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SUMMARY

Effective public health measures against SARS-CoV-2 require granular knowl-
edge of population-level immune responses. We developed a Tripartite Auto-
mated Blood Immunoassay (TRABI) to assess the IgG response against three
SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital
patients and blood donors (n = 720250) in the canton of Zurich from December
2019 to December 2020 (pre-vaccine period). We found that antibodies waned
with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in
June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated
that about 10% of patients infected with wildtype SARS-CoV-2 sustained some
symptoms at least twelve months post COVID-19. Crucially, we found no evi-
dence of a difference in long-term complications between those whose infection
was symptomatic and those with asymptomatic acute infection. The cohort of
asymptomatic SARS-CoV-2-infected subjects represents a resource for the study
of chronic and possibly unexpected sequelae.

INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, henceforth abbreviated as CoV2) is

responsible for COVID-192,3 and has caused millions of deaths. It has also indirectly caused many more fa-

talities by hijacking healthcare resources, thereby making them unavailable to patients suffering from other

diseases. In addition, COVID-19 has created profound economic distress for most travel-related industries

and has disrupted a plethora of industrial supply chains, resulting in a massive worldwide economic crisis

that may cost many more human lives.

The canton of Zurich, with a population of approximately 1.5 million inhabitants, registered its first two

COVID-19 cases on February 27, 2020. Zurich has seen a relatively mild first wave, with 134 deaths (and

30785 reported cases) until June 31, 2020. However, the case numbers exploded in October, resulting in

460 deaths (and 450516 reported cases) by December 1, 2020,4 with hospitals working at capacity limit.

In order to alleviate the direct consequences of the CoV2 pandemic, governments and public healthcare

agencies need granular and reliable data on the prevalence of infection, the incidence of new infections,

and the spatial-temporal oscillations of these parameters within regions of interest.
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Intuitively, PCR-based diagnostics would seem suitable to fulfill the above criteria. However, practical

experience has shown that this is not the case. The acquisition of representative diagnostic material for

PCR has proven challenging, with deep nasal swabs being difficult to perform, uncomfortable for patients,

and potentially hazardous for medical personnel. Accordingly, the sensitivity of PCR diagnostics is often

disappointing, with reported false-negative rates of 25% even under the best conditions.5

Serological assays, on the other hand, address the adaptive immune responses of the host which are funda-

mental to limiting viral spread within individuals and populations. While they lag behind viral infection, they

can serve as both powerful epidemiological tools as well as useful clinical aids. Firstly, antibodies can be

easily retrieved frommany biological fluids, notably venous and capillary blood. Secondly, antibodies typi-

cally persist for several months whereas the viral load in the upper respiratory tract frequently wanes within

weeks.6 Importantly, immunological assays can be largely automated, and are thus suitable for mass

screening of extremely large cohorts.

Although large serological surveys have been carried out in several countries,7–11 there is a lack of contin-

uous seroprevalence data. As waning of CoV2 antibodies has been reported in multiple instances,12–16 sin-

gle timepoint serology estimates may yield misleading insights into the true extent of CoV2 spread. We,

therefore, aimed to investigate the evolution of the CoV2 seroprevalence in the canton of Zurich, a

particularly low prevalence setting during the first and second waves in 2020, using an in-house developed

tripartite automated blood immunoassay (TRABI) already employed in multiple studies.17–21 Continuous

immunosurveys were conducted in a large cohort of the University Hospital of Zurich (n = 550814 samples)

and blood donors from the Blood Donation Services of the canton of Zurich (n = 160291), over a period from

December 2019 to December 2020, i.e. prior to the onset of the vaccination campaigns. Apart from assess-

ing the underlying cumulative incidence, we aimed to build a foundation for the subsequent identification

of sequelae in clinically well-characterized hospital patients. To this end, we have made use of available

ICD-10 codes and free-text reports to elucidate whether seropositivity is associated with disease entities

beyond those already reported. Finally, we invited serologically tested hospital patients to participate in

an online health survey to investigate the follow-up health status of seropositive patients post–COVID-

19, with the first infection dating back more than 500 days (median). These combined seroepidemiological

and nosoepidemiological endeavors, together with the close monitoring of ongoing vaccination efforts

and variants of concerns (VOCs), are likely pivotal in enhancing our understanding of how to manage

the current as well as future pandemic outbreaks.

RESULTS

Tripartite automated blood immunoassay: A miniaturized high-throughput enzyme-linked

immunosorbent assay for multiple CoV2 antigens

Here we assessed the changes in CoV2 seroprevalence in the population of the canton of Zurich (n = 1.5

million) between December 2019 and December 2020. To this end, we developed a tripartite automated

blood immunoassay (TRABI) utilizing contactless acoustic dispensing22,23 to transfer diluted plasma drop-

lets (2.5 nL) into high-density 1536-well plates (total volume: 3 mL) and measuring the IgG response against

viral proteins by immunocolorimetry (Figures 1A and S1A for detailed procedure).

In order to identify the most suitable viral targets for TRABI, we infected Vero cells with wild-type CoV2 vi-

rus. Cell lysates were then subjected to Western blotting using the plasma of patients with confirmed

COVID-19 (n = 7). The bands corresponding to the S and NC proteins were prominently visible in infected

cells, but were undetectable in non-infected cells and were suppressed by adding soluble S and NC anti-

gens to the patient plasma before incubation with the Western blot (Figure 1B). Accordingly, we selected

the CoV2 spike protein,24 the receptor binding domain (RBD, amino acids 330-532 of the S protein), and the

nucleocapsid protein (NC, amino acids 1-419) as target antigens for TRABI. Each sample was tested at eight

consecutive 2-fold dilution points (1:50 to 1:60000), and the resulting data were fitted to a sigmoidal curve

by logistic regression. The inflection point (or –log10(EC50)) of each sigmoid was defined as the respective

antibody titer.

As reference samples for assay establishment, we utilized a collective of 55 venous plasma samples drawn at

various days post onset of symptoms (dpo) from 27 RT-qPCR confirmed patients suffering from COVID-19

and hospitalized at theUniversity Hospital of Zurich (USZ, true positives, see Tables 1 and S1), as well as 90 ano-

nymized USZ samples from the prepandemic era (true negatives). We then constructed receiver operating
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characteristics (ROC) curves to assess the assay quality for each antigen individually. Finally, we created a com-

posite metric that integrates S/RBD/NC measurements using quadratic discriminant analysis (QDA). While

each single antigen showed excellent discrimination of negatives and positives on samples drawn at R14

dpo, the compoundmodels outperformed the individual antigenmeasurements at 7-13 dpo, where the emer-

gence of an IgG response is expected to be variable (Figure 1C, upper panel). We, therefore, used the QDA

modeling assumptions to infer the prevalence in large cohorts based on the distributional information of

true negatives and true positives using information gained from all three antigens.

To benchmark TRABI, we compared the results with a high-throughput assay—at the time of testing still

under development—at the University of Oxford as well as assays commercialized by Roche (Elecsys),

DiaSorin, EuroImmun, and Abbott (Figure 1C, lower panel). This comparative assessment was based on

136 of 146 samples (10 samples were removed from the analysis because of insufficient sample volume

to perform all tests). While all assays displayed 100% specificity/sensitivity at late time points, TRABI scored

best at early time points, also when additionally compared to a lateral-flow assay (Figure S2). When these

results were plotted as a function of dpo, a temporal pattern emerged consistent with the gradual emer-

gence of IgG antibodies within 14 dpo (Figure 1D).

Characterization of cohort used for seroprevalence estimates from December 2019 to

December 2020

Anti-CoV2 antibodies were measured with TRABI in 660630 copandemic samples (collected between

December 2019 and December 2020), 510435 belonging to patients of the USZ, and 150195 to blood donors.

On average, we collected and analyzed 30957 (SD10801) and 10169 (SD273) samples per month, for USZ and

BDS, respectively (Table 1). These samples were assigned to 480561 individuals. 380526 individuals (79.3%) pro-

vided one sample, 50604 individuals (11.5%) two samples, 20406 individuals (5.0%) three samples, and 20025 in-
dividuals (4.2%) four ormore samples; however,maximally onedonation permonth per individual was entering

our pipeline. The median age of the USZ patients was 55 (40-68) years (Table 1 and Figure S3A) and 42 (28-54)

years of the blood donors (Table 1 and Figure S3B), which was stable over the time span of our measurements

for the USZ patients (Figure S3C) but showed deviations for the blood donors, with a decrease in overall age

betweenApril andAugust 2020, followed by an increase in age from henceforth (Figure S3D). The sex distribu-

tion in theUSZ samplewas stable over time, with a female/male ratio close to parity (Figure S3E). The BDS sam-

ple contained slightlymoremen thanexpected (Figure S3F).Most of thehospital patients included in this study

were adult residents of the canton of Zurich (Figure S4A) and were treated in one of the many clinical

departments (Figure S4B), the highest number inMedicalOncology andHematology, followed byCardiology,

Infectious Diseases and Hospital Hygiene, Rheumatology, and Gastroenterology and Hepatology. The distri-

bution of samples originating from these hospital wards was relatively stable over time (Figure S4C). 50345
distinct ICD-10 codes were assigned to hospital patients, of which the 50 most common ones are summarized

in Table S2. Within these 50 ICD-10 codes are many of the common diseases like ‘essential primary hyperten-

sion’ (ICD-10: I10.00), ‘type II diabetes mellitus’ (ICD-10: E11.9), or ‘heart failure’ (ICD-10: I50) but also ‘chronic

kidney disease’ (ICD-10: N18), and ‘malignant melanoma of skin’ (ICD-10: C43).

Temporal evolution of the CoV2 epidemic in the greater area of Zurich

50475 prepandemic samples collected before December 2019 were used as condition negatives (see

Table 1) and 154 copandemic (n = 78 from USZ, n = 76 from BDS, see later in discussion) samples, included

in the screen in the same manner as all other copandemic samples, identified as condition positives. Their

annotation as condition positives was performed post-hoc using USZ and BDS databases in the absence of

serological data. First, we identified all USZ samples with known positive CoV2 RT-qPCR results (n = 320).

Condition-positive samples (n = 78) were defined as those with (1) clinically manifest COVID-19 pneumonia

and (2) positive RT-qPCR for CoV2 and (3) venipuncture occurring R14 days after the positive qPCR to ac-

count for seroconversion. To avail of condition positives from the cohort of blood donors, 76 samples from

convalescent individuals with PCR-confirmed CoV2 infection recruited for a plasmapheresis study conduct-

ed with blood donors and part of the same pool of BDS samples sent to us for the seroprevalence study

were included—these samples were annotated as convalescent individuals post-hoc and were not used

to estimate seroprevalence as they were study-specifically recruited by BDS, unlike all other blood donors

whose blood was collected during routine blood donation and was then analyzed in our study. In addition

to the QDA-based model that assumes that both the condition-positive and negative data follow distinct

multivariate Gaussian distribution with unequal covariances (Figures 2A and 2B), we tested a model based

on Gaussian distributions with equal covariances: linear discriminant analysis (LDA) (Figures S5A and S5B).
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LDA allows us to verify the distributional assumptions more readily (Figures S5C and S5D). Using the dis-

tributions of the condition negatives and the condition positives, we computed the posterior probability

(i.e. the probability of an individual to being seropositive as modeled via the distribution of the known con-

dition-negatives and known condition-positives) for all data points. The respective ROC curves were then

plotted (Figures S5E and S5F). At 100% specificity, we identified 78% of the annotated true positives for the

USZ (Figure S5E) and 67% annotated true positives for the BDS cohort (Figure S5F). For both the USZ and

the BDS cohorts, the sensitivity increased rapidly with a slight decrease in specificity (at a false positive rate

of 0.001, we identified 82% condition positives for USZ and 89% for BDS).

We then applied the QDA-based probability model to estimate the monthly prevalence, from December

2019 to December 2020, using the USZ and the BDS cohorts. No substantial shift above baseline was

Figure 1. Study overview and establishment of serological pipeline

(A) To estimate the prevalence of CoV2 seropositivity in the population, prepandemic, and copandemic samples from two independent cohorts were

analyzed by high-throughput microELISA (TRABI). IgG titers against S, RBD, and NC were determined and the -log(EC50) was inferred by regression analysis.

(B) Vero cells infected with CoV2 (lane 2), but not uninfected cells (lane 1), showed signals corresponding to S (black arrow) and NC (blue arrow, pointing at

two bands) when immunoblotted with COVID-19 patient plasma. NC protein undergoes a proteolytic cleavage in SARS-CoV-infected VeroE6 cells, resulting

in two distinct bands of around 46 and 43 kDa. We confirmed the identity of the two bands by probing with an anti-NC antibody (Sino Biologicals, data not

shown). Spiking of COVID-19 patient plasma with recombinant S and NC led to the disappearance of all signals.

(C) Upper panel: Using 53 samples from confirmed patients with CoV2 and 83 prepandemic samples, we assessed the specificity-sensitivity relationship for

all antigens individually and after combining all results into a single score (TRABI) using QDA-based posterior probability. Between 7 and 13 dpo,

approximately 60% of samples were positive (posterior probability >0.5) at 100% specificity cutoff, whereas 100% sensitivity was reached atR 14 dpo. Lower

panel: COVID and prepandemic samples were used to assess the performance of TRABI, commercial tests (Roche, DiaSorin, Abbott, Euroimmun), and an

assay developed at the Target Discovery Institute (Oxford). While all tests scored equally at R14 dpo, TRABI outperformed all other assays at %13 dpo.

(D) Time course of IgG response in 55 samples from 27 patients with COVID-19. IgG antibodies were reliably detectable at R13 dpo. Colors represent

individual patients.
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inferred for samples screened until February 2020 (Figure 2C). In March 2020, the USZ-based prevalence

increased to 0.5% (95% confidence intervals: 0.3%-0.7%) and to 1.6% (CI95%: 1.2%-2.0%) in April 2020,

with blood donors displaying a comparable course of seroconversion, with the prevalence approximating

1.3% in April (CI95%: 1.0%-2.0%). The blood donors then reached a first peak in May 2020, with a prevalence

of 1.8% (CI95%: 1.3%-2.5%), while the USZ patients plateaued. Following an initial decline in June (USZ:

1.0% (CI95%: 0.8%-1.2%), BDS: 1.4% (CI95%: 0.6%-2.3%)), the seroprevalence fluctuated at around 0.8%

over the course of the summer. These summer months were generally characterized by a low reported inci-

dence (4,106 new PCR-confirmed cases and 16 COVID-19-associated deaths from July 1 to September 30 in

the canton of Zurich4), until a second wave surged in October. A sharp rise in seroprevalence was observed

for November (USZ: 4.0% (CI95%: 3.4%-4.5%), BDS: 2.4% (CI95%: 1.5%-3.2%)) and beginning/mid-

December 2020 (USZ: 6.3 (CI95%: 5.5%-7.2%), BDS: 5.1% (CI95%: 4.2%-6.4%)).

To assess the technical reproducibility of TRABI, we repeated the assay on 200 and 112 randomly selected

positive and negative samples, respectively. This repeat screen was found to reproduce the original TRABI

results (R2 = 0.85, Figures 2D and S6).

Antibodies against the RBD of SARS-CoV can bind to the CoV2 RBD.25 We, therefore, tested whether

samples with high anti-CoV2-RBD titers display cross-reactivity with SARS-CoV RBD. For visualization,

we binned samples into groups of absent, moderate, and high CoV2 RBD titers (–log[EC50] < 1.5, 1.5-2,

and >2.5, respectively) and computed their respective QDA-derived posterior probability (same color

map as in Figure 2B). For individuals with CoV2 RBD titers <2, a small fraction showed binding to SARS-

CoV RBD at –log(EC50) > 2 (Figure 2E). However, those with strong binding properties to CoV2 RBD

(>2.5) clustered at high values for SARS-CoV RBD, indicating that some anti-CoV2 RBD antibodies were

cross-reactive to SARS-CoV RBD.

Post-stratification for age and sex and removal of patients admitted because of COVID-19

We then stratified the seroprevalence data according to age and sex, for both cohorts (Figure S7A for USZ

samples and S7B for BDS samples). As the age and sex distributions of the USZ and BDS cohorts are not

Table 1. Characterization of total, copandemic, and prepandemic samples and individuals used in TRABI screening for assay establishment as well as

for the seroprevalence estimation using the USZ and the BDS cohorts

Assay establishment USZ cohort BDS cohort All cohorts

Total Samples, number 145 55,814 16,291 72,250

Individuals, number 117 37,745 16,291 54,153

Mean samples/month (SD) / / / /

Median age (IQR), years / 55 (40–68) / /

Sex, female % / 47 / /

Sex, male % / 53 / /

Copandemic Samples, number 55 51,435 15,195 66,685

Individuals, number 27 33,366 15,195 48,588

Mean samples/month (SD) / 3,957 (1,801) 1,169 (273) /

Median age (IQR), years 62 (52–70) 55 (40–68) 42 (28–54) /

Sex, female % 37 47 41 /

Sex, male % 63 53 59 /

Prepandemic Samples, number 90 4,379 1,096 5,565

Individuals, number 90 4,379 1,096 5,565

Mean samples/month (SD) / / / /

Median age (IQR), years / 54 (39–68) / /

Sex, female % / 48 / /

Sex, male % / 52 / /

Among the copandemic samples, n = 78 samples were annotated as condition positives for USZ and n = 76 samples for BDS. The USZ condition-positive samples

are part of the seroprevalence estimation while for BDS, the condition-positives are not counted owing to a separate recruitment scheme (see study design for

details).
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entirely congruent with the distributions within the general population (Figures S3A and 3B), we employed

a post-stratification on sex and age using distributional information from the population of the canton of

Zurich (Figures 3A and 3B). However, this correction led to only minor changes (maximal effect observed:

5.1% (CI95%: 4.2%-6.4%) unadjusted versus 4.0% (CI95%: 3.1%-5.1%) adjusted for age and sex, for blood

donors in December 2020) in the calculated prevalence, suggesting that the two cohorts appropriately

reflect the seroprevalence of the adult population.

Additionally, we aimed to assess the extent of a bias posed by patients with severe COVID-19, hospitalized

at the USZ for this reason. We thus removed patients (1) admitted to the Infectious Disease and Hospital

Hygiene or the Internal Medicine wards or (2) with ICD-10 codes J96.00 (‘Acute respiratory failure’) and

U99.0 (‘Special procedures for testing for SARS-CoV-2’) from the dataset and re-evaluated the course of

seroprevalence for the cohort of hospital patients. We found that patients with COVID-19 contribute to

the prevalence observed during both the first as well as the second wave (Figure 3C). Yet, the application

of post-stratification on age and sex and the removal of patients with COVID-19 did not change the overall

dynamics of seroprevalence.

Antibody waning and cumulative incidence

The decrease in seroprevalence observed after the peak of the first wave is suggestive of waning of anti-

bodies at the population level. The availability of repeated samples from the hospital patients allowed

us to explore the titers individually. Using data from 65 individuals with a posterior probability R0.5 and

at least two seroestimates, we observe a decrease in all measurements, except for the S protein, over

time, including the compound metric (Figure 3D), in line with a previous report.26 We then estimated

the half-life of the decrease of the antibody titer directly from the seroprevalence data, using an extension

Figure 2. Evolution of CoV2 prevalence in a cohort of Zurich University Hospital (USZ) patients and donors from the blood donation service (BDS)

(A and B) Inflection points of dilution curves, denoted -log(EC50), of plasma titrated against S and RBD in the USZ and BDS cohorts. Posterior probabilities

were calculated using QDA assuming a multivariate Gaussian distribution.

(C) Prevalence of CoV2 seropositivity in prepandemic (before December 2019) and copandemic samples (from December 2019 to December 2020)

estimated using the posterior probabilities from the multivariate Gaussian distribution (QDA). Bar: 95% confidence intervals (CI).

(D) TRABI reproducibility was assessed using duplicates run in pairs of independent assay plates.

(E) To assess the potential cross-reactivity of CoV2 seropositive individuals, we tested 200 high-scoring samples and 112 random samples for binding to the

RBD of SARS-CoV. CoV2 RBD binders with a high posterior probability (same color maps as in B) segregated within the higher anti-SARS-CoV-RBD titers.
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of the classic Susceptible-Exposed-Infectious-Removed (SEIR) model.27 Assuming an average time to sero-

conversion of 14 days,28–30 an average generation interval of 5.2 days31 and an average time from disease

onset to death of 20.2 days,32 the overall half-life observed on the level of the population is 75 (CrI95% 55-

103) days (unadjusted) or 88 (CrI95%: 61-128) days (post-stratification for age and sex), similar to what was

reported by others.33 We then computed the cumulative incidence of CoV2, i.e. the seroprevalence cor-

rected for antibody waning, for the population of the canton of Zurich (Figure 3E). The cumulative incidence

first raised in March and slowly but gradually increased over the summer period, cumulating to 2.3%

(CrI95%: 2.0%-2.8%) in June 2020. A sharp escalation was detectable at the beginning of November,

mounding in a cumulative incidence of 12.2% (CrI95%: 10.3%-14.6%) in mid-December 2020. This suggests

that over 1800000 people had contracted CoV2 until mid-December 2020 in the canton of Zurich. Thus, the

cumulative number of cases detected by PCR (550375 until 13th of December 20204) is likely to underesti-

mate the true prevalence by approximately factor 3 on average. However, the hidden epidemic ratio

(i.e. the number of unobserved cases for each reported case) has changed over time, with a drastic under-

estimation of cases at the time of the first wave, a clearly improved precision around summer 2020, and a

significant underestimation during the second wave (Figure S7C).

Spatiotemporal seromonitoring in University Hospital of Zurich patients covering two waves

We aimed to further depict the evolution of seroprevalence in the canton of Zurich. As we avail of the zip

codes, we first mapped the total number of hospital patients per zip code for the months March-July (first

wave) and September-December (second wave) 2020 (Figures 4A and 4B), only considering the fraction of

patients from the canton of Zurich (Figure S4A). We then investigated the fraction of seropositive hospital

patients over the total number of hospital patients per zip code, for the above time periods but restricted

Figure 3. Post-stratification and antibody waning

(A) Seroprevalence in USZ patient cohort after post-stratification on age and sex using the age and sex distributions of the canton of Zurich. Bar: 95%

confidence intervals.

(B) Seroprevalence in BDS cohort after post-stratification on age and sex using the age and sex distributions of the canton of Zurich. Bar: 95% confidence

intervals.

(C) Seroprevalence in the USZ patient cohort after removal of patients hospitalized because of COVID-19, for both raw seroprevalence and seroprevalence

data after post-stratification on age and sex. Bar: 95% confidence intervals.

(D) Antibody waning observed with longitudinal sampling.

(E) Dynamics of SARS-CoV-2 seroprevalence data in USZ and BDS samples between February and December 2020. The seroprevalence is shown in gray

(median and 95%CrI). The correspondingmodel-predicted cumulative incidence, or infection attack rate (IAR), is shown in light blue, with highlighted values

on June 1 and December 1.
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the analysis to municipalities with at least 50 patients in total, to avoid statistical variability. In line with the

overall increased seroprevalence, we observed more than double the number of municipalities (97)

showing a prevalence higher than 2% during the second wave, compared to 45 in the first wave

(Figures 4C and 4D). This result is indicative of that that the epidemic outbreak in Zurich is not focal but

extends throughout the canton, with similar rates of increase. The decrease of the fold-change of posi-

tive/total cases in the city of Zurich compared to the rest of the canton of Zurich from the first to the second

wave (Figure S7D) is substantiating the observation that after a slightly more localized first outbreak and a

remission phase, the second wave is characterized by a non-focal spread.

We have additionally analyzed the data by grouping multiple zip codes together, so that we could include

all data and did not have to restrict ourselves to at least 50 patients per municipality. While this approach

comes with its own set of technical challenges, it allowed us to ensure that we do not miss important infor-

mation stemming from rural areas with low total patient counts. The results we obtained (see Figure S7E)

are consistent with the more rigorous approach detailed above.

Association with demographic and medical data

We then investigated the association between CoV2 seropositivity and disease. First, we retrieved the In-

ternational Classification of Disease (ICD-10) codes entered by medical encoders of the hospital for insur-

ance purposes, along with age and sex. Using multiple logistic regression in a Bayesian framework, we

found positive associations between seropositivity and ICD-10 codes U99.0 (‘Special procedures for testing

Figure 4. Seroprevalence maps for municipalities in the canton of Zurich

(A) Samples of hospital patients residing in Zurich sorted according to zip codes. Data from January 2020 to June 2020,

including the first wave.

(B) Samples of hospital patients residing in Zurich sorted according to zip codes. Data from July 2020 to December 2020,

including the second wave.

(C) Seropositive samples of hospital patients residing in Zurich sorted according to zip codes. Data from January 2020 to

June 2020, including the first wave.

(D) Seropositive samples of hospital patients residing in Zurich sorted according to zip codes. Data from July 2020 to

December 2020, including the second wave. C and D: Only municipalities with at least 50 samples/zip code are displayed.

The border of the area of the city of Zurich is surrounded by a dense red line while the municipalities contained within the

canton of Zurich, at the border to another canton, are displayed with a lighter orange line.
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Figure 5. Exploratory analysis of CoV2 seropositivity with ICD-10 codes and free-text medical reports

(A) Multiple logistic regression after logit-transforming the posterior probability in a Bayesian framework. Shown is the

odds ratio with a 95% credible interval.

(B) Group-wise frequencies (number of counts divided by total per group) of different disease classes/conditions. Fisher

exact test was performed to test for deviations from expected frequencies. Male patients were much more prevalent

among the seropositive patients with COVID-19 (69.6% male versus 30.4% female) than in the two other groups, at
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for CoV2’), J96.00 (‘Acute respiratory failure’), I48.3 (‘Typical atrial flutter’), U69.0 (‘Pneumonia acquired in

the hospital, classified otherwise’), Y82.8 (‘Other medical devices associated with adverse incidents’),

N17.83 (‘Other acute kidney failure’), D64.8 (Other anemia‘’), E11.91 (‘Type 2 diabetes mellitus without

complications’), E87.1 (‘Hypo-osmolality and hyponatremia’), and male sex (Figure 5A). However, only

U99.0 and J96.00 displayed a consistently distinct positive association after regularization with horseshoe

and LASSO priors. Negative associations were found with ICD-10 code Z11 (‘Special procedure to the diag-

nosis of infectious and parasite diseases’), while other codes did not persist after regularization and were

probably spurious. Next, to better account for the hierarchically structured web of ICD-10 codes and their

interdependencies, we employed a network-based representation,34 aiming to investigate differentially

structured nodes in ICD-10 codes, clinical departments, age, and sex, in CoV2-seropositive and seroneg-

ative USZ patients. We did not identify any distinctive motif of enriched ICD-10 codes between the

seropositive and seronegative patients (Figure S8A), based on topological network scores derived from

the Mcode algorithm,35 indicating no greatly altered disease networks as a function of a CoV2 infection.

Furthermore, nonlinear Uni-form Mani-fold Approximation and Projection for Dimension Reduction

(UMAP), adjusted for binary data using a cosine metric as well as principal component analysis (PCA)

did not reveal any separate cluster for seropositive patients when projecting the variability of the dataset

into two-dimensional space, neither when including sex as a feature alongside ICD-10 codes (Figures S8B

and S8C) nor upon exclusion of female/male sex (Figures S8D and S8E). The exclusion of patients without

ICD-10 codes did not change this, both applying a binary (Figure S8F) as well as an Euclidean distance

metric (Figure S8G). Lastly, in a more targeted analysis, we split our dataset into (1) seropositive patients

with COVID-19 hospitalized in the Infectious Diseases or Internal Medicine units (n = 240), (2) seropositive

patients associated with other clinical wards (n = 483), and (3) randomly selected seronegative patients

(n = 631), aiming to interrogate the three groups for differences in potential complications of CoV2

infections recently discussed,18,36–39 in ICD-10 codes as well as in free-text medical reports. As control

indications, we queried for known risk factors (e.g. type II diabetes, obesity, hypertension, COPD, chronic

kidney disease) for hospitalization and COVID-19 disease severity40–42 and for well-established CoV2

complications (respiratory insufficiency, dyspnea, ARDS, pulmonary embolism, pneumonia).

While the three groups did not display statistically significant differences (Fisher’s exact test, p value

adjusted for multiple comparisons) in the presence of risk factors, the seropositive patients with COVID-

19 (group I) differed significantly from the seropositive patients from other clinical wards (group II, adjusted

p value<0.0001) and from the seronegative patients (group III, adjusted p value<0.0001) in known CoV2-a-

ssociated diseases, illustrated in Figure 5B. None of the neurological or cardiocirculatory conditions inves-

tigated showed significant differences between the groups, except for hypertensive diseases that were

Figure 5. Continued

statistical significance (adjusted p values <0.002). Hypertensive diseases were more prevalent in patients with COVID-

19 compared with seronegative patients (adjusted p value = 0.002). p values were adjusted for the number of

comparisons conducted (i.e. 45) using post-hoc p value adjustment.43

(C) Flowchart for the inclusion of serologically tested individuals participating in the follow-up online health survey in

April/May 2022. A total of 136 individuals provided informed consent and filled the electronic questionnaire, among

which 80 reported a known CoV2 infection up to questionnaire completion.

(D) Frequency of symptoms reported by online health survey participants reporting a symptomatic infection prior to April/

May 2022 (n = 64).

(E) Date of first infection reported by online health survey participants with a known infection prior to April/May 2022 (n =

80, 2 participants with missing date). Three pandemic waves were reflected in the data: Spring/Summer 2020 (first

wildtype CoV2 wave), Fall/Winter 2020/2021 (second wildtype CoV2 wave), and Winter/Spring 2021/2022 (omicron CoV2

wave).

(F) Proportion of online health survey participants reporting to have experienced within the last seven days prior to

questionnaire completion, stratified by prior infection status and pandemic wave during which the infection occurred.

(G) Odds ratio of experiencing specific symptoms within the last seven days prior to questionnaire completion in the

group of online health survey participants with reported known prior infection compared to the group of participants

without known infection, based on multivariable logistic regression models adjusted for age and sex (central estimate:

odds ratio, error bars: 95% confidence interval (95%CI)).

(H) Proportion of online health survey participants reporting having received a newmedical diagnosis after 2020, stratified

by prior infection status and pandemic wave during which the infection occurred.

(I) Proportion of online health survey participants reporting to have experienced within the last seven days prior to

questionnaire completion, stratified by symptoms during acute infection.

(J) Proportion of participants reporting having received a newmedical diagnosis after 2020, stratified by symptoms during

acute infection. Adjusted p values %0.01: *. Adjusted p values %0.001: **. Adjusted p values %0.0001: ***.
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more prevalent in patients with COVID-19 compared with seronegative patients (adjusted p value = 0.002).

Age classes were slightly different in group I compared to group II (p value = 0.0016, Mann-Whitney U test)

but not in any other group-wise comparison, with a median age of 58 (IQR: 46-66) years, 53 (IQR: 37-65)

years, and 54 (IQR: 39-68) years in the three groups. Male patients were much more prevalent among

the seropositive patients with COVID-19 (69.6% male versus 30.4% female) than in the two other groups

(Figure 5B; adjusted p value <0.002).

Follow-up online health survey to investigate potential post–COVID-19 condition

Even if patients do not experience overt COVID-19-associated pneumonia or other severe symptoms

during acute infection, CoV2-infected individuals may develop post–COVID-19 conditions.44–47 We invited

hospital patients whose blood had been analyzed at least once by TRABI to participate in a one-time online

health survey, conducted from April to May 2022. In 10354 database entries of hospitalized patients (n = 723

seropositives with TRABI-based probability R0.5, n = 631 seronegatives with TRABI-based probability

<0.5), e-mail address was available for 666 allowing them to send a survey invitation. Of those, 142

consented to participate and completed the questionnaire, of which 136 contained at least some informa-

tion that could be used for analysis (participation rate 20.4% of invited, 10.0% of total; see Figure 5C for

flowchart and the respective supplementary tables (Tables S3-S5) to document partial missingness of

data). These 136 participants, of which 54 (39.7%) were female and 82 (60.3%) were male, had a median

age of 55 (IQR: 41-66) years (see Table 2 for population characteristics).

71 individuals (52.2%) had a TRABI-based posterior probabilityR0.5 and were considered seropositive, 65

(47.8%) had a posterior <0.5 and were considered seronegative. Within the seronegative population, 98.4%

reported no infection prior to blood sampling, while 53.5% of the seropositive individuals reported a known

prior infection (Table S3). At the time of blood sampling, the agreement between seropositivity and knowl-

edge of infection was moderate (Cohen’s Kappa 0.51, percent agreement 74.8%). Over the full-time frame

since the start of the pandemic, 77.6% (52/67) of seropositive individuals and 44.4% (28/65) of seronegative

individuals reported an infection up to April/May 2022. To explore the potential effects of CoV2 infection

on participants’ post–COVID-19 health status, we focused on these 80 individuals reporting an infection,

using the 56 individuals without known infection as a comparison.

Amongst those with known CoV2 infection up to April/May 2022, 81.0% reported one or multiple symptoms at

the time of infection, while 19.0% reported asymptomatic infection; a result that is consistent with findings by

others.48,49 Cough, fatigue, and fever were the threemost frequent symptoms that were reported during acute

infection (Figure 5D). We next assessed the time between the first reported infection and survey completion.

The median time since the first infection dated back 525 (IQR: 57-571) days and the time frame included three

pandemic peaks (Figure 5E): in Spring/Summer 2020 (first WT CoV2 variant wave), in Fall/Winter 2020/2021

(second WT CoV2 variant wave), and in Winter/Spring 2021/2022 (omicron CoV2 variant wave).

The proportion of hospitalized individuals decreased with time (41.7% in Spring/Summer 2020, 23.5% in

Fall/Winter 2020/2021, and 2.9% in Winter/Spring 2021/2022), with diagnosed pneumonia being more

frequent in Spring/Summer 2020 (25.0%) than in Fall/Winter 2020/2021 (15.2%) and Winter/Spring 2021/

2022 (3.0%, see Table S4).

In terms of recovery, 56.9% of the study participants with known infection by April/May 2022 stated to have

fully recovered to their normal health status (45.5% in infected during the first wave in Spring/Summer 2020,

61.3% in infected during Fall/Winter 2020/2021, 56.7% in infected during Spring 2022). Overall, 9.8% re-

ported that they were still experiencing at least some of the initial symptoms at the time of survey comple-

tion. 90.2% stated that symptoms lasted up to 3 months, with no study participant experiencing symptoms

Table 2. Population characteristics of serologically tested individuals participating in the online health survey

Individuals, number 136

Median age (IQR), years 55 (41–66)

Sex, female 54 (39.7%)

Sex, male 82 (60.3%)

Indicated are the number of individuals, their median age with interquartile range (IQR), and the number and percentage of

individuals of female or male sex.
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lasting between 3 and 6 months. Among those infected with WT CoV2, 11.4% reported that they were still

experiencing symptoms more than 12 months after infection. The proportion with ongoing symptoms was

comparable between infection waves, albeit slightly lower for the omicron wave (10.0% in Spring/Summer

2020, 13.0% in Fall/Winter 2020/2021, and 7.1% in Winter/Spring 2021/2022). Three individuals (8.3% of

those with known infection during the first two waves) were reported to have been diagnosed with post–

COVID-19 condition (long COVID).

The prevalence of symptoms within the past seven days (before completing the survey) among the

previously infected group was highest for fatigue, sleeping problems, reduced performance, cough, and

concentration (Figure 5F). Meanwhile, when comparing symptom prevalence among previously

infected with those that had never experienced an infection, cough, gastrointestinal symptoms, skin

problems, nervousness, myalgia, arthralgia, and depression were reported more frequently by partici-

pants, among others (Figure 5G, logistic regression, adjusted for age and sex). However, these differences

did not reach statistical significance, with the exception of cough (odds ratio = 10.7, p value = 0.026,

adjusted for age and sex). A higher number of participants would likely clarify some of the trends observed

here.

We next asked the patients to report on new medical diagnoses that they have obtained after 2020. Here, we

aimed to find out whether the prevalence of disease classes was fundamentally different in patients after infec-

tion with CoV2, while using the non-infected group as control. The most commonly medically diagnosed con-

ditions of thosewith infection were related to skin, lung, thyroid, kidney, and immune system (Figure 5H), while

none of the comparisons with the non-infected group reached statistical significance (logistic regression,

adjusted for age and sex). Of note, those who got infected during the first wave displayed a particularly

high frequency of neurological diagnoses, and a comparatively low proportion of participants with new med-

ical diagnoses was observed in those infected during the Winter/Spring 2021/2022 wave.

Then, we assessed the participants’ health status using the EuroQol 5-dimension 5-level instrument

(EQ-5D-5L) and the EuroQol visual analogue scale (EQ-VAS), where increased EQ-5D-5L and EQ-VAS

scores correspond to increased/better health. Overall, there was no statistically significant difference in

EQ-5D-5L and EQ-VAS scores between individuals reporting a known infection (mean EQ-5D-5L: 0.87,

SD: 0.19; mean EQ-VAS: 75.00, SD: 15.83) than those not infected (mean EQ-5D-5L: 0.81, SD: 0.17, p value =

0.13; mean EQ-VAS: 70.30, SD: 20.88, p value = 0.15; logistic regression, adjusted for age and sex; see

Table S5).

Lastly, we repeated these analyses to compare the longer-term health impacts between individuals with

symptoms during acute infection (n = 64) and individuals with asymptomatic infection (n = 30). Both symp-

toms experienced during the last seven days (Figure 5I) as well as newmedical diagnoses (Figure 5J) did not

display statistically significant differences between the two groups. Similarly, EQ-5D-5L and EQ-VAS scores

between symptomatic (mean EQ-5D-5L: 0.87, SD: 0.19; mean EQ-VAS: 77.54, SD: 11.73) and asymptomatic

individuals (mean EQ-5D-5L: 0.86, SD: 0.17; mean EQ-VAS: 69.00, SD: 21.41) did not differ significantly

(p value = 0.879 for EQ-5D-5L and p value = 0.02 for EQ-VAS; logistic regression, adjusted for age and

sex). Due to the limited sample size, the findings regarding symptoms, new medical diagnoses, and

longer-term health impairment need to be interpreted with caution. We found no evidence for a difference

in longer-term health outcomes between individuals with symptomatic and asymptomatic acute infection.

These results suggest that post–COVID-19 condition, with symptoms lasting longer than twelve months,

occurs in approximately 10%.

Prevalence of anti-CoV2 antibodies in prepandemic samples

50475 prepandemic plasma samples (40379 USZ patients and 10096 healthy blood donors) were examined

for the presence of cross-reactive antibodies against S, RBD, and NC of CoV2. Several individuals had a

strong antibody response against a single antigen and an absence of binding to other antigens, reflected

in a low posterior probability but high –log(EC50) value. We then directly compared prepandemic and

copandemic samples in the USZ cohort on the basis of single antigens and their respective posterior prob-

abilities. When focusing on samples with high values for single assays, we observed an enrichment of high

posterior probabilities in the pandemic but not in the prepandemic group (Figure 6A). Among samples

with individual –log(EC50) values above 2 in May and June 2020, 76% (S), 80% (RBD), and 22% (NC) had a

posterior probability >0.5. In the prepandemic samples, maximally 1 sample with an individual assay level
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above 2 had a posterior probability above 0.5. This enrichment is suggestive of a substantial performance

improvement when using the combined metric in the USZ cohort.

We then compared the immunochemical properties of six prepandemic samples with high binding to S,

RBD, or NC to two samples of confirmed COVID-19 (COVID 1 and 2, see annotation in Figure 6A). The

COVID-19 samples, but not the prepandemic samples, recognized in Western blots the S and NC antigens

of CoV2 expressed by Expi293F cells maintained as suspension culture (Figure 6B). Additional ELISAs per-

formed on the same samples confirmed the initial findings (Figure 6C) including intact binding to the RBD.

The discrepancy between ELISA and Western Blot suggests that the RBD is a highly conformational

epitope lost upon boiling and SDS denaturation.

Figure 6. Characterization of prepandemic samples

(A) Posterior probability was calculated assuming a Gaussian distribution and visualized for individual antigens (S, RBD and NC) for prepandemic samples vs.

copandemic USZ samples drawn in May and June 2020. Prepandemic samples exhibited a low posterior probability as they typically reacted against single

antigens, leading to low rankings in a composite metric. For further testing, comparative samples were chosen from the prepandemic era and fromMay and

June 2020. Arrows point to samples of individuals used in (B), (C), (D). P1-6: prepandemic 1-6; C1-2: COVID1-2.

(B) Western Blot analysis of two samples from May/June 2020 (‘‘COVID 1’’ or C1 and ‘‘COVID 2’’ or C2) and several prepandemic samples (P1-6). Anti-his-tag

antibody was included as a positive control. Lane 1 = non-transfected Expi293F cell lysate; Lane 2 = Expi293F cell lysates expressing his-tagged S, NC, and

RBD proteins. Black arrows: S; blue arrows: NC; purple arrow: RBD. The molecular weights (in kDa) are depicted on the left side and refer to the bands shown

in all blots.

(C) ELISA assays on the same samples as in B, using CoV2 S, NC, RBD, and NSP1 as well as control proteins (BSA, CMV pp65), shown in the form of a heatmap

where the -log(EC50) of the sample dilution is depicted.

(D) Competition assays were carried out in the same samples as in B and C. Competition (C) was performed with S (0.04-88 nM) or RBD (0.7-1,350 nM) and

plates were immobilized (I) with S, RBD, or NC. Data from duplicates is depicted using the following qualitative categories: No binding to target protein, no

competition (orange). Binding to target protein, no competition (yellow). Binding to target protein, competition (turquoise). Soluble antigens suppressed

the ELISA signal in the COVID samples but not in the prepandemic sample (except for P1 where soluble S competed with the immobilized S), showing that

the antibodies present in the latter had lower affinities for CoV2 targets.
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To further probe the specificity of the findings, we also carried out competitive ELISAs on prepandemic and

patients with COVID-19. First, we determined plasma concentrations close to the EC50. Then we pre-incu-

bated appropriately diluted samples with various concentrations of S and RBD (0.04-88 and 0.7-1,350 nM,

respectively). Samples were then transferred onto ELISA plates coated with S, RBD, and NC. The concen-

tration-dependent displacement of the measured optical density was then interpreted and categorized

into three distinct classes: (1) No binding to the target protein, no competition. (2) Binding to the target

protein, no competition. (3) Binding to the target protein, competition (Figure 6D). We found that both sol-

uble S and the RBD caused a concentration-dependent depletion of the RBD in COVID samples. The S

signal could not be depleted with RBD, indicating the presence of epitopes other than the RBD. One

prepandemic sample (#1) displayed competition of the S signal with soluble S but not with soluble RBD.

Other prepandemic samples did not show competition at all, suggesting that their reactivity was due to

high concentrations of low-affinity antibodies cross-reacting with CoV2 S.

Identification of seropositives in healthy donors and clonality of anti-S immune response

TRABI enabled the identification of 189 CoV2 seropositive blood donors that underwent regular blood

donation at the blood donation service of Zurich (Figures 2B and 2C) despite clear serological indications

of past infection and antibody titers in the same range as those of PCR-confirmed convalescent individuals

(Figure 7A). We assessed IgG and IgA antibodies to S, RBD, andNC as well as responses tomultiple control

antigens, in 4 healthy blood donors and 4 convalescent individuals recruited to the BDS. We observed the

binding of IgG antibodies in blood donors and convalescent individuals against S, RBD, and NC, with

usually lower IgA titers. No binding against the CoV2 non-structural-protein 1 (NSP1), or against BSA

was observed.

To further validate the seropositivity in healthy blood donors, we employed an orthogonal methodology

that allows antibody/antigen interactions to be probed in solution, without any immobilization of antigens

to a surface.19 Samples of CoV2 convalescent individuals, healthy donors, and controls were pre-incubated

with fluorescently conjugated RBD protein. We then monitored the increase in the effective molecular

weight of an Alexa 647-labeled RBD construct in solution upon complex formation with an antibody

present in the patient sample. This was achieved by measuring the associated decrease in its molecular

diffusion coefficient upon binding using a microfluidic platform. While no change in diffusion coefficient

or the associated hydrodynamic radius was observed in control samples, all ELISA-positive samples

from convalescent and healthy donors indicated a clear binding of antibodies to RBD (Figure 7B). We

confirmed these findings by using the samples of several healthy blood donors and convalescent individ-

uals as primary antibodies in Western Blot and detected bands for both S and the NC in the Expi293 cells

overexpressing the viral proteins but not in the Expi293 control lysate (Figure 7C).

To obtain a rough estimate of the clonality and epitope specificity of the immune response raised against

the S protein, we conducted an ELISA-based soluble antigen competition. Competition with the RBD leads

to a decrease in ELISA signal for RBD but not for S or NC in both convalescent individuals and healthy blood

donors (Figure 7D). Conversely, competition with S decreased the signal for both S and the RBD, suggest-

ing the presence of antibodies targeting multiple S epitopes, including RBD. Therefore, the immune

response against S was polyclonal and involved multiple viral epitopes.

DISCUSSION

Using a high-throughput CoV2 serology pipeline, we draw a detailed picture of the evolution of CoV2 sero-

prevalence in a large central-European metropolitan area. If antibody titers were stable after infection, the

seroprevalence would reflect the entirety of the population infected since the inception of the pandemic.

However, anti-CoV2 titers were found to decay in multiple studies,12–16,33 with a half-life of approximately

106 (CI95% 89 to 132) days,12 76 to 156 days,33 and others suggesting an even shorter half-life of 26-

60 days.14 This decrease in titers over time was confirmed in neutralization assays, shown in various

studies.13,15,16 Indeed, between April and July 2020 the prevalence of seropositivity fell byz60% in our co-

horts, which confirms the waning of humoral immunity at the population level. Using an extended SEIR

model, we estimated that the population-wide half-life of seropositivity is 75 (CrI95% 55-103) days (unad-

justed seroprevalence data) or 88 (CrI95%: 61-128) days (after post-stratification for age and sex).

If our sampling methodology suffers from systematic errors, the cohorts sampled here may not be repre-

sentative of the population studied. In order to minimize such issues, we surveyed two non-overlapping
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cohorts: hospital in- and outpatients and healthy blood donors. Neither cohort can be assumed to repre-

sent a representative random sample of the population. However, post-stratification by age and sex led to

only minor changes in seroestimates, indicating that our cohorts are largely representative of the adult

population of the canton of Zurich. However, we have not investigated the extent of CoV2 spread in

children in the canton of Zurich, which was recently done by others.50

The dynamics of the seroepidemiology confirm that the outbreak followed three distinct phases. The

cumulative incidence rose during the first wave in spring 2020, with 2.3% (CrI95%: 2.0%-2.8%) having con-

tracted CoV2 by June 2020. There was a modest increase over the summer months, followed by a rapid rise

in late 2020. We estimate that 10.3-14.6% had undergone an infection with CoV2 by mid-December 2020.

Thereby, we could delineate the precise serological status in the population of the canton of Zurich in a

continuous manner, rather than on single points in time. These estimates of CoV2 antibodies were

Figure 7. Assay validation in solution and clonality of anti-S immune response

(A) ELISA assays of healthy blood donors vs. convalescent individuals depicted as heatmap. The -log(EC50) depicts the sample dilution at which half-

maximum binding occurs. S, RBD, and NC are strongly bound by both healthy donors (HDs) as well as convalescent (Conv) individuals.

(B) Microfluidic-based assessment of binding between an Alexa 647-labelled RBD antigen and antibodies in solution. No change in diffusion coefficient or

the associated hydrodynamic radius was observed in control samples, while all ELISA-positive samples from convalescent and healthy donors indicated a

clear binding of antibodies to RBD, confirming the ELISA-based results. Shown are mean +SE.

(C) Western Blot analysis of the same individuals tested in (A). Lane 1 = non-transfected Expi293F cell lysate; Lane 2 = Expi293F cell lysates expressing his-

tagged S, NC, and RBD proteins. Black arrows: S. Blue arrows: NC. The molecular weights (in kDa) are depicted on the left side and refer to the bands shown

in all blots.

(D) Competitive ELISA using RBD or S for soluble competition with antibodies in plasma from the same individuals as in (A) and (C). Data is depicted using the

following qualitative categories: Binding to target protein, no competition (yellow). Binding to target protein, competition (turquoise). Competition (C) with

S or RBD did not change the signal upon immobilization (I) with NC, while competition with S resulted in a decrease in signal upon immobilization with S as

well as with RBD. Conversely, competition with RBD only competed signal when immobilized with RBD, not with S, indicating the presence of antibodies

against S domains other than RBD.
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performed on a highly sensitive immunoassay (TRABI) that combines antibodymeasurements against three

CoV2 proteins in a QDA-based compound metric, a system developed in house. In view of the critique lev-

eled at past serological studies,51,52 we have gone to great lengths to assess and validate our technology,

using several orthogonal techniques. A recent publication53 has shown pre-existing anti-CoV2 antibodies

in unexposed humans. Antibody sizing19,54 and immunoblots, however, point to fundamental differences

between prepandemic seropositivity and the immune responses of CoV2-infected individuals. While the

latter consistently showed high-affinity responses that were clearly visible inWestern blotting, the few sero-

positive prepandemic sera were unanimously negative in Western blotting, and equilibrium displacement

ELISA of one prepandemic plasma sample suggested a much lower affinity despite similar antibody EC50

titers. We conclude that any immune response in uninfected individuals, whether it represents cross-reac-

tivity with common-cold coronaviruses or something else, is of inferior quality and may less likely to be

protective. A blinded comparison with commercial test kits showed that our approach was suitable for

large-scale epidemiologic studies and that the compound metrics did indeed lead to a power gain, as

shown by the enrichment of samples with high posterior probabilities in excess of the single assays during

the epidemic.

The comparably low seroprevalence of CoV2 in the canton of Zurich, in particular during the first wave,

is compatible with other more affected regions, based on the reported IFR, in Switzerland55 and in

European areas with similar medical infrastructure.56 While some large-scale serological surveys performed

throughout the globe revealed CoV2 spread slightly exceeding the values we observed in Zurich,7,11,57

other studies identified regions with seroprevalence surpassing 50%, e.g. in some areas in the Amazonas

state in Brazil12 or in slums in Mumbai, India.58 Yet, since antibody waning has been reported in multiple

instances,11–16,33 discrete seroestimates may reflect snapshots of the immunity status of a population at

a certain time, rather than the true cumulative case incidence. Conversely, we have accounted for antibody

waning, using a model fit developed by data obtained through continuous CoV2 seromonitoring. Thereby,

we were able to derive the cumulative incidence rate for both the first and the second wave of the epidemic

in the canton of Zurich and have shown that the nation-wide antigen testing underestimates the true

number of CoV2 infections by approximately factor 3, similar to what was found in France.59

By now, vaccination campaigns in the canton of Zurich, throughout Switzerland, and in multiple places

across the globe have rapidly advanced, reaching a stage where novel booster candidates (e.g. Moderna

mRNA-1273.211 and Pfizer COVID-19 Vaccine, Bivalent (Original and Omicron BA.4/BA.5), i.e. bivalent

booster vaccines), with expected superior activity against many known variants of concern, have become

available. Yet, the continuous monitoring of the antibody response will remain a crucial component to

epidemiologically assess the extent of immunity within our population over time,60,61 in children as well

as in adults. Our TRABI assay may be particularly meaningful since we can distinguish between natural in-

fections (eliciting an antibody response also against the NC protein) and vaccination-induced immunity

(targeting the S protein). Our cohort of hospital patients will be further surveyed for the surge of unex-

pected clinically relevant sequelae that may be associated with an infection of CoV2. Initial analyses per-

formed on our dataset did not reveal clusters of disease entities associated with CoV2 infection, compared

with patients with no history of CoV2 seropositivity. Along these lines, our data do not indicate an increased

prevalence of Parkinson’s disease upon CoV2 infection, an association suggested by recent case re-

ports.62–64 Interestingly, male patients were overrepresented in the cohort with severe disease requiring

hospitalization although infections seem to be roughly equally distributed between female and male. As

a clear limitation of our approaches, maladies that do not require treatment at a university hospital center

may be altogether missed since the patients may be referred to a practitioner outside the university setting,

whereby the occurrence of disease would not be entered into the hospital database system. Moreover,

pseudonymized, i.e. linked-anonymized and de-identified, records of patient data, used for the protection

of sensitive information from patients, do not allow to gain access to detailed non-parameterized files, such

as e.g. full-text reports including sensitive patient identity-related information, and the presence of a

diagnosis may be missed.

Meanwhile, we were able to provide additional depth regarding the post–COVID-19 health status of pa-

tients whom we had identified as seropositive using the TRABI assay or who self-reported an infection

with CoV2 up to April/May 2022 through a standardized online health survey. We found that 11.4% of those

reporting an infection in the first two pandemic waves (Spring/Summer 2020 and Fall/Winter 2020/2021)

still complained about ongoing symptoms after >12 months after infection, and 8.3% had received a
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diagnosis of post–COVID-19 condition (‘long COVID’). While numbers in the literature cover a wide range

of about 14-75% potentially affected by post–COVID-19 condition up to one year after diagnosis,47,65–69

our findings are comparable to those of other population-based studies.47,70 Online health survey partic-

ipants with known infection reported several symptoms and new medical diagnoses more frequently than

those without infection, but differences were not statistically significant and no differences in health status

(EQ-5D-5L and EQ-VAS) were observed between these groups. Similarly, no significant differences in long-

term outcomes between individuals with symptomatic and asymptomatic infection were identified,

suggesting that the occurrence of post–COVID-19 may be independent of symptoms during acute infec-

tion. Yet, these analyses are limited by the participation rate resulting in a relatively small sample size.

Certain consequences of CoV2 infection—potentially CoV2 clade dependent21—may take more time to

manifest and large numbers of patients may need to be assessed to perform solid statistical analyses

due to the heterogeneous clinical picture18,71–73 and the phenotypic heterogeneity of post-acute

COVID-19 sequalae.74 Furthermore, it cannot be excluded that selection effects or potential residual

confounding may have influenced the findings of the survey. However, our key findings—emerging from

comparisons with a much needed control group (‘never infected’) often omitted in observational

studies75—are consistent with the literature and underpin that longer-term symptoms and complications

post COVID-19 are an important concern for patient care and public health.

Ultimately, as much of a catastrophe as CoV2 has been, we are not immune to future epidemic outbreaks of

other viral diseases potentially far worse. Yet, a multidimensional, comprehensive, i.e. evidence-based un-

derstanding of a public health threat, such as CoV2, to which this study contributes, may provide crucial

epidemiological tools to prevent an epidemic at an early stage, to save lives and increase life quality

throughout the world.

Limitations

The enrollment of participants in a prospective observational cohort study, thought to be representative of

the entire population, presents a set of challenges.76,77 While avoiding the conventional enrollment bias78

(which may have been particularly important in 2020), we made use of surplus samples collected for routine

diagnostics (‘cross-departmental university hospital patient cohort’) and blood donations (‘cohort of

healthy blood donors’). Limitations inherent to our pragmatic study design79 relying on ‘further use’ of bio-

specimens were addressed where appropriate, e.g. by adjusting the age and sex distribution of the study

collective to the adult population of the canton of Zurich. The congruency between hospital patients and

blood donors has boosted our confidence that these results provide an accurate picture of the cumulative

incidence in the population of the canton of Zurich in the time frame reported. The conclusions drawn from

the follow-up health survey conducted in April/May 2022 are limited most importantly by the sample size.

However, the observation that post–COVID-19 condition, with symptoms lasting longer than twelve

months, occurs in approximately 10%, is consistent with recent reports employing alternative enrollment

schemes.47,70
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-human IgG, 1:4000 Jackson 109-035-098; RRID: AB_2337586

Goat anti-human IgA, 1:750 Thermo Fisher Scientific 31417; RRID: AB_228253

Chemicals, peptides, and recombinant proteins

WT SARS-CoV-2 Spike ECD Oxford, SGC N/A

WT SARS-CoV-2 RBD Oxford, SGC N/A

WT SARS-CoV-2 NC AcroBiosystems NUN-C5227

WT SARS-CoV-2 Spike prefusion ECD Lausanne, EPFL SV PTECH PTPSP

and Zurich, UZH

N/A

WT SARS-CoV-2 RBD Trenzyme P2020-001

WT SARS-CoV-2 NSP1 Zurich, ETH N/A

CMV pp65 Abcam ab43041

Bovine serum albumin (BSA) Thermo Fisher Scientific 23209

SARS-CoV (2003) RBD Yale, New Haven N/A

Critical commercial assays

SARS-CoV-2 nucleocapsid test on

E801 of the COBAS8000� system

Roche diagnostics N/A

LIAISON� SARS-CoV-2 chemiluminescence

immunoassay

DiaSorin N/A

SARS-CoV-2 chemiluminescent microparticle

immunoassay on an Architect� analyser

Abbott N/A

IgA or IgG against the SARS-CoV-2 S1 antigen

on DSX� Automated ELISA System

EUROIMMUN and DYNEX N/A

High-throughput serology assay

in Oxford (under development)

Final version of assay published by The

National SARS-CoV-2 Serology Assay

Evaluation Group80 and described here.81

N/A

Experimental models: Cell lines

Expi239F cells Thermo Fisher A14527

ExpiCHO cells Thermo Fisher A29127

Vero E6 cells ATCC CRL-1586

Software and algorithms

Python 3 Python Software Foundation N/A

R 4.2.0 statistical software R Core Team N/A

R Studio 2022.07.1 Build 554 R Studio, PBC N/A

Stan82 Stan development team N/A

Code used in the current study Zenodo repository1 https://doi.org/10.5281/zenodo.7454292

GraphPad Prism N/A

Other

1536-well high-binding ELISA plates

(SpectraPlate)

Perkin Elmer 6004500

384-well high-binding ELISA plates

(SpectraPlate)

Perkin Elmer 6007500

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Marc Emmenegger (marc.emmenegger@usz.ch).

Materials availability

Small amounts of the biological samples can be shared if available, upon reasonable request, and if an

approval by an ethics committee as well as an MTA is in place.

Data and code availability

d Specific data sets can be shared upon reasonable request and if an approval by an ethics committee as

well as a data transfer agreement is in place.

d Code used in this study is publicly available on Zenodo1 and the DOIs are listed in the key resources ta-

ble.

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

All experiments and analyses involving samples from human donors were conducted with the approval of

the ethics committee of the canton Zürich, i.e. Kantonale Ethikkommission Zürich (KEK-ZH-Nr. 2015-0561,

BASEC-Nr. 2018-01042, and BASEC-Nr. 2020-01731), in accordance with the provisions of the Declaration

of Helsinki and the Good Clinical Practice guidelines of the International Conference on Harmonisation. All

human donors and patients included in this study provided a written general or informed consent. The

concept and development of the written general consent in the light of technical advancement and the

growth of large data and sample repositories, and its distinction to the standard informed consent is nicely

elaborated in Griessbach et al.83

Study design and sampling

The seroepidemiological survey of CoV2 infection in the greater area of Zurich is a population-based study

to investigate the temporal evolution of seropositivity for CoV2 in two independent cohorts. We made use

of surplus plasma samples from inpatients and outpatients admitted to the University Hospital of Zurich

(USZ) collected daily (Monday-Friday) and used for population-wide interrogations of the antibody reper-

toire.84 For the CoV2 seroprevalence study, we included 4’379 samples prior to December 2019 (prepan-

demic samples) and 51’435 samples from December 2019 to December 2020 (copandemic samples). The

criteria for our study to include a sample into the analysis were: (1) The patients’ blood was sent to the

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

384-well low-binding PP plates Labcyte/Beckman Coulter 001-14555

ECHO 555 Acoustic Dispenser Labcyte/Beckman Coulter N/A

El406 Washer/Dispenser Biotek N/A

MultifloFX Biotek N/A

Certus Flex dispenser Fritz Gyger AG N/A

Microplate Centrifuge Agilent G5582AA

PlateLoc thermal microplate sealer Agilent G5585BA

XPeel automated plate seal removal Brooks/Azenta N/A

EnVision multimode plate reader Perkin Elmer 2105-0010

Fluidity One-W Fluidic Analytics N/A

iBlot 2 Gel Transfer Device Thermo Fisher IB21001

Fusion SOLO S imaging system Vilber N/A
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Institute of Clinical Chemistry (at USZ), (2) there was enough residual heparin plasma (150 mL) for the auto-

mated generation of a research aliquot, (3) no aliquot from the same patient was already provided within

the samemonth, (4) additional information (age, sex, clinical ward to which patient was admitted) was avail-

able. Point (3) led to the exclusion of 415 samples and point (4) to the exclusion of 30 samples for the calcu-

lation of the seroestimates. While not being completely representative for the entire population of the

canton of Zurich sensu stricto, we have selected this patient cohort due to the depth of available medical

data that will allow to trace long-term effects of CoV2 infections from a clinical stance. At the same time,

many of the hospital patients are among the most susceptible within a population and are thus in need

of substantial monitoring.

Similar to others,12,85–88 we have investigated CoV2 IgG seroprevalence of a healthy adult population, com-

plementing the hospital patients, in blood donors of the Blood Donation Service of the Canton of Zurich.

Overall, 16’291 samples (thereof 1’096 prior to December, 2019) from blood donors who consented to

further use of their samples for research were randomly selected every month (on average: 1’170 sam-

ples/month from December 2019 to December 2020) and sent from the blood donation service to Neuro-

pathology. The criteria to be admitted for blood donation are in line with international standards of blood

donation services, see.89 Blood donors with a confirmed CoV2 infection are excluded from donating blood

for four weeks, following the full remission of symptoms. Blood donors have to be at least 18 years of age,

weigh at least 50 kg, and feel healthy. In order to be included for blood donation, donors have not under-

gone a substantial surgery or pregnancy/birth in the past 12 months, have not been subjected to dental

treatments in the past 72 hours, and have not received foreign blood since 01.01.1980. Moreover, the in-

clusion mandates that blood donors have not been to an area at risk of malaria or another region with a

high prevalence of infectious diseases. Blood donors are only admitted if they have not been tattooed

or acquired a permanent make-up in the past four months. A positive test for HIV, syphilis, hepatitis C

or B leads to a definite exclusion. Additionally, blood donors are excluded if they have had new sexual part-

ners within the last four months and if they display sexual risk behavior. Lastly, donors have not been to the

England, Wales, Scotland, Northern Ireland, Isle of Man, Channel Islands, Gibraltar or to the Falkland

Islands for more than six months between 1980 and 1996. Blood donors over age 65, until maximally

age 75, can continue donating blood if they have donated blood earlier (the last, complication-free dona-

tion has to date back no longer than two years) and the health survey does not indicate any particular health

risk. The detailed inclusion and exclusion criteria are enumerated here.90 In total, 72’250 samples from

54’153 individuals were included in the seroprevalence estimation study. The USZ cohort was characterized

by a median age of 55 (IQR: 40–68) years and a female:male ratio of 47:53. The BDS cohort was character-

ized by a median age of 42 (IQR: 28–54) years and a female:male ratio of 41:59. A cohort used for establish-

ment of the serological assay (TRABI) was characterized by a median age of 62 (52–70) years and a

female:male ratio of 37:63. Details are provided in Table 1. 136 individuals previously included in the

seroprevalence estimation and part of the USZ collective were included in the follow-up health survey con-

ducted in 2022. This cohort was characterized by a median age of 55 (IQR: 41–66) years and a female:male

ratio of 40:60 (see Table 2).

Sample annotation and identification of condition positives

Specimens were denoted according to the following conventions: prepandemic samples: samples

collected before December 2019;COVID samples: samples frompatients with clinically and/or virologically

confirmed CoV2 infection; copandemic samples: any samples collected in December 2019 or thereafter.

Within the entire collective of copandemic samples (n = 66’630, after subtraction of the 55 samples from

individuals used for assay establishment and not included for the seroprevalence estimation, see Table 1),

we identified condition positives, post-hoc, i.e. after performing the high-throughput serological

screening. To be considered a condition positive, the following criteria needed to be fulfilled, (a) for

USZ: (1) clinically manifest COVID-19 pneumonia and (2) positive RT-qPCR for CoV2 and (3) venipuncture

occurring R14 days after the first positive qPCR to account for seroconversion. (b) for BDS: Blood donors

of the BDS with (1) PCR-confirmed CoV2 infection and (2) convalescent survivors of COVID-19 recruited for

a plasmapheresis study conducted with blood donors and part of the same pool of BDS samples sent to us

for the seroprevalence study. Importantly, while the condition positives from USZ (n = 78) are part of the

collective used for the estimation of seroprevalence in the USZ sample, the condition positives from

BDS (n = 76) are not part of the same collective and are not counted for seroprevalence estimation; as

mentioned, BDS recruited convalescent donors outside the regular blood donation activities and the
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inclusion of specifically recruited COVID-19 survivors would have biased the seroprevalence estimation.

The condition positives (n = 154), together with the condition negatives (n = 5’475) were used for modelling

the seroprevalence (see section QDA, LDA, and prevalence estimation), both for USZ as well as for BDS

individually.

METHOD DETAILS

High-throughput serological screening

In order to test the samples for the presence of IgG antibodies directed against CoV2 antigens, high-bind-

ing 1536-well plates (Perkin Elmer, SpectraPlate 1536 HB) were coated with 1 mg/mL S or RBD or NC in PBS

at 37�C for 1 h, followed by 3 washes with PBS-T (using Biotek El406) and by blocking with 5% milk in PBS-T

(using Biotek MultifloFX peristaltic pumps) for 1.5 h. Three mL plasma, diluted in 57 mL sample buffer (1%

milk in PBS-T), were dispensed at various volumes (from 1,200 nL down to 2.5 nL) into pre-coated

1536-well plates using contactless dispensing with an ECHO 555 Acoustic Dispenser (Labcyte/Beckman

Coulter). Sample buffer was filled up to 3 mL total well volume using a Fritz Gyger AG Certus Flex dispenser.

Thereby, dilution curves ranging from plasma dilutions 1:50 to 1:6000 were generated (eight dilution points

per patient plasma sample). After the sample incubation for 2 h at RT, the wells were washed five times with

wash buffer and the presence of IgGs directed against above-defined CoV2 antigens was detected using

an HRP-linked anti-human IgG antibody (Peroxidase AffiniPure Goat Anti-Human IgG, Fcg Fragment Spe-

cific, Jackson, 109-035-098, at 1:4000 dilution in sample buffer). The incubation of the secondary antibody

for one hour at RT was followed by three washes with PBS-T, the addition of TMB, an incubation of three

minutes at RT, and the addition of 0.5 M H2SO4 (both steps with Biotek MultifloFX syringe technology). The

final well volume for each step was 3 mL. The plates were centrifuged after all dispensing steps, except for

the addition of TMB. The absorbance at 450 nm was measured in a plate reader (Perkin Elmer, EnVision)

and the inflection points of the sigmoidal binding curves were determined using the custom designed

fitting algorithm described below. The secondary antibodies we have used were tested and validated pre-

viously21 and replicability as well as influence of different sample types (e.g. serum and heparin plasma) on

the TRABI have already been reported.18,21

Counter screening using commercial and custom-designed platforms

We used the following commercial tests for the detection of anti-CoV2 antibodies in 55 plasma samples of

27 patients who were diagnosed by RT-PCR to be infected by CoV2 as well as 83–90 plasma samples which

were collected before December 2019 and, hence, before the start of the COVID-19 pandemics: The dou-

ble-antigen sandwich electro-chemiluminescence immunoassay from Roche diagnostics (Rotkreuz,

Switzerland) was performed with the E801 of the COBAS8000� system (Roche diagnostics, Rotkreuz,

Switzerland). The test detects any antibody against the nucleocapsid antigen. The fully automated

LIAISON� CoV2 chemiluminescence immunoassay from DiaSorin (Saluggia, Italy) detects IgG against

the S1/S2 antigens. The CoV2 chemiluminescent microparticle immunoassay from Abbott (Abbott Park,

IL, USA) detects IgG against the nucleocapsid antigen and was performed on an Architect� analyser.

Two ELISAs from EUROIMMUN (Lübeck, Germany) detect IgA or IgG against the S1 antigen and were per-

formed by the use of a DSX� Automated ELISA System (DYNEX Technologies (Chantilly, VA, USA). The

high-throughput serology assay in Oxford (under development) was carried out in the Target Discovery

Institute, University of Oxford. High-binding 384-well plates (Perkin Elmer, SpectraPlate) were coated

with 20 mL of 2.5 mg/mL S o/n at 4�C, followed by 3 washes with PBS-T and by blocking with 5% milk in

PBS-T for 2 h. Blocking buffer was removed and 20 mL of 1:25 sera diluted in sample buffer (1% milk in

PBS-T) was dispensed into S-coated wells then incubated for 2 h at RT. The wells were washed five times

with wash buffer and the presence of IgGs directed against S was detected using an HRP-linked anti-human

IgG antibody (Peroxidase AffiniPure Goat Anti-Human IgG, Fcg Fragment Specific, Jackson, 109-035-098)

at 1:50,000 dilution in 20 mL sample buffer. The incubation of the secondary antibody for one hour at RT was

followed by three washes with PBS-T and the addition of QuantaRed� Enhanced Chemifluorescent HRP

Substrate Kit (Thermo Scientific, Waltham Massachusetts, USA) then incubated for four minutes at RT

before the addition of the stop solution. The fluorescence at excitation/emission maxima of �570/

585 nm was measured in a fluorescent plate reader (Perkin Elmer, EnVision).

Protein production

The proteins were produced and purified at different sites in Zurich (CH), Oxford (UK), Lausanne (CH), and

Yale University (USA).
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Oxford, SGC

Recombinant proteins were purified as reported previously with small modifications.91,92 Mammalian

expression vectors containing secreted, codon-optimized CoV2 S (pHL-Sec93; aa. 1-1208, C-terminal

8His-Twin-Strep) and RBD (pOPINTTGNeo; aa. 330-532, C-terminal 6His) were transiently transfected

with linear PEI into Expi239TM cells cultured in roller bottles in FreeStyle 293 media. Cell culture media

was harvested after 3 days at 37�C for RBD or 3 days at 30�C for Spike and then buffered to 1X PBS. Proteins

were first pulled down on Ni2+ IMAC Sepharose� 6 Fast Flow (GE) with stringent washing (>50 CV with

40 mM imidazole). RBD was polished on a Superdex 75 16/600 column (GE) equilibrated with 1X PBS, while

Spike was directly dialyzed into 1X PBS using SnakeSkinTM 3,500 MWCO dialysis tubing. Proteins were

concentrated with VivaSpin� centrifugal concentrators, centrifuged at 21,000 3 g for 30 min to remove

precipitates, and flash frozen at 1 mg/mL.

Lausanne, EPFL SV PTECH PTPSP and Zurich UZH

The prefusion ectodomain of the CoV2 S protein (the construct was a generous gift from Prof. JasonMcLel-

lan, University of Texas, Austin; see92) was transiently transfected either into suspension-adapted ExpiCHO

cells (Thermo Fisher) or Expi293F (Thermo Fisher) cells with PEI MAX (Polysciences) in ProCHO5 medium

(Lonza). After transfection, incubation with agitation was performed at 31�C and 4.5% CO2 for 5 days.

The clarified supernatant was purified in two steps; via a Strep-Tactin XT column (IBA Lifesciences) followed

by Superose 6 10/300 GL column (GE Healthcare) and finally dialyzed into PBS. The average yield was

15 mg/L culture.

Yale, New Haven

Human codon optimized SARS-CoV (2003) RBD (pEZT containing H7 leader sequence; aa. 306-527, C-ter-

minal Avi- and 8His tags) was transiently transfected into Expi293TM cells (Thermo Fisher) using the

ExpiFectamineTM 293 Transfection kit (Gibco) according to the manufacturer’s instructions. Cells were

cultured in a 37�C incubator with 8% humidified CO2 for 4 days after transfection. Culture supernatant

was collected by centrifugation (500 3 g for 10 minutes) and RBD was captured using Ni-NTA Superflow

resin (Qiagen), washed, and eluted in buffer containing 50 mM Tris-HCl pH 8, 350 mM NaCl, and

250 mM imidazole. RBD was further purified using an ENrichTM SEC 650 column (Bio-Rad) equilibrated

in 1X PBS (Thermo Fisher). Peak fractions were pooled and the protein concentration was determined by

280 nm absorbance with a NanodropTM One Spectrophotometer (Thermo Fisher). Protein was snap frozen

in liquid nitrogen and shipped on dry ice prior to experiments.

Zurich, ETH

NSP1 carrying an N-terminal His6-tag followed by a TEV cleavage site was expressed from a pET24a vector.

The plasmid was transformed into E. coli BL21-CodonPlus (DE3)-RIPL and cells were grown in 2xYTmedium

at 30�C. At an OD600 of 0.8, cultures were shifted to 18�C and induced with IPTG to a final concentration of

0.5 mM. After 16 h, cells were harvested by centrifugation, resuspended in lysis buffer (50 mM HEPES-KOH

pH 7.6, 500 mM KCl, 5 mM MgCl2, 40 mM imidazole, 10% (w/v) glycerol, 0.5 mM TCEP and protease

inhibitors) and lysed using a cell disrupter (Constant Systems Ltd). The lysate was cleared by centrifugation

for 45 min at 48.000 xg and loaded onto a HisTrap FF 5-mL column (GE Healthcare). Eluted proteins were

incubated with TEV protease at 4�C overnight and the His6-tag, uncleaved NSP1 and the His6-tagged TEV

protease were removed on the HisTrap FF 5-mL column. The sample was further purified via size-exclusion

chromatography on a HiLoad 16/60 Superdex75 (GE Healthcare), buffer exchanging the sample to the

storage buffer (40 mM HEPES-KOH pH 7.6, 200 mM KCl, 40 mM MgCl2, 10% (w/v) glycerol, 1 mM

TCEP). Fractions containing NSP1 were pooled, concentrated in an Amicon Ultra-15 centrifugal filter

(10-kDa MW cut-off), flash-frozen in liquid nitrogen, and stored until further use at �80�C.

Details of viral proteins used for this study

For high-throughput serology, the following proteins were used: CoV2 S (pHL-Sec; aa. 1-1208, C-terminal

8His-Twin-Strep) and RBD (pOPINTTGNeo; aa. 330-532, C-terminal 6His) produced at the SGC in Oxford

and the nucleocapsid protein from AcroBiosystems (AA Met 1 - Ala 419, C-terminal his-tag, NUN-C5227).

For competitive ELISA, we used: The prefusion ectodomain of the CoV2 S protein (Lausanne, EPFL SV

PTECH PTPSP), the RBD from Trenzyme (C-terminal his-tag, P2020-001) and the nucleocapsid protein

from AcroBiosystems (AAMet 1 - Ala 419, C-terminal his-tag, NUN-C5227). For additional ELISAs following

the high-throughput serology, we used: The prefusion ectodomain of the CoV2 S protein (Lausanne, EPFL
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SV PTECH PTPSP), the RBD from Trenzyme (C-terminal his-tag, P2020-001), the nucleocapsid protein from

AcroBiosystems (AAMet 1 - Ala 419, C-terminal his-tag, NUN-C5227), the CoV2 NSP1 protein (from Nenad

Ban, ETH Zurich), the CMV pp65 protein (Abcam, ab43041), and BSA (Thermo Scientific).

Assay validation

High-throughput validation screen

For the validation screen, we picked 60 and 150 samples from BDS and USZ, respectively, that had the high

average values when summing -logEC50 for both Spike and RBD. Additionally, we added 52 and 70

randomly selected prepandemic samples for the BDS and the USZ cohort respectively. We supplemented

the three antigens used in the first screen (NC, S, RBD of SARS-COV2) with a SARS-CoV RBD antigen. Unlike

for the primary screen, we ran all samples in duplicates spread over two independent plates.

Western blotting

Expi293F cells were obtained as a gift from Prof. Maurizio Scaltriti (Memorial Sloan Kettering Cancer

Center, New York). Non transfected control cells and cells overexpressing either His-tagged S, His-tagged

NC or His-tagged RBD domain were lysed in 0,1% Triton X-100/PBS. Total protein content in the cellular

fraction was quantified using bicinchoninic protein assay (Pierce BCA Protein Assay Kit, ThermoFisher).

For Western Blotting, 30 mg of ECD-expressing lysate, 10 mg of NC-expressing lysate and 10 mg of RBD-ex-

pressing lysate were loaded all in the same well of NU-PAGE 4–12% Bis-Tris gels (ThermoFisher). 50 mg of

non-transfected cell lysate were loaded as negative control. Gels were run at a constant voltage (150 V) in

MES running buffer for 50minutes, then transferred onto PVDFmembrane with a dry transfer system (iBlot 2

Gel Transfer Device, ThermoFisher). The membranes were blocked with 5% SureBlock (Lubio Science) for 1

hour at room temperature, and then incubated overnight with a 1:100 dilution of patients’ plasma in 1%

SureBlock, at 4 degrees. The day after, membranes were washed four times with PBS-T and incubated

for 1 hours with an anti-human secondary antibody, HRP-conjugated, diluted 1:10000 in 1% SureBlock.

The membranes were then washed four times with PBS-T and acquired using Immobilon Crescendo

HRP Substrate (Merck Millipore) and Fusion SOLO S imaging system (Vilber). As a positive control, one

membrane was incubated overnight with mouse anti-Histag antibody (ThermoFisher, dilution 1:10000 in

1% SureBlock) and subsequently with anti-mouse secondary antibody, HRP-conjugated (Jackson, dilution

1:10000 in 1% SureBlock).

384-Well ELISA using multiple antigens

High-binding 384-well plates (Perkin Elmer, SpectraPlate 384 HB) were coated with 20 mL 1 mg/mL WT

SARS-CoV-2 S (Lausanne, EPFL SV PTECH PTPSP), RBD (Trenzyme), NC (AcroBiosystems), BSA

(ThermoScience), CMV pp65 (abcam, #ab43041), or NSP1 (Zurich, ETH) in PBS at 37�C for 1 h, followed

by 3 washes with PBS 0.1% Tween-20 (PBS-T) using Biotek El406 and by blocking with 40 mL 5% milk in

PBS-T for 1.5 h. Serum samples were diluted in sample buffer (1% milk in PBS-T) and a serial dilution

(range: 0.005–3 3 10�7) was carried out (volume: 20 mL/well). After the sample incubation for 2 h at RT,

the wells were washed five times with wash buffer and the presence of IgGs or IgAs directed against

above-defined antigens was detected using an HRP-linked anti-human IgG antibody (Peroxidase

AffiniPure Goat Anti-Human IgG, Fcg Fragment Specific, Jackson, 109-035-098, at 1:4000 dilution in

sample buffer) or HRP-linked anti-human IgA antibody (Goat anti-Human IgA (Heavy chain) Secondary

Antibody, HRP, 31417, ThermoFisher Scientific, at 1:750 dilution in sample buffer), 20 mL/well. The in-

cubation of the secondary antibody for one hour at RT was followed by three washes with PBS-T,

the addition of TMB, an incubation of five minutes at RT, and the addition of 0.5 M H2SO4. The plates

were centrifuged after all dispensing steps, except for the addition of TMB. The absorbance at 450 nm

was measured in a plate reader (Perkin Elmer, EnVision) and the inflection points of the sigmoidal bind-

ing curves (pEC50 values of the respective sample dilution) were determined using the custom designed

fitting algorithm referred to earlier. The pEC50 values for all samples and antigens was visualized using

the ggplot2 package in R. The HRP-linked antibodies used have previously been validated in depth,

see.21

Competitive ELISA

To perform competitive ELISAs, high-binding 384-well plates (Perkin Elmer, SpectraPlate 384 HB) were

coated with 1 mg/mL S or RBD or NC in PBS at 37�C for 1 h, followed by 3 washes with PBS-T and by blocking

with 5% milk in PBS-T for 1.5 h. Meanwhile, plasma samples were diluted to a final concentration close to
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the EC50, incubated with either RBD (50 mg/mL) or S (12.5 mg/mL) and serially diluted (11 dilution points per

patient sample, 25 mL per dilution) in low-binding 384-well plates (Labcyte 384 PP plates). After 2 h of incu-

bation at RT, 20 mL of all the samples were transferred to the previously coated plates and incubated for

additional 2 h at RT. Then, the plates were washed five times with PBS-T and the presence of IgGs was

detected using an HRP-linked anti-human IgG antibody (Peroxidase AffiniPure Goat Anti-Human IgG,

Fcg Fragment Specific, Jackson, 109-035-098, at 1:4000 dilution in sample buffer). The incubation of the

secondary antibody for one hour at RT was followed by three washes with PBS-T, the addition of TMB,

an incubation of 5minutes at RT, and the addition of 0.5MH2SO4. The absorbance at 450 nmwasmeasured

in a plate reader (Perkin Elmer, EnVision). Data were interpreted and the following qualitative categories

were assigned: (1) No binding to target protein, no competition. (2) Binding to target protein, no compe-

tition. (3) Binding to target protein, competition.

Microfluidic diffusional sizing

For the microfluidic binding measurements, 40% of human plasma was added to 10 nM antigen and PBS

was added to give a constant volume of 20 mL. The antigen used was RBD labelled with Alexa Fluor 647

through N-terminal amine coupling. These samples were incubated at room temperature for 40 minutes

and the size, hence molecular weight of the formed immunocomplex, was determined through measuring

the hydrodynamic radius, Rh, with microfluidic diffusional sizing19,21,54,94 using a Fluidity One-W platform

(Fluidic Analytics, Cambridge, UK). Following correction of fluorescence intensities for serum autofluores-

cence, the fraction, fd , of RBD to diffuse into the distal channel is defined by:

fd =
½AbR�ð1 � rbÞ+ ð½R�0 � ½AbR��1 � rf

��
½R�0

Where ½AbR� is the concentration of bound RBD, ½R�0 is the total concentration of RBD, and rb and rf are the

fractions of bound and free RBD to diffuse into the distal channel, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of data derived from high-throughput serological screen

Data fitting

Eight-dilution points equally spaced on a logarithmic scale are fitted with an equation derived from a sim-

ple binding equilibrium. The inflection point (-log10EC50) is extracted from the fit. Baseline and plateau

values are fixed by the respective positive and negative controls in a plate-wise fashion and the signal is

fitted following these equations:

cbound = 1 � 1

2

�
cac + kd + 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcac + kdÞ2 + 2ðkd � cacÞ+ 1

q �
;

where cbound , ca and c are concentration of the antigen-antibody, antigen, and blood concentration

respectively.

ODsignal = cbound
�
baseline � plateau

�
+plateau

Data preprocessing

Imagine a sample whose physical dilutions (from 1:50 to 1:6’000) do not show deviations in measured

signal, i.e. are a straight line in the range of the negative control (absence of antibody binding independent

of the dilution). The data fitting process enforces a sigmoid onto the data, resulting in a –log10EC50 value,

no matter what the actual shape of the data might be. –log10EC50 values derived from near-straight lines

are biologically meaningless when being three orders of magnitude above the non-diluted sample. Im-

portantly, while this means that no samples/values were excluded from seroprevalencemeasurement, sam-

ples for which one or multiple (against S and/or against RBD and/or against NC) –log10EC50 values were

below 3 automatically had a posterior probability of 0. This approach was cross-validated by rescaling

the –log10EC50 values of affected samples to 0, yielding a posterior probability of <0.1 in all instances. In

total 82’130 –log10EC50 values were categorized as such. None of these sample has been used to train

the QDA- or LDA-based TRABI model. Importantly, this means that no samples/values were excluded

from seroprevalence measurement but that samples for which one or multiple –log10EC50 values were

below 3 had a posterior probability of 0.

ll
OPEN ACCESS

iScience 26, 105928, February 17, 2023 29

iScience
Article



QDA, LDA, and prevalence estimation

Assume that we have data for m samples with known serostatus and antibody measurements, that is, we

have ðXi;YiÞ; i = 1; ::;m; where Xi is the vector of size p (in our case our antigen measurements) and Yi is

a Boolean variable defining group membership (in our case, whether the individual is seropositive or

not). The QDA model assumes multivariate normal distributed Xi given Yi:

ðX jY = jÞ � N p

�
mj;Sj

�
;

where j = 0,1 is indexing the seropositivity state. Further, the model assumes that the prior, that is, distri-

bution of Yi , is known s. t. P½Y = j� = pj. The quadratic discriminant classifier simply assigns each sample to

the group which has the larger posterior P½Y jX �, which is proportional to the joint probability P½Y ;X �: There-
fore, we assign sample i to group 1 if

log ðfxjy = 1

�
xi
��

+ log
�
p1

�
> log ðfxjy = 0

�
xi
��

+ log
�
p0

�
;

and to group 0 otherwise. To set the prior, one option is to take the proportion of serostatus group mem-

bership in the dataset for which serostatus is known. However, this is not an ideal option in our case, where

we have an additional n samples with unknown serostatus to classify: The prevalence in them samples with

known serostatus might deviate substantially from the prevalence in population with unknown serostatus.

We therefore estimate p1 directly from the data of unknown serostatus using a simple expectation maximi-

zation scheme. Proceeding in an iterative fashion, from a given estimate pk
1, we define the posterior (E step):

tk1ðxiÞ =
pk
1fxjy = 1ðxiÞ

pk
1fxjy = 1ðxiÞ+ ð1 � p

k
1Þfxjy = 0ðxiÞ

:

Then, we update our estimate of p1 (M step):

pk + 1
1 =

Xi = m

i = 1

tk1ðxiÞ
m

;

where m is the number of samples, i.e. the updated seropositive proportion prior is the average of the cur-

rent estimates of posterior probabilities to be seropositive. After convergence, this yields our estimate of

the positive serostatus prevalence in the samples. Note that the sample ordering according to this classifier

is independent of the prior and therefore has no impact on an analysis via ROC curves. Further, note that

evaluating QDA via ROC analysis, an out of sample scheme should be employed to avoid biased estimates

of performance; we chose 10-fold cross-validation throughout, where the samples with known seroposi-

tivity status were split in 10 folds ensuring that known/condition positive and negative samples were distrib-

uted evenly across the folds. For each fold, the model was fitted on the data in the 9 remaining folds (and

the data with unknown seropositivity status to derive the priors). Then, the estimated model parameters

were applied to estimate the posterior probabilities of the samples in the left-out fold. Lastly, note that

the strategy does not critically depend on the normality assumption but just requires an estimate for the

density functions, fxjy = jðxiÞ. Even nonparametric estimates could be an option.

For the LDA approach, we first collapse the antigen measurements per samples according to the linear

discriminant classifier:

zi = xTi S0ðm1 � m0Þ;
Where S0 is the covariance estimated from the known negatives only and m1;m0 are the means of the known

positives (condition positives) and known negatives (condition negatives) respectively. The above algo-

rithm is then applied on the resulting one dimensional variable zi. 95% confidence intervals were derived

by bootstrap drawing 1,000 bootstrap samples, where the number of samples drawn from each annotation

group (known positives/condition positives, known negatives/condition negatives and unannotated) was

kept constant. All available known seronegative (i.e. prepandemic), known seropositive and samples

with unknown serostatus were used in bootstrapping (see Table 1 for detailed listing).

Epidemiological modelling

Post-stratification of age and sex with distributional information of population of canton of Zurich

We adjusted the estimates for differences in age and sex between the population of the canton of Zurich

and the samples of individuals hospitalized at UZH or blood donors using inverse probability weighting.
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The data for the population of the canton of Zurich were obtained from the statistical services of the canton

of Zurich.

Antibody waning and cumulative incidence

Without presuming the effects of antibody waning on immunity to CoV2 re-infection, it is important to ac-

count for it when estimating the infection attack rate or cumulative incidence from seroprevalence data. To

this aim, we propose an extension to the classic SEIR model where the R compartment (R for removed) in

the classical formulation is split in 3: (1) Compartment R represents the subgroup of population that is

removed from infectiousness and did not seroconvert yet. (2) Compartment A (for antibody) represents

the subgroup of population that is removed from infectiousness and did seroconvert. (3) Compartment

W (for waning) represents the subgroup of population that is removed from infectiousness and whose an-

tibodies waned. The model thus assumes the following form:

S /
bðtÞSI

E/
sE
I/
gI
R/

lR
A/

tA
W ;

where S stands for susceptible, E for exposed, I for infectious, and b, s, g, l, and t are rates. We select a rate

l of 1/14 days for seroconversion (14 days on average from R to A, see28–30), and estimate the rate of anti-

body waning (t) from data. The model also assumes an average generation interval of 5.2 days,31 and an

average time from disease onset to death of 20.2 days.32 We include a time-varying transmission factor

by month, b(t), with smooth transitions handled by logistic switch functions. The model is fitted to seropre-

valence data from USZ and BDS jointly, and to weekly mortality data from canton of Zurich with an infection

fatality ratio fixed over time with a prior distribution set to 0.5% (95% central range: 0.2 to 1.0%).56 The

model was fitted in a Bayesian framework using Stan,82 by which the 95% credible intervals were computed

through MCMC sampling. From the fitted model we can estimate the rate of antibody waning (or its half-

life, i.e. log(2)/t, in days) as well as the infection attack rate/cumulative incidence corrected for antibody

waning at any time point (1-S(t)), see Figure 3E. We additionally investigated antibody decay longitudinally.

Over the study period, 65 individuals with a posterior probability of seropositivity above 0.5 had a second

measure of SARS-CoV-2 antibodies later. We used a hierarchical linear regression model in Stan to assess

the decrease of each -log10(EC50) S, RBD, NC, and the compound QDA-based posterior measurement (on

the logit scale), see Figure 3D.

Exploratory correlation analysis of CoV2 seropositivity with ICD-10 codes using Bayesian logistic
regression

We explored associations between the posterior probability of a positive serology in individuals consulting

at USZ and medical conditions as measured by the ICD-10 codes entered by the medical encoders for

health insurance-related purposes. Whenever available, ICD-10 codes were extracted from our clinical

data warehouse for all patients included in this study. Up to 100 different ICD-10 codes per case were an-

notated in a pivot table. We considered only the highest posterior probability for patients with multiple

samples (some of which may be negative in the beginning and turn positive later on), and ICD-10 codes

entered at any point. We limited the analysis to ICD-10 codes present in more than 0.1% of cases, to avoid

overinterpretation of rare events. The analysis was thus focused on 37’382 individuals and 199 variables,

including age, sex and 197 ICD-10 codes. We used multiple logistic regression after logit-transforming

the posterior probability. We placed ourselves in a Bayesian framework and conduct the analyses in the

R package rstanarm.95 We started with standard regression, using uninformative priors on regression co-

efficients (Normal(0,10)). With this large number of covariates, the estimates were, as expected, very noisy

and basically unusable. We thus used regularization techniques (Bayesian LASSO and regularized horse-

shoe priors, see96,97). We then showed the top ten positive or negative associations between ICD-10 codes

and posterior probability of CoV2 seropositivity (odds ratio with 95% credible interval), see Figure 5.

Investigation of feature dissimilarity between seropositive and seronegative patients using linear
and nonlinear dimensionality reduction mechanisms

The same dataset as described above (Bayesian logistic regression) was subjected to dimensionality reduc-

tion, with the following deviations: (1) Age was not included as a feature. (2) Seropositivity was defined as

posterior probabilityR0.5. PCA. PCA was carried out using the default implementation in the R stats pack-

age (prcomp) and data was visualized using the factoextra package (https://cran.r-project.org/web/

packages/factoextra/index.html). UMAP. The following UMAP configuration parameters from the umap

package in R (https://CRAN.R-project.org/package=umap) were used, all of which are default, except
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for the metric where cosine was used instead of Euclidean due to the binary nature of the data (n_neigh-

bors: 15, n_components: 2, metric: cosine, n_epochs: 200, input: data, init: spectral, min_dist: 0.1, set_op_

mix_ratio: 1, local_connectivity: 1, bandwidth: 1, alpha: 1, gamma: 1, negative_sample_rate: 5, a: NA, b:

NA, spread: 1, random_state: NA, transform_state: NA, knn: NA, knn_repeats: 1, verbose: FALSE, uma-

p_learn_args: NA). UMAP data was plotted using ggplot2 in R. The plots are shown in Figure S8.

Exploratory network analysis of ICD-10 codes, clinical departments, age, and sex for seropositive
and seronegative patients

Topological networks have been constructed using the Cytoscape version 3.8.2 (https://cytoscape.org), to

visualize the patient-ICD-10 code relationship on the network level34 and topological similarities between

seropositive and seronegative USZ patients have been scored using the Mcode algorithm.35 ICD-10 codes

were depicted as purple rectangles, male patients as diamonds and female patients as circles. The sero-

logical status is encoded in red (seropositive) and blue (seronegative), see Figure S8. A force directed

layout was employed to represent the network.

Assessing potential complications of CoV2 infection in three patient groups using ICD-10 codes
and free-text medical reports

Reports on complications of CoV2 infections beyond the classical COVID-19 pneumonia have accumulated

over the past years. To investigate whether a CoV2 infection is associated with diseases that have not been

linked to the virus so far, we first split our dataset into (1) seropositive COVID-19 patients hospitalized in the

Infectious Diseases or Internal Medicine units (n = 240, group I), (2) seropositive patients associated with

other clinical wards (n = 494, group II), and (3) randomly selected seronegative patients (n = 635, group

III). Group I likely reflects the cases hospitalized because of COVID-19, while group II is comprised of

USZ patients that likely did not require hospitalization due to COVID-19 and some of the patients in this

group may have been asymptomatic or paucisymptomatic. Our SQL databases containing ICD-10 codes

and free-text medical reports were then queried individually for the three groups, using the following

disease classes/conditions: 1) CoV2-related diseases. ICD-10 codes: J80, U69.0-!, J96%. Free text:

ARDS, COVID-19-Pneumonie, respiratorische Insuffizienz, Dyspnoe, Lungenembolie. 2) Risk factors for

severe disease/hospitalization.40–42 Free-text: Diabetes mellitus, Diabetes, Obesity, Herz-Kreislauf, Obesi-

tät, Hypertonie, COPD, Arrythmie, Arrythmia, chronische Nierenerkrankung, ischämische, Übergewicht,

chronische Atemwegserkrankung, Bluthochdruck, Herzfehler, Herzversagen, chronic kidney disease. 3)

Mixed neurological/neuropsychiatric.36 Free-text: Fatigue, Müdigkeit, Geschmack, Geruch, Verwirrung,

Schwindel, Mood, Psychose, Enzephalitis, microbleed, Schlaganfall, Enzephalopathie, Delir, Epilepsie. 4)

Extrapyramidal and movement disorders, therein Parkinson’s Disease. ICD-10: G20, G21, G22, G23,

G24, G25, G26. Free-text: Parkinson, Dystonie, extrapyramidal, Chorea. 5) Inflammatory diseases of the

central nervous system, therein encephalitis. ICD-10: G00, G01, G02, G03, G04, G05, G06, G07, G08,

G09. Free-text: Enzephalitis, Enkephalitis, Enzephalomyelitis, Phlebitis, Meningitis, Myelopathie. 6)

Demyelinating diseases of the central nervous system, therein multiple sclerosis. ICD-10: G35, G36, G37.

Free-text: Multiple Sklerose, Demyelinisation, Demyelinisierung, Hirnsklerose. 7) Hypertensive diseases.

ICD-10: I10, I11, I12, I13, I15. Free-text: essentielle Hypertonie, Bluthochdruck, Hypertensive Herzkrankheit,

Hypertensive Nierenkrankheit. 8) Ischemic heart diseases. ICD-10: I20, I21, I22, I23, I24, I25. Free-text:

Angina pectoris, Myokardinfarkt, ischämische Herzkrankheit. 9) Pulmonary heart disease and diseases of

pulmonary circulation. ICD-10: I26, I27, I28. Free-text: Lungenembolie, Lungeninfarkt, pulmonale Herz-

krankheit, Thromboembolie. 10) Other forms of heart disease. ICD-10: I30, I31, I32, I33, I34, I35, I36, I37,

I38, I39, I40, I41, I42, I43, I44, I45, I46, I47, I48, I49, I50, I51, I52. Free-text: Perikarditis, Perikarderguss, En-

dokarditis, Mitralklappenkrankheit, Pulmonalklappenkrankheit, Trikuspidalklappenkrankheiten, Pulmonal-

klappenkrankheiten, Kardiomyopathie, Atrioventrikulärer Block, kardiale Erregungsleitungsstörungen,

Herzstillstand, Paroxysmale Tachykardie, Vorhofflimmern, kardiale Arrythmie, Herzinsuffizienz. 11) Cere-

brovascular diseases. ICD-10: I60, I61, I62, I63, I64, I65, I66, I67, I68, I69. Free-text: Subarachnoidalblutung,

Intrazerebrale Blutung, Schlaganfall, Aneurysma, Hämorrhagie. 12) Diseases of arteries. ICD-10: I70, I71,

I72, I73, I74, I77, I78, I79. Free-text: Aortenaneurysma, periphere Gefäßkrankheiten, Arterielle Embolie

und Thrombose. 13) Diseases of veins. ICD-10: I80, I81, I82, I83, I85, I86, I87, I88, I89. Free-text: Thrombo-

phlebitis, Pfortaderthrombose, sonstige venöse Embolie und Thrombose, Ösophagusvarizen, Varizen,

Sonstige Venenkrankheiten, Lymphadenitis, Krankheiten der Lymphgefäße und Lymphknoten. 14) Other

and unspecified disorders of the circulatory system. ICD-10: I95, I97, I98, I99. Free-text: Hypotonie. The en-

tries were then inspected andmultiple entries per patient for a single disease class/condition were reduced

into a single entry, to avoid overrepresentation of a single patient. The number of occurrences of unique
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patients per disease class/condition were then counted and assembled in a contingency table, with num-

ber of patients present for a given disease class/condition and with number of patients absent for a given

disease class, for the three groups. Pairwise comparisons were then carried out whereby the data distribu-

tion of group I was compared to group II, group I to group III, and group II to group III, for above disease

classes/conditions as well as for sex. This resulted in overall 3 x 15 comparisons. Statistical testing was

performed using Fisher’s exact test, with significance a at 0.01. p-values %0.01 were then corrected for

multiple comparison using p-value adjustment43 where the p-value was multiplied by the number of com-

parisons performed (i.e. 45). Statistical testing of age was performed using Mann-Whitney U test in

GraphPad Prism. Data was visualized with GraphPad Prism as frequencies, i.e. the number of occurrence

divided by the total number for each group and each disease class/condition.

Mapping the evolution of seroprevalence in two waves according to municipality in the canton of
Zurich

The maps of the canton of Zurich were produced using zip code (PLZ) information of the USZ patients

(based on their residency) binned by month for purposes to conserve anonymity. The seroprevalence

map (Figures 4C and 4D) displays the ratio of positive versus negative patient samples for each zip code

in a given time trace. A threshold of minimally 50 samples per zip code was set in order to minimize statis-

tical fluctuations due to under-sampling a region. This threshold of 50 samples has beenmade arbitrarily as

a tradeoff between the representativity for each zip code and having enough municipalities to represent

the sample provenance within the canton of Zurich. In addition, and in order to be able to evaluate any

discrepancy, a second map displaying the number of samples analyzed per zip code (independent of sero-

positivity) has been created (Figures 4A and 4B). The representation of the first six and last six months of the

year 2020 has been made in order to compare the evolution of the distribution of seropositivity in the

canton of Zurich, between the first and second wave. However, the maps may display significantly lower

values than at the seroprevalence peaks as they are averaged over several months. Moreover, we have

considered grouping the zip codes together to overcome the limitation of minimally 50 samples per zip

code. However, the choice of groups is not trivial, and creates another new bias. The most obvious choice

would be to employ a similar population per area but this solution is not straightforward as the population

data is provided for municipalities, and not by a zip code. Nevertheless, a second map consisting of

arbitrary groups of zip codes has been made in order to make sure we will not miss important information

stemming from rural low-number areas (see Figure S7E). The border of the area of the city of Zurich is sur-

rounded by a dense red line while the zip codes contained within the canton of Zurich, at the border to

another canton, is displayed with a lighter orange line. Limitation of the zip code as representation of

the canton of Zurich: A single unique zip code in Switzerland can be shared between several cantons. As

the information collected are represented by the zip code, the map generated can partially include munic-

ipalities that belong to a canton other than Zurich. These parts are small, however, except for two regions

(Baar, Neuhausen am Rheinfall). These two regions contain an urban area belonging to cantons other than

Zurich (Zug, Schaffhausen respectively) and most likely do not solely represent the Zurich area assigned to

this zip code. The following document from the Swiss federal statistical office98 has been used to find the

zip code corresponding to the canton of Zurich; the zip codes 5462 and 8363 have been manually added in

order to complete the zip code corresponding to the canton of Zurich. The geographical borders corre-

sponding to the zip code border has been taken from the Swiss federal office of topology swisstopo.99

We have moreover calculated the averaged seropositivity rate of the city of Zurich (its boundaries are out-

lined in red in Figure 4 and in Figure S7E) and the regions of the Canton not within the city limits (outside the

zone framed in red colour, see Figure 4) binned by 3 months and evaluated the ratio between them (see

Figure S7D). The analyses and the visualization were conducted in Python.

Online health survey

The online health survey was conducted using electronic questionnaires through the REDCap software

(https://www.project-redcap.org/). The survey questions are provided here1 within the codebook; they

include questions related to specific symptoms experienced in the 7 days prior to completing the question-

naire, relative health status, the EuroQol 5-dimension 5-level (EQ-5D-5L) and the EuroQol visual analogue

scale (EQ VAS) instruments. To calculate EQ-5D-5L health state scores, the value set of the Netherlands was

applied in lack of a corresponding value set from Switzerland. Questionnaires could be filled in German or

English language. Invitations were sent to potential participants via email by the Clinical Trial Centre at the

USZ. All study participants provided electronic consent prior to their participation in the health survey. The

implementation of the online health survey was approved by the responsible ethics committee of the
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canton of Zurich (BASEC-Nr. 2018-01042). Data was collected between 13 April 2022 and 30May 2022 and a

reminder was sent on 03 May 2022 to all participants who had not participated before that date. Data from

142 participants was collected. Data from six individuals was removed from analysis as the survey form was

almost entirely incomplete, resulting in a final analysis dataset consisting of 136 individuals. The participa-

tion rate was thus 20.4% for those invited via e-mail. While this participation rate may likely be comparable

to other surveys, the limited participation may be explained by several factors: (1) we contacted partici-

pants by e-mail only, (2) we contacted participants several months after their last healthcare contact, (3)

patients of our University Hospital may have a higher baseline morbidity interfering with filling the ques-

tionnaires, (4) potential fatal events that may have meanwhile occurred in several patients, (5) expected

and known language barriers (the invitations to and the survey were available in German and in English

but many of our hospital patients speak e.g. Albanian, Portuguese, French, Italian, Turkish, Ethiopian, or

Tamil and other Dravidian languages). We attempted to minimize any selection bias by making the survey

as accessible and short as possible, using simple language, and by sending a reminder e-mail to those

invited. It cannot be ruled out that some selection has still occurred. However, it is unclear if this would

bias the results towards higher (hospital patients with higher morbidity & age included) or lower (younger

patients with higher digital literacy included) estimates of post COVID-19 condition. We included all par-

ticipants that included sufficient data that allowed the assessment of at least part of the outcomes from the

survey reported in the manuscript (i.e., current health and prior infection status). For most variables, there

was little missingness (<5%) in the questionnaires. Tables 2 and S3–S5 report any missing data.

Data was analysed in R 4.2.0 using descriptive statistics and multivariable logistic regression models

adjusted for age and sex.
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