, t = 0) = T0 + ∆T0 (2.6)

qi(xi = [0 or Li], t) = 0 (2.7)

vi(xj = 0, t) = 0 and vi(xj = Lj , t) = ∆vi (2.8)

where T0 is initial temperature [K], ∆T0 is the value of the intial temperature perturbation
[K], qi are components of the heat flux vector [W.m−2], Li is the total size of the model
domain [m] in the different spatial directions and ∆vi is the far-field velocity difference
[m.s−1] in the different spatial directions. The material parameters are homogenous and
the initial temperature is constant except a small temperature perturbation, ∆T0, in a
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region around the model center, xi = 0, whose size is specified with radius r (eq. 2.6, Fig.
2.1). This thermal perturbation mimics any kind of small variation of strength or thermal
properties which are always present in natural rocks. The model is thermally insulated
(eq. 2.7). For simple shear type deformation the model is kinematically driven by constant
far-field boundary velocities (eq. 2.8). For pure shear type deformation in 2D and 3D only
velocities normal to the boundaries are defined (i.e. i = j for eq. 2.8), otherwise free slip
boundary conditions are used, so shear stresses are zero at the boundaries.

0

Figure 2.1 – Model configurations for 1D simple shear, and 2D and 3D pure shear bulk deformation.
In all models a thermal perturbation (red) is in the model center. Due to the symmetry of the problem
we solve the 2D and 3D models only for the positive coordinate region. To compare 1D results with
2D and 3D results, the results of the 1D model are rotated so that they correspond to the direction x′
in the 2D and 3D models which is orthogonal to the shear zone.

2.2.2 Numerical method

The system of non-linear equations (Eq. 2.1-2.5) is discretized on a regular Cartesian
staggered grid. The problem is solved by a pseudo-transient iteration or relaxation scheme
(Versteeg and Malalasekra, 2007; Duretz et al., 2019). The thermo-mechanical equations
are recasted in the following form:

dP

dω
=
∂vi
∂xi

,

dvi
dω

=
∂τij
∂xj
− ∂P

∂xi
,

dT

dω
= ρcp

∂T

∂t
− ∂

∂xi

(
λ
∂T

∂xi

)
− τij ε̇ij .

(2.9)

where dP
dω ,

dvi
dω and dT

dω are derivatives of pressure, velocities and temperature with respect
to pseudo time ω. We consider here incompressible deformation in the absence of iner-
tia which corresponds to the equations when the pseudo-time derivatives have vanished.
These pseudo-transient derivatives allow for an iterative solve of the non-linear system of
equations. At each physical time step, an explicit integration of the non-linear equation is
carried out until the pseudo time derivatives vanish and steady state is achieved. A fully
implicit solution of the heat equation is obtained by evaluating the heat flux and shear
heating term at each pseudo-transient iteration. The evaluation of temperature and strain
rate dependent viscosity is embedded within the pseudo transient iteration cycle. The
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pseudo transient algorithm is easily extendable to 2D and 3D configurations and is also
well suited for vectorized parallel computations (see e.g. Omlin, 2016).

2.2.3 1D, 2D and 3D model configurations

The 1D model domain extends orthogonally across the shear zone and velocities are or-
thogonal to the model domain. The 1D model is driven by a velocity difference at the
two model boundaries which imposes a bulk simple shear deformation (Fig. 2.1a). To test
whether results of the 1D model are applicable to 2D and 3D shear zones, we perform also
2D and 3D numerical simulations for bulk pure shear. For the 3D model shortening occurs
in one horizontal direction and extension in the vertical direction while the bulk extension
in the second horizontal dimension is zero (Fig. 2.1c). The initial temperature perturba-
tion has the shape of a quarter circle in the 2D model (Fig. 2.1b) and one eight of a sphere
in the 3D model (Fig. 2.1c). To compare the 2D and 3D results with the 1D results we
record the temperature and shear velocities along a profile line, with coordinates x′, which
is orthogonal to the 2D and 3D shear zones. These results are directly comparable with
the results of the corresponding 1D model (Fig. 2.1).

2.3 Fundamental features of 1D shear zone evolution

There are two end-member solutions of the numerical model: (1) The velocity field con-
verges to homogeneous simple shear in the entire model domain, there is no strain local-
ization and the temperature increases homogeneously in the model domain due to bulk
shear heating. (2) The temperature increases locally in the model center, which causes
strain localization and the generation of a shear zone that is much thinner than the model
domain. We show in the following fundamental features of solution (2) for representative
simulations.

For simulations with linear viscosity the temperature increases in the shear zone during
a transient stage and then reaches a constant temperature (Fig. 2a), in agreement with
Fleitout and Froidevaux (1980). This temperature is independent on the initial tempera-
ture perturbation and model width (Fig. 2a). For simulations with power-law viscous flow
laws the temperature also increases in the shear zone during a transient stage and then
reaches a quasi-constant temperature (Fig. 2b). In contrast to the linear viscous model
the temperature in the shear zone does not reach a strictly-constant value, but the tem-
perature is slightly increasing with ongoing deformation, referred to here as quasi-constant
(Fig. 2b). This quasi-constant temperature is also independent on the initial tempera-
ture perturbation and the model width (Fig. 2b). For such quasi-constant temperature in
the shear zone center, shear heating must be locally balanced by thermal conduction (Eq.
2.3). Fleitout and Froidevaux (1980) showed that constant boundary velocities guarantee
that this balance is always reached. Hence, velocity-driven shearing of a dominantly vis-
cous medium does not lead to a thermal runaway for which temperatures would increase
exponentially, in an unbounded way.

The presented model results correspond to simulations with significant shear localiza-
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Figure 2.2 – Representative results of 1D shear zone models. Time evolution of maximum temperature
at the shear zone center for linear viscous (a) and power-law viscous (b) flow. Model (1) is based
on a dry anorthite diffusion creep flow law with Aeff = 0.14 Pa.s−1 (d = 0.3 mm) and Q = 467
kJ.mol−1, model (2) is based on a dry peridotite flow law (see Table 1). In both models we applied 3
cm.yr−1 velocity difference. Different lines correspond to models with different model size and initial
perturbation (see legend, which applies to all three panels). After a transient stage the maximum
temperature converges to a constant (a) or (quasi-)constant (b) temperature. c) Shear stress evolution
for power law simulations, shown in panel b). The shear stress always decreases with progressive shear
zone evolution and converges to a quasi-constant value.

tion in the model center and show that a modest temperature rise of 100 oC can result in
shear localization due to thermal softening (Fig. 2a and b).

The shear stress is spatially constant in the 1D model at each instant of time, it is
largest at the onset of deformation and decreases with time as a result of progressive
temperature increase due to shear heating (Fig. 2c). When the maximal temperature
reaches a quasi-constant value then also the stress reaches a quasi-constant value.

The characteristic width of the temperature variation across the shear zone, referred
to here as thermal thickness, is not prescribed a priori but controlled by the thermo-
mechanical process (Duretz et al., 2014, 2015). After the maximal temperature has reached
its (quasi-)constant value, the thermal thickness is increasing proportional with the square
root of time due to thermal conduction (Fig. 3a). In the following, we distinguish between
the thermal thickness and the finite strain thickness that is determined by the width of
the finite strain profile (Fig. 4a). The thermal thickness is defined as the width of the
temperature profile at this temperature, which is half between the maximal temperature
in the shear zone center and the minimal ambient temperature far away from the shear
zone (Fig. 3a). During the transient stage of temperature increase the thermal thickness
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is typically decreasing (Fig. 3b). The thermal thickness evolution is essentially unaffected
by the initial temperature perturbation and model size, similar to the evolution of the
maximum temperature (Fig. 3b).
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Figure 2.3 – a) Representative time evolution of a temperature profile during shear zone formation. The
model setup is equivalent with the one of the ∆T0 = 25 oC, and L = 1000 km from Fig. 2b and 2c.
The dashed horizontal line indicates the thermal thickness which is measured at the temperature which
is half between the maximum and minimum temperature of the corresponding profile. b) Evolution
of thermal thickness for different representative simulations (same colors are used in Fig. 2b and 2c).
Each line shows the result of a simulation with different initial temperature perturbation and model
size. After a transient period, the thickness evolution for all simulations is linearly increasing with the
square root of time.

The temperature profile is significantly wider than the corresponding finite strain (γ)
profile across the shear zone (Fig. 4a), which agrees with results of Takeuchi and Fialko
(2012) for strike slip zones and of Schmalholz and Duretz (2015) for thrust-type shear
zones. γ is calculated by time integration of the shear strain rates. The finite strain
thickness is measured in the same way as the thermal thickness, that is, the width of the
γ-profile at the value of γ half between the maximum value and the far-field value at the
model boundary (Fig. 4a). The ratio of thermal to finite strain thickness increases during
the transient phase of temperature increase. Once the temperature has reached its (quasi-
)constant value this ratio converges towards a constant value. This shows that the finite
strain and thermal thickness are linked, both are controlled by thermal conduction. After
the transient phase, the thermal thickness is nearly one order of magnitude (factor 6 to 8)
larger than the finite strain thickness (Fig. 4b). The example presented in figure 4a shows
that a significant decrease of γ from ca. 17, in the shear zone center, to 1 is associated with
only a minor temperature decrease from ca. 800 oC to 760 oC (i.e. only a 20% decrease).
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Figure 2.4 – a) Temperature and corresponding finite strain profile for a simulation with a dry olivine
flow law after 3.5 Myr. The model setup is equivalent with the one of the ∆T0 = 25 oC, and L = 1000
km from Fig. 2b and 2c. The temperature profile is significantly wider than the finite strain profile.
The thickness of both profiles is measured at the vertical value which is half between the maximum
and minimum value of the profile. b) Evolution of the ratio of thermal thickness to corresponding finite
strain thickness with progressive time for different model configurations (colors are corresponding to
Fig. 2b and 2c). After a transient stage the ratios approach values between 6 and 8 showing that
the temperature variation is nearly one order of magnitude wider than the corresponding finite strain
variation. For comparison, also the ratio of thermal thickness to corresponding instantaneous strain
rate thickness is displayed with gray dashed lines, because this thickness ratio is constant and ca. 4 for
all shown simulations.

2.4 Predictive scaling relationships and localization criterion

We performed a series of 1D numerical simulations with a geologically applicable range for
all independent model parameters: ∆v, A, ρ, cp, λ, T0, n and Q. For each parameter we
used several representative values which were evenly distributed within the chosen range
(e.g.: n = {1, 2, 3, 5, 6}). To test the usefulness of several different sets of independent
scales, we performed these simulations using the dimensional form of equations (2.4), (2.5)
and (2.9). We run 1D simulations with all parameter combinations and recorded charac-
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teristic parameter values (e.g.: Tmax, µmin) in regular intervals during shear zone evolution.
We recorded data from more than 45’000 simulation stages (i.e. at specific times) from ca.
2’000 simulations.

2.4.1 Thermal thickness of shear zones

All simulations show that shear zones are widening proportional to the square root of time
(Fig. 3) and that widening is controlled by heat conduction. Two fundamental types of
conductive heat transfer between shear zone and surrounding region can be distinguished:
(1) If there is no significant shear heating, then the initially higher temperature in the
model center is decreasing with respect to the far-field temperature during shearing and
the temperature evolution in the model can be approximated with an analytical solution
for Gaussian cooling of an initial Dirac delta temperature profile (Fig. 5a). The spatial
and temporal evolution of temperature can then be described by the equation:

∆T (x, t) =
1√

4πκt
exp

(
− x2

4κt

)
(2.10)

If the maximum temperature is in the model center, at x = 0, then the half width of
the temperature profile is given by the value of x for which ∆T (x, t) = 0.5 ∆Tmax(t):

∆Tmax(t)

2
=

1

2
√

4πκt
=

1√
4πκt

exp

(
− x2

4κt

)
→ (2.11)

0.5 = exp

(
− x2

4κt

)
→ x =

√
−4 ln(0.5)κt ≈ 1.67

√
κt (2.12)

The corresponding full width of the Gaussian temperature profile, WG is then:

WG ≈ 3.34
√
κt⇐⇒WG/

√
κt ≈ 3.34 (2.13)

(2) If there is significant shear heating, then the temperature in the model center
reaches a (quasi-)constant value after a transient period (Fig. 2a and b). The temperature
evolution in model can then be described with a half space heating model in which the
temperature is kept constant at one side, representing the shear zone center, and the
far-field temperature is the initial temperature at the model boundary. The analytical
solution for the temperature evolution for such scenario quantifies the heating of a half-
space, representing the region adjacent to the shear zone and is given by an error function
solution (Fig. 5a):

∆T (x, t) = ∆Tmax erfc

(
x

2
√
κt

)
(2.14)

If the maximum temperature is in the model center, at x = 0, then the half width of the
temperature profile is given by the value of x for which ∆T (x, t) = 0.5 ∆Tmax(t):

∆Tmax

2
= ∆Tmax erfc

(
x

2
√
κt

)
→ 0.5 = erfc

(
x

2
√
κt

)
(2.15)
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Using the approximation erfc(0.48) ≈ 0.5 yields:

0.48 ≈ x

2
√
κt
→ x ≈ 0.96

√
κt (2.16)

The corresponding full width of such temperature profile, WE, is then:

WE ≈ 1.92
√
κt⇐⇒WE/

√
κt ≈ 1.92 (2.17)
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Figure 2.5 – a) Representative temperature evolution for cooling of an initial Gaussian temperature
profile, left curves, and for heating for a constant temperature in the model center, right curves. Lines for
t1 to t4 display temperature profiles at progressive times. The dashed horizontal lines indicate the half-
width of a specific temperature profile. Horizontal x-coordinates and temperatures are dimensionless and
temperatures have been scaled so that the initial temperature is identical. b) Plot of the dimensionless
widths of temperature profiles determined from 1D numerical simulations versus the corresponding
temperature increase in the shear zone center, ∆Tmax. The blue and red horizontal lines indicate the
theoretical dimensionless width for cooling of an initial Gaussian temperature profile (equation 2.13)
and for heating for a constant temperature in the shear zone (equation 2.16), respectively. A value of
∆Tmax ≈ 40 oC indicates the transition between the two types of heat transfer and for ∆Tmax > 40
oC shear heating (SH) is significant.

If thermal evolution during shearing is dominated by conductive cooling, then the width
of the temperature across the shear zone will grow according to WG, and according to WE

if thermal evolution is dominated by shear heating. We plotted the dimensionless widths,
scaled by

√
κt, of the numerically calculated temperature profiles versus the maximal

temperature difference (i.e. maximum temperature in the shear zone center minus initial
temperature, ∆T) recorded in the numerical simulations (Fig. 5b). For insignificant shear
heating, ∆T < ca. 20 oC, the temperature profile is widening according to WG (Fig.
5b). For significant shear heating, ∆T > ca. 100 oC, the temperature profile is widening

40



CHAPTER 2

according toWE (Fig. 5b). Between 20 and 100 oC for ∆T there is a transition zone where
the thicknesses are in between WE and WG. The boundary between the two heat transfer
domains occurs at ∆T ≈ 40 oC. The results, hence, indicate that a temperature increase
of at least 40 oC in the shear zone is required so that shear heating dominates the heat
transfer across the shear zone.

2.4.2 Maximum temperature of shear zones

After a transient phase the temperature in the shear zone is (quasi-)constant. For such
quasi steady state, heat production and conduction are essentially balanced in the shear
zone, that is:

0 ≈ ρcp
∂T

∂t

∣∣∣∣
x=0

= λ
∂2T

∂x2

∣∣∣∣
x=0

+ µ

(
∂v

∂x

)2
∣∣∣∣∣
x=0

. (2.18)

For this quasi steady state, we want to determine a scaling relationship between the term
representing diffusion (with λ in Eqn. 2.18) and the term representing shear heating (with
µ). Such relationship can be of the form:

λTc ≈ a µcv
2
c (2.19)

where the subscripts c indicate a characteristic value of the corresponding parameter,
and a is a proportionality constant. The characteristic length scale has been dropped
because it has the same power in both terms for diffusion and heat production (right
side of Eqn. 2.18). Because the quasi steady state occurs only in the shear zone center,
it is reasonable to chose characteristic values that are representative for this location.
There are several formally correct and reasonable choices for the characteristic values,
but after testing the scaling relationship (2.19) with the numerical results, we found that
Tc = RT 2

max/Q, vc = ∆v and µc = µmin provides the best fit. Tmax and µmin are always
the maximal temperature and minimum viscosity, respectively, in the shear zone center.
Based on equation (2.19) and these characteristic values, Tmax can be predicted with:

Tmax ≈
∆v

e

√
µminQ

λR
(2.20)

where e ≈ 2.72 is the Euler number, and e−1 is the proportionality constant a (Fig. 6a).
All parameters in this formula correspond to a specific time during shear zone evolution.
Equation 2.20 is useful in applications where a shear zone viscosity (µmin as a function of
Tmax and ε̇IImax or τII) can be constrained, for example, for rock deformation experiments.
For most natural shear zones viscosities cannot be easily constrained. This is because, for
example, for power-law viscous flow knowledge of the strain rate is required to determine
the effective viscosity. We approximate the strain rate by the ratio of ∆v/

√
κt assuming

that
√
κt provides a representative value for the shear zone thickness. Using then the
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dataset from all the 1D simulations we determine a formula to fit the shear zone viscosity:

µmin ≈ 1.28
e2λQ

∆v2n2R

[
ln

(
∆v2nR

λQ
A−

1
n

{
∆v√
κt

} 1
n
−1
)

+ 1.1

]−2

. (2.21)

For n = 1 the term with the approximate strain rate disappears. If we substitute the
approximation of the shear zone viscosity in equation (2.20) we get:

Tmax ≈ −1.13
Q

nR

[
ln

(
∆v2nR

λQ
A−

1
n

{
∆v√
κt

} 1
n
−1
)

+ 1.1

]−1

(2.22)

Crosschecking with the numerical results provides the minus sign for taking the square root
of µmin in Eqn. 2.20. Equation 3.1 predicts the maximum temperature in all numerically
simulated shear zones with a maximal error of < 50 oC and with a root mean square error
of only 20 oC (Fig. 6b). The prediction of Tmax using equation (3.1) does not require any
a priori knowledge of the shear zone thickness, the stress, the strain rate and the effective
viscosity in the shear zone. The great advantage of equation (3.1) is, hence, that Tmax

inside a shear zone can be estimated exclusively with flow law parameters (n, A and Q),
thermal parameters (λ and cp), the density (ρ), the applied boundary velocity difference
(∆v) and the duration (t) of shearing.

2.4.3 Localization criteria

A possible criterion for shear localization is that shear heating must dominate the heat
transfer between shear zone and the surroundings. Based on the results discussed in the
previous section we suggest Tmax − T0 > 50 oC as localization criterion. An alternative
criterion can be derived by separating the variables and the constant e in equation (2.20)
and squaring both sides, which yields:

∆v2µminQ

λRT 2
max

≈ e2 (2.23)

If the maximum temperature is replaced by the smaller initial temperature, T0, and the
minimum viscosity by the larger initial viscosity, µ0, then a modified criterion for shear
localization is:

Br1 =
∆v2µ0Q

λRT 2
0

> e2 (2.24)

The dimensionless number on the left hand side is a particular version of the Brinkman
number (Br1). Several authors suggested different versions of the Brinkman number as
criterion of shear localization, based on scaling analyses (e.g. Brinkman 1951; Gruntfest
1963; Yuen et al. 1978; Brun and Cobbold 1980). Another typical version of the Brinkman
number (Br2) is Br1 divided by the Arrhenius exponent (Q/RT0). The corresponding
localization criterion is then:

Br2 =
∆v2µ0

λT0
> 1 (2.25)
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Figure 2.6 – a) Maximum temperature versus two different characteristic temperatures for all 1D
simulations. Red circles represent a choice of scales which generates a data collaps and the blue crosses
are an example of a scaling that generates a data scatter. The black line indicates a fit of the data
(see equation in panel) where e is the Euler number. b) Maximum temperature in the shear zone
from all numerical 1D simulations (Tmax) versus the maximum temperature predicted with equation
3.1 (equation in label). c) Ratio of the minimum shear zone viscosity to the initial viscosity versus two
versions of Brinkman number, Br1 and Br2.

We plotted the values of both Br1 and Br2 versus the viscosity decrease in the shear
zone center (µmin/µ0) for all simulations. Both numbers are proportional to the viscosity
decrease (Fig. 6c), hence they are useful criteria for strain localization. We prefer using
the criterion Tmax−T0 > 50 oC due to its simplicity, or the criterion based on Br1 because
it has been directly derived from the analytical formula (eq. 2.20).

2.5 Comparison of 1D, 2D and 3D shear zones

Equations 2.20 and 3.1 for predicting the temperature in the shear zone are based on a 1D
model, which is driven by far-field simple shear. We apply this prediction to shear zones
that develop in 2D and 3D models, which are driven by far-field pure shear, in order to test
the general applicability of the temperature prediction (Fig. 7). The rate of temperature
increase in the shear zone is the largest for the 1D model and the smallest for the 3D
model. This is because in the 1D model the initial thermal perturbation is at the position
of the future shear zone whereas in the 2D (Fig. 7d to f) and 3D (Fig. 7a to c) models the
initial thermal perturbation is present only in a fraction of the future shear zones. Also,
the background temperature increase due to bulk shear heating of the model domain is the
largest in the 3D and the smallest in the 1D model (Fig. 7g to i). Nevertheless, equation
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3.1 (associated with the 1D results) accurately predicts the temperature inside the 2D and
3D shear zones after the transient stage of temperature increase. The results also confirm
that the initial temperature perturbation applied in the 1D model has no impact on the
maximum temperature in the shear zone because the temperature of the 2D and 3D shear
zones are unaffected by the initial thermal perturbation. A comparison of profiles of the
velocities parallel to the 1D, 2D and 3D shear zones shows that the thickness of the shear
zones are essentially identical. Therefore, 1D, 2D and 3D shear zones caused by thermal
softening under both far-field pure and simple shear exhibit the same thermo-mechanical
characteristics.

Figure 2.7 – Comparison of temperature and velocity profiles across 1D, 2D and 3D shear zones. a) to c)
shows the temperature field for three stages of 3D shear zone formation. d) to f) shows the temperature
field for three stages of 2D shear zone formation. The profile lines indicated with x′ in both 2D and 3D
models are used for the comparison with the 1D model. g) to i) show 1D temperature profile and the
2D and 3D profiles along the x′ profile for three different times. j) to l) show the 1D velocity profile and
the 2D and 3D profiles along the x′-profile for three different times. The displayed velocity magnitudes
are normal to the profile orientation and, hence, parallel to the shear zone orientation.
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2.6 Application to dislocation creep flow laws

We apply equation 3.1 to predict the maximum temperature in shear zones using typical
flow laws for rock-forming minerals relevant to the lithosphere. Equation (3.1) depends
on the duration of deformation. The typical, observed time scale of deformation varies
as a function of shear velocity. To make the results for different velocities comparable we
assume a characteristic shear strain of 20, which is the ratio of displacement and shear zone
thickness (Wγ). As a first order estimate we use one tenth (Fig 4b) of the characteristic
thermal width WT = 2

√
κt (Fig. 5b) as a shear zone width. With these relationships

we can determine a representative characteristic time of the deformation to reach a shear
strain of 20:

20 = γc =
tc∆v

0.2
√
κtc

→ tc =

(
0.2

γc
√
κ

∆v

)2

(2.26)

which yields tc ≈ 5 Ma for a velocity of ≈ 1 cm.yr−1.
For typical plate tectonic velocities in the order of few centimeters per year, the flow

laws for wet and dry olivine, and dry plagioclase are associated with maximum temper-
atures between 500 and 700 oC (Fig. 8). Such temperatures correlate well with typical
temperatures of highly sheared basement nappes outcropping in orogens such as the Alps.
Typical metamorphic peak temperature ranges between 500 and 650 oC (Keller et al.,
2005; Manzotti et al., 2018) and reach up to 800 oC in the Lepontine dome (Nagel, 2008).
Takeuchi and Fialko (2012) provided a thorough study of the temperature anomalies around
the San Andreas strike-slip fault. They used heat flow and surface deformation measure-
ments to constrain their models. They conclude that a temperature increase of 160 to 375
oC, dependent on rheology, is expected at 20 km depth for a 4 cm.yr−1 long term aver-
age velocity difference. These values are in a good agreement with our prediction for dry
anorthite and olivine and wet olivine flow laws. Flow laws for wet quartzite and Westerly
granite provide maximal temperatures < 300 oC in the same velocity range (Fig. 8).

A recent study of Chu et al. (2017) provides well constrained information about the
duration of deformation and maximal temperature of eclogite shear zones of the Taconic
orogenic belt (New England). The eclogite bodies are hosted in feldspar rich felsic parag-
neiss. The authors conclude that the P -T history of the shear zones can be best explained
by shear heating. Using the known displacement, related to the known deformation time,
the shear velocities can be constrained to be between 25 - 70 cm.yr−1. For the inferred
velocity range the applicable flow law for dry anorthite yields a good fit (Fig. 8).

Rocks that are commonly considered to result from significant shear heating are pseu-
dotachylites. They are often associated to earthquakes, having typically slip velocities on
the order of a m.s−1 (Bizzarri, 2012). Such fast deformation processes are commonly con-
sidered to be dominated by frictional deformation and, hence, frictional heating. However,
recent progress in understanding of the physics of friction suggests viscous creep on grain
contacts and asperities as the mechanism for velocity weakening of the friction coefficient,
reported at high shear-velocity (≈ 1 m.s−1) rock deformation experiments for various rock
types (Aharonov and Scholz, 2018). Moreover, a recent experimental study of high shear-
velocity (≈ 1 m.s−1) deformation of calcite reports that such fast shear deformation is
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characterized by an initial frictional deformation followed by (quasi) steady-state viscous
creep (Pozzi et al., 2018). In these experiments most of the strain is generated by (quasi)
steady-state viscous creep. Since the (quasi) steady-state temperature developing in our
models is path independent (Fig. 2), we can apply our viscous model result to estimate the
temperatures in such small-scale and high-velocity shear zones regardless of which defor-
mation mechanism dominates initially. To test the model-based temperature estimations
we consider natural pseudotachylites from Corsica (Andersen et al., 2008). The reported
peak metamorphic temperature is at least 1750 oC. There are no reported constraints on
shear velocities and, therefore, we apply peak slip velocities of 4 m.s−1 (that is typical for
seismic events with a displacement around 1 m), as an upper limit (Bizzarri, 2012). To
estimate a lower bound, we use the width of the main pseudotachylite vein (W = 1.23 cm),
the displacement (d = 1 m, yielding γc = d/W ≈ 80) along it and the scaling relationship
between characteristic width of shear zones and the duration of deformation (eq. 2.16).
Reordering equation (2.16) yields t = W 2/(1.922κ) ≈ 41 s (assuming κ ≈ 10−6 m2.s−1).
Using this estimate of duration we can estimate the slip velocity v = d/t ≈ 0.02 [m.s−1].
As such estimates have typically an order of magnitude uncertainty we take a five times
lower value as a lower velocity bound (i.e. 4 mm.s−1). Within this wide velocity range, the
predicted temperatures for most flow laws agree with the reported peak temperature (Fig.
8). Clearly, there are many uncertainties and simplifications related to this temperature
estimate, but this estimate nevertheless indicates that peak temperatures reported for the
considered pseudotachylites potentially could have been generated in viscous shear zones
for typical slip velocities, in the order of 1 m.s−1.
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Figure 2.8 – Predicted maximum temperature in shear zones across the scales. Four data points are
shown as possible applications. Three of them are direct observations, displayed with black, while
the gray is an indirect observation (see in section 6). Equation 3.1 is used for temperature prediction
versus the applied boundary velocities, ∆v, for different flow laws (see legend and Table 1). The same
constant finite shear strain, γc = 20, is assumed for all shear zones and the corresponding duration
of the deformation is calculated with equation 2.26. For pseudotachylites the typical values of finite
strain are higher. The expected temperature range for γc = 80 is indicated by the light gray area. The
quartzite flow laws are not displayed for high velocities because for those the argument of the logarithm
is approaching exp(−1.1) ≈ 0.3, where the prediction starts to significantly deviate from the solution.
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Whether shear heating causes shear localization depends on the initial temperature
of the rock because localization will not occur if the ambient rock temperature at the
onset of shearing is larger than the predicted maximum temperature. We consider typical
lithospheric geotherms and temperatures for the upper crust between 200 and 400 oC, for
the lower crust between 400 and 600 oC and for the mantle lithosphere > 600 oC. For typical
plate tectonic velocities, we calculate the predicted maximum temperature for different
initial temperatures representing the ambient temperature at the onset of deformation
(Fig. 9a). The temperature difference, ∆T , between predicted maximal temperature and
initial, ambient, temperature indicates the intensity of shear heating and, hence, shear
localization by thermal softening. Shear heating is significant for ∆T > 50 oC since for
such values of ∆T the heat transfer between shear zone and wall rock is dominated by shear
heating (Fig. 5b). For plate tectonic velocities of a few cm.yr−1, shear heating is always
important in all three lithospheric units (Fig. 9a). As expected, for the same velocity shear
heating is always more intense in the upper and colder regions of the lithospheric units.
For example, for a velocity difference of 3 cm.yr−1 the expected temperature increase in a
lower crust made of ca. 400 oC hot anorthite is between 100 and 150 oC (Fig. 9a).

Shear heating is even more important if we consider a thinned, thermally relaxed con-
tinental lithosphere, for example, at a passive continental margin. This is because the
temperatures at the top of the lower crust and mantle lithosphere are colder than for a
normal continental lithosphere (Fig. 9b).

We also analyze the initial stresses for configurations for which shear heating and strain
localization is significant (Fig. 9c and d). We consider scenarios for which ∆T > 50 oC and
for which initial shear stresses, τxy, are < 1 GPa (Fig. 9c and d). The initial shear stresses
are the largest stresses during shear zone formation since stress magnitudes decrease during
shear zone formation due to thermal softening (Fig. 2c). We assume a velocity difference
of 3 cm.yr−1 and vary initial bulk strain rates by varying the 1D model size, L. For flow
laws of wet anorthite shear heating is significant for ambient temperatures between 380
and 470 oC and for strain rates, ε̇, between 10−16 and 10−13 s−1. For example, for typical
tectonic strain rates ε̇ = 10−15 s−1 shear localization by thermal softening is significant for
shear stresses between 200 and 400 MPa for ambient temperature between 420 and 470 oC
(Fig. 9c). For dry olivine and for ε̇ = 10−15 s−1 thermal softening is significant for shear
stresses between 200 and 400 MPa for ambient temperature between 540 and 570 oC (Fig.
9d).

Our results indicate that the shortening of a tectonic plate, for example around a
thinned passive continental margin, can likely generate significant shear heating and asso-
ciated spontaneous shear zone generation by thermal softening. Such shear zone generation
can take place in the ductile regime without reaching a brittle-plastic yield stress. Ductile
strain localization by thermal softening could cause the generation of subduction zones,
which is supported by numerical simulations (e.g. Thielmann and Kaus 2012).
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Figure 2.9 – a) and b) show color plots of the temperature difference, ∆T , between the maximum
temperature predicted with equation (3.1) and the initial temperature, T0, corresponding to the ambient
temperature at a certain depth in the lithosphere. ∆T is contoured for different values of T0 and ∆V .
∆T is calculated for a deformation time of 1 Ma. The three regions in the color plots correspond
to three different flow laws, namely for Westerly granite (top region representing upper crust), wet
anorthite (middle region representing lower crust) and wet olivine (lower region representing mantle
lithosphere). c) and d) show color plots of the initial shear stress in 1D simulations as a function of T0

and applied bulk strain rate, ε̇xy. c) shows results for wet albite flow law and d) for dry olivine. The
applied velocity difference is 3 cm.yr−1 and bulk strain rates are modified by changing the 1D model
size. The red dashed horizontal line indicates the maximum temperature, Tmax, from equation (3.1).
To have significant shear localization, T0 must be at least 50 oC smaller than Tmax (see Fig. 5b). Only
shear stresses < 1 GPa are displayed. The colored regions in c) and d) indicate the "window" in which
shear zone generation by thermal softening is feasible in the lower crust (c) and mantle lithosphere (d).
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2.7 Discussion

2.7.1 Localization criterion and Brinkman number

We already suggested the use of Tmax − T0 > 50oC or Br1 > e2 as localization criterion.
Different versions of the Brinkman number (e.g. Brinkman 1951; Gruntfest 1963; Yuen
et al. 1978; Brun and Cobbold 1980) have been proposed and are also known under different
names, for example, Gruntfest number (Gr). Using the relations ∆v = ε̇0L and τ0 = µ0ε̇0,
several Brinkman numbers can be formulated:

Br2 =
∆v2µ0

λT0
=

∆v2µ0

λT0

L2

L2
=
ε̇20µ0L

2

λT0
=
ε̇0τ0L

2

λT0
=

τ2
0L

2

µ0λT0
= Gr (2.27)

The right-most version with the square of the stress is often termed Gruntfest number,
Gr. All parameters with the subscript 0 are initial, bulk values before the occurrence of
strain localization or shear zone formation. The parameter L is the model size and not
the thickness of the shear zone. The same exercises can be repeated by dividing equation
(2.27) with the dimensionless Arrhenius term Q/RT0, and it would result in several forms
of Br1 (equation 2.24). A particular localization criterion would be

Q

RT0

L2ε̇0τ0

λT0
> e2, (2.28)

which is identical to the criterion of Karato (2008), if e2 on the right hand side is replaced
by 1. The different versions of the Brinkman number are useful for different deformation
scenarios. For example, if the deformation is driven by an applied shear stress, then the
version with the square of the stress, i.e. Gr, is useful. If the thickness of the shear zone
is a priori defined by the model or experimental configuration, then a version including L
is useful whereby L then represents the pre-defined shear zone thickness. In general, for
kinematically driven models, we prefer versions without any length scale L, because the
model size does not affect the shear zone evolution (Fig. 2a and 2b).

Our results show the applicability of three different localization criteria. As example,
we use Br2 > 1 (Fig. 6c). Applying a typical plate tectonic velocity of 3 cm.yr−1, an
effective viscosity of 2×1023 Pa.s, a thermal conductivity of 3 W.m−1K−1 and an ambient
temperature of 500 oC (773 K) yields Br2 ≈ 78. Our results show that for this value of Br2

shear zone generation by thermal softening can occur (Fig. 6c). Using a typical tectonic
strain rate of 10−15 s−1, and the applied effective viscosity of 2 × 1023 Pa.s generates a
shear stress of 400 MPa, which is a feasible flow stress for the upper and colder regions of
the mantle lithosphere or the lower crust. Indeed, the spontaneous generation of km-scale
shear zones by thermal softening was demonstrated in 2D thermo-mechanical simulations
of lithospheric shortening for viscoelastoplastic rheology (Jaquet et al., 2017; Jaquet and
Schmalholz, 2017).

Here, we do not consider viscoelastic effects. However, it was shown that elasticity
can significantly impact thermally-induced strain localisation (Regenauer-Lieb and Yuen,
1998; Duretz et al., 2015; Jaquet et al., 2015) so that strain localization can be even more
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significant than predicted by our localization criteria.

2.7.2 Shear zone thickness

A ductile shear zone is commonly observable in the field, or experiment, by the significant
variation of finite strain across the shear zone. The width of the variation of finite strain
across the shear zone is nearly one order of magnitude smaller than the corresponding
width of the temperature variation (Fig. 4b). For significant shear heating the finite strain
thickness, Wγ , is ca. 2

√
κt/7 (Figs. 4b and 5b). We assume that the observable width of

a shear zone is determined by values of finite strain > 1. Based on Fig. 4a this observable
thickness is approximately 2 to 3 times thicker than Wγ . Assuming a typical thermal
diffusivity of 10−6 m2.s−1 yields Wγ = ca. 1.5 km and, hence, an observable thickness of
3 to 4.5 km for a shear zone which is active for 1 Ma. For a shear zone which is active
for 4 Ma Wγ = ca. 3 km and the observable thickness is 6 to 9 km. Since Wγ only
depends on time and is independent on the applied shear velocity it can be applied to
any shear velocity and displacement. For example, a shear displacement of 100 km for a
shear velocity of 2.5 cm.yr−1 requires 4 Ma, for which the observable thickness is 6 to 9
km. A shear zone with such thickness, velocity and displacement is likely typical for major
lithospheric shear zones related to subduction zones. Such thickness relation only applies to
depth levels in the lithosphere for which thermal softening controls the strain localization.
These durations of shear zone activity and corresponding predicted shear zone thicknesses
agree also with those formed by thermal softening in 2D thermo-mechanical numerical
simulations of lithospheric shortening (Jaquet and Schmalholz 2017; Jaquet et al. 2017).
Based on the same relationship we expect sub-mm thickness for all shear zones that have
been active for less than a few seconds.

If natural shear zones would have been formed by thermal softening with moderate
temperature increase of 75 to 150 oC, then there would be no significant temperature
variation between the shear zone and its wall rock because natural shear zones are observ-
able due to the significant finite strain variation. This difference between finite strain and
temperature variation explains why many ductile shear zones do not exhibit a significant
observable temperature variation. The lack of a sharp and observable temperature varia-
tion, for example expressed by variation in metamorphic grade, is not a sufficient argument
against the importance of shear heating and thermal softening.

2.7.3 Thermal softening and grain size reduction

There is still ongoing dispute concerning the primary mechanism of ductile strain local-
ization in the lithosphere. Alternative to thermal softening, grain size reduction in com-
bination with mechanisms, such as pinning, that prohibit grain growth (generally referred
to as damage) is often proposed as primary strain localization mechanism. Clearly, in
nature both mechanisms act simultaneously. We argue that thermal softening is a suit-
able mechanism for spontaneous strain localization in essentially homogeneous material
whereby only minor heterogeneities can trigger strain localization. Grain size reduction
can assist thermal softening and grain size reduction is likely a mechanism that is impor-
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tant during progressive shear zone evolution and can decrease the widening rate of the
finite strain profile due to heat conduction. For example, Thielmann et al. (2015) studied
numerically the formation of shear zones by thermal runaway using a combined approach of
thermal softening and grain size reduction. They showed that grain size reduction reduces
the stress required for thermal runaway and hence assists ductile shear zone formation by
thermal softening. Currently, different grain size evolution models are applied, for exam-
ple, Thielmann et al. (2015) apply the so-called paleowattmeter model in which grain size
is a function of flow stress, strain rate and temperature, whereas Platt (2015) applies a
piezometer in which grain size depends on flow stress only. To reliably quantify the impact
of grain size evolution better constrained grain size evolution models for various rock types
are needed.

2.8 Conclusions

A ductile shear zone which is generated spontaneously by thermal softening during a
velocity-driven bulk deformation exhibits the following fundamental features: (1) After
a transient period of temperature increase the temperature in the shear zone remains
constant for linear viscous flow and quasi-constant for power-law viscous flow. (2) The shear
stress in the shear zone is largest at the onset of shear zone formation and subsequently
decreases towards a (quasi-)constant value associated with the establishment of a (quasi-
)constant temperature. (3) The width of temperature variation across the shear zone is 6
to 8 times wider than the variation of the corresponding finite strain. Therefore, the shear
zone does not exhibit a sharp, and hence easily observable, temperature variation between
highly-strained shear zone and little-strained wall rock. (4) The shear zone is continuously
widening during shearing due to thermal conduction between shear zone and wall rock.
(5) Shear heating starts to dominate the heat transfer between shear zone and wall rock
once the temperature increase in the shear zone is > ca. 50 oC.

Different versions of the Brinkman number can predict the onset of shear zone gener-
ation by thermal softening. However, the Brinkman number cannot quantify the temper-
ature increase inside the shear zone and, hence, the intensity of thermal softening. We
derived a new analytical formula that predicts the maximal temperature inside the shear
zone. This temperature prediction requires only information on the bulk deformation, such
as far-field velocity, flow law and thermal parameters, and, therefore, no a priori knowl-
edge of the shear zone itself, such as thickness, flow stress and strain rate. Temperature
predictions across the scales of geological velocities show first order agreement with several
natural shear zones including Alpine basement nappes, eclogite shear zones and pseudo-
tachylites. We show with 1D, 2D and 3D numerical simulations that this temperature
prediction is valid for shear zone generation under both bulk simple and pure shear.

Our results indicate that shear zone generation by thermal softening likely occurs during
lithosphere deformation in the continental lower crust and the mantle lithosphere for typical
lithospheric velocities of few cm.yr−1 or bulk strain rates between 10−16 and 10−14 s−1.
For these deformation conditions, shear stresses of few hundred MPa can already cause
shear zone generation by thermal softening.
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Based on our results and their application to lithospheric flow laws and deformation
conditions, we argue that spontaneous shear zone generation by thermal softening is a
feasible and likely the primary mechanism for spontaneous lithospheric scale shear zone
generation. Thermal softening is probably a key constituent of subduction initiation, for
example, at a thinned passive continental margin. Additional processes, such as grain
size reduction, fabric development or fluid-related reactions can cause additional softening
during progressive shear zone evolution and likely intensify the strain localization.
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THERMAL SOFTENING INDUCED SUBDUCTION INITIATION

Abstract

We present two-dimensional numerical simulations of convergence at a hyper-extended
passive margin with exhumed sub-continental mantle. We consider visco-elasto-plastic de-
formation, heat transfer and thermo-mechanical coupling by shear heating and associated
thermal softening due to temperature dependent viscosity. The simulations show subduc-
tion initiation for convergence velocities of 2 cm.yr−1, initial Moho temperatures of 525 oC

and reasonable maximal deviatoric stresses around the Moho of ca 800 MPa. Subduction
initiates in the region with thinned continental crust and is controlled by a thermally-
activated ductile shear zone in the mantle lithosphere. The shear zone temperature can
be predicted with a recently published analytical expression. The criterion for subduction
initiation is a temperature difference of at least 225 oC between predicted temperature
and intial Moho temperature. The modelled forced subduction agrees with geological data
and reconstructions of subduction during closure of the Piemont-Liguria basin, during
convergence of the European and Adriatic plates, causing the Alpine orogeny.

3.1 Introduction

Subduction is an essential feature of plate tectonics, however, the processes controlling
subduction initiation (SI) are still contentious (e.g. Vlaar and Wortel, 1976; Gurnis et al.,
2004; Stern and Gerya, 2018). SI mechanisms are commonly classified as induced (i.e.
caused by plate motions far away from the SI site) and spontaneous (i.e. caused by forces
originating at the SI site; e.g. Stern, 2004). We focus here on induced SI at a passive
margin with exhumed sub-continental mantle (e.g. Peron-Pinvidic and Manatschal, 2009).
SI requires the formation of a major shear zone that transects the lithospheric mantle. Such
shear zone could be pre-defined by inherited trans-lithospheric weak zones (e.g. Tommasi
et al., 2009) or could be generated spontaneously by softening mechanisms (see recent
review of Stern and Gerya, 2018), such as shear heating and associated thermal softening
(e.g. Thielmann and Kaus, 2012), grain size reduction and microstructural damage (e.g.
Bercovici and Ricard, 2012; Mulyukova and Bercovici, 2018) or softening due to increased
water content along fluid pathways (e.g. Regenauer-Lieb et al., 2001). Out of the many
softening mechanisms proposed to be important for SI, thermal softening is of particular
interest because it (i) must occur due to energy conservation and temperature-dependent
rock strength, and (ii) requires no additional assumptions about microscale processes such
as grain size distribution and evolution or permeability structure and evolution. Recently,
Kiss et al. (2019) presented a new analytical expression that predicts the quasi-constant
temperature in a ductile shear zone that formed spontaneously by thermal softening. Their
temperature prediction does not require any information of the shear zone itself, such as
its thickness, stress or strain rate. The prediction was also validated with one-dimensional
(1D), 2D and 3D numerical simulations, considering dislocation creep in homogeneous
material having homogeneous ambient temperature. Kiss et al. (2019) speculated that
their estimate is also applicable for visco-elasto-plastic deformation of the lithosphere,
exhibiting heterogeneous material properties, due to crust and mantle, and considerable
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ambient temperature variation across the lithosphere. Furthermore, Kiss et al. (2019) argue
that thermal softening may likely trigger SI at passive margins for convergence velocities on
the order of few centimeters per year. Here, we present 2D thermo-mechanical numerical
simulations of convergence at a passive margin and show that (i) the expression of Kiss
et al. (2019) indeed accurately predicts the temperature in lithospheric mantle shear zones
caused by thermal softening and (ii) induced SI by thermal softening indeed occurs for
laboratory-derived flow laws, natural convergence velocities and realistic temperatures.
We argue that our model is applicable to SI during closure of the Piemont-Liguria basin,
during convergence of the European and Adriatic plates, causing the Alpine orogeny.

3.2 Methods

3.2.1 Mathematical model

Our model for lithosphere deformation is based on continuum mechanics (e.g. Mase and
Mase, 1970; Turcotte and Schubert, 2014). We assume slow, incompressible deformation
under gravity, without inertial forces. We consider visco-elasto-plastic deformation assum-
ing a Maxwell visco-elastic model and a Drucker-Prager brittle-plastic yield criterion. Heat
transfer occurs by conduction, advection and production. Heat transfer and deformation
are coupled by shear heating, because dissipative work is converted into heat, required by
the conservation of energy. The heat source due to shear heating is determined by the sum
of the products of deviatoric stress and visco-plastic strain rate tensor components, τij ε̇

vp
ij ,

and is referred to here as dissipation. The applied equations are described in Schmalholz
et al. (2019) and are also described in the supplementary material. The governing system
of partial differential equations is solved numerically with a finite-difference/marker-in-cell
method (e.g. Gerya and Yuen, 2003). The diffusive terms in the force balance and heat
transfer equations are discretized on an Eulerian staggered grid while advection and rota-
tion terms are treated explicitly using a set of Lagrangian markers and a 4th order in space
/ 1st order in time Runge-Kutta scheme. The model topography is a material interface
defined by a Lagrangian marker chain which is displaced with the numerically calculated
velocity field (Duretz et al., 2016). Surface evolution is mimicked by a linear diffusion of
the topography. Where deposition occurs, the material parameters of sediments (Table S1)
are assigned to the newly appearing material. Densities are calculated with an equation of
state using compressibility and thermal expansion factors. Applied parameters are given
in Table S1.

Considering dislocation creep and velocity driven shearing, Kiss et al. (2019) shows
that the temperature in the shear zone, caused by thermal softening, always approaches a
quasi-constant temperature that increases only slightly with progressive deformation time,
t. This temperature, TSH, is predicted by:

TSH ≈ −1.13
Q

nR

[
ln

(
∆v2nR

λQ
A−

1
n

{
∆v√
κt

} 1
n
−1
)

+ 1.1

]−1

. (3.1)
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where ∆v is the far-field velocity difference (either for pure or simple shear); all other flow
law and thermal parameters are given in Table S1.

3.2.2 Model configuration

The model mimics a hyper-extended passive margin with exhumed sub-continental mantle
(Fig. 3.1a). The model is 1500 km wide and 400 km deep. In the exhumed mantle
domain (left model side), the lithosphere is 90 km thick. The mantle flow law in the entire
model domain is for dry olivine with a combination of dislocation, diffusion and Peierls
creep (Kameyama et al., 1999; Hirth and Kohlstedt, 2003) (Fig. 3.1a). The continental
lithosphere has a 20 km thick upper crust with a flow law for westerly granite (Carter
and Tsenn, 1987). The lower crust is 10 km thick with a flow law for Maryland diabase
(Mackwell et al., 1998). In the middle of the model the crust thins gradually to zero
thickness towards the exhumed mantle domain within a 100 km wide zone (Fig. 3.1a). The
lithosphere is initially in isostatic equilibrium generating an initial topographic difference
between regions of exhumed mantle and unthinned crust of 5 km. The depth of the
lithosphere-asthenosphere boundary below the unthinned crust is 123 km.

We apply free slip boundary conditions at the bottom and at the right model sides.
The top boundary is a free surface. At the left boundary we apply a constant horizontal
inflow velocity in the upper 200 km and a constant outflow velocity in the lower 200 km, so
that the vertically-integrated velocity is zero (e.g. Erdős et al., 2014). We apply constant
temperature of 15 oC at the free surface, constant 1350 oC at the model bottom and
zero heat flux on the two sides. The asthenosphere is initially set to T = 1350oC, while
the initial lithospheric equilibrium temperature is calculated. During simulations, we use
higher thermal conductivities in the asthenosphere to mimic the higher effective thermal
conductivity due to mantle convection. We apply different thermal conductivities in the
crust to vary slightly the initial Moho (i.e. crust-mantle boundary) temperature (Table
S1).

We present three simulations: (1) with a 525 oC initial Moho temperature and 2
cm.yr−1 convergence velocity, (2) with a 550 oC initial Moho temperature and 2 cm.yr−1

convergence velocity, (3) with a 550 oC initial Moho temperature and 4 cm.yr−1 conver-
gence velocity.

3.3 Results

In simulation (1) visco-elastic stresses build up during the initial stages of convergence to
reach the brittle-plastic yield and steady-state viscous flow stress (Fig. 3.1b and d). The
evolving stress field shows the highest deviatoric stress magnitudes of ca 800 MPa inside
the lower crust and around the brittle-ductile transition (i.e. transition from Drucker-
Prager yield to any of the the creep mechanisms) in the exhumed mantle region (Fig. 3.1b
and d). Initially, convergence is characterized by distributed thickening and associated
dissipative heating, resulting in a ca 75 oC temperature rise around the Moho during
the first 7 Myr (see 500 and 600 oC isotherm of Fig. 3.1a and c). The lower crust is
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500 oC 800 oC
1300 oC

500 oC 800 oC
1300 oC

500 oC 800 oC
1300 oC

500 oC 800 oC
1300 oC

Figure 3.1 – Evolution of model geometry (left column) and stress field (right column) for simulation
(1). Left column: White lines indicate isotherms every 100 oC and colored field indicate different
model units; see legend below left column. Right column: Stress is quantified with second invariant of
deviatoric stress tensor. Black lines indicate from bottom to top: lithosphere-asthenosphere boundary,
Moho and upper-lower crust boundary. Colourmaps are from Crameri (2018).

slightly folding causing small lateral stress variations (Fig. 3.1d). Shear heating and
thermal softening around the Moho is locally efficient enough to cause the spontaneous
development of a ductile shear zone ca 150 km away from the transition between crust
and exhumed mantle (at x-position 300 km in Fig. 3.1c, d, e and f). The temperature
rise around the shear zone just below the Moho is ca 200 oC (Fig. 3.1e). Due to thermal
softening and localization the stresses decrease by several hundred MPa (Fig. 3.1d and f).
During progressive convergence, the shear zone remains localized and forms a subduction
zone, which subducts the exhumed mantle and parts of the thinned crustal region below
the continental lithosphere with normal crustal thickness (Fig. 3.1g and h). Upper crustal
material and sediments, deposited in the trench region, are subducted and lubricate the
subduction interface. Once crustal material is subducted to ca 90 km depth the small
stresses, due to elevated temperatures and lubrication, do not generate significant shear
heating and dissipation anymore (Fig. 3.2a).

For simulation (2) with initially only 25 oC higher Moho temperatures the dissipation
is smaller due to the smaller stresses resulting from a smaller effective viscosity around
the Moho. Thermal softening still impacts the deformation of the lithosphere, but causes
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localized thickening of the crust because a localized shear zone could not develop (Fig.
3.2b). For simulation (3) the initial Moho temperature is identical to the one in simulation
(2) but the convergence velocity is increased to 4 cm.yr−1. For the higher convergence
velocities, thermal softening causes again a localized shear zone and subduction similar to
simulation (1) (Fig. 3.2c). For simulations (2) and (3) the initially 25 oC higher Moho
temperatures result in considerably lower stresses, post-localisation (figures showing the
detailed evolution of simulations (1), (2) and (3) are given in the supplementary material).

To test the temperature prediction of equation (3.1) we calculate TSH for the mantle
lithosphere for the applied parameters and specific times. Simulations (1) and (3) generated
a localized ductile shear zone and corresponding values of TSH are 754 oC and 786 oC,
respectively (Fig. 3.2a and c). Different values of TSH are due to different velocities
and/or simulation times corresponding to the displayed results (Fig. 3.2). We plot the
dissipation together with the isotherms for the corresponding value of TSH, TSH ± 50oC

and TSH ± 100oC. For the temperature comparison, we chose a time step for which the
dissipation in the mantle was highest. Maximal dissipation in simulations (1) and (3) is
on the order of 100 µWm−3 which is approximately two orders of magnitude larger than
heat production due to radioactive decay (Table S1). The isotherms of TSH follow closely
the orientation of the ductile shear zones indicated by the band of high dissipation in the
mantle lithosphere (Fig. 3.2a and c). Therefore, equation (3.1) can predict ductile shear
zone temperature in models of visco-elasto-plastic lithosphere deformation.

3.4 Discussion

The equation for TSH was tested by Kiss et al. (2019) with 1D, 2D and 3D numerical sim-
ulations for dislocation creep, homogeneous material properties and homogeneous ambient
temperature. For these conditions, Kiss et al. (2019) proposed that TSH should be at least
50 oC higher than the ambient temperature to cause shear zone formation. The conditions
in the presented lithosphere models are far more complex due to the visco-elasto-plastic
rheological model, the heterogeneous material properties in upper crust, lower crust and
mantle lithosphere and the significant temperature gradients across the lithosphere. To
initiate a subduction zone, a significant shear zone, associated with decreased deviatoric
stress (Fig. 3.1f and h), must form in the mantle lithosphere (Fig. 3.2). Hence, we use
the dislocation creep flow law parameters for the mantle to calculate TSH representative
for the mantle lithosphere. To illustrate the slight time dependence of TSH: a time interval
of 2.6 Myr generates an increase of TSH of only 5 oC (Fig. 3.2a and b). We propose to
use the initial Moho temperature as representative ambient temperature, because spon-
taneous ductile shear zone formation by thermal softening occurs most likely around the
Moho where deviatoric stress in mantle lithosphere and/or lower crust are highest. For our
model configuration, the predicted TSH of ca 750 oC is ca 225 oC higher than the initial
Moho temperature of 525 oC in simulation (1). For simulation (2) with an initial Moho
temperature of 550 oC a localized shear zone did not form. Hence, for the presented con-
figuration, a temperature difference, ∆T , between TSH and the initial Moho temperature,
of at least 225 oC is required to generate a localized ductile mantle shear zone and to ini-
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Figure 3.2 – Colourplot of visco-plastic dissipation, QSH, for models (1, a) to (3, c) at specific simu-
lation times, t. Values of TSH are calculated with equation (3.1) for parameters of mantle dislocation
creep (Table S1), corresponding convergence velocity and simulation time. Isotherms are plotted for
corresponding TSH, TSH ± 50oC and TSH ± 100oC (see legend).

tiate subduction. In the lithospheric scale model, a larger ∆T is needed to initiate a shear
zone than for homogeneous material (∆T > ca 50 oC). The higher values of ∆T for the
lithospheric scale shear zone formation are likely due to the fact that during lithospheric
deformation additional modes of localized deformation are possible, such as localized fold-
ing or thickening. For values of ∆T < ca 225 oC localized thickening dominates in our
simulation (Fig. 3.2b). However, the localized thickening is also associated with dissi-
pation and thermal softening so that thermal softening also strongly affects lithosphere
deformation even if it does not result in localized shear zone formation.

The calculated temperatures of the mantle shear zones are between ca 750 to 900 oC at
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depth between ca 40 and 100 km, and are in broad agreement with temperature estimates
for natural mantle shear zones (e.g. Vauchez et al., 2012).

We argue that thermal softening is an important mechanism to trigger the spontaneous
formation of ductile shear zones in the mantle lithosphere and to initiate subduction during
plate convergence. In nature, additional processes such as grain size reduction or anisotropy
development will most likely intensify the localization and stabilize the shear zone. For
example, fundamental 0D and 1D models of thermal softening coupled with grain size
reduction show that grain size reduction can decrease the critical stress required to initiated
shear zones by thermal softening (Thielmann et al., 2015). For other mantle flow laws
(e.g. Gouriet et al., 2019), that might provide smaller deviatoric stress than the applied
dislocation and Peierls flow laws, slightly higher convergence velocities and/or smaller
initial Moho temperatures can compensate the smaller stresses so that thermal softening
can be significant for “weaker” mantle flow laws for typical convergence velocities of a few
cm.yr−1.

Our model configuration mimics an idealized hyper-extended magma-poor passive mar-
gin with exhumed sub-continental mantle. Such margin structure was observed at the
Iberia-Newfoundland margins and geologically reconstructed for the margins of the Juras-
sic Piemont-Liguria basin between the European and Adriatic plates (e.g. Peron-Pinvidic
and Manatschal, 2009; Mohn et al., 2010). Several studies argue that forced, conver-
gence induced, subduction initiation was the likely mechanism to initiate subduction in
the Piemont-Liguria basin, related to the northward migration of Africa (e.g. De Gracian-
sky et al., 2010; McCarthy et al., 2018). Furthermore, subduction in the Western Alps
started in the continental region of the distal Adriatic margin, because the earliest Alpine
high-pressure units are the Sesia-Dent Blanche crustal units, which are attributed to the
former Adriatic margin (e.g. Manzotti et al., 2014). Forced subduction, with (i) subduction
initiation in the continental crustal region of a passive margin and (ii) earliest subduction
of crustal margin units followed by subduction of exhumed mantle, was proposed for the
Western Alps and is in agreement with our model results. We, hence, argue that sub-
duction initiation in the Piemont-Liguria basin was presumably forced by the convergence
between Africa and Europe and was likely triggered by thermal softening.

We present here simulations of subduction initiation for a possible configuration of a
hyper-extended margin. A systematic study with different initial geometries, temperature
fields and combination of flow laws is beyond the scope of our study.

3.5 Conclusions

We show with 2D thermo-mechanical numerical simulations that induced SI occurs due to
thermal softening at passive margins with exhumed sub-continental mantle. SI occurs for
convergence velocities of 2 cm.yr−1, Moho temperatures below 550 oC and maximal devia-
toric stresses around the Moho of ca 800 MPa. Such maximal stresses are in agreement with
stress estimates based on experimentally determined Peierls creep flow laws of peridotites
Jain et al. 2017. Subduction initiates in the margin region of thinned continental crust.
The modelled SI agrees with subduction scenarios that are geologically reconstructed for
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the closure of the Piemont-Liguria basin.
The maximal temperature in the ductile mantle shear zone can be predicted with an

analytical expression (eq. 3.1). If the predicted temperature is at least 225 oC higher than
the initial Moho temperature, then subduction initiation triggered by thermal softening
is most likely to occur. The analytical solution can, hence, in principle be used as crite-
rion for forced subduction initiation by thermal softening. More simulations for different
model configurations and 3D scenarios are required to test the general applicability of the
proposed SI criterion.

Thermal softening is an important macroscale mechanism that affects lithosphere de-
formation and can initiate kilometre-scale lithospheric shear zones. In combination with
microscale softening processes, such as grain size reduction, thermal softening is likely a
key process for the initiation of natural subduction zones.
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3.6 Supplementary material

Contents of this file

1. Governing equations

2. Table S1

3. Figures S1, S2 and S3

Introduction
This supporting material provides the description of the equations used in the numerical

model, three additional figures and a table with the applied model parameters. Table S1
shows the parameters used for the simulations shown in the main article and also the
parameters which have been used for simulations shown in Figures S1 to S3. Figure S1,
S2 and S3 show the structural, thermal and stress evolution of models (1), (2) and (3),
respectively.
Governing equations (Schmalholz et al., 2018)

The applied numerical algorithm solves the partial differential equations of continuum
mechanics for 2D slow deformations (no inertia) coupled with heat transfer under gravity.
The force balance equations are:

∂σij
∂xj

= −ρbi, (3.2)

where i and j are indexes of either 1 or 2 and represent the horizontal x-direction (i, j = 1)
and vertical y-direction (i, j = 2), b1 = 0 and b2 = g. σij are the total Maxwell-visco-
elastic stress tensor components, which are expressed using a backward-Euler rule (e.g.
Schmalholz et al., 2001) by

∂σij = −P + 2

(
1

η
+

1

G∆t

)−1

ε̇ij +

(
1 +

G∆t

η

)−1

σo
ij + Jij , (3.3)

where P corresponds to the pressure, ε̇ij are the components of the deviatoric strain rate
tensor, G is the shear modulus, η is the effective viscosity, t is the numerical time step,
σo
ij are the stress tensor components from the previous time step and Jij includes all the

corresponding terms resulting from the Jaumann rate of the stress tensor (e.g. Beuchert
and Podladchikov, 2010).

The rheological model is based on the additive decomposition of the deviatoric strain
rate tensor ε̇ij :

ε̇ij = ε̇el
ij + ε̇pl

ij + ε̇dis
ij + ε̇dif

ij + ε̇Pei
ij . (3.4)

where ε̇el
ij , ε̇

pl
ij , ε̇

dis
ij , ε̇

dif
ij and ε̇Pei

ij correspond to the strain rate contributions arising from
elasticity, plasticity and viscous creep (dislocation, diffusion and Peierls), respectively. This
strain rate equation is nonlinear and solved locally on cell centroids and vertices in order
to define the current effective viscosity and stress (e.g. Popov and Sobolev, 2008). The
viscosity, for any kind of creep, is formulated as a function of the corresponding strain rate
invariant.

The viscosity for diffusion and dislocation creep is

ηX = (FAdm)−
1
n
(
ε̇X

II

) 1
n
−1

exp

(
Q

nRT

)
(3.5)

where either X = dif or X = dis.
F = 2n−13

n+1
2 (3.6)
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is a geometry factor, needed to convert flow law parameters from axial compression exper-
iments into an invariant form (e.g. Gerya, 2009). The other parameters are displayed and
explained in Table S1.

Peierls creep (i.e. low-temperature plasticity) is applied in both the lithospheric and
asthenospheric mantle, using the approach from Kameyama et al. (1999):

ηPei = FPeiA
(
ε̇Pei

II

) 1
S(T )

−1
exp

(
Q

RT

(1− γ)q

S(T )

)
γσP, (3.7)

where an effective stress exponent that depends on the temperature is

S(T ) = 2γ
Q

RT
(1− γ), (3.8)

and

FPei = 2

1−S(T )
S(T ) 3

−
1+S(T )
2S(T ) (3.9)

is the geometry factor, specific for the presented Peierls formulation. For the rest of the
parameters see Table S1.

The stress of all material phases is limited by a yield stress, τy, defined by the Drücker–
Prager criterion:

τy = C cos(φ) + P sin(φ). (3.10)

In case of yielding, the effective viscosity is iteratively reduced until the corresponding
stress invariant equals the yield stress (e.g. Lemiale et al., 2008; Schmalholz and Maeder,
2012). Therefore, the effective viscosity for plasticity is computed only for τII ≥ τy and
takes the form of:

ηpl =
τy

2ε̇pl
II

. (3.11)

At the end of the local iteration cycle, the effective viscosity is equal to the quasi-
harmonic mean of the viscosities of each dissipative deformation mechanism:

ηeff =

(
1

ηdis
+

1

ηdif
+

1

ηPei
+

1

ηpl

)−1

(3.12)

The applied 2-D equation for heat transfer is:

ρCp
dT

dt
=

∂

∂xi

(
k
∂T

∂xi

)
+QSH +QR, (3.13)

where QR is the radiogenic heat production and QSH = (τ2
11 + τ2

22 + 2τ2
12)/2η is the heat

production due to viscous and plastic dissipative work. In this study we assume that all
dissipative work is converted into heat (i.e. the so-called Taylor–Quinney coefficient is 1).
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Table S1 – Table and list of model parameters, where A is the pre-exponential factor, n is the power-law exponent, Q is the activation energy, V is the activation
volume, λ is the thermal conductivity, d is the grain size, m is the grain-size exponent, σP is Peierls stress, q is the Peierls exponent, ρref is the density at reference
pressure (Pref = 0 Pa) and temperature (Tref = 0 oC), QR is the radioactive heat production. Some parameters have constant values: Cp = 1050 J.K−1 is the heat
capacity, G = 2 × 1010 Pa is the shear modulus, α = 3 × 105 K−1 is the thermal expansion coefficient, β = 10−11 Pa−1 is the compressibility, C = 107 [Pa] is the
cohesion, φ = 30o is the friction angle, and γ = 0.1 is an adjustable constant. The effective pre-exponent (Aeff = FAdm) is used for the temperature prediction (’A’
in equation 1 of the main text). For the crust, the conductivities (λ), used for model (1) are displayed and the conductivities used for models (2) and (3) are in the
parentheses. For the mantle, the lithospheric conductivities are displayed and the asthenospheric conductivities are in the parentheses. Sources of rheological parameters:
1 wet quartzite (Ranalli, 1995), 2 westerly granite (Carter and Tsenn, 1987), 3 Maryland diabase (Mackwell et al., 1998), 4 dry olivine (Hirth and Kohlstedt, 2003), 5 dry
olivine (Kameyama et al., 1999). The erosional diffusivity for modelling the surface evolution with a linear diffusion equation is D = 3× 10−5 m2.s−1.

Lithology A [Pa−nm
−m

s−1] n Q [J.mol−1] V [m3.mol−1] λ [W.m−1K−1] d [m] m σP [Pa] q ρref [kg.m−3] QR [W.m−3]

Sediments1 5.07× 10−18 2.3 1.54× 105 0 2.40 - 0 - 0 2800 0.8× 10−6

Upper crust2 3.16× 10−26 3.3 1.87× 105 0 2.40 (2.25) - 0 - 0 2800 1.47× 10−6

Lower crust3 5.05× 10−28 4.7 4.85× 105 0 2.40 (2.25) - 0 - 0 2900 1.47× 10−6

Mantledis
4 1.10× 10−16 3.5 5.30× 105 1.4× 10−5 2.25 (41.25) - 0 - 0 3350 2.11× 10−10

Mantledif
4 1.50× 1021 1.0 3.75× 105 8.0× 10−6 2.25 (41.25) 10−3 -3 - 0 3350 2.11× 10−10

MantlePei
5 5.7× 1011 - 5.36× 105 0 2.25 (41.25) - 0 8.5× 109 2 3350 2.11× 10−10
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Figure S1 – Evolution of model geometry (left column), stress field (middle column) and distribution of dominant deformation mechanism (right column) for simulation
(1). Left column: White lines indicate isotherms every 100 oC and colored field indicate different model units; see legend below left column. Middle column: Stress
is quantified with the second invariant of deviatoric stress tensor. Black lines indicate from bottom to top: lithosphere-asthenosphere boundary, Moho and upper-lower
crust boundary. Right column: The dominant deformation mechanism is the one corresponding to the largest strain rate contribution (see equation 3).
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Figure S2 – Evolution of model geometry (left column), stress field (middle column) and distribution of dominant deformation mechanism (right column) for simulation
(2). Left column: White lines indicate isotherms every 100 oC and colored field indicate different model units; see legend below left column. Middle column: Stress
is quantified with the second invariant of deviatoric stress tensor. Black lines indicate from bottom to top: lithosphere-asthenosphere boundary, Moho and upper-lower
crust boundary. Right column: The dominant deformation mechanism is the one corresponding to the largest strain rate contribution (see equation 3).
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Figure S3 – Evolution of model geometry (left column), stress field (middle column) and distribution of dominant deformation mechanism (right column) for simulation
(3). Left column: White lines indicate isotherms every 100 oC and colored field indicate different model units; see legend below left column. Middle column: Stress
is quantified with the second invariant of deviatoric stress tensor. Black lines indicate from bottom to top: lithosphere-asthenosphere boundary, Moho and upper-lower
crust boundary. Right column: The dominant deformation mechanism is the one corresponding to the largest strain rate contribution (see equation 3).
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Abstract

Tectonic nappes are observed for more than a hundred years. Although geological studies
often refer to a “nappe theory”, the physical mechanisms of nappe formation are still
incompletely understood. We apply two-dimensional numerical simulations of shortening of
a passive margin, to investigate the thermo-mechanical processes of detachment, transport
and stacking of nappes. We use a visco-elasto-plastic model with standard creep flow
laws and Drucker-Prager yield criterion. We consider tectonic inheritance with two initial
mechanical heterogeneities: (1) lateral heterogeneity of the basement-cover interface due
to half-grabens and horsts and (2) vertical heterogeneities due to layering of mechanically
strong and weak sedimentary units. The model shows detachment and horizontal transport
of a thrust nappe and stacking of this thrust nappe above a fold nappe. The detachment
of the thrust sheet is triggered by stress concentrations around the sediment-basement
contact and the resulting brittle-plastic shear band formation. The horizontal transport
is facilitated by a basal shear zone just above the basement-cover contact, composed of
thin, weak sediments. Fold nappe formation occurs by a dominantly ductile closure of
a half-graben and the associated extrusion of the half-graben fill. We apply our model
to the Helvetic nappe system in Western Switzerland, which is characterized by stacking
of the Wildhorn thrust nappe above the Morcles fold nappe. The modeled structures
and temperature field agree with data from the Helvetic nappe system. The mechanical
heterogeneities must generate contrasts in effective viscosity (i.e. ratio of stress to strain
rate) of four orders of magnitude to model nappe structures similar to the ones of the
Helvetic nappe system.

4.1 Introduction

Tectonic nappes were discovered more than a hundred years ago and are considered as
typical tectonic features of orogenic belts (e.g. Price and McClay, 1981), particularly in
the Alps (e.g. Lugeon, 1902; Termier, 1906; Argand, 1916; Tollmann, 1973; Trümpy, 1980;
Escher et al., 1993; Pfiffner, 2014). Several definitions of a nappe have been proposed
(see discussion in Price and McClay, 1981), for example, a basic definition modified after
Termier (1922) is: “A nappe is a rock packet not in its place, resting on a substratum that
is not its original one”. Two end-member types of nappes are commonly distinguished,
namely fold nappes and thrust nappes, or thrust sheets (e.g. Termier, 1906; Price and
McClay, 1981; Epard and Escher, 1996). Fold nappes are recumbent folds exhibiting
large-scale stratigraphic inversion, typically with amplitudes that are exceeding several
kilometers. In contrast, thrust sheets are allochtonous sheets with a prominent shear zone
or thrust at their base, but without a prominent overturned limb. The importance of
tectonic nappes for orogeny, especially for collisional orogens, is nowadays well established
and many geological studies refer to a “nappe theory” when mentioning tectonic nappes.
However, the physical mechanisms of nappe detachment, transport and stacking are still
incompletely understood.

We focus here on the Helvetic nappe system in Western Switzerland (see next section
for a geological overview), which is one of the birthplaces of the concept of tectonic nappes.
Arnold Escher mentioned a nappe (he used “Decke” in german) and a colossal overthrust
(“colossale Überschiebung”) in 1841 during the presentation of a geological map of the
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canton Glarus, Eastern Switzerland (Escher von der Linth, 1841). Escher did not dare
to publish his interpretation, but explained it in the field to Roderick Murchinson, who
published the overthrust interpretation in 1849 (Murchison, 1849), crediting Escher for the
original observation. Bertrand (1884) argued also convincingly for an overthrust nappe
(he used “masse de recouvrement” and “lambeaux de recouvrement” instead of nappe) in
the Glarus region so that finally also Heim (1906) accepted the overthrust interpretation
instead of the earlier preferred double-fold interpretation (“Überschiebungsfalte” instead of
“Doppelfalte”). Although the important controversies and observations supporting tectonic
nappes are related to the Glarus region, which is part of the Helvetic nappe system, the true
birth date of the nappe concept in the Alps, according to Trümpy (1991), is the publication
by Schardt (1893) who worked in the Prealps, belonging to the Penninic domain (e.g.
Escher et al., 1993). Schardt (1893) realized that Jurassic breccias have been thrust over
Tertiary flysch and that large regions of the Prealps have been actually emplaced as a major
overthrust. After decades of controversy, the existence of nappes got generally accepted
approximately a century ago, revolutionizing Tectonics, Alpine Geology and orogeny in
general (for historical reviews see Bailey 1935; Masson 1976; Merle 1998; Trumpy 1991;
Dal Piaz 2001; Schaer 2010).

Since then, a considerable effort has been made in mapping the present-day structure
of the Helvetic nappe system (e.g. Steck, 1999; Pfiffner et al., 2011). Structural and pale-
ogeographic reconstructions have provided a valuable insight into the kinematics of nappe
formation (e.g. Gillcrist et al., 1987; Epard and Escher, 1996; Herwegh and Pfiffner, 2005;
Bellahsen et al., 2012; Boutoux et al., 2014). Therefore, the geometrical structure and kine-
matic evolution of the Helvetic nappe system is reasonably well understood. There are also
theoretical and analogue modeling studies investigating the formation of fold-and-thrust
belts and nappes (e.g. Bucher, 1956; Rubey and King Hubbert, 1959; Dietrich and Casey,
1989; Merle, 1989; Casey and Dietrich, 1997; Wissing and Pfiffner, 2003; Bauville et al.,
2013; Poulet et al., 2014; Erdős et al., 2014; Jaquet et al., 2014; Ruh et al., 2014; Bauville
and Schmalholz, 2017). However, the controlling physical processes of nappe detachment,
transport and stacking, and the associated dominant rock deformation mechanism are still
incompletely understood and, therefore, the frequently mentioned “nappe theory” is not
complete. For example, for fold nappes, many interpretations favor distributed shearing
and dominantly ductile deformation mechanisms, such as dislocation or grain-size sensitive
diffusion creep (e.g. Ramsay et al., 1983; Gillcrist et al., 1987; Ebert et al., 2008; Bauville
et al., 2013). However, there are also interpretations arguing for localized thrusting and
dominantly brittle-plastic deformation mechanisms, such as fracturing related to fluid pres-
sure (e.g. Boyer and Elliott, 1982; Granado and Ruh, 2019). Furthermore, the presumed
driving forces of nappe transport are either external surface forces, due to tectonic com-
pression, or internal body forces, due to gravity. Heterogeneous shearing due to buttressing
in a general compressional regime is an example of deformation driven by external forces
(e.g. Ramsay et al., 1983; Epard, 1990; Bauville et al., 2013; Boutoux et al., 2014). Gravity
gliding and spreading is an example of deformation driven by body forces (e.g. Durney,
1982; Merle, 1989; Merle and Guillier, 1989).

77



TOWARDS A NAPPE THEORY; HELVETIC ALPS

For thrust sheets, the variety of the proposed emplacement mechanisms is even larger
than for fold nappes (see for an overview Merle, 1998). The apparently straightforward
interpretation that thrust sheet transport is controlled by frictional sliding is problematic,
because stresses required to move a long sheet over a frictional surface exceed the strength
of the rock sheet so that the sheet would break into smaller pieces (e.g. Smoluchowski, 1909;
King Hubbert and Rubey, 1959; Price and Cosgrove, 1990). This problem is known as the
overthrust paradox (e.g. Smoluchowski, 1909; King Hubbert and Rubey, 1959). Several
solutions for this paradox were proposed, such as (1) reduction of the effective stress due
to pore fluid pressure causing a reduction of the effective friction angle (e.g. King Hubbert
and Rubey, 1959; Rubey and King Hubbert, 1959), (2) if the majority of the displacement
happens during fast slip events, like on the Main Frontal Thrust of the Himalayas, (e.g.
Avouac et al., 2015; Wang and Fialko, 2015), dynamic frictional weakening can reduce
significantly the shear stresses (e.g. Scholz, 1998; Aharonov and Scholz, 2018; Di Toro
et al., 2011), or (3) a dominantly ductile deformation mechanism (e.g. Smoluchowski,
1909; Goguel, 1948; Voight, 1976), presumably in combination with thermally-, chemically-
or mechanically-activated softening mechanisms (e.g. Poirier, 1980; Ebert et al., 2008;
Poulet et al., 2014). Another problem of purely brittle-frictional interpretations, assuming
homogeneous material properties, is that thrust sheets have often been displaced over
tens of kilometers on sub-horizontal thrust planes or shear zones. However, according to
Anderson’s theory of faulting (e.g. Turcotte and Schubert, 2014) thrust planes for friction
angles of ca 30 degrees should dip with ca 30 degrees with respect to the horizontal, if
the smallest principal stress, σ3, is approximately vertical. Smaller friction angles would
increase the dip angle. For example, for zero friction angle, corresponding to a constant,
pressure-insensitive yield stress, the dip angle would be 45 degrees. Therefore, prominent
low-angle thrust planes are likely controlled by mechanical heterogeneities, such as the
orientation of the basement-cover interface and of mechanically weak shale-rich or evaporite
layers, as has been suggested for the Hevetic nappe system (e.g. Pfiffner, 1993; Steck, 1999;
Pfiffner et al., 2011; Bauville and Schmalholz, 2017).

To make another step towards a “nappe theory” that explains the physical process of
nappe formation, we investigate the detachment, transport and stacking of nappes with
two-dimensional (2D) numerical simulations based on continuum mechanics. To keep the
model relatively simple and transparent, we focus here on thermo-mechanical processes on
the macro-scale, larger than the typical size of mineral grains. Hence, we do not consider
hydro-chemical couplings, such as fluid release by carbonate decomposition (e.g. Poulet
et al., 2014), and micro-scale processes, such as micro-structural evolution with secondary
phases (e.g. Herwegh et al., 2011). The numerical algorithm is based on the finite difference
method. We consider a standard visco-elasto-plastic deformation behavior, heat transfer
and thermo-mechanical coupling by shear heating and temperature-dependent viscosities.
We also apply velocity boundary conditions that are standard for modeling accretionary or
orogenic wedges (e.g. Buiter et al., 2006). For the comparison between model results and
natural observations, we consider a geological section across the Helvetic Nappe System
in Western Switzerland. This section is characterized by two deformed basement mas-
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sifs, the Aiguilles-Rouges and Mont-Blanc massifs, a fold nappe, the Morcles nappe, and
a thrust nappe, the Wildhorn super-nappe, that has been overthrust, or stacked, above
the underlying fold nappe (Fig. 4.1). In our models, we consider the tectonic inheritance
of the Mesozoic passive margin formation in the form of simple half-grabens and horsts,
because the Helvetic nappe system resulted from the inversion of the pre-Alpine European
passive margin (e.g. Trümpy, 1980). We consider two main orientations of inherited me-
chanical heterogeneities: (1) a lateral variation of mechanical strength due to the lateral
alternation of basement and sediments associated with the half-graben structure and (2)
a vertical variation of strength due to (i) the basement-cover interface, (ii) the alternation
of strong carbonate with weak shale-rich units (so-called mechanical stratigraphy after
Pfiffner (1993)) and (iii) the pressure and temperature sensitivity of rock strength and
effective viscosity, respectively.

The main aim of this study is to show that a thermo-mechanical model based on
the theory of continuum mechanics (i) with a well established visco-elasto-plastic defor-
mation behaviour using standard flow laws, (ii) with mechanical heterogeneities mimick-
ing pre-Alpine extensional heritage and stratigraphic layering and (iii) with a wedge-type
compressional configuration can self-consistently explain the first-order features of nappe
detachment, transport and stacking in the Helvetic nappe system.

4.2 Short overview of the Helvetic Nappe System in Western
Switzerland

The Helvetic nappe system is commonly subdivided into Infrahelvetic, Helvetic and Ultra-
helvetic units (Fig. 4.1c) (e.g. Masson et al., 1980; Escher et al., 1993; Pfiffner et al., 2011).
The nappes consist mainly of Jurrasic to Paleogen sediments that were deposited on the
Mesozoic European passive margin before the Alpine orogeny (Fig. 4.1a). This passive
margin inherited half-grabens and horsts from the Mesozoic, pre-Alpine extensional phase
(e.g. Masson et al., 1980; Escher et al., 1993). The stratigraphy of the nappes is generally
characterized by shale-rich units, totaling several kilometers in thickness, and two major
units of massive platform carbonates, the so-called Quinten (Malm) and Urgonian (Lower
Cretaceous) limestones, with a thickness of several hundred meters (e.g. Masson et al.,
1980; Pfiffner, 1993; Pfiffner et al., 2011).

In the studied section, along the Rhone-valley near Martigny (Switzerland), the In-
frahelvetic units form the Morcles fold nappe (e.g. Steck, 1999). This recumbent fold
nappe is strongly deformed, but is still connected to its original position of deposition,
the Mesozoic half-graben between the Aiguilles-Rouges and the Mont-Blanc massifs (Fig.
4.1a). Therefore, the Morcles nappe is considered as a parautochtonous unit and its root
zone, between the Aiguilles-Rouges and the Mont-Blanc massifs, is termed the Chamonix
zone (Fig. 4.1c). The sediments forming the Helvetic nappes have been deposited on
more distal regions of the European passive margin than the units forming the Morcles
nappe. The original regions of deposition of the Infrahelvetic and the Helvetic units have
been separated by a horst, or basement high (Fig. 4.1a). The Helvetic nappes have been
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Figure 4.1 – a) Simplified geological reconstruction of the Mesozoic, pre-Alpine European passive margin.
b) Simplified geological reconstruction of the Alpine orogenic wedge, after emplacement of the Penninic
and Ultrahelvetic units and before the Helvetic nappe stacking. The black rectangle represents the model
domain of the numerical simulations. c) Simplified geological reconstruction of the present day structure
of the Helvetic Nappe System.

thrust above the Infrahelvetic units. In the studied region, the Helvetic nappe is termed
the Wildhorn super-nappe that can be subdivided into the Diablerets, Mont Gond and
Sublage nappes (Fig. 4.1c; Escher et al. (1993)). Due to the Rhone valley associated with
the Rhone-Simplon fault, the Helvetic nappes cannot be continuously traced back to their
original position of deposition (Fig. 4.1c). The Ultrahelvetic units have been depositied
on more distal regions than the Helvetic units (Fig. 4.1a). Today, the Ultrahelvetic units
are found in front and between the Morcles and Wildhorn nappes (Fig. 4.1c).

During the Alpine continental collision, the Ultrahevetic units and the Penninic nappes,
originating from more distal positions, have been thrust above the original deposition
regions of the sediments forming today the Morcles and Wildhorn nappes (Fig. 4.1b)
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(e.g. Epard and Escher, 1996). These sediments were subsequently sheared off from their
original position of deposition and were transported several tens of kilometers towards the
foreland, i.e. top to the northwest transport direction (e.g. Epard and Escher, 1996; Ebert
et al., 2007). The present day nappe structure represents a thick-skinned tectonic style
because the crystalline basement of the Aiguilles-Rouges and Mont-Blanc massifs exhibits
significant deformation (Fig. 4.1c).

The above tectonic scenario is supported by peak metamorphic temperatures of the
Helvetic nappe system, which range between 250-385 oC (Kirschner et al., 1996, 1995;
Ebert et al., 2007, 2008) increasing structurally downwards and towards the root zone.
The maximal depth of burial of the Morcles nappe has most likely exceeded 10 km and was
achieved between 29 Ma and 24 Ma (Fig. 4.1b) (Kirschner et al., 1996, 1995). In the studied
section, the carbonate layers are strongly folded indicating significant internal deformation
of the nappes (Fig. 4.1c). The Morcles fold nappe is characterized by strong parasitic
folding in its frontal part and by a ca 20 km long, highly stretched inverse limb. The
Wildhorn super-nappe also exhibits significant internal deformation, such as the isoclinal
fold separating the Diablerets and Mont Gond nappes (Fig. 4.1c). These observations
indicate that in the studied region ductile deformation was significant during formation of
the nappes.

4.3 Methods

4.3.1 Mathematical model

Our mathematical model is based on the concept of continuum mechanics (e.g. Mase and
Mase, 1970; Turcotte and Schubert, 2014). We assume slow, incompressible deformation
under gravity so that inertial forces are negligible. Our model accounts for heat transfer
by conduction and advection, as well as heat generation by viscous dissipation and by
radioactive heating. Heat transfer and deformation are coupled by shear heating, that is,
dissipative deformation is converted into heat to conserve energy. The governing system
of partial differential equations is solved numerically. The applied equations are described
in detail in Schmalholz et al. (2019). The applied numerical algorithm is based on the
finite-difference/marker-in-cell method (e.g. Gerya and Yuen, 2003). The diffusive terms in
the force balance and heat transfer equations are discretized on an Eulerian staggered grid
while advection and rotation terms are treated explicitly using a set of Lagrangian markers
and a 4th order in space / 1st order in time Runge-Kutta scheme. The topography in the
model is a material interface defined by a Lagrangian marker chain and this interface is
displaced with the numerically calculated velocity field (Duretz et al., 2016). With ongoing
deformation, this marker chain needs to be locally remeshed which is achieved by adding
marker points in the deficient chain segments.

We consider a visco-elasto-plastic deformation behavior and assume a power-law, Maxwell,
viscoelastic model and Drucker-Prager yield criterion (see details in Schmalholz et al.,
2019). In the applied creep flow laws, we add a constant pre-factor f to vary the effective
viscosities in order to test the impact of different effective viscosities on the model results.
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Table 4.1 – The list of the reference model parameters, where f is a custom pre-factor, A is the
pre-exponential factor, n is the power-law exponent, Q is the activation energy, λ is the thermal
conductivity, ρref is the density at reference pressure (Pref = 0 Pa) and temperature (Tref = 0 oC),
Qr is the radioactive heat production, C is the cohesion and φ is the friction angle. Some parameters
have constant values: Cp = 1050 J.K−1 is the heat capacity, G = 1010 Pa is the shear modulus,
α = 3 × 105 K−1 is the thermal expansion coefficient, β = 10−11 Pa−1 is the compressibility and
F = 2(1−n)/n3−(n+1)/(2n) is a geometry factor (needed to convert flow law parameters from axial
compression experiments into an invariant form). The creep flow law parameters (A, n and Q) are:
1Westerly granite (Hansen et al., 1983), 2calcite (Schmid et al., 1977) and 3mica (Kronenberg et al.,
1990).

Lithology f A [Pa−ns−1] n Q [J.mol−1] λ [W.m−1K−1] ρref [kg.m−3] Qr [W.m−3] C [Pa] φ [o]

Basement1 1.0 3.16× 10−26 3.3 1.87× 105 3.0 2800 2.5× 10−6 107 30

Cover2 0.1 1.58× 10−25 4.2 4.45× 105 2.5 2700 5× 10−7 107 30

Strong layer2 1.0 1.58× 10−25 4.2 4.45× 105 2.5 2750 5× 10−7 107 30

Weak units3 1.0 1.00× 10−138 18.0 5.10× 104 2.0 2700 1× 10−6 106 5

The effective viscosity is defined by the ratio of stress to (viscous) strain rate and has the
form

ηeff = fFA−
1
n ε̇

1
n
−1

II exp

(
Q

nRT

)
, (4.1)

where the expression to the right of f corresponds to the effective viscosity from standard
creep flow laws determined by rock deformation experiments. Material parameters, such as
effective viscosities, must be indepenent from the chosen coordinate system and, therefore,
the dependence on strain rate is expressed by the quantity ε̇II, which is the square root
of the second invariant of the (viscous) strain rate tensor. The equation for ηeff is given
above because the magnitude and distribution of ηeff will be displayed for the performed
simulations in the next section. All other parameters are explained and listed in Table 4.1.

4.3.2 Model configuration

The applied model configuration mimics a 200 km long section of the upper crustal re-
gion of a simplified passive margin (Fig. 4.2). We consider four model units with distinct
mechanical properties, namely basement, cover, strong layer and weak unit. The base-
ment unit represents the crystalline basement, the cover unit represents the Ultrahelvetic
and Penninic nappes, the strong layer represents the major carbonate layers (Malm and
Urgonian) and the weak unit represents the shale-rich units. The initial geometry of the
basement unit represents the crystalline upper crust of a passive continental margin with
15 km thickness, tapering down to 5 km thickness (Fig. 4.2). The Infrahelvetic basin is
represented by an idealized half-graben that is 5 km deep and 25 km wide. The Infrahel-
vetic and the more distal (right model side) Helvetic basin are separated by an idealized
horst structure. We cover the entire passive margin structure with sediments, to obtain a
total (basement + sediments) model thickness of 25 km. The model stratigraphy is con-
sisting of three units (cover, strong layer and weak units) and each unit has homogenous
material parameters. Both the half-graben and the basin are filled with weak units up
to a depth of 13.5 km. On top of the weak units we place a 1.5 km thick strong layer.
Our initial geometry represents the stage during the Alpine orogeny, when the proximal
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passive margin region, including the Infrahelvetic and Helvetic basins, is still relatively
undeformed, but the Ultrahelvetic and Penninic units have been already thrust on top of
it (Fig. 4.1b). We consider the overthrust units by adding a 10 km thick, homogenous
unit of cover sediments (without distinction between the Ultrahelvetic and Penninic units)
on top of the model basement and basins (Fig. 4.2). Adding this 10 km thick unit is
important to consider appropriately the ambient pressure and temperature, which control
the brittle-plastic yield strength and the temperature dependent effective viscosities.
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Figure 4.2 – Reference model configuration. The white contours show isotherms and the labels are the
corresponding temperatures in oC.

We apply boundary conditions that are similar to sandbox experiments of fold-and-
thrust belts and orogenic wedges (Fig. 4.2). The left lateral model boundary moves to the
right with a constant horizontal velocity of 1 cm.yr−1, while the right lateral boundary does
not move horizontally. There are no shear stresses at the vertical model boundaries (i.e.
free slip boundary conditions). The bottom boundary also moves with a horizontal velocity
of 1 cm.yr−1, but does not move vertically. This velocity boundary condition generates a
velocity discontinuity at the bottom right corner of the model, which is typical for sandbox
experiments and numerical simulations of accretionary wedges (e.g. Buiter et al., 2006).
The top boundary is a free surface, using the algorithm of Duretz et al. (2016). We apply
constant temperature boundary conditions of 10 oC at the top and 420 oC at the bottom
of the model. There is no heat flux across the lateral model boundaries. We apply an
initially equilibrated temperature field which results in a ca 16 oC.km−1 initial geothermal
gradient. Applied parameters are listed in Table 4.1.

4.4 Results

We present first the main results of a reference simulation, for the configuration described
above, and then results of simulations in which some parameters are varied. All simulations
show some common, general features: With increasing bulk shortening, the initially flat
topography is increasing most around the right model boundary, representing a “back-stop”
(Fig. 4.3). The models develop a wedge shape with a topography tilting towards the left
model side. With progressive shortening, the increasing topography reaches the left model
boundary and the topographic slope reduces, generating again a more horizontal topog-
raphy. Also, initially the basement deformation occurs around the bottom right corner
and progressively propagates towards the left (Fig. 4.3). With progressive shortening the
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models become generally thicker but the sedimentary units above the basement become
relatively thicker than the underlying basement because the sediments are thrust above the
basement. The thickened sedimentary cover results in increasing basement temperatures,
hence decreasing its teperature-dependent viscosity. The temperature increase of the top
of the basement is visible by the vertical position of the 300 oC isotherm in figure (4.3).
Such basement temperature increase and the related shift to a thick-skinned deformation
was also reported by Bauville and Schmalholz (2015) in their numerical models of fold-and-
thrust belts. Basement deformation results in the partial or total closure of the half-graben
and associated extrusion of the basin fill. The specific model evolution, however, depends
on the applied flow laws and model stratigraphy, which will be discussed in the following
in comparison with the reference simulation.

4.4.1 Reference model

We apply the configuration and parameters described in the previous section and displayed
in figure 4.2 to generate a reference simulation for later comparison (Figs. 4.3 and 4.4).
Initially, elastic stress builds up during a few hundred thousand years until the brittle-
plastic yield stress and the steady-state ductile creep stress are reached. For the applied
model configuration, the brittle-ductile transition occurs at about 6-8 km depth. We
quantify deviatoric stress magnitudes with the square root of the second invariant of the
deviatoric stress tensor, τII, and maximal deviatoric stresses reach ca 250 MPa at the
brittle-ductile transition (Fig. 4.4). Maximal strain rates in the developing shear zones are
between 10−13 and 10−12 s−1, in broad agreement with strain rate estimates for natural
shear zones (e.g. Pfiffner and Ramsay, 1982; Boutonnet et al., 2013; Fagereng and Biggs,
2018). The largest stresses occur around the brittle-ductile transition in the cover, whereas
stresses in the basement and in the strong layer are significantly smaller (Fig. 4.4).

The model shows several key phases of the formation of a nappe stack: (1) Detachment
of a sedimentary unit of the right basin, mimicking the Helvetic basin, from their original
substratum (Figs. 4.3a and b, and 4.4a and c). (2) Significant horizontal transport of ca
30 km with little internal deformation indicated by the relatively undeformed strong layer
in the detached unit (Figs. 4.3b to d, and 4.4b to c). (3) Formation of a fold nappe due
to ductile closure of the left half-graben, mimicking the Infrahelvetic basin, and associate
extrusion of the sedimentary half-graben fill (Figs. 4.3c to e). (4) Stacking of the nappe
originating from the right basin above the fold nappe from the left half-graben (Figs. 4.3d
and e).

During the initial stages of deformation, the strong layer of the right basin is gently
folding, or buckling (Fig. 4.3a). Stress becomes concentrated around the contact of this
strong layer and the basement horst (Fig. 4.5m) causing increased strain rates in this
region. With progressive deformation a localized shear zone, dominated by brittle-plastic
deformation, develops across the strong layer, eventually detaching it from the basement
(Fig. 4.5j to l). This shear zone develops within the strong layer so that a small piece of the
strong layer remains attached to the basement (Fig. 4.5t). The detachment of the strong
layer causes a significant stress drop in the strong layer and the basement (Fig. 4.5m to
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p). Once detached, the strong layer and parts of the underlying weak unit passively move
sub-horizontally over the horst initiating the horizontal nappe transport.
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Figure 4.3 – Structural and thermal evolution of the reference model for different times, t, and bulk
shortening, γb. The white contours show isotherms and the labels are the corresponding temperatures
in oC.

Quantification of elastic strain rates shows that elastic deformation is active during
the detachment process and that, hence, elastic stresses are not completely relaxed visco-
plastically (Fig. 4.5e to h). During the detachment, some parts of the weak cover, originally
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Figure 4.4 – Evolution of the strain rate (left column) and deviatoric stress (right column) fields of the
reference model for different times, t, and bulk shortening, γb. Strain rate and deviatoric stress are
quantified with the square root of the second invariant of the strain rate, ε̇II, and deviatoric stress, τII,
tensor, respectively. Magnitudes of ε̇II and τII are displayed with logarithmic colorscale. Colormaps are
from Crameri (2018).

residing above the strong layer, are dragged below the detaching strong layer (Fig. 4.5).
During the horizontal transport, the detached unit, consisting of the strong layer and
some weak units, is displaced above the cover material. Significant horizontal transport is
facilitated because the underlying basement and the strong layer of the left half-graben are
significantly more competent than the weak units at the base of the overthrusting nappe.

While the detached unit from the right basin is overthrusting the fill of the left half-
graben, this fill is also sheared out of the half-graben due to (i) shear stresses generated
by the overthrusting unit and (ii) closure of the half-graben due to ductile deformation
of basement units. During overthrusting, some parts of the cover units are incorporated
between the overthrusting unit and the fill of the left half-graben. Finally, a nappe con-
sisting of the fill from the right basin has been stacked above a fold nappe made of fill
from the left half-graben. The entire process of nappe detachment, transport and stacking
occurs during ca 8 Myr for the applied bulk shortening velocity of 1 cm.yr−1. At the end of
the simulation, the temperatures of the strong layer range between 250 oC at the topmost
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Figure 4.5 – Enlargement of different stages of the detachment of the strong layer from the basement
horst for different times, t, and bulk shortening, γb (see figure 4.4 for entire model domain). Colorplots
of viscous strain rates (a-d), elastic strain rates (e-h), plastic strain rates (i-l), deviatoric stresses (m-p)
and effective viscosities (q-t) are displayed. For all strain rate and stress tensor quantities we display
their corresponding square root of the second invariants.

position and 350 oC in the root zone of the fold nappe. The final bulk shortening was ca
38 % after ca 8 Myr.

4.4.2 Impact of varying strength contrast

We performed three simulations with the same initial geometry as the reference simulation,
but with modified pre-factors, f , in the applied flow laws. All simulations are terminated
after a bulk shortening of ca 38 %, corresponding to the one of the reference simulation.
In a first simulation, we used a smaller effective viscosity only for the basement (f = 0.33).
Here, the basement is weak enough to deform significantly from the beginning of shortening.
Yield stresses are not reached at the contact of the basement horst with the strong layer
(Fig. 4.6a). The strong layer does, hence, not detach from the basement and overthrusting
does not take place. Instead, a several km large fold nappe develops in the strong layer
of the right basin. Due to the highly distributed basement deformation, the half-graben
closes only partially, resulting in a moderate buckling of the strong layer, but not in fold
nappe formation. Also, a nappe stack does not form in the simulation.
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In a second simulation, we used a stronger cover (f = 0.5 instead of f = 0.1). The
effective viscosities of basement and cover are similar, hence, a mostly evenly distributed
thick-skinned deformation is present from the beginning of shortening (Fig. 4.6c and d).
A large scale fold develops above the horst, but the overturned limb made of the strong
layer eventually detaches from the basement by necking. Although the overthrusting stage
results in a significant horizontal displacement, this displacement is only half of the one in
the reference simulation and not enough to form a nappe stack. Due to the stronger shear
drag from the top, the strong layer of the left half-graben is almost entirely sheared out
from the half-graben. The strong layer of the left half-graben forms an overthrust nappe
with significant horizontal displacement and with significant internal extension.

Figure 4.6 – The final geometry, temperature and viscosity fields of three simulations with different f
factor for certain model units (see text).

In a third simulation, we used weaker strong layers (f = 0.33). The development of
the sediment units of the basin is largely similar to that in the reference model (Fig. 4.6).
The only notable difference is that before the strong layer is detached from the basement,

88



CHAPTER 4

it forms a shear fold that is on the scale of a few km. The development of the units of
the left half-graben is largely different compared to the reference simulation. Since the
strong layer is weaker, the drag from the overriding units is sufficient to detach the strong
layer from its left contact with the basement and displace it several tens of km to the left.
During this displacement, the strong layer from the left half-graben is highly stretched and
almost necking at its tail. Due to significant horizontal displacements, a nappe stack forms
with two thrust sheets on the top of each other. However, the strong layer from the left
half-graben is displaced considerably further towards the left than the strong layer from
the right basin.

The final result of the three simulations, especially with respect to nappe detachment,
transport and stacking, differs significantly from the result of the reference simulation,
although the effective viscosities of individual model units have been modified by factors
of only three to five (Fig. 4.6). The results indicate that the effective viscosity contrast
between the model units has a first-order impact on the results.

At the onset of nappe formation, after ca 5% bulk shortening, the reference simulation
and the three simulations with different f factors exhibit different distributions and mag-
nitudes of effective viscosity (Fig. 4.7). The maximal viscosity contrast in the reference
simulation is up to five orders of magnitude inside the model domain, mainly between
weak units in the basin and the uppermost cover (Fig. 4.7a). The effective viscosity at
the top of the basement is in the order of 1024 Pa.s and the viscosity of the cover directly
above the basement is at least one order of magnitude smaller. The strong layers have lo-
cally similar maximal effective viscosities than the top basement in the order of 1024 Pa.s.
The effective viscosity contrast between strong layer and weak units in the right basin is
ca three orders of magnitude (Fig. 4.7a). The above mentioned viscosity ratios between
model units are required to generate the nappe detachment, transport and stacking in the
reference simulation. In the three models with different f factors in some model units, one
of these viscosity ratios is different and, hence, the final result differs from the one of the
reference simulation (Fig. 4.7).

4.4.3 Impact of multilayers

We also run simulations in which we replaced the single strong layer in the reference model
with two thinner ones that are separated by weak units. We run three simulations with
different initial thickness distributions of the two strong layers and alternating weak units.
The initial thickness configuration is displayed on the right of the three panels in Fig.
4.8. The material parameters of every unit are the same as in the reference model. The
basement deformation agrees with the one in the reference model. The deformation of the
strong layers is different. Initially, the strong layers of the right basin form more intense,
shorter wavelength (due to their smaller thickness) buckle folds, in agreement with the
dominant wavelength theory (e.g. Biot, 1961; Schmalholz and Mancktelow, 2016).

In the simulations, where the upper strong layer rests directly below the cover (Fig.
4.8b, c), the top layer is being detached and transported in a similar fashion as in the
reference model. The lower layer, on the other hand, forms a fold nappe first, with an
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Figure 4.7 – Effective viscosity for four simulations with different f factor for certain model units after
a bulk shortening of ca 5.4%. Panel a) displays the reference simulation and panels b) to d) displays
the three simulations shown in figure 4.6.

extremely thinned inverse limb. Eventually this inverse limb develops boudinage, and once
necking takes place it detaches from the basement. In the simulation, in which a weak unit
is located between the upper strong layer and the cover (Fig. 4.8a), both layers form folds
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and detach from the basement horst by necking in the inverse limb. After the detachment,
the internal deformation of the strong layers is negligible.

The deformation of the units of the left half-graben is similar to the reference model,
when weak units are located between the upper strong layer and the cover (Fig. 4.8a).
The main difference to the reference simulation is that the weak unit located on top of the
half-graben is sheared out, and both strong layers form a fold nappe with a more intensely
stretched inverse limb. In the models, in which the upper strong layer is in direct contact
with the cover (Fig. 4.8b, c), the deformation of the strong layers in the half-graben is
considerably different than it is in the reference model. Because the strong layer on the
top of the left half-graben is much thinner, the drag from the overriding unit is sufficient to
displace this layer considerably horizontally. The drag from the top shears the upper strong
layer of the left half-graben above the basement to the left and it detaches the layer from
the half-graben. As a result, buckle and shear folds form around the left tip of the layer
(Fig. 4.8b). The upper strong layer starts moving sub-horizontally without considerable
internal deformation, and eventually forms a rootless nappe. The lower strong layer of the
half-graben stays mostly in place, until the weak units are extruded from the half-graben
due to its closure. Then, the lower strong layer forms a fold nappe, with a highly stretched
inverse limb (Fig. 4.8b, c).

4.4.4 Impact of softening mechanisms

We also test the impact of two different softening mechanisms that can enhance strain
localization (Fig. 4.9). The first mechanism is thermal softening by shear heating due
to the conversion of mechanical work into heat and the resulting decrease of the temper-
ature dependent viscosity (e.g. Yuen et al., 1978; Kaus and Podladchikov, 2006; Jaquet
and Schmalholz, 2017; Kiss et al., 2019). Although this mechanism is activated in all
simulations, for the applied 1 cm.yr−1 convergence velocity its impact on structure de-
velopment is negligible. However, for faster bulk shortening, with 5 cm.yr−1 convergence
velocity, thermal softening is sufficient to cause spontaneous shear zone formation (Kiss
et al., 2019). For the simulation with 5 cm.yr−1 convergence velocity, all other parameters
are identical to the ones in the reference simulation. There are two striking differences be-
tween the two simulations. First, in the high velocity simulation prominent ductile shear
zones are formed in the cover that also promote the appearance of more localized brittle
deformation zones (Fig. 4.9a). Second, heat production in the ductile shear zone raises
the temperature of the units close to the "back-stop" on the right model side. Thus, the
basement deformation in the right model domain is more intense, the left half-graben in
the basement is not being closed and the sediment fill is not being squeezed out (Fig. 4.9a).

The other considered softening mechanism is plastic strain softening. Such softening is
frequently applied in numerical models of crustal deformation in order to enforce highly-
localized brittle deformation by decreasing the friction angle as a function of accumulated
plastic strain (e.g. Buiter et al., 2006). Such softening algorithm generates mesh-dependent
results, but we apply it here for comparison, because such strain softening is applied in
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Figure 4.8 – The final geometry of three simulations with two strong layers with the isotherms of
the corresponding temperature field. The initial model stratigraphy around the upper region of the
half-graben and basin is displayed on the right of each panel. The model stratigraphy is laterally
homogenous, so the overall initial configuration is similar to that in Figure (4.2).
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Figure 4.9 – The geometry and the strain-rate field of three simulations after ca 30% bulk shortening,
with various softening mechanisms. Panels a) and b) show results of a simulation with a convergence
rate of 5 cm.yr−1, in which thermal softening has a significant impact. Panels c) and d) show results
of a simulation with strain softening that reduces friction angle from the initial 30 degrees to 5 degrees.
Panels e) and f) show results of a simulation with strain softening that reduces friction angle from the
initial 15 degrees to 5 degrees.

many numerical models of fold-and-thrust belts (e.g. Buiter et al., 2006; Erdős et al., 2014;
Ruh et al., 2014). We used two different parameter sets to model strain softening. In
the first case (Fig. 4.9b), we start with a friction angle of 30o that we linearly decrease
to 5o between an accumulated plastic strain of 0.5 and 1.5. Compared to the reference
simulation, we observe strongly localized brittle deformation that is characterized by high
angle (� 0o from horizontal) and small displacement (< 10 km) overthrusts. This is the
only simulation, where a strong back-thrust forms over the right basin that also deforms
the strong layer. In the second case (Fig. 4.9c), we start with a friction angle of 15o that
we linearly decrease to 5o between accumulated plastic strain of 0.5 and 1.5. Such initially
lower friction angle is often suggested to mimic fluid-pressure reduced effective friction
angles (e.g. Erdős et al., 2014). In this simulation, the detachment mechanism of the right,
strong layer from the horst is different, as the initial buckling and folding phase is entirely
missing, and plastic yielding dominates from the beginning of deformation. Initially, the
angle of thrusting is ca 35o from the horizontal. Once a sufficient amount of weak units are
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sheared on top of the horst, the transport direction is sub-horizontal. Similarly to the other
simulations with significant softening mechanisms, the basement around the half-graben is
only deformed to a small degree and the half-graben is not closed.

4.5 Discussion

4.5.1 Numerical robustness

We investigated the impact of different numerical resolutions on the model results to test
the robustness of these results. Such resolution test is important for the presented simula-
tions, because weak material, such as cover and weak units, is entrapped along thin regions
between stronger model units, such as strong layer and basement. Entrapment of weak
material between strong material can cause mechanical decoupling if resolved numerically.
We compare the reference model with an original resolution of 3001×1001 (width×height)
numerical grid points (initially 66×25 m grid spacing) with two simulations having iden-
tical configuration and parameters, but with smaller resolutions of 1501×501 (initially
133×50 m) and 751×251 (initially 267×100 m). The resulting structures after 38% of bulk
shortening are essentially identical (Fig. 4.10). Similarly, the strain rate fields below the
brittle-ductile transition are similar too. However, the strain rate distribution in the brittle
part and around the brittle-ductile transition is resolution dependent (Fig. 4.10). This
is typical for the applied non-associated plasticity scheme with the Drucker-Prager yield
criterion, that is merely a stress limiter, inhibiting the stresses to exceed the failure limit.
Thus the exact geometry of the brittle-plastic shear bands is resolution dependent, but
the effective load bearing capacity of the brittle layer converges with increasing resolution
(Yamato et al., 2019, their appendix). Keeping in mind these limitations regarding the
brittle-plastic deformation, the results in our main area of interest, that is the ductile nappe
stacking, are essentially independent on the resolution within the studied range. Hence,
our results are numerically robust concerning the detachment, transport and stacking of
nappes under dominantly ductile deformation.

4.5.2 Comparison of the model results with the geological observations

There are several features of the Helvetic Nappe System that we could successfully re-
produce in our thermo-mechanical model. Similarly to Bauville and Schmalholz (2015),
a structure resembling a fold nappe has been formed by the extrusion of the sedimentary
fill from a half-graben. During formation of this fold nappe, the half-graben has been
closed and the sediments squeezed between the two basements resemble the structure of
the Chamonix zone located between the Aiguilles-Rouges and Mont-Blanc massifs (Fig.
4.1c). Hence, our model generated the first-order structural features of the Infrahelvetic
complex in W-Switzerland, namely a recumbent fold nappe with a root located between
two deformed basement massifs. Additionally, our model reproduced the detachment and
sub-horizontal transport of sedimentray units from a model passive margin structure. The
thrust nappe, which originates from the rigth basin in our model, resembles the Wildhorn
super-nappe. The horizontal transport of this thrust nappe is in the order of 30 km in the
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Figure 4.10 – The geometry and the strain-rate field of three simulations after ca 38% bulk shortening
for different numerical resolutions.

model. Furthermore, in the model this thrust sheet is stacked above the fold nappe and
the final model structure resembles a thrust nappe that is stacked above a fold nappe, as
observed in the Helvetic nappe system. Moreover, there is a considerable amount of cover
units entrapped between the fold nappe and the thrust sheet. The entrapped lower region
of the cover unit resembles the Ultrahelvetic units so that our model can explain how these
Ultrahelvetic units have been entrapped between the Morcles fold nappe and the Wildhorn
super-nappe (Fig. 4.1c). At the end of the simulated formation of the nappe system, the
maximum temperature in the nappe system ranges between 250 oC and 350 oC, which
is in agreement with the metamorphic peak temperatures of the Helvetic nappe system
reported by Kirschner et al. (1996) and Ebert et al. (2007). In the simulations, the nappe
stack is formed within ca 8 Myr, which is also in broad agreement with the estimated time
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span of main formation of the Morcles fold nappe from ca 28 to 17 Ma (Kirschner et al.,
1995). The simulations with two thin strong layers, separated by weak units, can explain
the significant parasitic, or second order, folding of the two main carbonate units (Quinten
and Urgonian limestone formations) which is observed in the Wildhorn super-nappe.

Some features of the Helvetic Nappe System are not reproduced by the simulations.
In the frontal part of the fold nappe, originating from the left half-graben, the front is
first thrust out of the half-graben and the overturned limb develops subsequently. This
deformation generates a “nose-like” structure in the frontal part of the fold nappe, which is
not observed. Also, in all simulations the fold nappe has only a minor second order folding,
in contrast with the prominent parasitic folds of the Morcles nappe. Reproducing these
natural, second-order parasitic folds with their correct scale with respect to the first-order
fold nappe would require an even higher numerical resolution. In the numerical models, we
also likely overestimated the amount of shale-rich sediments in the right basin, mimicking
the Helvetic basin, as the total volume of the Wildhorn super-nappe south of the Morcles
nappes is much thinner than in the simulations. There was also likely a significant amount
of vertical flattening, and presumably pressure solution related volume decrease, after the
main phase of nappe formation and during the exhumation of the nappe system, which
is not modelled in our simulations. Moreover, several basement shear zones have been
mapped in the Aiguilles-Rouges and in the Mont-Blanc massifs, which are not present
in the simulations. This is likely because (i) the straight bottom boundary of the model
may prohibit any significant vertical displacement of the basement units and hence inhibit
significant shear zone formation, (ii) the model basement is mechanically homogeneous and
there are no heterogeneities that can trigger shear zone localization and (iii) the amount of
brittle-plastic deformation is underestimated in the basement. We considered a horizontal
model base while during natural nappe formation the overall basement-cover interface was
likely dipping, or tilting, in the direction of subduction (i.e. direction of basal velocity), so
that a model bottom inclinded towards the subduction direction would be more realistic.
The deformation at our model bottom is viscous and the surface slope for evolving crustal
wedges with a viscous base depends on the viscous shear stress at the base, whereby larger
shear stresses are related to higher surface slopes (e.g. Ruh et al., 2012). Keeping the basal
viscous shear stress the same, a tilting of the model base towards the subduction direction
would reduce the surface slope. Therefore, in our models the surface slopes towards the
foreland (left) region represent high end-member surface slopes so that effects of gravity-
related forces directed towards the foreland region are on the higher end.

Finally, the applied "numerical sandbox" model configuration and velocity boundary
conditions constrain the deformation in the model domain. During the large-scale dynamics
of Alpine orogenic wedge formation, the straight bottom and right model boundaries do
not exist. Processes such as laterally-varying vertical isostatic adjustment, flexure due to
subduction and back-thrusting, or back-folding, generate geodynamic conditions for the
formation of the Helvetic nappe system which are clearly more dynamic and complex than
implied by the considered model configuration. Lithospheric scale numerical models can
self-consistently model the generation of orogenic wedges and major crustal shear zones,

96



CHAPTER 4

including effects of isostasy, flexure and back-folding (e.g. Erdős et al., 2014; Jaquet et al.,
2018; Jourdon et al., 2019; Erdős et al., 2019). With higher numerical resolution such
lithosphere models may eventually be able to resolve the upper crustal deformation with
a resolution as applied in our model.

4.5.3 Tectonic inheritance, mechanical heterogeneities and potential soft-
ening mechanisms

Geological reconstructions of the Helvetic nappe system showed the correlation of the
nappes with their original positions along the pre-Alpine European passive margin, which
was characterized by half-grabens and horsts (e.g. Epard, 1990; Boutoux et al., 2014).
In agreement with previous modelling studies (e.g. Beaumont et al., 2000; Wissing and
Pfiffner, 2003; Bellahsen et al., 2012; Lafosse et al., 2016; Bauville and Schmalholz, 2017),
our results suggest that tectonic inheritance in the crust in the form of half-grabens and
horsts has a strong impact on the development of fold and thrust nappes during crustal de-
formation. Our results indicate that two features of the tectonic inheritance are important,
namely the geometry and the magnitude of mechanical heterogeneities. The geometry of
half-grabens and horsts controls the location of nappe initiation (Bauville and Schmalholz,
2017). The basement and sediments must, of course, have different mechanical strength,
otherwise the geometry of the basement would be unimportant. Our results suggest that
tectonic inheritance is necessary to model the evolution of the Helvetic nappe system,
but not sufficient. The results show that specific strength, or effective viscosity, contrast
between basement and sediments and within the sediments are required to model nappe
structures resembling those of the Helvetic nappe system (Figs. 4.6 and 4.7). The reference
simulation exhibits a viscosity contrast between weak units and strong layer and basement
in the order of four orders of magnitude (Fig. 4.7a). Although the effective viscosity in
the basement and strong layer is in the order of 1024 Pa.s, the stresses in the basement
and strong layer are far below the brittle-plastic yield stress and typically smaller than 100
MPa (Fig. 4.4). If the effective viscosity contrast between strong layer and basement is
not large enough, then the sediments of the right basin are not detached in the manner
of a thrust sheet from their original position (Fig. 4.6a). One possibility to enforce de-
tachment also for smaller viscosity contrasts is the application of plastic strain softening
and/or initially reduced friction angles (Fig. 4.9b and c). Application of strain softening
favors the formation of thrust sheets in the models, but prohibits the formation of fold
nappes (Fig. 4.9b and c). The importance of tectonic inheritance and the pre-Alpine
configuration on the nappe formation during Alpine orogeny underlines the importance
of geological field work and associated geological reconstructions, because only such field
based reconstructions can provide estimates for the pre-Alpine configurations. Our results
are consistent with those of Duretz et al. (2011) which showed that inherited mechanical
heterogeneities, promoting large lateral strength contrast, are essential to trigger exhuma-
tion of lower crustal granulites as observed in the Bohemian Massif. Generally, our results
are consistent with a variety of studies, which show the importance of structural inversion
of extensional systems during compressional deformation and are based on geological field
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observation, analogue deformation experiments and numerical models (e.g. Gillcrist et al.,
1987; Buiter and Adrian Pfiffner, 2003; Buiter et al., 2009; Bellahsen et al., 2012; Bonini
et al., 2012; Lafosse et al., 2016; Granado and Ruh, 2019).

For the applied model configuration, a significant localization due to thermal softening
does not occur for a convergence velocity of 1 cm.yr−1, but it does for 5 cm.yr−1. Average
convergence velocities during the Alpine orogeny are typically estimated to be in the order
of 1 cm.yr−1 (Schmid et al., 1996). However, some short periods with higher convergence
velocities cannot be excluded. So if there were short periods during the formation of the
Helvetic nappe system with convergence velocities larger than ca 5 cm.yr−1, then thermal
softening might have been important.

There is field evidence for grain size reduction associated with mylonitic shear zones at
the base of nappes in the Helvetic nappe system (e.g. Ebert et al., 2007, 2008). We did not
consider the microscale grain size reduction in our models for several reasons: First, the
major mylonitic shear zones with significant grain size reduction have a thickness in the
order of 10 m. Although we use high resolution models we have a numerical grid size of ca
66×25 m, hence, this resolution is still not large enough to resolve the internal deformation
within shear zones having thickness of 10 m. Second, recent numerical simulations including
grain size reduction and combined diffusion and dislocation creep flow laws suggest that
grain size reduction does not have a dramatic impact on strain localization (Schmalholz
and Duretz, 2017), which is in agreement with theoretical results of Montési and Zuber
(2002). The reason is that a piezometer-type stress to grain size relation, when subsituted
into a grain-size-sensitive diffusion creep flow law, generates a power-law type flow law
with stress exponents similar to the one of the corresponding dislocation creep flow law
(e.g. Montési and Zuber, 2002). However, other studies argue that microscale processes
such as coupled grain evolution and damage mechanisms can generate significant strain
localization and that these mechanisms have been responsible for generating subduction
and plate tectonics (e.g. Bercovici and Ricard, 2014). Therefore, future simulations should
consider such coupled microscale processes in order to quantify their importance on the
first order tectonic nappe detachment, overthrusting and stacking.

4.6 Conclusions

The presented 2D thermo-mechanical simulations of shortening of the upper crustal region
of a passive margin consider initial mechanical heterogeneities and can explain key aspects
of tectonic nappe formation. Two types of heterogeneities are considered: (1) a lateral
heterogeneity due to the basement-cover interface that is characterized by half-grabens
and horsts, and (2) a vertical heterogeneity due to alternating sedimentary layers with dif-
ferent mechanical strength. The simulations can model the detachment and sub-horizontal
transport of a nappe and the stacking of two nappes. Detachment of sedimentary units oc-
curs due to stress concentrations in strong sediment layers around the basement-sediment
contact, which result in a localized brittle-plastic shear band that detaches the strong layer
from the basement. Horizontal transport is controlled by basement-cover geometry and
occurs by moving relatively stronger sediment units above thinner and weaker units. The
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detached and horizontally transported units resemble a thrust nappe. Structures resem-
bling fold nappes form by the ductile closure of a half-graben and the associated extrusion
of the sedimentary half-graben fill; in agreement with previous modelling studies. In the
simulations, the thrust nappe initiates before the fold nappe, because it is located closer
to the “back-stop” of the applied model configuration. The thrust nappe exhibits a larger
horizontal displacement than the fold nappe so that the thrust nappe can be stacked above
the fold nappe.

The considered lateral variation of the basement-cover interface and associated me-
chanical heterogeneity is necessary to model nappe formation and stacking, but it is not
sufficient. Additionally, a specific effective viscosity contrast between basement and strong
and weak sediments is required. For our model configuration, an effective viscosity contrast
of approximately four orders of magnitude between weak sediments and strong sediments
and basement is required. Simulations with smaller viscosity contrasts did not generate
the detachment and transport of thrust nappes. Nappe detachment and transport are
modeled with standard creep flow laws and a Drucker-Prager yield criterion, without the
application of strain softening algorithms. Considering several strong layers in the models
can explain the second-order internal folding observed within some thrust nappes.

Based on the first-order agreement between our model results and natural data, we
propose a macroscale “nappe theory” for the Helvetic nappe system of Western Switzer-
land. Our “nappe theory” can be self-consistently calculated and reproduced with a well-
established continuum mechanics thermo-mechanical theory and with standard creep flow
laws and a Drucker-Prager yield criterion, which are based on rock deformation exper-
iments. We propose that the pre-Alpine configuration of the European passive margin
was characterized by important mechanical heterogeneities resulting from (i) a basement-
cover contact with half-grabens and horst, and (ii) the alternation of mechanically strong
and weak sediment units. During the Alpine continental collision, the passive margin
is shortened and sheared due to external compressive stresses. During margin deforma-
tion, mechanical heterogeneities control the detachment, transport and stacking of nappes.
The sedimentary units of the Wildhorn super-nappe are detached due to the existence of
horsts, or basement highs, causing stress concentrations and brittle-plastic shear bands.
The Wildhorn super-nappe was transported mainly above weak shale-rich units and weak
Ultrahelvetic units, which have been entrapped from above to below the Wildhorn super-
nappe. Formation of the Morcles fold nappe occured by dominantly ductile closing of a
half-graben, bounded by basement massifs that form now the Aiguilles-Rouges and Mont-
Blanc massifs, and the associated squeezing-out of sediments from this half-graben.
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SUMMARY

5.1 Main results

Chapter 2

A ductile shear zone which is generated spontaneously by thermal softening during a
velocity-driven bulk deformation exhibits the following fundamental features: (1) After
a transient period of temperature increase the temperature in the shear zone remains
constant for linear viscous flow and quasi-constant for power-law viscous flow. (2) The shear
stress in the shear zone is largest at the onset of shear zone formation and subsequently
decreases towards a (quasi-)constant value associated with the establishment of a (quasi-
)constant temperature. (3) The width of temperature variation across the shear zone is 6
to 8 times wider than the variation of the corresponding finite strain. Therefore, the shear
zone does not exhibit a sharp, and hence easily observable, temperature variation between
highly-strained shear zone and little-strained wall rock. (4) The shear zone is continuously
widening during shearing due to thermal conduction between shear zone and wall rock.

Different versions of the Brinkman number can predict the onset of shear zone gener-
ation by thermal softening.

We determined that the thickness of shear zones is driven by thermal conduction. The
thermal thickness is:

WT ≈ 2
√
κt, (5.1)

and the shear zone thickness (observable, finite strain thickness)

Wγ ≈
WT

7
(5.2)

We derived a new analytical formula that predicts the maximal temperature inside the
shear zone:

Tmax ≈ −1.13
Q

nR

[
ln

(
∆v2nR

λQ
A−

1
n

{
∆v√
κt

} 1
n
−1
)

+ 1.1

]−1

. (5.3)

This temperature prediction requires only information on the bulk deformation, such as far-
field velocity, flow law and thermal parameters, and, therefore, no a priori knowledge of the
shear zone itself, such as thickness, flow stress and strain rate. Temperature predictions
across the scales of geological velocities show first order agreement with several natural
shear zones including Alpine basement nappes, eclogite shear zones and pseudotachylites.
We show with 1D, 2D and 3D numerical simulations that this temperature prediction is
valid for shear zone generation under both bulk simple and pure shear.

Our results indicate that shear zone generation by thermal softening likely occurs during
lithosphere deformation in the continental lower crust and the mantle lithosphere for typical
lithospheric velocities of few cm.yr−1 or bulk strain rates between 10−16 and 10−14 s−1.
For these deformation conditions, shear stresses of few hundred MPa can already cause
shear zone generation by thermal softening.

Based on our results and their application to lithospheric flow laws and deformation
conditions, we argue that spontaneous shear zone generation by thermal softening is a
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feasible and likely the primary mechanism for spontaneous lithospheric scale shear zone
generation. Thermal softening is probably a key constituent of subduction initiation, for
example, at a thinned passive continental margin. Additional processes, such as grain
size reduction, fabric development or fluid-related reactions can cause additional softening
during progressive shear zone evolution and likely intensify the strain localization.

Chapter 3

We show with 2D thermo-mechanical numerical simulations that induced SI occurs due
to thermal softening at passive margins with exhumed sub-continental mantle. SI occurs
for convergence velocities of 2 cm.yr−1, Moho temperatures between 525 and 600 oC and
reasonable maximal deviatoric stresses around the Moho of ca 800 MPa. For the presented
configuration, subduction initiates in the margin region of thinned continental crust. The
modeled SI agrees with subduction scenarios that are geologically reconstructed for the
closure of the Piemont-Liguria basin during the western Alpine orogeny.

The temperature in the mantle shear zone can be predicted with the analytical formula
presented in Chapter 2.

Chapter 4

Inherited mechanical heterogeneities, such as (1) a lateral heterogeneity due to the
basement-cover interface that is characterized by half-grabens and horsts, and (2) a vertical
heterogeneity due to alternating sedimentary layers with different mechanical strength,
can have great impact on the crustal deformation of shortening passive margin. The
detachment, the sub-horizontal transport and the stacking of two nappes can be reproduced
with visco-elasto-plastic rheology and standard flow-laws. The detached and horizontally
transported units resemble a thrust nappe. Structures resembling fold nappes form by the
ductile closer of a half-graben and the associated extrusion of the sedimentary half-graben
fill; in agreement with previous modelling studies. The thrust nappe exhibits a larger
horizontal displacement than the fold nappe so that the thrust nappe can be stacked
above the fold nappe.

Based on the first-order agreement between model results and natural data, we propose
a “nappe theory” for the Helvetic nappe system of Western Switzerland: The pre-Alpine
configuration of the European passive margin was characterized by mechanical hetero-
geneities resulting from (i) a basement-cover contact with half-grabens and horst, and
(ii) the alternation of mechanically strong carbonate and weak shale-rich sediment units.
During the Alpine continental collision, the passive margin is shortened due to external
compressive stresses; bouyancy forces probably played a minor role. The large-scale defor-
mation configuration was close to the one applied to model tectonic wedges. During the
margin deformation, mechanical heterogeneities control the detachment, transport and
stacking of nappes. The sedimentary units of the Wildhorn super-nappe are detached due
to the existence of a horst, or basement high, causing stress concentrations and brittle-
plastic shear bands, eventually detaching the sedimentary units. The Wildhorn super-
nappe was transported above weak shale-rich units and weak Ultrahelvetic units, which
have been entrapped from above to below the Wildhorn super-nappe. Formation of the
Morcles fold nappe occured by dominantly ductile closing of a half-graben, bounded by
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basement massifs that form now the Aiguilles-Rouges and Mont-Blanc massifs, and the
associated squeezing-out of sediments from this half-graben. The above described “nappe
theory” can be calculated self-consistently with a thermo-mechanical theory, based on con-
tinuum mechanics, and with standard creep flow laws and a Drucker-Prager yield criterion,
which are both based on rock deformation experiments.

5.2 Outlook

In Chapter 2 we provided a theoretical investigation on ductile strain localization by ther-
mal softening. Although this model was derived from fundamental laws of nature, it would
be interesting to design experiments and test the applicability of the model for deforming
rocks. The localization criteria could be tested easily, as localized vs. distributed deforma-
tion is easily detectable in rock samples. Alternatively, the temperature prediction could
be tested as well if one can find a reliable way to record the in-situ temperature (e.g.
thermo-couple, infrared camera).
An alternative direction could be including other rheological weakening mechanism in the
models, on top of shear heating. Here the list of possibilities is close to infinite. For
small ∆T , maybe the two most critical addition could be the addition grain-size evolu-
tion and fluid related weakening. For large ∆T , the most important would be to include
phase-transitions and reactions coupled to the thermo-mechanics.

The aforementioned mechanisms are possibly relevant also for forced subduction ini-
tiation. However, only staying to the proposed physical model, a systematic study of
subduction initiation with different geometries and rheologies, would be desirable.

In Chapter 4 we propose a “nappe theory” for the Helvetic nappe system. However,
there are some aspect we did not investigate and that is feasible with the current compu-
tational power. A possibility would be to have systematic simulations with varied slope of
the model domain, representing the flexure of the subducting plate. An other possibility
for example is to have inclined strong layers representing syn-rift sedimentation or transi-
tion of sedimentary facies in a prograding system. This would be desirable, since in our
models we had clearly too much of the Helvetic sediments. Once two orders of magnitude
higher computational power will be available (that should happen within 5-10 years) it
would become possible to either resolve mylonite shear zones in this configuration or to
resolve nappes with the same details as we did here, in a lithospheric scale model with
self-consistently developing orogenic wedge.
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