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Abstract: Optimization of mixture models such as the mixture transition distribution (MTD) model
is notoriously difficult because of the high complexity of their solution space. The best approach
comprises combining features of two types of algorithms: an algorithm that can explore as completely
as possible the whole solution space (e.g., an evolutionary algorithm), and another that can quickly
identify an optimum starting from a set of initial conditions (for instance, an EM algorithm). The march
package for the R environment is a library dedicated to the computation of Markovian models for
categorical variables. It includes different algorithms that can manage the complexity of the MTD
model, including an ad hoc hill-climbing procedure. In this article, we first discuss the problems
related to the optimization of the MTD model, and then we show how march can be used to solve
these problems; further, we provide different syntaxes for the computation of other models, including
homogeneous Markov chains, hidden Markov models, and double chain Markov models.

Keywords: Markov chain; MTD model; hidden Markov model; double chain Markov model;
optimization; hill-climbing algorithm; evolutionary algorithm; general EM algorithm

1. Introduction

Despite their long history and use in many scientific fields, Markovian models are difficult to
apply in practice because of the lack of empirical tools. For instance, Markovian models are not
included in the base versions of statistical environments such as SPSS, SAS, and Stata, and researchers
need to either adopt a log-linear approach (for homogeneous Markov chains only) or rely on ad hoc
toolboxes developed by third parties such as MARKOV [1] and mixmcm [2] for Stata, or PTRANSIT [3]
and MARKOV [4] for SAS. Some specialized software programs such as Latent Gold [5] have been
developed; however, they remain incomplete and are not open source. Recently, some researchers used
the Julia language [6], but now the most used environment for Markovian computations is R [7] with
packages such as depmixS4 [8] for continuous variables and markovchain [9] for categorical variables.

In addition to the well-known homogeneous Markov chain and hidden Markov models,
many other Markovian models have been developed over the years. Among them, the mixture
transition distribution (MTD) model proposed first by Raftery [10] is of great interest because it is
considerably more parsimonious than the fully parameterized Markov chains. However, to the best of
our knowledge, none of the above-mentioned software programs can estimate the MTD model for
categorical variables. In fact, we know that only two pieces of software can deal with the MTD model:
seqpp [11], which was developed in C++, but it is no longer available; and march for Windows [12],
a standalone piece of software available for the Windows environment only, which is still available
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but whose development was definitively stopped in 2010. This lack of options when using the MTD
model is not surprising, because similarly to other mixture models, this model is notoriously difficult
to optimize. Therefore, there is a need for an R package dedicated to the computation of Markovian
models for categorical variables and one that can handle the MTD model. We decided to rewrite the
old march for Windows software (originally developed in the MATLAB language) as an R package and
improve it. This package is freely available from CRAN (https://cran.r-project.org/).

The objectives of this paper are (1) to describe the difficulties occurring when optimizing the MTD
model; (2) to demonstrate how to overcome these difficulties using the R package march; (3) to show
how the march package can be used to optimize other Markovian models.

The rest of this paper is organized as follows. Section 2 introduces the MTD model and its
optimization details. In Section 3, we present the main features of the march package, and in Section 4,
we consider the specific case of MTD models. Further, we provide a practical example in Section 5.
An appendix provides additional syntax with which to optimize other Markovian models.

2. MTD Model and Its Optimization

Let Yt be a categorical random variable that takes values in the finite set {1, . . . , c}. In an f -order
MTD model, each lag of the random variable (Yt−1, Yt−2, . . . , Yt− f ) influences Yt independently as

P(Yt = i0|Yt− f = i f , . . . , Yt−1 = i1) =
f

∑
g=1

λg P(Yt = i0|Yt−g = ig)

=
f

∑
g=1

λg qigi0 ,

where

Q =

 q11 . . . q1c
...

...
qc1 . . . qcc


represents a transition matrix, and where (λ1, . . . , λ f ), ∑i λi = 1, are the weights associated to each lag.
The transition probabilities in the matrix Q and the weights associated with each lag are estimated
by optimization of the log-likelihood of the model [13]. The MTDg model is a generalization of the
MTD model wherein a different transition matrix, Q1, Q2, etc., is used to represent the link between
each lag of the model and Yt. Moreover, covariates can be added to the model [14]. For more details
about the concept of the MTD model and its usefulness, readers can refer to the review article by
Berchtold and Raftery [15].

Mixture models are notoriously difficult to optimize [16], and the MTD model is not an exception,
especially when a different transition matrix is used for each lag and/or when covariates are added to
the model. The problem arises from the fact that as the complexity of the model increases, the solution
space can become very irregular, with many different local optima. Standard estimation algorithms
such as the EM algorithm are very efficient in finding a solution; however, they are trapped inside
the basin of attraction of one specific optimum. An ad hoc estimation algorithm belonging to the
hill-climbing family was proposed for the MTD model [13]; however, even if this algorithm is efficient in
most scenarios—similarly to the EM algorithm—it sometimes fails to identify the global optimum of the
solution space because (1) the re-estimation of each parameter is considered separately, and (2) some
parts of the solution space are not explored at all. These issues indicate that finding the global optimum
is related to the set of initial conditions: If the starting point of the optimization process lies inside the
basin of attraction of the global optimum, it will be found. Otherwise, the algorithm will converge to
another (local) optimum.

https://cran.r-project.org/
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To illustrate this point, we defined the following second-order MTDg model: The vector of the lag
weights is

Λ =

(
θ1 + θ2

2
1− θ1 + θ2

2

)
,

and the transition matrices corresponding to the first and second lags are

Q1 =

(
θ1 1− θ1

θ2 1− θ2

)
and Q2 =

(
1− 0.8 · θ2 0.8 · θ2

1− 0.5 · θ1 0.5 · θ1

)
.

The model was applied to a dataset of n = 845 sequences of length 13 of a dichotomous variable
using the hill-climbing optimization algorithm. Refer to Section 5 for a description of the dataset.

Figure 1 shows the solution space of this model for all combinations of θ1 = (0.01, . . . , 0.99) and
θ2 = (0.01, . . . , 0.99). We can see that there are two optima, a local one on the left and the global one
on the right. If we optimize the MTDg model starting from each point on the figure and by applying
the HC algorithm [13], the model will then converge to two different values of the log-likelihood,
−3348.3 corresponding to the local optimum and −2057.9 corresponding to the global one. Therefore,
converging to the global optimum rather than to the local optimum depends on the starting point of
the optimization algorithm.

theta 1

th
et

a 
2

log−
likelihood

Solution space of a second order MTDg model

Figure 1. Solution space of a second-order MTDg model depending on two parameters, θ1 and θ2.

The above example is not fully realistic because it involves a model with many constraints on its
parameters; however, these constraints were necessary to visualize the solution space. Despite this
limitation, this example correctly illustrates the types of issues that occur with mixture models. It is
absolutely necessary to explore the entire solution space to identify the basin of attraction of the global
maximum, and thereby, the global maximum itself.
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Different solutions to the exploration of the solution space problem were proposed in the literature,
either based on a modification of the standard EM algorithm to allow it to escape from a specific basin
of attraction (e.g., SEM, CEM [17]), or based on a better exploration of the entire solution space. In the
second category, we find that different nature-inspired optimization algorithms, i.e., algorithms that
attempt to mimic life or genetic behaviors, for instance, by recombining different potential solutions,
allow the emergence of even better solutions [18]. These evolutionary algorithms have the theoretical
capacity to explore the solution space of a problem fully to identify its global optimum. However, the
drawback is that they can be extremely slow to converge. Therefore, a good solution is to perform
two-step optimization. In the first step, an evolutionary algorithm is used to identify the region of
the solution space that contains the optimum, and in the second step, a faster algorithm is used to
converge to this optimum. Such an approach is feasible in the case of the MTD model by combining
the different algorithms implemented in the march package.

3. Main Features of the march Package

As noted before, there remains a lack of available software for the computation of Markovian
models adapted to categorical variables. The march package for R was developed to fill this gap.
It was developed around the double chain Markov model (DCMM) [19,20], a general framework
that includes many different Markovian models. This framework is characterized by a two-level
approach similar to a standard hidden Markov model, but with a direct link between successive
observations of the visible variable Y, which is similar to standard homogeneous Markov chains
(Figure 2). The DCMM model is a method of modeling heterogeneous observed behaviors; however,
this framework is sufficiently flexible to include many other specific models as subcases. For instance,
by removing the direct link between successive values of the observed variable, the DCMM becomes
a standard HMM. By allowing only one state for the hidden variable X, we suppress the influence
of this latent process upon the visible level, transforming the DCMM into a homogeneous Markov
chain. By constraining the hidden transition matrix with the identity matrix, the DCMM becomes a
clustering tool. If we consider dependence orders larger than one for either the hidden process or the
visible one, then we can also replace these processes with MTD modelings. Finally, covariates can also
be included at both levels.

… ⟶ 𝑌𝑌𝑡𝑡−2 ⟶ 𝑌𝑌𝑡𝑡−1 ⟶ 𝑌𝑌𝑡𝑡 ⟶ 𝑌𝑌𝑡𝑡+1 ⟶ …

… ⟶ 𝑋𝑋𝑡𝑡−2 ⟶ 𝑋𝑋𝑡𝑡−1 ⟶ 𝑋𝑋𝑡𝑡 ⟶ 𝑋𝑋𝑡𝑡+1 ⟶ …

Visible level

Hidden level

Observed Markov chain

Homogeneous hidden Markov chain

Figure 2. General structure of the DCMM.

Three different optimization algorithms are implemented in the march package, and they
can be combined to improve the speed of convergence and the quality of the solution. First,
the DCMM is traditionally optimized using the Baum–Welch algorithm, a customized version of the
EM algorithm [19]. In particular, to fulfill all constraints inherent to the model, we implemented
a general EM (GEM) algorithm, which is an EM algorithm in which the M-step ensures a
monotonous increase in the log-likelihood but not necessarily the best possible improvement of
the log-likelihood [21].

The second optimization algorithm is an evolutionary algorithm (EA) that can be used to better
explore the solution space of complex models [18]. Starting from an initial randomly generated
population of possible solutions, new generations of the population are built by applying three different
operators: simulated binary crossover [22], Gaussian mutation, and fitness proportional selection [23].
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Each possible solution is evaluated using a measure of its fitness, defined as −1/log-likelihood.
The algorithm itself is a Lamarckian EA, where a new generation is potentially composed of children
and parents. In particular, if PopSize denotes the size of the population, the following operations are
performed to build the next generation:

1. Two members of the current population are randomly selected, and their probabilities of selection
are proportional to their fitness values.

2. A random crossover occurs between the two selected members of the population with a
probability that can be selected by the user (default: 50%). This operation leads to two
children solutions.

3. A mutation is applied to the two children by adding a Gaussian distributed noise to each
parameter with a probability that can be chosen by the user (default: 5%).

4. The two children are improved using the GEM algorithm, with a number of iterations that can be
chosen by the user (default: 2).

5. The fitness of each children is computed.

The five steps above are repeated until the size of the children’s population equals that of the
parent population. Then, the populations of parents and children are aggregated, and a reduction
operation is applied to return to the original population size. PopSize solutions are selected randomly
to constitute the new generation, with probabilities of selection proportional to their fitness values.
The algorithm then iterates to build the next generation until the planned number of iterations
is reached.

By using fitness proportional selection, we allow that in some cases none of the best current
members of the population are selected. This provides the algorithm a better capability to explore the
full solution space. Simulated binary crossover and Gaussian mutation are also helpful in dealing with
the real-valued genome representation, which is used to encode the different parameters of the DCMM.
Indeed, using bit-flip operations would induce problems in bit-encoded real values; for instance,
mutating the sign bit of a number creates a very different individual. The user can choose to suppress
some parts of the above algorithm by setting the crossover probability, mutation probability, or number
of GEM iterations to zero.

Combining the two previous optimization algorithms, a typical estimation procedure for the
DCMM consists of the following two steps:

1. The EA algorithm is used to identify a candidate solution in the attraction basin of the
global optimum.

2. Starting from this candidate solution, the GEM algorithm is used to optimize the model until
reaching the global optimum.

The third estimation algorithm included in march specifically concerns the MTD model and
comprises an implementation of the ad hoc hill-climbing (HC) algorithm proposed by Berchtold [13].
This HC algorithm is used in two different manners within march: On the one hand, when the MTD
model is viewed as a special case of the DCMM, it is estimated with the EA + GEM algorithm, and in
this case, the HC algorithm is part of the GEM algorithm. On the other hand, when a MTD model
is defined directly, without reference to the DCMM framework, the HC algorithm is used directly
to compute the model. The main difference between the two cases is that in the first case, the HC
algorithm is reinitialized at the beginning of each iteration of the GEM algorithm to account for
the possible other changes performed by the algorithm. In contrast, when used independently of
the DCMM framework, the HC algorithm is initialized only once, and then it runs until reaching
an optimum. Therefore, depending on the context of use, the HC algorithm can possibly lead to
different (local) optima of the solution space.

In addition to being able to optimize many models within the DCMM framework, and to have
a dedicated function for the MTD model, the march package includes optimized functions for the
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computation of the independence model, of homogeneous Markov chains of any order, of confidence
intervals, and of the Akaike and Bayesian information criteria. Moreover, covariates can be added to
most models, even if the resulting models are no longer Markovian.

4. Combining Estimation Algorithms for the MTD Model

The march package includes three different algorithms (EA, GEM, and HC) that can be used to
optimize an MTD model, and these algorithms can be combined for improved efficiency. Therefore,
we suggest the following approach:

1. Optimize the MTD model of interest using the HC algorithm with standard parameter values.
If the model is sufficiently simple and if it is likely to have only one global optimum and no local
ones, then this algorithm will find the optimum value very quickly. Otherwise, it could provide a
good idea for the structure of the solution.

2. Use the EA algorithm to perform a more complete search of the solution space to identify possible
solutions that could have been missed by the HC algorithm because they do not belong to the
same basin of attraction.

3. Optimize the best solution fond by the EA algorithm using the HC algorithm either within the
GEM algorithm or independently of it.

A solution that is found after applying step 3 will often be similar to that of point 1; however,
it can sometimes be different, and the more complex the solution space, the more likely they will differ.
Moreover, other possibilities including optimization based on the sole GEM or EA algorithms exist.

In many scenarios, the exact structure of the best MTD model is not known in advance, and it
will need to be selected as a function of the analyzed dataset. For instance, it may not be known
which dependence order will fit the data more accurately, and whether a single transition matrix
should be used for each lag or if it is more suitable to use as many matrices as lags, or whether the
addition of covariates to the model will improve it. Different optimization algorithms available in
march can optimize a specific MTD model, but they cannot compare different specifications of the MTD
model automatically. Therefore, when unsure about the best specification of the model, it is necessary
to separately optimize each possible specification of the model before deciding which one is the most
appropriate. In addition to the log-likelihood that is available for each model, it is recommended to
use the AIC and BIC criteria to compare these different models [24].

An important point when comparing different models is to ensure that each model is computed
on the same subsample of the dataset. For instance, if the Markov chains of orders one and two are
computed on a sequence of n = 100 data points, then 99 transitions are available for computing the
first-order model, but only 98 for the second-order model. Therefore, the log-likelihood of the two
models and the models themselves are not fully comparable. In such a scenario, the solution is to fix a
maximal order for the computation of all models, and then compute each model as a function of this
maximal order. The parameter maxOrder that is available in all optimization functions in march allows
the researcher to compute models that are all comparable. In the previous example, if maxOrder is
set to 2, then the a second-order Markov chain will be computed using data points 1 to 100, and the
first-order model will be computed using data points 2 to 100. In both cases, exactly 98 transitions will
be used to estimate the model and compute its log-likelihood.

5. Example

We used the Employment.2 dataset, which has been included in the march package since version
3.2.5. This dataset contains n = 845 sequences of the 13 successive observations of a categorical variable
representing the professional activity categorized into two categories: 1 = “Full time employee”;
2 = “Other situation”. The first observation of each sequence corresponds to the status of the
respondent at age 20, and then the following data were observed every two years, the last observation
corresponding to the status at age 44. In addition, two covariates were also provided in the dataset.
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The first one is a fixed covariate representing gender (1 = “Female”; 2 = “Male”), and the second one is
a time-varying covariate representing health status (1 = “Good”; 2 = “Bad”). The example discussed in
Section 2 was based on the same dataset.

We considered a second-order MTDg model, which is a model whose current observation is
explained by the last two observations, and in which two different transition matrices are used
to represent the relationship between each of the two lags and the present. Further, we included
the gender and health covariates in the model. This model was chosen for the convenience of the
presentation, and it is not necessarily the best model to explain the dataset. This question is beyond
the scope of the present article.

To find the best solution of the model in terms of statistical criteria, the first possibility is to rely
on the sole HC algorithm by using the syntax:

set.seed(1234)
Model.1 <- march.mtd.construct(Employment.2,order=2, MCovar=c(1,1), init="best",

mtdg=T, llStop=0.0001, maxIter = 1000, maxOrder=2)
print(Model.1)
march.BIC(Model.1)

In the above code, the set.seed(1234) command is used to allow reproducible results by setting
the R random generator to a specific point (here: 1234). Using another seed is likely to produce slightly
different results. The march.mtd.construct() function is used to define the model and then optimize it
using the pure HC algorithm. The march.BIC() command computes the Bayesian information criterion
of the solution. We obtained a log-likelihood of −1813.737 for 10 independent parameters and a BIC
value of 3718.846.

In the above syntax, the init= "best" option means that the initial transition matrix between each
lag of the MTDg model and the present is the corresponding empirical transition matrix computed
from the entire dataset. The use of another seed would not change that, but another possibility is to use
the init="random" option that replace the empirical transition matrices by randomly created transition
matrices as the starting points of the optimization procedure. In practice, using the init="random"
option with seed 1234 did not change the results, and the same was observed with other seeds such as
233 and 984. Other options used in the march.mtd.construct function indicate that the model is an MTDg
rather than an MTD model (mtdg = T); the algorithm will stop when the difference in the log-likelihood
between two successive iterations is below 0.0001 (llStop = 0.0001); the maximal number of iterations
of the algorithm is fixed to 1000 (maxIter = 1000); and the model is computed considering a maximal
possible order of two for comparison with other model specifications (maxOrder = 2).

A second possibility is to estimate the model using the GEM algorithm. Using the following syntax,

set.seed(1234)
Model.2 <- march.dcmm.construct(Employment.2, orderHC=1, orderVC=2, M=1,

gen=1, popSize=1, iterBw=100, stopBw = 0.01,
CMCovar=c(1,1), Cmodel="mtdg", maxOrder=2)

print(Model.2)
march.BIC(Model.2)

we obtained a log-likelihood of −1813.782 for 10 independent parameters and a BIC value of 3718.935.
Here, we allowed for a maximum of 100 iterations of the algorithm (iterBw = 100), and the algorithm
had to stop whenever the difference in log-likelihood between two successive iterations became lower
than 0.01 (stopBw = 0.01). Moreover, the options gen = 1 and popSize = 1 ensured that only the GEM
part of the function was used, completely bypassing the evolutionary algorithm.

A third option is to first explore the solution space using an evolutionary algorithm before
optimizing the best candidate using either the GEM or HC algorithm. The following syntax starts a
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search in the entire solution space with a population of 20 candidate solutions and 20 iterations of the
EA algorithm:

set.seed(1234)
Model.3 <- march.dcmm.construct(Employment.2, orderHC=1, orderVC=2, M=1,

gen=20, popSize=20, pMut=0.05, pCross=0.5, iterBw=0,
CMCovar=c(1,1), Cmodel="mtdg", maxOrder=2)

print(Model.3)
march.BIC(Model.3)

In the above syntax, the crossover and mutation operators were allowed with respective
probabilities 0.5 and 0.05; however, no improvement of children solutions with the GEM algorithm
did occur (option iterBw = 0). As expected, the solution reached after this pure EA with a very limited
number of generations (20) was far from optimal with a log-likelihood of−1895.900 for six independent
parameters and a BIC value of 3846.624. However, it was possible to improve it, by using either the
HC algorithm

set.seed(1234)
Model.3a <- march.mtd.construct(Employment.2, order=2, MCovar=c(1,1),

mtdg=T, llStop=0.0001, maxIter = 1000, maxOrder=2,
seedModel=Model.3)

print(Model.3a)
march.BIC(Model.3a)

or the GEM algorithm

set.seed(1234)
Model.3b <- march.dcmm.construct(Employment.2, orderHC=1, orderVC=2, M=1,

gen=1, popSize=1, iterBw=100, stopBw = 0.01,
CMCovar=c(1,1), Cmodel="mtdg", maxOrder=2,
seedModel = Model.3)

print(Model.3b)
march.BIC(Model.3b)

In both of the above codes, the seedModel option indicates that the optimization must start from
the model stored in the Model.3 object containing the best solution at the end of the EA algorithm.
The HC algorithm then leads to a log-likelihood of −1818.598 for six independent parameters and a
BIC value of 3692.019, when the GEM algorithm leads to a solution with a log-likelihood of −1813.955
for eight independent parameters and a BIC value of 3701.008.

As explained in Section 3, the exploration of the solution space by the EA algorithm can be
improved when a few number of GEM iterations are applied to each child solution. This is performed
by the following syntax. Compared to the syntax used for the Model.3, the iterBw option is now set to
two iterations:

set.seed(1234)
Model.4 <- march.dcmm.construct(Employment.2, orderHC=1, orderVC=2, M=1,

gen=20, popSize=20, pMut=0.05, pCross=0.5, iterBw=2,
CMCovar=c(1,1), Cmodel="mtdg", maxOrder=2)

print(Model.4)
march.BIC(Model.4)
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With this optimization procedure, we obtained a log-likelihood of −1813.735 for 11 independent
parameters and a BIC value of 3727.979. Similarly to what was done for Model.3, we attempted to
improve this solution by using either the HC algorithm or the GEM algorithm, but none of these
algorithms could find a better solution. The results from the different optimization procedures are
summarized in Table 1.

Table 1. Main characteristics of the different Markovian models computed on the Employment.2 dataset.
The first part of the table summarizes the second-order MTDg models with two covariates obtained from
different optimization procedures, and the second part of the table summarizes the other Markovian
models appearing in Appendix A. Regarding the different optimization procedures, HC means
hill-climbing, GEM means general expectation-maximization algorithm, EA means evolutionary
algorithm, and exact indicates that there is an exact solution to the maximization of the log-likelihood.

Model Model Optimization Number of Log-Likelihood BIC
Name Structure Procedure Parameters

Model.1 MTDg2 + cov HC 10 −1813.737 3718.846
Model.2 MTDg2 + cov GEM 10 −1813.782 3718.935
Model.3 MTDg2 + cov EA 6 −1895.900 3846.624

Model.3a MTDg2 + cov EA + HC 6 −1818.598 3692.019
Model.3b MTDg2 + cov EA + GEM 8 −1813.955 3701.008
Model.4 MTDg2 + cov EA/GEM 11 −1813.735 3727.979

Model.indep Independence exact 1 −6433.625 12876.390
Model.mc1 MC1 exact 2 −2064.818 4147.910
Model.mc2 MC2 exact 4 −2055.297 4147.193
Model.mtd2 MTD2 HC 3 −2057.873 4143.159

Model.mtdg2 MTDg2 HC 4 −2057.873 4152.296
Model.hmm2 HMM2 GEM 5 −2288.941 4623.568
Model.hmm3 HMM3 GEM 11 −2265.008 4630.526
Model.dcmm2 DCMM2 GEM 7 −2063.297 4190.555

To summarize, depending on the optimization procedure, we obtained different solutions with
close log-likelihoods, but with different numbers of parameters and hence BIC values. The solution
achieved by the pure HC algorithm reads

Λ = (0.790 0.035 0.148 0.026), (1a)

where the four weights correspond to the first and second lags, respectively, and to the Gender and
Health covariates. The transition matrices corresponding to the first and second lags are

Q1 =

(
1 0

0.001 0.999

)
and Q2 =

(
0.852 0.148
0.158 0.842

)
, (1b)

and the transition matrices corresponding to the two covariates are

QGender =

(
0.017 0.983
0.955 0.045

)
and QHealth =

(
0.511 0.489
0.651 0.349

)
. (1c)

At the sample level, the four explanatory elements are all useful because their weights are all
larger than zero; however, the first lag is clearly the most important explanatory element, followed by
the Gender covariate.

The solution provided by the combination EA + HC reads

Λ = (0.858 0 0.141 0.001), (2a)
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Q1 =

(
0.971 0.029
0.031 0.969

)
and Q2 =

(
0.481 0.519
0.528 0.472

)
, (2b)

QGender =

(
0 1

0.998 0.002

)
and QHealth =

(
1 0

0.565 0.435

)
. (2c)

Contrarily to the solution given by parameters (1a)–(1c), the second lag is inactive (its weight
is zero), and therefore, the corresponding transition matrix is not used, which explains in part the
reduced number of parameters. Further, it can be noticed that the weight associated with the Health
covariate is very small, and that it could be interesting to recompute the model without it. Moreover,
the transition matrix associated with each covariate has a transition that is certain (with a probability
of 1), what implies one less independent parameter for each matrix.

Finally, the solution given by the combination EA + GEM reads

Λ = (0.798 0.027 0.176 0), (3a)

Q1 =

(
0.991 0.009
0.003 0.997

)
and Q2 =

(
0.977 0.023
0.059 0.941

)
, (3b)

QGender =

(
0.106 0.894
0.906 0.094

)
and QHealth =

(
1 0

0.565 0.435

)
. (3c)

Here, the second lag of the dependent variable is active, on the contrary of the Health covariate.
The computation using only the HC algorithm did not reach the best solution, at least when

evaluated by the BIC. We attempted different alternatives to this algorithm by choosing other initial
values through the init option of the march.mtd.construct function; however, the algorithm converged
each time to the same suboptimal solution. Indeed, multiplying the number of trials with each time a
different seed value for the random generator of R could possibly lead to a better solution, but such an
approach is certainly not the most efficient way of exploring the entire solution space.

A second important point is that the two final models obtained with the two-step procedures
(EA + HC, parameters (2a)–(2c), and EA + GEM, parameters (3a)–(3c)) are considerably different.
From a strict statistical perspective, the EA + HC solution seems very interesting with the lowest BIC
of all models (3692.019), owing to its parsimony. However, the best fit to the data, as measured by
the log-likelihood, is provided by the solution from the EA + GEM procedure with a log-likelihood
of −1813.955. In terms of interpretation, the two models also differ because the first one places more
importance on the first lag (2a), but with more chances to switch from the first state to the second one,
and conversely (2b), when the second model also uses the second lag (3a), thereby indicating a more
persistent influence of the past on the present. The role of the two covariates is similar in both models,
and only the Gender has an influence on the dependent variable.

In both models obtained with a combination of algorithms, the transition matrix associated with
the Health covariate is similar (parameters (2c) and (3c)). Since both models were obtained starting
from the same seed model, this transition matrix was not reestimated during the second part of the
estimation procedure, which is not surprising given the very low weight attributed to this covariate.

Even if this article is directed toward the estimation of the MTD model, the march package can
optimize a larger set of models from the Markovian family. The second part of Table 1 summarizes the
main characteristics of some of these models, and Appendix A provides the corresponding syntaxes.
First, Table 1 shows that models without direct dependence between successive observations of
the dependent variable (independence, HMM2, HMM3) fitted the dataset very poorly, with their
log-likelihood being the lowest. The second-order MTD model without covariates obtained a
log-likelihood between the ones of the first- and second-order homogeneous Markov chains, which was
expected; however, it is preferred to the second-order Markov chain on the basis of BIC because of
its parsimony.
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Interestingly, the second-order MTD and MTDg models without covariates reached exactly the
same log-likelihood, even if their parameters were different; however, this is only a coincidence.
Finally, none of the models in the second part of Table 1 came close to the second-order MTDg model
with covariates, which indicates that the use of covariates really improved the overall quality of
the modeling.

6. Conclusions

The main objectives of this article were to discuss the difficulties encountered when optimizing
MTD models and to introduce the R package march developed to provide some answers. Compared to
previous publications using combinations of different estimation algorithms (e.g., [16,25,26]), we have
considered here the case of models for categorical variables. Moreover, the solution implemented in
the march package allows us to work with many different Markovian models in a unified way, there is
no limit to the complexity of the models that can be estimated, and the functioning of the evolutionary
algorithm is now clearly described.

The main issue with the MTD model is caused by the complex nature of the solution space
when the order of the model increases, or when covariates are added to the model. On the one hand,
even if very fast algorithms such as the hill-climbing algorithm exist, they cannot always reach the
global maximum of solution space. On the other hand, algorithms derived from natural behaviors
such as genetic algorithms can explore the solution space more fully; however, they can necessitate
a near-infinite computational time. Therefore, as noted by different authors in the past, an arbitrary
decision has to be made between the available computational time and the quality of the solution.
A good approach is to adopt a two-step strategy beginning with a short run of an EA to identify the
region of the solution space containing the overall optimum. Then, starting from this initial solution,
a second algorithm that can reach this optimum quickly is executed.

Indeed, even if it improves the probability of identifying the global optimum, this strategy does
not offer any guarantee of success. Therefore, the choice and parameterization of both algorithms
should be tailored to each problem, and more work is still required before finding an overall best
optimization procedure for the MTD model as well as for other mixture models.
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Appendix A. R Code for the Computation of Other Markovian Models

Hereafter, we provide the syntaxes used to compute different Markovian models with the R
package march. Table 1 summarizes the main characteristics of these models.

Appendix A.1. Independence Model

The following syntax computes the independence model from the march dataset Employment.2.
As for all other examples in this article, the maximal dependence order is set to two using the
maxOrder option. The model is stored in the Model.indep object. It is then displayed using the print
function, and the BIC value is computed using the march.BIC function.

https://doi.org/10.23662/FORS-DS-932-2
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Model.indep <- march.indep.construct(Employment.2, maxOrder = 2)
print(Model.indep)
march.BIC(Model.indep)

Appendix A.2. Homogeneous Markov Chains

The following syntax computes homogeneous Markov chains of order 1 and 2.

Model.mc1 <- march.mc.construct(Employment.2, order = 1, maxOrder = 2)
print(Model.mc1)
march.BIC(Model.mc1)

Model.mc2 <- march.mc.construct(Employment.2, order = 2, maxOrder = 2)
print(Model.mc2)
march.BIC(Model.mc2)

Appendix A.3. MTD Models without Covariates

The following syntax computes the second-order MTD and MTDg models. Similar to that in
Section 5, it uses the set.seed() function to allow the replication of results.

set.seed(1234)
Model.mtd2 <- march.mtd.construct(Employment.2, order=2, maxOrder=2,

llStop=0.0001, maxIter = 1000, init="best")
print(Model.mtd2)
march.BIC(Model.mtd2)

set.seed(1234)
Model.mtdg2 <- march.mtd.construct(Employment.2, order=2, mtdg = T, maxOrder=2,

llStop=0.0001, maxIter = 1000, init="best")
print(Model.mtdg2)
march.BIC(Model.mtdg2)

Appendix A.4. Hidden Markov Models

The following syntax computes HMMs with two and three hidden states (option M).
The dependence order between hidden states is set to 1 (option orderHC) and the dependence order
between observed values is set to zero (option orderVC), which is the definition of an HMM. Here,
we use only the GEM algorithm to perform the optimization, and therefore, we set popSize = 1 to
indicate that we do not want to combine different solutions using the EA. Moreover, the number
of generations of the EA is also set to 1 (gen = 1); however, this is useless when popSize = 1. Finally,
the iterBw option sets the maximal number of iterations of the GEM algorithm, and the stopBw option
sets the stop criterion based on the difference between the log-likelihood of two successive iterations.

set.seed(1234)
Model.hmm2 <- march.dcmm.construct(Employment.2, orderHC=1, orderVC=0, M=2, gen=1,

popSize=1, iterBw=100, stopBw = 0.01, maxOrder=2)
print(Model.hmm2)
march.BIC(Model.hmm2)

set.seed(1234)
Model.hmm3 <- march.dcmm.construct(Employment.2, orderHC=1, orderVC=0, M=3, gen=1,

popSize=1, iterBw=100, stopBw = 0.01, maxOrder=2)
print(Model.hmm3)
march.BIC(Model.hmm3)
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Appendix A.5. Double Chain Markov Models

The following syntax computes a DCMM with two hidden states and first-order dependences
between both hidden states and observed values. The difference between DCMMs and HMMs lie in
the fact that the former have a dependence order larger than zero at the observed level.

set.seed(1234)
Model.dcmm2 <- march.dcmm.construct(Employment.2, orderHC=1, orderVC=1, M=2, gen=1,

popSize=1, iterBw=100, stopBw = 0.01,
maxOrder=2)

print(Model.dcmm2)
march.BIC(Model.dcmm2)
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