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Graphical abstract 

Abstract 

The recent developments of high-throughput bulk and single-cell sequencing technologies 

accelerated the understanding of the complexity of immune repertoire dynamics combined to 

transcriptomics. Also, profiling of cellular repertoires in health or disease requires statistical 

metrics to capture clonal diversity characterized by clones frequency, repertoire richness and 

convergence. Here we present the common technologies of bulk and single-cell sequencing 

of T-cell receptors (TCRs), discuss current knowledge regarding computational tools clustering 

and predicting specificity of TCR repertoires based on shared structural motifs and review main 

indices for repertoire diversity and convergence analyses. These tools represent potential 

biomarkers to decipher the fitness of immune repertoires in diseased or treated patients but 

also the presages and promises of computational approaches to revolutionize personalized 

immunotherapy.  

 

Highlights 

 Immune fitness in health and disease depends notably on the diversity of cellular 

repertoires  

 Single-cell sequencing is fostering the understanding of clonal diversity of T-cell 

repertoires combined to transcriptomic profiling 

 Structural TCR clustering is a promising tool for epitome mapping of immune 

repertoires 

 Plethora of diversity metrics are used as markers of TCR repertoire fitness, yet with no 

consensus regarding their relevance and overlap 

 Undersampling is a caveat in the attempt to capture TCR repertoires diversity with 

sensitivity 
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Estimating T-cell repertoire diversity by computational and mathematical 

modeling 

Unlike the innate immune system, which is mobilized by general threats, adaptive immunity is 

highly specific to antigens and plays a central role in the fight against pathogens and cancer 

as well as in autoimmune or inflammatory diseases. Recognition of nonself- or self-antigens is 

mainly driven by T and B cells. The efficacy of T-cell immunity in identifying peptide fragments 

of antigens bound to the major histocompatibility complex (MHC) molecule depends on the 

diversity of its repertoire. The development of next-generation sequencing (NGS) and single-

cell approaches brought a revolution in the characterization of immune repertoires allowing 

massive parallel TCR sequencing [1,2]. This led to the development of a wide range of 

computational and mathematical tools to model interactions between TCR and peptide-MHC 

(pMHC) and describe repertoire diversity. In the present review, we describe NGS approaches 

allowing structural characterization of TCRs, which is the basis of clustering models inferring 

shared antigen specificity of immune repertoires [3]. Aside from these specificity-based 

clustering models, we also present the different mathematical indexes currently used to 

interpret TCR diversity and convergence of immune repertoires [4•]. However, diversity 

measures comprehending the number of distinct clones and their frequencies in a repertoire 

is not trivial. Thus, different diversity measures are available, each capturing slight differences, 

giving distinct weights to the relative clonotypes frequency. Moreover, experimental sampling 

only partially estimates the diversity of repertoires [5•]. Therefore, caution must be taken when 

interpreting and comparing immune repertoire diversity within and across studies. 

 

TCR structural diversity driving antigen specificity 

The structure of the majority of human T-cell receptor is a disulfide-linked α/β heterodimer, 

each chain composed of a constant and a variable domain [6]. These chains are formed by 

somatic rearrangements of the variable (V), diversity (D), and joining (J) gene segments 

together with random addition or deletion of nucleotides [7]. These diversification mechanisms 

yield a huge variety of TCRs [3]. TCR diversity is confined to six variable hairpin loops located 

in the α/β variable domains, named complementarity-determining regions (CDRs), with three 

CDRs per chain (CDR1α, CDR2α and CDR3α and CDR1β, CDR2β and CDR3β, respectively). 

The process of V(D)J recombination leads to CDRs 1 and 2 entirely encoded in germline DNA 

segment, whereas the CDR3α and CDR3β loops are products of junctional diversity, 

consequently being the most variable [8,9]. The binding between TCRs and peptide antigens 

displayed by MHC is of relatively low-affinity [10,11] and is degenerate, meaning that many 

TCRs recognize the same peptide antigen and many peptide antigens are recognized by the 

same TCR [12,13].  

During recognition events, CDR1α, CDR1β, CDR2α and CDR2β contact the MHC [14,15], 

while CDR3α and CDR3β directly communicate with the peptide antigen [16,17••] (Figure 1). 

However, all six CDRs might be involved in antigen recognition [18,19]. As shown on Figure 

1C, the direct contact between the peptide and CDR1α provides an exception to the rule 

claiming that CDR3s are responsible for peptide specificity, while the limited contacts 

exchanged between Trp5 and Met4 and CDR3β opposes the idea that CDR3β, above all, is 

driving the peptide recognition. This shows that taking all CDRs, as well as detailed structural 

aspects [20], into account in TCR clustering approaches might be necessary to achieve the 

highest efficacy [21,22].  
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Sequencing approaches to capture TCR diversity 

If the diversity of immune repertoires was difficult to appreciate in the past, the arrival of NGS 

created a revolution in the field of TCR analysis and promoted the emergence of several high-

throughput TCR sequencing (TCR-Seq) assays to characterize T-cell repertoires. The first 

factor to consider for TCR sequencing is the source of material, i.e. DNA or RNA. DNA was 

largely used owing to its stable number of copies per cell, thus allowing straightforward 

quantification of clonotypes frequency. However, DNA-based methods are less sensitive and 

do not consider allelic exclusion, therefore overestimating diversity. Conversely, RNA is less 

stable and expression level may vary from cell to cell therefore impacting TCR quantification 

[1]. However, RNA-based methods are more sensitive, circumvent the allelic exclusion issue 

and allow implementation of unique molecular identifiers (UMI) that correct for amplification 

and sequencing errors [23]. 

 

Bulk TCR sequencing 

Among the latest high-throughput sequencing methods for the analysis of bulk immune 

populations, three main technical concepts have emerged: 1) TCR amplification by multiplex 

PCR [24], 2) addition of common adapters prior to PCR amplification [25–27] and 3) TCR 

amplification following gene capture [28]. Multiplex PCR is the most commonly used but 

heterogeneity in primers efficiency introduces bias during amplification, leading to 

misrepresentations in the relative proportion of clones [29]. Next to multiplex amplifications, 

strategies adding a common adapter to the 5’ end for the amplification were developed, such 

as the 5’RACE PCR [25]. As other ligation-based methods, 5’RACE is limited by a suboptimal 

ligation efficiency of the adapter [30]. This impacts quantification accuracy and low frequency 

TCRs detection and could explain why 5’RACE was shown to be less reproducible than 

multiplex PCR [1,31]. Altogether, biases introduced by current bulk methods affect repertoire 

analyses and weaken the pairing of α/β chains required for functional analyses and therapeutic 

applications. To this end, Howie and colleagues introduced a new concept to pair TCR chains 

based on multiple sequencings of the same sample and combinatorial analyses [32]. This high-

throughput method, called pairSEQ, requires a large number of cells from a given clone to 

allow chains pairing, thus limiting its application to large samples and highly represented 

clones.  

 

Single-cell TCR sequencing 

In the last years, several single-cell based approaches emerged allowing α and β chains 

pairing, also potentially associated with transcriptional profiling [2,33•]. Originally, physical 

single-cell isolation conjugated to multiplex PCR and Sanger sequencing [34] or high-

throughput sequencing [35] was developed to obtain paired TCRαβ sequences. Han and 

colleagues, by using a single-cell barcoding strategy could increase the scalability of 

sequenced cells and, in addition to the combinative determination of both TCR chains, could 

sequence specific genes linked to T-cell functionality [35]. However, these methods only 

allowed hundreds to few thousands of cells to be sequenced. 

A major improvement in the throughput of single-cell TCR sequencing (scTCR-Seq) came with 

emulsion-based approaches. Using microfluidics, water-in-oil emulsion droplets containing a 

single cell trapped with small volumes of reagents are created, multiplexing the number of cells 

analyzed. A method using emulsion-trapped cells paired the α and β transcripts by overlap 

extension reverse-transcription PCR directly within the droplet [36]. Despite using high number 
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of cells as starting material, the yield was low, therefore affecting the detection of rare clones. 

A few years later, an updated version came out as a new platform for T-cell repertoire analysis 

[37]. This low-cost technology allowed, for the first time, a full high precision profiling of TCR 

sequences from millions of cells. Recently, Spindler and colleagues presented a high-

throughput method linking TCR identification with direct functional testing to determine TCR 

reactivity and avidity using a microfluidics-based system [38]. Currently, a commercially 

available and easy-to-use system is widely used for single-cell profiling of immune cells, for 

instance for intratumoral immune populations characterization or clonal changes upon anti-

PD-1 therapy [39••,40]. This microfluidics technology, developed by 10x Genomics, generates 

so-called Gel Beads-in-emulsion containing bead-attached primers with DNA barcodes 

capturing polyadenylated mRNA and resulting in barcoded cDNA. Although 10x Genomics 

approach is detecting fewer genes than other single-cell RNA sequencing (scRNA-Seq) 

methods, it can cover up to 15’000-20’000 cells and can combine scTCR-Seq with 

transcriptional profiling of T-cell subsets.  

Other commercially available single-cell encapsulation methods are being developed but a 

major drawback of these technologies is the need for microfluidics devices that are not always 

accessible by research laboratories as well as the high cost of ready-to-use assays, such as 

10x Genomics. Moreover, the scalability is often limited as compared to bulk sequencing, due 

to the microfluidics technology itself and the yield can be low: 10x Genomics reaches 50-60% 

of successful cell encapsulation. An overview of the applications and limitations of the 

aforementioned bulk and single-cell TCR-sequencing methods is presented in Figure 2. 

Despite being attractive for multiplexed data, single-cell transcriptomic profile analyses require 

high cellular viability material and significant computational analyses need to be handled 

afterwards. However, the major developments in single-cell immune repertoires sequencing 

coupled to transcriptomic signature are shedding a new light on the description of T-cells’ 

clonality and dynamics within a wide range of applications such as the development and 

improvement of immunotherapeutic treatments for cancer research.  

 

Specificity clustering of TCR based on sequence similarity architecture 

The prediction of epitopes recognized by a repertoire of T-cells (i.e. the epitome) from TCR 

sequences remains one of the biggest challenge of cellular and computational immunologists. 

Identifying TCR by deep sequencing of immune repertoires allows discovery of receptor 

patterns that might be linked to antigen specificity or to clinical outcomes. Recent 

computational studies demonstrated that common patterns can be inferred among TCR 

sequences interacting with the same epitope [17••,41••,42••], opening the perspective of in 

silico prediction of targets, diversity and complexity of TCR repertoires obtained experimentally 

[3,21,43••,44]. 

 

Global and local motifs similarity: the GLIPH algorithm 

Analysis of 52 TCR-pMHC structures highlighted the possible determination of pMHC contact 

sites in CDR3s, notably in CDR3β, as an opportunity to cluster with a high probability TCRs on 

the basis of the prediction of shared specificity [17••]. Based on this assumption, the authors 

developed a clustering algorithm, called GLIPH (grouping of lymphocyte interactions by 

paratope hotspots), built on global and local TCR sequences similarity. GLIPH specificity 

groups, likely to recognize the same or very similar MHC ligands, are scored based on the 

enrichment of common V-genes, the CDR3 lengths, clonal expansions, shared HLA alleles 

among contributors, motif significance and cluster size. When benchmarking GLIPH on a 
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training set of 2,068 unique sequences spanning eight pMHC specificities, 94% of TCRs were 

correctly grouped in clusters of TCRs with common specificity, even when originating from 

different donors. Such an approach could be used to predict the specificity of a new TCR, by 

verifying its affiliation to a specificity group determined by GLIPH. Essentially, it also provides 

information regarding a given immune response and its complexity through the analysis of the 

number and size of the clusters determined by GLIPH.  

 

Distance measure: the TCRdist algorithm 

Also based on sequence similarity, Dash and colleagues defined a novel distance measure on 

the space of TCRs, TCRdist, allowing for clustering and visualization of repertoire diversity 

[41••]. This quantitative measure of similarity is obtained by listing the residues belonging to 

the CDR1, 2 and 3 loops, all known to possibly contact the pMHC, and by computing a 

similarity-weighted mismatch distance defined based on the BLOSUM62 substitution matrix, 

with a gap penalty to capture variations in the length of CDRs. Of note, a higher weight was 

given to the CDR3 sequence in view of its prominent role in epitope binding. This distance can 

then be calculated for each possible pair of TCRs belonging to a given repertoire, generating 

a so-called distance matrix. It can be used for TCRs clustering or the construction of 

hierarchical distance trees to analyze the diversity and complexity of TCR repertoires. The 

high-dimensional TCR landscape can also be projected into two dimensions plots, with each 

dot representing a TCR, through the dimensionality reduction of this distance matrix. Thanks 

to these analytical tools based on their definition of the distance between two TCRs, the 

authors found that TCR repertoires often contain dominant clusters of TCRs whose sequence 

similarity is generated partially from the use of common V- and J-regions and from the similarity 

of CDR3 motifs. Moreover, each epitope-specific repertoire enclosed a clustered group of 

receptors with strong sequence similarities, together with divergent non-clustered receptors, 

both providing different solutions to the pMHC binding challenge. Finally, they highlighted key 

conserved residues driving TCR binding to pMHC.  

 

Clustering based on TCRs biophysicochemical properties  

Recently, Ostmeyer and colleagues introduced a novel class of methods for analyzing immune 

repertoires of patients in order to cluster and identify disease-associated TCRs [42••]. Their 

approach consists in feeding machine-learning techniques, based on logistic regressions, with 

biophysicochemical descriptors of the TCR interface, rather than with TCR sequences. The 

biophysicochemical characteristics of sliding windows of four consecutive residues of CDR3β 

(i.e. so-called 4-mers), excluding the first four and last three residues, are described using five 

Atchley factors encoding for codon diversity, secondary structure, molecular size, polarity and 

electrostatic charge of the residues. The method identified a short list of preferred values for 

these descriptors at key positions in TCRs present in tumors, which permitted the identification 

of disease-associated TCRs. Although this approach leads to the hypothesis that these TCRs 

share the same specificity, this was however not validated. In addition, restricting the analysis 

of 4-mers of CDR3β, a choice resulting from the analysis of a small number of TCR-pMHC 

structures, constitutes a limitation of the method. Nevertheless, it represents a first step in the 

direction of physics-based predictors that can potentially fit the extremely large sequence 

diversity of immune receptors into a limited number of quantitative characteristics at key 

positions. Although the method needs to be retrained for each set of TCRs and remains 

restricted to CDR3β only limiting its predictive ability, this type of sequence-based ‘property’-

based approach could circumvent some of the drawbacks of purely sequenced-based 
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analyses. Indeed, very large numbers of disease-associated TCR sequences for training are 

not necessary anymore and the possibility to detect potential antigen-binding TCRs with 

divergent sequences from those previously encountered exists. This approach can also be 

used to cluster and analyze TCRs repertoires, by defining a possible distance between two 

receptors as the difference between the five Atchley factors of the most similar pair of 4-mers 

taken from their respective CDR3β (clustering tree example in the abstract figure). 

 

Quantifying clonality, diversity and convergence of TCR repertoires 

Aside from the diversity in antigenic specificity of T-cell repertoires (i.e. the epitome), clonotype 

diversity can capture immune fitness during disease development or in response to treatment. 

Numerous computational algorithms analyzing sequence reads of TCRs and characterizing 

repertoire clonality were established [45]. The broad structural diversity characterizing TCRs 

renders the analysis of immune repertoires challenging but allows fingerprinting of T-cell 

clones that can be tracked within different tissues (peripheral blood, tumor tissue, adjacent 

normal tissue, etc.) at different time-points in immune profiling studies. In the past years, 

several studies centered their analyses on TCR repertoire dynamics as indicators of immune 

monitoring in inflammatory diseases such as multiple sclerosis [46], autoimmune diseases 

[47], viral infection [48,49] or cancer [43••,50–52] as well as as biomarkers of response to 

immunotherapy [40,53–55••]. Therefore, models for immune repertoires visualization and 

statistically-derived descriptive indices to estimate repertoire diversity and homology with no 

described consensus analytical method have emerged [4•]. In the following section, we 

recapitulate the main indices characterizing diversity and similarity of T-cell repertoires and 

discuss their limitations.  

 

Diversity measures: Hill numbers and Rényi entropy 

Most of diversity indices are mathematically derived from the information theory widely used 

in ecology to quantify ecosystems biodiversity [5•,56]. In T-cell repertoires, diversity takes into 

account the clonal composition, equivalent to the number of unique TCR sequences referred 

from now on as richness and the distribution spectrum of these sequences (i.e. their relative 

abundance) hereafter referred to as evenness. Diversity relates to the level of uncertainty that 

a TCR sequence would be sorted from a repertoire and would belong to a certain T-cell clone 

(i.e. unique TCR sequence). Commonly used measures of diversity are related to the Hill 

numbers also referred to as effective numbers of species, from which one can retrieve the 

effective number of distinct clonotypes (i.e. number of equally abundant sequences producing 

the given value of diversity) in the dataset [57,58]: 

𝐻𝑖𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 = 𝐷𝛼 = (∑ 𝑝𝑖
𝛼)

𝑁

𝑖=1

1
(1−𝛼)⁄

   (1) 

where pi is the frequency of sequence i in the repertoire and N is the total number of unique 

sequences. The order α parametrizes the diversity index and allows to calculate different 

features of immune repertoire diversity. 

The Hill diversity numbers are based on the generalized measure of entropy, the Rényi 

entropy, quantifying the diversity or randomness of a system [4•,58,59]: 

𝑅é𝑛𝑦𝑖 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝐻𝛼 =
1

1 − 𝛼
log𝑏 (∑ 𝑝𝑖

𝛼)   (2)

𝑁

𝑖=1
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where b, the base of the logarithm, determines the choice of units of the entropy measure. 

 

Diversity of order 1: Shannon entropy 

The order α sets the degree of sensitivity of the diversity index to species abundance in the 

system. When α→0, all species are weighted equally and (1) is equivalent to species richness 

meaning the number of unique sequences in a repertoire, independently of their abundance. 

When α→1, the generalized form of the entropy (2) is equivalent to the Shannon entropy or 

Shannon diversity index [60]: 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝐻1 = − ∑ 𝑝𝑖𝑙𝑜𝑔 𝑏𝑝𝑖   (3)

𝑁

𝑖=1

 

Figure 3A shows that monoclonal (i.e. 1 TCR) and oligoclonal repertoires (i.e. emergence of 

a few dominant clones) have a Shannon’s index closer to 0. Moreover, when there is a unique 

dominant clone and the other clones are evenly represented, the Shannon index is higher than 

in case of oligoclonality due to a higher uncertainty of the possible outcome of picking one 

sequence in the repertoire in the first case. Thus, when a repertoire is composed of sequences 

evenly distributed, the Shannon entropy reaches his maximum (i.e. maximal diversity), which 

is the logarithm of the number of unique sequences. This index being widely described, it is 

often used in immune studies. For example, when profiling dynamic changes in peripheral T-

cell repertoire upon cervical carcinogenesis, the use of Shannon entropy index revealed a drop 

in diversity in patients with advanced cancer, thus potentially reflecting the emergence of 

expanded clones [50]. Shannon entropy was also used to discriminate diversity changes in 

melanoma-bearing mice receiving different combinations of immunotherapy [61] and was 

linked to clinical prognosis in patients with advanced lung cancer [62]. 

 

Diversity of order 2: Gini-Simpson index 

Finally, when α→2:, the generalized entropy formula (2) becomes: 

𝐻2 = −𝑙𝑜𝑔𝑏 ∑ 𝑝𝑖
2 = −𝑙𝑜𝑔𝑏(𝜆)

𝑁

𝑖=1

   (4) 

where λ represents the Simpson’s index [63], the probability of two entities being chosen 

randomly in a system (sampling with replacement) to belong to the same species. To follow 

the intuitive principle that a high index expresses high diversity, people commonly use the unity 

minus the Simpson’s index, referred to as Simpson diversity index or Gini-Simpson index:  

𝐺𝑖𝑛𝑖 − 𝑆𝑖𝑚𝑝𝑠𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = 1 − 𝜆 = 1 − ∑ 𝑝𝑖
2   (5)

𝑁

𝑖=1

 

with value close to 0 characterizing a repertoire with no diversity (i.e. highly oligoclonal) and 1 

representing infinite diversity (i.e. polyclonal repertoire with equivalent representation of each 

clone). In Figure 3A, the highly diverse scenarios (#4, #7, #10 and #13) have a Gini-Simpson 

index that increases with higher richness to get closer to 1. Along with Shannon entropy, the 

Gini-Simpson index decreases with appearance of dominant clones since the probability of 

two selected sequences to be different drops. Rather than the Shannon entropy, several 

studies of repertoire diversity use the Gini-Simpson index. Lately, it was applied to describe 

the clonal architecture of patients with adult T-cell leukemia/lymphoma [64] or to assess the 
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clinical prognostic value of T-cell repertoires from peripheral blood or metastases in patients 

with primary melanoma [51•]. 

 

Entropy-based diversity indices limitations 

As mentioned, the α order determines the indices’ sensitivity to rare or common species. 

Orders lower than 1 reflect a diversity measure highly affected by the number of rare species 

whereas increasing α orders tend to be more sensitive to abundant species and when α=1, 

each species is weighted by its proportional abundance [65]. Therefore, the Shannon diversity 

index encounters higher variation upon addition of low frequency clones than the Gini-Simpson 

index. In Figure 3A, the Gini-Simpson index, in contrast to the Shannon entropy, is barely 

affected by the increasing number of unique TCRs in the repertoire. Moreover, within a 

repertoire composed of equal numbers of unique TCRs, the Shannon entropy is more impacted 

by the presence of low frequency clones than the Gini-Simpson index. Most of the studies do 

not mention the rationale behind the choice of the diversity indices. Moreover, all these 

diversity indices behaving non-linearly, caution should be taken when correlating them to 

biological interpretation and statistical tests should be adapted. The best way to correctly 

interpret these entropy-derived measures would be to analyze them simultaneously (i.e. 

“diversity profiles”) to be able to derive any biological meaning from the observed differences 

[66•]. 

 

Evenness measure: Pielou’s index 

Aside from the degree of uncertainty and heterogeneity of a system, description of the 

equivalency in species abundance can also be used. This measures the dominance of clones 

in a repertoire thus referred to as clonal diversity or clonal evenness. In a study describing 

changes in peripheral blood TCR diversity upon ipilimumab treatment in metastatic melanoma, 

the authors characterized clonal diversity defined as the ratio between the number of 

sequences accounting for 50% of the total repertoire abundance (i.e. cumulative frequency of 

each of these sequences) and the repertoire richness [67]. This measurement, referred to as 

diversity evenness 50 (DE50), was used to describe increasing oligoclonal responses in TILs 

from melanoma-bearing mice treated with optimal combinative immunotherapy [61]. In parallel 

to DE50, clonal evenness of a repertoire can be calculated using Pielou’s index, which is itself 

derived from the ratio between the Shannon entropy and the maximization of the diversity 

distribution of species within a sample [68]: 

𝑃𝑖𝑒𝑙𝑜𝑢′𝑠 𝑖𝑛𝑑𝑒𝑥 = −
∑ 𝑝𝑖𝑙𝑜𝑔𝑏𝑝𝑖

𝑁
𝑖=1

𝑙𝑜𝑔𝑏(N)
=  

𝐻1

𝐻1𝑚𝑎𝑥
   (6) 

As shown in Figure 3A, the complement of clonal evenness (1-Pielou’s index) is often used to 

get a clonality score of 0 representing a maximally diverse population with even frequencies 

and values close to 1, a repertoire driven by clonal dominance. As shown in Figure 3A, even 

though the abundance of dominant clones in repertoires #3, #6, #9 and #12 is identical, clonal 

evenness increases since the dominance of these oligoclonal sequences is more important in 

the case of a repertoire with high richness. In examining peripheral and tumoral T-cell clonality 

in patients with metastatic melanoma treated with immunotherapy drugs, an association 

between clonal expansion represented by 1-Pielou’s index and clinical response was 

highlighted [53]. Recently, T-cell repertoires obtained from 236 NSCLC patients showed higher 

TCR clonality measured by 1-Pielou’s evenness in healthy tumor-adjacent tissue compared to 

tumor tissue suggesting an impaired antigenic response [43••]. 
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Inequality measure: Gini coefficient 

Another index, the Gini coefficient (not to be mistaken with the Gini-Simpson index) is 

sometimes used to represent clonal distribution of a repertoire. It is a measure of inequality 

that is widely used in economics to study wealth distribution [69]. It quantifies the balance of a 

system (i.e. evenness of distribution) rather than its variety (i.e. species richness) [70]: 

𝐺𝑖𝑛𝑖𝑐 =
∑ ∑ |𝑝𝑖 − 𝑝𝑗|𝑁

𝑗=1
𝑁
𝑖=1

2𝑁2𝑝̅
   (7) 

with pi, pj the frequency of the respective ith and jth sequences in the repertoire and 𝑝̅ the 

average of clone frequencies. Gini coefficient ranges from 0, maximal diversity of the repertoire 

(i.e. equal abundance of each sequence) to 1, with high value representing extreme inequality 

(i.e. high clonality towards one sequence). Thus, in Figure 3A, the Gini coefficient increases 

as the number of abundant clones rises, thus further reducing the frequency of less 

represented clones (i.e. higher inequality). Moreover, with increasing richness of repertoires, 

the inequality between dominant and sub-dominant (low frequency) clones gets wider, leading 

to a small rise in the Gini coefficient. In a recent study interpreting T-cell evolution upon 

checkpoint inhibitors treated melanoma patients, repertoire clonality was assessed using the 

Gini coefficient [55••]. Moreover, a linear discriminant analysis was built to distinguish patients 

based on their clinical response using clonal dominance (i.e. Gini coefficient) and diversity (i.e. 

Rényi entropy with α=1) as repertoire features. 

 

Repertoires overlap measures 

Aside from measures of diversity and clonality that are applied on a unique repertoire, TCR 

sequencing data also call for similarity analyses allowing comparison of overlap between T-

cell repertoires. A first similarity indices, the Jaccard index, is defined as the size of overlapping 

species divided by the size of the union of both compared samples [71]: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑖𝑛𝑑𝑒𝑥 = 𝐽(𝑖, 𝑗) =
𝑐𝑖𝑗

𝑁𝑖 + 𝑁𝑗 −  𝑐𝑖𝑗
   (8) 

with cij being the number of overlapping sequences and Ni and Nj the total number of 

sequences in repertoire i and j respectively. Its related indices, the Sorensen index or 

Sorensen-Dice coefficient differs by counting twice the shared sequences (once in both the 

numerator and the denominator) [72,73]: 

𝑆𝑜𝑟𝑒𝑛𝑠𝑒𝑛 𝑖𝑛𝑑𝑒𝑥 = 𝑆(𝑖, 𝑗) =
2𝑐𝑖𝑗

𝑁𝑖 + 𝑁𝑗
   (9) 

Both indexes vary from 0 (no similarity) to 1 (total similarity between repertoires). From the 

Sorensen index, the Bray-Curtis index of dissimilarity can be deduced as the complement of 

the Sorensen index (i.e. Bray-Curtis index = 1-Sorensen index) [74]. All these similarity indices 

are based on the presence or absence of specific sequences therefore retaining sensitivity in 

more heterogeneous repertoires but not taking into consideration the relative abundance of 

the overlapping sequences. Thus, repertoire homology between healthy tumor-adjacent tissue 

and tumor tissue only based on Jaccard index is not robust enough to drive any conclusion 

and other metrics should be used in parallel [43••]. To this extend, the Morisita-Horn overlap 

index considering the relative frequency of species in compared samples is a widely used 

measure of dispersion [75,76]: 
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𝑀𝑜𝑟𝑖𝑠𝑖𝑡𝑎 − 𝐻𝑜𝑟𝑛 𝑖𝑛𝑑𝑒𝑥 = 𝑀𝐻(𝑖, 𝑗) =
2 ∑ 𝑛1𝑖𝑛2𝑖

𝑆
𝑖=1

(∑ 𝑓𝑖
2S

𝑖=1 + ∑ 𝑔𝑖
2S

𝑖=1 )𝑛1𝑛2

  (10) 

with fi=n1i/n1 and gi=n2i/n2, n1i and n2i being the clone sizes of the ith sequence (i.e. entities 

representing a sequence) and n1 and n2, the total number of entities in sample 1 and 2 

respectively. S is the total number of unique sequences found in both samples. The indices 

goes from 0 (i.e. no overlap between repertoires) to 1, repertoires identical in terms of richness 

and evenness. The Morisita-Horn index can be used to compare immune repertoires during 

viral infection [49], among different T-cell compartments in cancer patients [43••], to observe 

T-cell repertoire turnover upon treatment [53] or to track persistence of clones from an immune 

therapeutic product in peripheral blood after adoptive cell transfer [54]. 

 

Undersampling – “unseen species” problem 

All aforementioned metrics are widely used to profile T-cell repertoires. However, due to the 

high diversity of TCR sequences and limitations in sequencing methods, the frequency 

distribution of clones in a repertoire and its richness is largely biased by the fact that only a 

fraction of repertoires is analyzed, leading to undersampling (i.e. “unseen species” problem) 

[5•]. This translates into biases in diversity measures, as shown in Figure 3B, where 18 cells 

were sampled out of a repertoire composed of 180 cells with 10 unique clones. Undersampling 

was repeated ten million times to get the frequency of occurrence of the most probable 

scenarios. The top five and five additional randomly selected ones based on the Monte Carlo 

approach are shown. Strikingly, we observe that the probability of each subsampled scenarios 

is low, even for the #1 scenario, recapitulating the richness and evenness of the total repertoire, 

showing the heterogeneity in clones distribution obtain by sampling a large TCR repertoire. 

The fold changes between each undersampled scenario and the total repertoire for four 

diversity metrics are highlighted. In the didactic example shown, clonal evenness (i.e. 1-

Pielou’s evenness) represents the index that is the most affected by undersampling, as clonal 

distribution is biased relative to the total repertoire. The Gini coefficient, also relying on clone 

distribution, can be less sensible to undersampling since unique TCR sequences present in 

the total repertoire disappear, balancing the inequality brought by changes in frequency 

distribution such as in scenarios #7 and #8. Between the two diversity indices derived from 

Rényi entropy, Shannon entropy is more sensitive to undersampling than the Gini-Simpson 

index, mostly due to changes in low frequency clone numbers (i.e. repertoire richness). In 

addition, scenarios #4 and #5 present a case of homogeneity between the indices because 

the number and frequency of each TCR sequence is stable. However, we miss the information 

of different sequences sampled from the original repertoire, each scenario capturing another 

structural diversity. To address the issue of underestimating TCR repertoire diversity by 

sampling only few cells, several estimators of species richness were developed and can be 

applied for immune repertoire analyses: Rempala et al., 2011 [77], Chao and Jost, 2012 [78], 

Chao and Jost, 2015 [58], Greiff et al., 2015 [45], Laydon et al., 2015 [5•], Koch et al., 2018 

[79]..  

 

Conclusions 

The diversity of clonotypes composing a repertoire is a major feature of the immune system 

and reflects the epitome of naïve as well as antigen-experienced T-cells. Even though scRNA-

Seq methods now allow coupling TCR sequences with transcriptomics, predictions of antigen 

specificity of a given repertoire remains challenging. In theory, computational approaches 
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based on structural modeling rise opportunities for epitome mapping and prediction of TCR 

cross-reactivity of completely different sequences. Moreover, even though deep repertoire 

profiling magnifies the capacity to capture TCR diversity, sampling of repertoires commonly 

leads to an inaccurate estimation of diversity. This limits the interpretation of dynamic clonality 

changes of immune repertoires captured with diversity metrics. Various methods are now 

being developed to accurately estimate true diversity of cellular repertoires. Moreover, a gold 

standard method for immune repertoire analysis has not yet been described, revealing the 

caution that need to be taken when comparing studies using various measurement methods. 

However, deep profiling of T-cell repertoires represents a potential biomarker to characterize 

immune fitness in diseased or treated patients and development of computational tools to 

measure diversity changes could foster immunology research such as cancer immunotherapy.  
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Figure 1 

 

Figure 1. Structure of the TCR-pMHC complex with detailed interaction between the NY-ESO-1 

peptide and its TCR. A) TCR-pMHC complex (PDB ID 2BNR, Chen et al., 20051), showing the 

recognition, by the 1G4 TCR, of the NY-ESO-1(157-165) -SLLMWITQC peptide presented in the context of 

HLA-A2. TCR, MHC and β2-microglobulin are shown in ribbon representation. TCRα constant and 

variable domains are colored in light and dark brown, respectively, while the TCRβ constant and variable 

domains are colored in light and dark pink. The MHC molecule is colored in grey and the β2-

microglobulin in orange. The peptide epitope is shown in ball and stick representation, with a transparent 

green surface. B) Zoom on the TCR-pMHC interface. The representation and color coding are identical 

to A), with the exception of the CDR1, CDR2 and CDR3 loops of the TCR, which are colored differently. 

C) Zoom on the peptide Trp5. Tyr100 of CDR3α and Tyr31 of CDR1α are shown in stick representation. 
1 Chen J-L, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L, Choi EML, Held G, Dunbar PR, Esnouf 

RM, Sami M, et al.: Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J Exp 

Med 2005, 201:1243–1255. 
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Figure 2 

Figure 2. Comparison of bulk and single-cell technologies for TCR sequencing. Each of the 

presented methods is shown here with its corresponding reference publications. The material source is 

displayed as well as the features linked to the sequencing approach. The throughput ranges from bulk 

to single-cell methods thus showing the limitation of scTCR-Seq in terms of number of sequenced cells 

compared to bulk methods. The reduction of amplification bias, reproducibility and detection of low 

frequency TCRs is only applied to bulk sequencing, since these impact quantitatively the sequenced 

TCR chain. In case of single-cell sequencing, the frequency of TCR is directly linked to ratio of cells of 

a specific clonotype to the total number of cells and is not distorted by amplification bias or reproducibility 

on TCR transcripts. *Compared to scTCR-Seq, PairSeq pairs α and β chains from bulk sequencing but 

the yield is much lower since many cells are needed for its combinatorial analyses allowing successful 

pairing.   
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Figure 3 
 

Figure 3. Diversity metrics variation upon richness and evenness changes. A) Different scenarios 

of clonal distribution in a repertoire of ten million cells sequenced at the same depth for normalization 

are represented here. The changes in clonality (1-Pielou’s evenness), Shannon entropy, Gini-Simpson 

index and Gini coefficient are shown in a heatmap, whose axis variables depend on the index used 



17 
 

([0:1] for 1-Pielou’s evenness, [0:19.93] for Shannon entropy, [0:0.9999991] for Gini-Simpson index and 

[0:0.79] for Gini coefficient]). B) Clonal distribution of ten unique TCRs in a repertoire composed of 180 

cells is presented here. A simulation of extraction of 18 cells was repeated ten million times to obtain 

the frequency of manifestation of each subsampled scenario. The five most frequent situations of 

subsampling are shown and five others were randomly chosen according to the Monte Carlo approach. 

The four diversity indexes presented in A) are here represented as fold change from the initial scenario 

of 180 cells. In A) and B), the Gini-Simpson index was calculated based on the formula1 without 

replacement since the repertoires in B) are composed of only 180 or 18 entities. This formula tends to 

the one with replacement (5) in case of large datasets such as in A).  

1 1 − ∑ (
𝑛𝑖(𝑛𝑖−1)

𝑛(𝑛−1)
)𝑁

𝑖=1  with ni is the clone size of the ith clonotype (i.e. number of entities weighting a specific 

sequence) and n the total number of entities found in the overall repertoire.   
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