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Abstract
Soil bacteria are largely missing from future biodiversity assessments hindering comprehensive forecasts of ecosystem
changes. Soil bacterial communities are expected to be more strongly driven by pH and less by other edaphic and climatic
factors. Thus, alkalinisation or acidification along with climate change may influence soil bacteria, with subsequent
influences for example on nutrient cycling and vegetation. Future forecasts of soil bacteria are therefore needed. We applied
species distribution modelling (SDM) to quantify the roles of environmental factors in governing spatial abundance
distribution of soil bacterial OTUs and to predict how future changes in these factors may change bacterial communities in a
temperate mountain area. Models indicated that factors related to soil (especially pH), climate and/or topography explain and
predict part of the abundance distribution of most OTUs. This supports the expectations that microorganisms have specific
environmental requirements (i.e., niches/envelopes) and that they should accordingly respond to environmental changes. Our
predictions indicate a stronger role of pH over other predictors (e.g. climate) in governing distributions of bacteria, yet the
predicted future changes in bacteria communities are smaller than their current variation across space. The extent of bacterial
community change predictions varies as a function of elevation, but in general, deviations from neutral soil pH are expected
to decrease abundances and diversity of bacteria. Our findings highlight the need to account for edaphic changes, along with
climate changes, in future forecasts of soil bacteria.

Introduction

Soil bacteria form a large part of Earth’s biota and biodi-
versity [1, 2] and they have an integral part in ecosystem
functioning [3, 4]. Perturbations in soil bacterial commu-
nities can influence whole ecosystems, for example via
affecting nutrient cycles [5]. For that reason, it would be
important to have forecasts of the future of soil bacteria
upon changing environmental conditions [6–9]. However,
they are still largely missing from future biodiversity
assessments both at global (e.g., [10]) and regional levels
(e.g., mountain ecosystems [11]).

Previous studies of top soil microbial biogeography have
identified soil pH as the primary driver of bacterial com-
munities, along with other edaphic (especially organic car-
bon, C) and climatic factors [12–15]. The effects of
environmental changes on local edaphic conditions are,
however, uncertain, and might equally result in increases or
decreases of soil pH and organic C [16, 17].
Altogether, analogous to climate change [18], soil change
scenarios would have to be developed that can build
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the foundation of future forecasts of soil bacterial commu-
nities [5, 19].

Regarding soil pH, a general acidification due to atmo-
spheric sulphur (S) and nitrogen (N) depositions has been
recorded worldwide [20]. In Switzerland, atmospheric
deposition, mainly of S, increased from the 1960s [21] to
the 1970s, before largely diminishing in the 1980s [22].
This deposition caused widespread but varying soil acid-
ification, depending on the buffering capacity of soils [17].
In alkaline soils, the onset of measurable acidification from
atmospheric deposition was delayed [20, 22]. As a result,
they still continue to acidify whereas acidic soils are already
recovering [23, 24]. The future trends of soil pH are thus
determined by the interplay of soil type (e.g., alkaline vs.
acidic) and current and future rates of atmospheric deposi-
tion, especially of N that still exceeds critical loads in
Switzerland [25].

Atmospheric N deposition does not only influence soil
pH, but also soil organic C content. Tipping et al. [26]
presented evidence of a long-term increase in soil organic C
due to N deposition. This trend contrasts with the empirical
and experimental evidence of soils losing organic C in a
warming world due to the intrinsic temperature dependency
of the soil organic matter decomposition [27, 28]. Increas-
ing temperature and decreasing soil moisture affect the rate
of soil organic matter decomposition, enhancing C losses
from soil to the atmosphere [29, 30]. On the other hand,
rising CO2 levels and a warmer climate may increase
mountain plant biomass production leading to increased
littering, which would enhance the flux of organic C into the
soil [31]. The latter process could offset projected soil
carbon losses [32, 33], and the balance between the two
processes may thus determine changes in organic C content
and turnover in the soil [34]. As this matter is not settled,
uncertainties are large on soil organic carbon change pre-
dictions [35].

It is to be expected that alterations in edaphic conditions
are going to affect soil bacterial community structures, by
altering the general growth conditions [36]. For example,
total bacterial diversity is highest at neutral soil pH [12, 15]
and bacterial abundance positively correlates with soil car-
bon availability [37]. Thus, soil acidification below neutral
pH and amplified decomposition could decrease bacterial
community diversity, whereas (slightly) higher soil alkali-
nity and C content could favour more bacterial species to
flourish. Also changes in climate have been shown to lead
to changes in bacterial abundances, diversity and commu-
nity composition [9, 38–41]. All in all, the future of soil
bacteria is uncertain and depends on interplay of multiple
factors.

Here, we pursue forecasting effort for soil bacterial
communities, and present initial findings based on the
predictions of individual bacterial taxa driven by different

future scenarios of both soil and climate. We use data from
a well-studied temperate mountain region, first, to assess the
variation in soil bacteria as a function of climatic, topo-
graphic and edaphic conditions covering large elevational
and environmental gradients. Next, based on the literature
and observed changes in edaphic conditions since the
1970s, we developed simple hypothetical sensitivity sce-
narios of future changes in soil pH and total organic carbon
(TOC) content. Finally, we used combinations of edaphic
and climatic change scenarios, together with the models
obtained in the first step, to forecast potential future changes
in bacterial communities. We benefitted from an analytical
framework for species distribution and community model-
ling (SDM) frequently applied to assess and predict spatio-
temporal occurrence of plant and animal species [42–44],
adapted here to bacteria.

Material and methods

Study area

The data were collected from an intensively studied
mountain area [12, 45–47], which is a priority area for
transdisciplinary research at the University of Lausanne
(http://rechalp.unil.ch and www.unil.ch/centre-montagne)
located in the western Swiss Alps (46°10′–46°30′ N; 6°
60′–7°10′ E), covering an area of ~700 km2 and spanning an
elevation range of 425–3120 m a.s.l. Climatic conditions are
heterogeneous, with annual mean temperatures and pre-
cipitation sums varying from 8 °C and 1200 mm at 600 m a.
s.l. to −5 °C and 2600 mm at 3000 m a.s.l. [48], respec-
tively, and solar radiation, debris accumulation and erosion
vary according to topographic position, slope and aspect.
The bedrock in this area is mainly calcareous with few
occurrences of sandstone, schist, marlstone and phyllite.
Soils range from slightly to moderately developed, with
rarer occurrences of well-differentiated acid and poorly
drained soils [49, 50]. Land cover is dominated by alpine
grasslands, forests, glaciers and agricultural lands.

Sample collection and 16S rRNA gene amplicon
sequencing

To assess the bacterial communities across the study area,
soil was sampled for 16S rRNA gene amplicon sequencing
between July and September of 2012 and 2013 from non-
forested quadrats of 2 × 2 m at 265 sites selected according
to a random-stratified sampling design [51] considering
elevation, slope and aspect strata. Detailed descriptions of
the sampling and sequencing are published elsewhere [12],
but briefly, each sample (500 g) consisted of five pooled and
homogenized subsamples of top 5-cm layer soil collected
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with sterilized (ethanol and butane based lighter) tools.
Triplicate DNA extractions (PowerSoil DNA isolation kit;
Mo Bio Laboratories, Carlsbad, CA, USA) were conducted
for each sample from 0.25 g of freshly collected ice-stored
and sieved (2 mm) soil.

The V5 hypervariable region of the 16S rRNA gene was
amplified in quadruplicate by polymerase chain reaction
(PCR), using the primer set 784DEG and 880RDEG [52]
appended at the 5′ ends with one of 40 pairs of 3- to 6-base
forward and reverse barcodes. The PCR products were
purified, pooled, annealed with adapters and a third barcode
for library preparation, and finally paired-end sequenced
(2 × 100 nt) on HiSeq 2500 platform (Illumina) at the
Genomic Technology Facility of the University of Lau-
sanne. We previously showed that the selected primers,
initially published in an oral microbiomes study, have an
excellent taxonomic coverage for soil biogeography studies
([12, 53] and unpublished preliminary analysis). Further,
although the hypervariable regions selected as a proxy for
the full 16S rRNA gene have shifted over the years, the V5
region used in the present study has been demonstrated to
illustrate plausible trends of soil bacteria communities
[12, 53].

Bioinformatic processing

For the de novo (DN) approach, sequenced reads were
demultiplexed and barcodes were removed using a custom-
made perl script. The 5′ ends of each paired-end sequence
were matched against the IUPAC sequence composed of the
adaptor, spacer and forward and reverse primer barcodes
associated with each sample, allowing for at most one
mismatch for each end. Sequence pairs were attributed to a
given sample only when both ends had a match, and when
the attribution was unambiguous (i.e., no other candidate
sample obtained an equivalent or lower number of mis-
matches). To recover the sequence of each 16S rRNA gene
fragment, the 3′ overlap of each sequence pair was assessed.
Only the 16S rRNA gene fragments with overlapping
sequence stretch >98% were retained, and the nucleotide
with the best quality score was kept. Finally, we trimmed
the 5′ and 3′ ends of the fragments to remove the sections
originating from the region of the primers designed with
degenerate nucleotides, which artificially inflate sequence
diversity and affect the subsequent clustering steps. Thus,
all fragments start with TTAGATACCC and end with C.
The 16S rRNA gene fragments were then dereplicated by
combining all strictly identical fragments into unique ones
to obtain zero-radius operational taxonomic units (zOTUs
[54]) with a corresponding abundance equal to the
number of fragments with this unique sequence. Finally,
we removed the zOTUs with total count among all
samples <100.

Since the resulting number of zOTUs exceeded the
computational power available for the spatial analyses, we
clustered them by an all-against-all sequence alignment
using Align0 [55]. The resulting similarity scores were then
converted to distances using the following formula:

dist i; j½ � ¼ sim i; i½ � þ sim j; j½ � � 2sim i; j½ �
Operational taxonomic units (OTUs) were then obtained

by agglomerating all zOTUs, which could be regrouped
using a given distance cut-off via single linkage. Here, the
clustering distances of 20, 40 and 60 were chosen as the
shortest distances with notable decreases in number of
resulting OTUs (see Appendix 1). Multiple distances were
chosen to test the effect of clustering.

Phyla affiliation of OTUs was obtained by first anno-
tating the zOTUs by comparison against the full SILVA
taxonomy database version 132 (SILVA_132_SSUR-
ef_tax_silva.fasta.gz [56]; for details see Appendix 1). The
phylum of each OTU was defined as the mode of phyla of
zOTUs clustered into the OTU. The phyla that did not
represent the globally ten most abundant phyla [57] were
grouped together.

To account for varying sample library sizes, we incor-
porated an offset term in the models (see ‘Spatial analyses’
below and McCarthy et al. [58]). For comparison, we also
prepared a normalized dataset by first rarefying the samples
to the lowest total count of zOTUs (131566) across all
samples prior to OTU clustering with the ‘rar-
efy_even_depth’ function without replacement from the
phyloseq R-package [59].

Since we cannot explicitly ensure that our clustered
sequences represent individual bacterial species (because of
microvariation among multiple 16S rRNA gene copies
within a single bacterial strain), we repeated clustering with
a closed-reference (CR) approach to assign sequences to
known bacterial genera, as in Yashiro et al. [12]. In brief,
the demultiplexing process included a quality-filtering step
that retained only the sequences that had 100% matching
adaptor, spacer and forward and reverse primer barcodes.
Sequences were then clustered into OTUs in QIIME v.1.7.0
[60] at the 97% similarity threshold using the gg_13_8
database from Greengenes as a reference [61, 62]. The total
number of reads per sample was normalized to 99,618 (i.e.,
the lowest total count of sequences across all samples) by
rarefaction using random selection without replacement.
Since species level information was only available for <4%
of the OTUs, we used genus level taxonomic annotation
that was available for 27% of the OTUs. We acknowledge
the existence of more up-to-date CR approaches and
reference databases. However, we opted for the aforemen-
tioned workflow because part of such dataset had already
been successfully used to assess soil microbial biogeo-
graphy in the same study area [12, 53]. Therefore,
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demonstrating consistency in our observations between the
DN and CR approaches allows us to use the previous
ecological findings as a tool to validate our SDM-based
findings.

In summary, we used seven OTU-per-site datasets for the
spatial analyses: (1) three datasets based on DN approach
where zOTUs were clustered at distances of 20, 40 and 60
(hereafter coded as DN: cl20, cl40 and cl60); (2) three
datasets based on DN approach and normalized read counts
clustered at distances of 20, 40 and 60 (DNn: cl20, cl40 and
cl60); and (3) one dataset based on CR OTU picking and
clustered to genera (yet in the text, genera are also referred
as OTUs). In all cases, prior to analyses, we removed the
OTUs occurring in <21 sites to ensure more confident
model parameter estimation (see Table 1).

Environmental data

Nine environmental predictors, representing the three main
groups of abiotic habitat factors in the study area: climate,
topography and soil were included as predictors in the
models. From an initial set of 79 predictors, we chose three
variables per group based on their explanatory power while
controlling for multicollinearity (see details in Appendix 2):
temperature of the coldest quarter (°C; TcoldQ), precipitation
of the driest month (mm; PdryM), annual temperature range
(K, Trange), potential annual solar radiation (KJ; sRad,
governed by topography in the study area), topographic
position index (unit-less, indicating a gradient from valley
bottoms to ridge tops; TPI), slope angle (°), soil pH,

logarithm of TOC content (%; TOClog) and clay content
(%). These environmental variables could be obtained for

Table 1 Count of OTUs within
different datasets.

Dataset Clustering n of zOTUs/OTUs n of
OTUsa

n of modelled OTUs
(occurring in >20 sitesa)

n of OTUs included in
predictionsb

DN Original 60567c/59344a

zOTUs

DN cl20 19,267 16,167 15,162

DN cl40 9649 7836 7322

DN cl60 6522 5258 4905

DNn cl20 19,267 8961 8757

DNn cl40 9649 4227 4127

DNn cl60 6522 2836 2762

CR Original 15193c/
15103a OTUs

CR Genus 736 376 362

From the originally sampled 268 sites, sequencing was successful for 265 sites. Out of these sites,
environmental variables could be obtained for 255 sites which were used for modelling. For the predictions,
an independent set of 229 sites was used (see Fig. 1).

DN de novo clustering of OTUs, DNn de novo clustering of OTUs based on normalized counts of zOTUs,
CR close-referenced OTU picking and clustering.
aWithin 255 sites.
bBased on GAMnb.
cWithin 265 sites.

Sites for 
modelling

Sites for 
projections

0 5 10 km

Fig. 1 Locations of study sites and area in western Swiss Alps.
255 sites of 16S rRNA gene amplicon sequencing for which envir-
onmental variables could be derived were used for modelling. For the
projections, an independent set of 229 sites was used.
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255 of the sampling sites used for 16S rRNA gene amplicon
sequencing (see Fig. 1).

To independently apply our predictions of bacterial
communities under current conditions and future scenarios
in the study area, we used a separate dataset of 229 sites
(see Fig. 1) for which we could obtain the same environ-
mental parameters. Environmental variables representing
current conditions for these sites were derived as described
in Appendix 2 with the exception of deriving edaphic data
from soil samples collected 2012–2013 ± 3 years (e.g., from
Dubuis et al. [63]). Three climatic variables were used for
future predictions and were derived under the IPCC
A2 scenario for the time period 2047–74, based on the
official scenarios available for the study area with 25 × 25-m
resolution [meteoswiss.ch and ref. [64]]. For topography
and clay content, no future change between now and the
coming decades is expected.

Future estimates of pH and TOC were derived through
extrapolation from historical changes in the same study area
[65]. As, unlike for climate, no established soil change
scenario is available for the Alps, we applied the same
sensitivity approach used in early climate change impact
modelling studies [66], by changing the value of soil
parameters according to representative past measurements.
In brief, the slopes of temporal pH and TOC changes were
calculated from soil resurvey analysis incorporating 112
paired samples from 1970 and 2016 (Appendix 2). For both
pH and TOC, the mean of slopes indicated increases, with
no relation to elevation. Then, to derive ‘increase’ scenarios
for pH and TOC, we used the derived mean slopes to
extrapolate to year 2060 from the measured (2012–2013 ± 3
years) values of the 229 sites. Alternative ‘decrease’ sce-
narios were developed similarly but with the inverted mean
slopes. The pHinc-scenario assumes a future increase of 0.3
pH units (i.e., representing a scenario where soil acid neu-
tralization phase continues). In contrast, the pHdec-scenario
assumes a decrease of 0.3 pH units (i.e., a scenario repre-
senting acidification). For TOC, 3.2% points were added
and subtracted from the current values for the increase and
decrease scenarios, respectively. TOCinc represents a sce-
nario with increased C stocks in soil due to enhanced plant
productivity and litter, whereas TOCdec points to a scenario
with decreased C stocks as a result of amplified decom-
position. Finally, pHnow and TOCnow scenarios assume no
change in soil pH and TOC between now and the year 2060.

Spatial analyses

To assess bacterial communities now and in the future, we
implemented an analytical framework based on species
distribution models (SDMs [42–44]), but adapted to relative
OTU abundances instead of species occurrences (see
Appendix 3). Abundance of each OTU was first modelled

as a function of the nine environmental predictors using a
generalized additive model (GAMp) with spline smoothers
from R-package mgcv [67] and a gradient boosting model
(GBM) with 2000 trees, interaction depth of 3 and shrink-
age of 0.01 from R-package gbm [68], both with Poisson
distribution (suitable for sequence counts). Because pre-
liminary analyses indicated overdispersion for several
OTUs [69, 70], we additionally fitted GAM with a negative
binomial (nb) distribution (GAMnb). nb distribution is not
available for GBM, but the benefit of GBM over GAM is
that it automatically incorporates statistical interactions
among the predictors. For non-normalized OTU datasets,
we added the logarithm of the total sequence count per site
(prior to removing sequences with <100 counts) as an offset
term to control for the varying library sizes [58]. With an
offset term, a rate (here, sequence count of an OTU pro-
portional to the total count of sequences in a site) is mod-
elled instead of counts of sequences.

The model fit (i.e., how well the nine environmental
variables together explain the variation in abundances) per
OTU was assessed by the correlation between observed and
fitted abundance values (corexpl). The relative importance of
the predictors per OTU was determined using predictor
shuffling for GAMp and GAMnb (Appendix 3) and fol-
lowing Friedman [71] for GBM. To evaluate the prediction
performance of the models, we trained and evaluated them
ten times by randomly assigning 80% and 20% of the sites
for model calibration and evaluation, respectively, assuring
that each site was used on average eight times for calibra-
tion and twice for evaluation [72]. For each OTU, we then
calculated the correlation between its observed abundance
and the mean of the two predicted abundance values in the
evaluation sites (corpred).

From subsequent projections, we excluded the OTUs for
which both corexpl and corpred were weak (<0.2; sensu Evans
[73]). We used both corexpl and corpred as the random
splitting of data may result in distribution of abundance
values strongly varying between training and evaluation
datasets potentially resulting in low corpred even with sound
corexpl. For the projections of the OTUs of the DN datasets,
we used the median of library sizes as the offset term.

Response curves (sensu Elith et al. [74]) were produced
for each OTU and environmental variable. Response curves
are projections of OTUs’ abundances in an environmental
space where the variable of interest varies from low to high
and all other predictors are fixed (here, to the observed
median values across the 255 sites). This way, the effects of
variables other than the one being investigated can be
controlled when assessing the relationship between an OTU
and an environmental variable (however, note that the
OTUs specialized to extreme environmental conditions
might not show any variance in median conditions). The
variation of bacterial communities along the environmental
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gradients was then summarized by stacking the response
curves of individual OTUs, and calculating (i) the propor-
tion of OTUs with higher than median abundance, (ii) the
Shannon index and (iii) relative abundance of phyla.

Changes in bacterial communities were assessed from
the projections of abundances of individual OTUs in the
229 independent sites under current environmental condi-
tions and the nine possible combinations of the climatic
(IPCC A2) and edaphic scenarios (pHinc, pHnow, pHdec,
TOCinc, TOCnow and TOCdec). Based on the current and
future projections of individual OTUs, we calculated for
each site: (i) the proportions of OTUs with increase and
decrease in predicted abundances, (ii) the change in Shan-
non index and (iii) the relative abundance of phyla. Some
sites used for projections, especially under future scenarios,
contain environmental values falling outside the environ-
mental conditions covered by the training data. In these sites
with non-analogous environmental conditions, the models
need to extrapolate, potentially decreasing the reliability of
predictions. Thus, we identified all sites with environmental
values above the maximum or below the minimum of each
variable in the training data (Appendix 2).

Results

The DN approach recovered 60,567 zOTUs (occurring
>100 times across all sites; Table 1). After clustering,
16,167, 7836 and 5258 DN OTUs (at distances 20, 40 and
60, respectively) and 376 CR genera were available for the
modelling (i.e., occur in at least 21 of the 255 sites). DNn-
based datasets (i.e., based on normalization) have ~50% less
OTUs available for modelling at all clustering
distances than DN-based datasets (Table 1). DN and DNn-

based datasets harbour rarer OTUs and higher median ele-
vational optima than the CR dataset (see Fig. S1 in
Appendix 4).

According to corexpl and corpred, model performance is
mostly similar among the different datasets, but varies
among the OTUs and models (Fig. 2 and S2–S4 in
Appendix 4). In general, model performance is better for
frequently occurring than for rare OTUs (Figs. S5–10 in
Appendix 4). GAMnb demonstrates the best overall per-
formance (median corexpl ~0.53 and corpred ~0.26). The
large differences in median corexpl and corpred of the GBM
(~0.97 and ~0.21, respectively) and GAMp (~0.97 and ~
−0.01) indicate overfitting, with GAMp additionally failing
to predict the abundances of most OTUs (negative median
corpred). The following results are thus based on the
GAMnb, whereas results for GBM and GAMp are shown in
Appendix 4.

Irrespective of the dataset, pH has the highest median
relative importance across all OTUs, with other variables
playing a part in the models of some OTUs (Fig. 2 and S11
in Appendix 4). Along the environmental gradients, the
abundances of OTUs were higher than their medians, on
average, where pH is 6–8, TOC and clay contents are
2–40% 0–25%, respectively, temperature conditions are not
extreme and precipitation is 120–170 mm (Fig. 3 and S12 in
Appendix 4). Shannon index increases together with pH,
very slightly with TOC, is lowest under the coldest and
wettest conditions, and decreases as a function of clay and
slope steepness (Fig. 3 and S13 in Appendix 4). The relative
abundance of phyla varies especially along pH gradient
(Fig. 3 and S14–15 in Appendix 4). With increasing pH, the
relative abundance of Acidobacteria and Chloroflexi
decreases, whereas the relative abundance of Proteobacteria,
Actinobacteria and Bacteroidetes increases.
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Projections to nine different combinations of future cli-
matic and edaphic change scenarios indicate mainly con-
sistent trends among the different datasets, and some
variation between GAMnb and GBM (Figs. S16–50 in
Appendix 4). The trends in predicted changes are mostly
similar when considering only sites with analogous envir-
onmental conditions instead of all sites (Figs. S23–43 in
Appendix 4). Climate change alone is predicted to decrease
the abundances of most OTUs at lower elevations and to
mainly increase the abundances at higher elevations
(Fig. 4). Simultaneous decrease in pH would amplify the
proportions of OTUs with decreasing abundance, whereas
simultaneous increase in pH would amplify the proportions
of OTUs with increasing abundance especially at mid ele-
vations. Changes in TOC would have minor mediating

effect on changes in abundance resulting from changes in
climate and/or pH.

The Shannon index is predicted to slightly increase by
climatic changes alone, with more pronounced increases at
higher elevations (Fig. 5). The predicted increases would be
further amplified by simultaneous increase of pH and TOC,
whereas decreasing pH, especially together with decreasing
TOC, is predicted to decrease diversity, especially at low to
mid elevations (Fig. 5).

The relative abundance of phyla is predicted to only
slightly change under different future scenarios (Fig. 6).
Changes in pH would govern the relative abundance of
especially Acidobacteria around 2000 m a.s.l. Climatic
changes with simultaneous decrease in pH and TOC would
increase the relative abundance of phyla that do not
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represent the ten most globally abundant phyla. The relative
abundance of Firmicutes at the lowest elevations increases
under all combinations of future scenarios, the most with
changing climate and decreasing TOC, yet part of this
increase could be an artefact due to low number of sites and
non-analogous temperature increase at the lowest
elevations.

Discussion

Assessments of the influence of environmental changes on
species distributions have largely focused on macroscopic
species [75, 76]. Fewer studies have investigated soil

bacteria and their future changes, addressing mainly the
diversity, community structure or certain dominant phyla of
bacteria [39–41, 77]. Especially, studies at OTU level are
scarce [9] and should also incorporate edaphic changes
along with climatic ones, since soil pH and thus acidifica-
tion and alkalinisation, are important drivers of soil bacteria
[12, 15, 78, 79]. To fill this gap, we developed simple
hypothetical sensitivity soil change scenarios based on
observed historical changes in pH and organic carbon
content, and combined them with climate change scenarios
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into SDM-based forecasts of potential changes in OTU
distributions. Model performances indicated that the nine
environmental factors used, especially soil pH, explain and
predict at least part of the abundance distribution of most
OTUs in our study area. Our models thus provide support
for the previous results of Ladau et al. [9], Delgado-
Baquerizo et al. [57] and Fierer et al. [80], that most bac-
terial taxa have clear environmental requirements (i.e.,
ecological niches/envelopes [81]). Assuming that these
environmental niches would be conserved in the future
[82, 83], we further show that different combinations of
changes in climate and soil would affect the spatial dis-
tributions of bacteria distinctly [9].

Previous studies have reported the central role of pH in
defining distribution of some higher clades e.g., [13, 14], or
community properties such as richness e.g., [12, 15], bio-
mass e.g., [78, 84], or structure/composition e.g., [79].

Here, we showed more specifically that pH also strongly
governs the distribution of abundances of individual OTUs
in space over a large region with wide environmental gra-
dients. The strong role of pH is also visible in our future
forecasts, where decreasing or increasing pH affects the
changes in abundance distribution of OTUs predicted under
climatic changes alone. In general, warming climate is
expected to be beneficial for the majority of OTUs, leading
to higher total bacterial diversity at mid to high elevations.
Simultaneous acidification would, however, mostly cancel
out the effects of warming, except at the highest sites where
the soil is relatively alkaline, whereas simultaneous alkali-
nisation would further benefit most OTUs, apart from
Acidobacteria, and total diversity. Note, however, that the
strong increase of relative abundance of Firmicutes at the
lowest elevations could be an artefact resulting from the low
number of sites and non-analogously warm future condi-
tions at the lowest elevations, but a formal study of this
group’s distribution beyond our study area borders (i.e.,
assessing whether its abundance increase further toward
warmer conditions) would give the final answer to this
question.

These forecasts are also anticipated by the response
curves. For example, both coldest and warmest tempera-
tures appear as disadvantageous for most OTUs. Further
warming at low elevation with milder climate results in
decreasing abundances being predicted for most OTUs,
whereas warming at cold high-elevation sites benefit many
OTUs (see also Nottingham et al. [85] predicting that
warming amplifies soil bacterial activity the most at the high
elevations). Similarly, for instance, the lowest soil pH
values are currently recorded at mid elevation sites, where
further acidification could lead to sub-optimal conditions for
growth or maintenance of many bacterial OTUs (except
Acidobacteria; [15]). Congruently, increasing soil pH
would be beneficial for bacteria (apart from Acidobacteria)
in acidic sites at mid elevations. Under warming climate and
increasing pH, bacteria could thus show similar patterns as
plant communities migrating toward higher elevations [19].
Finally, the forecasted changes in bacteria may also partly
result from pH change scenarios mimicking a move-away
from (or a move-toward) acidic and anoxic wetland-type
habitats, which tend to contain a more specialized and
restricted bacterial community composition [53].

Interestingly, both decreasing and increasing TOC levels
are predicted to slightly decrease the abundance of most
OTUs and Shannon index. The negative effect of decreasing
TOC is likely related to the reduction of available resources
for bacteria [30], whereas excessive TOC might mimic
wetland conditions where the water-logging-related anoxic
conditions lowers the abundances of OTUs despite the
accumulated organic matter [12]. In general, however, the
effect of changing TOC on bacterial communities was much

Current

0

20

40

60

80

100

No match
Other phylum
Proteobacteria
Actinobacteria
Acidobacteria
Planctomycetes

Chloroflexi
Verrucomicrobia
Bacteroidetes
Gemmatimonadetes
Firmicutes
Armatimonadetes

0

20

40

60

80

100
pHdec pHnow pHinc

0

20

40

60

80

100

0

20

40

60

80

100

500 1500 2500 500 1500 2500 500 1500 2500

Elevation (m.a.s.l.)

R
el

at
iv

e 
ab

un
da

nc
e 

of
 p

hy
la

 (
%

)

TO
C

d
ec

TO
C

n
o
w

TO
C

in
c

Fig. 6 Based on the projections to 229 sites and shown against the
elevation, relative abundances of phyla (%) under current (single
plot at the top row) and future environmental conditions (3× 3
panels; the plot in the middle shows the sole effect of changing
climate, while the surrounding plots show the effects of climate
change plus the different combinations of decrease, increase or
stability in pH and TOC). Bars indicate averages of sites. The figure
is based on DN: cl40 and GAMnb; for the other datasets and GBM,
see Figs. S44–50 in Appendix 4.
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less than the effect of changing pH. This suggests that the
TOC changes anticipated in our study area and scenarios are
not enough to drastically affect the stability of the mountain
grasslands soil bacterial communities. Indeed, the response
curves show that most OTUs can thrive as long as the TOC
content is >2%, and not many sites would appear with TOC
contents <2%, even under the TOCdec scenario. However,
further work is needed to assess the critical level of changes
in TOC affecting the rates of microbial organic matter
mineralization and other metabolic processes that are
commonly associated with fresh organic matter in in situ
experiments [86]. For example, soil depth profiling studies
of stable microbial communities have shown that decreasing
TOC can result in a decrease in bacterial diversity [87].

Altogether, our study emphasised the role of pH in
defining not only the current but also the future abundance
distribution of soil bacterial communities. Thus, the future
of soil bacteria should be strongly determined by changes in
human-related activities such as nutrient deposition [88, 89]
and land use [90] that drive concurring changes in soil pH.
Here, in the absence of established soil change scenarios
developed by soil scientists, we created simple but realistic
scenarios of future edaphic conditions by mimicking the
magnitude of changes observed in the study area over the
last five decades [65] while acknowledging both potential
increase and decrease of soil pH and organic content
[24, 29]. This is similar to the sensitivity approach used in
early regional climate change impact studies [66], but
obviously, future forecasts of soil bacteria communities
would benefit of more advanced soil scenarios. These
should take into consideration that the changes in edaphic
conditions are likely not as constant across space as
assumed here, due to the variance in parent material and the
interplay of drivers [89, 91]. To build such multifaceted
scenarios, in addition to soil science expertise, improved
edaphic maps would be needed [92]. Also, we acknowledge
that other drivers, for example aboveground vegetation
communities [53, 93], microclimate [94], snow [14] and
biotic interactions among bacteria taxa [95], contribute to
define the current and future distributions of bacteria [96].
Assessing the influence of these factors on soil bacteria and
incorporating their future changes along with climate and
soil scenarios would be an important next step for more
realistic understanding and forecasts of future soil bacteria
[97]. Finally, studies that include the functional identity of
bacteria are needed to anticipate the influence of bacterial
community changes on ecosystem functioning, especially
nutrient cycling and carbon emission [5, 98].

SDMs have so far been mainly applied to occurrence data
of plant and animal species under the assumption of capturing
their realized niches (see e.g., Araújo et al. [99] and references
therein). The ability of our models to explain and predict the
abundance distributions of bacterial OTUs in space indicates,

as also explored in Ladau et al. [9] and Delgado-Baquerizo
et al. [57], that individual belowground microorganisms too
have an envelope/niche of environmental tolerances that can
be captured, at least partly, by climatic, topographic and
edaphic factors (ref. [100] and see Smith et al. [101] for a
discussion of the niche concept above and below the species
level). However, applying SDM on DNA-based data required
methodological adaptations, which would benefit from further
developments. Here, we tested some adaptations (i.e., varying
bioinformatics pipelines and modelling approaches) to assess
different procedures and provide insights for future niche
modelling of microorganisms.

First, the similar model performance and projections
between DN and CR datasets demonstrated that both
approaches recovered sets of OTUs with similar environ-
mental responses. However, DN recovered remarkably
more OTUs and the elevation optima of these OTUs were
generally higher than the optima of CR-based genera. This
indicates that high-elevation bacteria tend to be under-
represented in reference databases. Second, the clustering
distance of DN data (here 20, 40, 60) or use of CR genera
did not affect model performance nor predictions. This
stability gives support for niche conservatism across taxo-
nomic levels [102], implying that biogeographical patterns
of soil bacterial communities would persist across taxo-
nomic resolutions [13, 103]. Third, the models incorporat-
ing offset terms to accommodate for varying library sizes
(DN) showed slightly better performance than the models
based on normalized data (DNn). This is likely due to the
higher number of non-zero counts of DN-based OTUs (see
Fig. S2 in Appendix 4) that results in better model fits (see
Figs. S5–10 in Appendix 4). McCarthy et al. [58] also
suggested the use of offset terms with some alternative
approaches. The downside of offset terms, on the other
hand, is that their approximation for projections is not
straightforward and they set a somewhat arbitrary con-
straint. Thus, while the trends in the future forecasts should
remain correct, assessment of absolute changes is condi-
tional to the choice of the offset. All in all, establishing a
standard strategy, based on ecological and statistical foun-
dations, on how to handle relative abundance in SDMs
would be fundamental for their wider use in microbial
ecology. This should also include an assessment of the
effect of likely presence of relic DNA (i.e. remains of dead
bacteria) within the soil samples and other biases innate to
microbiomes, that may bias the interpretations of spatial
patterns and their ecological drivers [104]. Fourth, GAMnb
outperformed GAMp and GBM, indicating that accounting
for overdispersion improves model performance [105].
Further improvement might be achieved from incorporating
interactions among the environmental predictors [106] since
projections of GAMnb and GBM show some difference that
might be due to interaction terms that are considered in
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GBM but not in GAM. Interaction term allows the magni-
tude and direction of the effect of one variable to vary as a
function of another variable. The differences in projections
among the datasets and models might also be related to
algorithms and, for example, their capability to handle zero-
inflated data [107]. Finally, while a ‘species’ is a natural
modelling unit to assess persistence of plant and animal
populations in a region [108], defining a ‘species’ or
‘population’ is more challenging for bacteria [109, 110].
Here, we used OTUs (and genera) under the assumption
that the clusters of similar sequences show distinct
responses to environmental factors [111], but modelling
functional groups or some other grouping of bacteria could
be ecologically more relevant [112, 113]. Further, it remains
to be assessed whether their ecological niches are conserved
in space or time [83, 103], namely, whether the environ-
mental tolerances of bacterial entities persist under changing
conditions resulting in range changes [114, 115], or whether
the adaptive capacity of bacteria could allow them to shift
their environmental tolerance (and thus their niches),
resulting in static distributions [116].

Acknowledgements This project was supported by the Swiss National
Science Foundation (Grant numbers 31003a-1528661 and
315230_184908 to AG).

Funding Open Access funding provided by Université de Lausanne.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Locey KJ, Lennon JT. Scaling laws predict global microbial
diversity. Proc Natl Acad Sci U S A. 2016;113:5970–5.

2. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen
majority. Proc Natl Acad Sci U S A. 1998;95:6578–83.

3. Singh JS, Gupta VK. Soil microbial biomass: a key soil driver in
management of ecosystem functioning. Sci Total Environ.
2018;634:497–500.

4. Bardgett RD, van der Putten WH. Belowground biodiversity and
ecosystem functioning. Nature. 2014;515:505–11.

5. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR,
Baylis M, et al. Scientists’ warning to humanity: microorganisms
and climate change. Nat Rev Microbiol. 2019;17:569–86.

6. Lozupone CA, Knight R. Global patterns in bacterial diversity.
Proc Natl Acad Sci U S A. 2007;104:11436–40.

7. Ettema CH, Wardle DA. Spatial soil ecology. Trends Ecol Evol.
2002;17:177–83.

8. Terrat S, Horrigue W, Dequietd S, Saby NPA, Lelièvre M,
Nowak V, et al. Mapping and predictive variations of soil bac-
terial richness across France. PLoS ONE. 2017;12:e0186766.

9. Ladau J, Shi Y, Jing X, He J-S, Chen L, Lin X, et al. Existing
climate change will lead to pronounced shifts in the diversity of
soil prokaryotes. mSystems. 2018;3:e00167–18.

10. IPBES. Global assessment report on biodiversity and ecosystem
services of the Intergovernmental Science- Policy Platform on
Biodiversity and Ecosystem Services. Bonn, Germany: IPBES
Secretariat; 2019.

11. Guisan A, Broennimann O, Buri A, Cianfrani C, D’Amen M, Di
Cola V, et al. Climate change impacts on mountain biodiversity.
In: Lovejoy TE, Hannah L, editors. Biodiversity and climate
change. Yale, USA: Yale University Press; 2019. p. 221–33.

12. Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T,
Niculita-Hirzel H, et al. Local environmental factors drive
divergent grassland soil bacterial communities in the western
Swiss Alps. Appl Environ Microbiol. 2016;82:6303–16.

13. Karimi B, Terrat S, Dequiedt S, Saby NPA, Horrigue W,
Lelièvre M, et al. Biogeography of soil bacteria and archaea
across France. Sci Adv. 2018;4:eaat1808.

14. King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone
C, Knight R, et al. Biogeography and habitat modelling of high-
alpine bacteria. Nat Commun. 2010;1:53.

15. Fierer N, Jackson RB. The diversity and biogeography of soil
bacterial communities. Proc Natl Acad Sci U S A.
2006;103:626–31.

16. Trumbore SE, Czimczik CI. An uncertain future for soil carbon.
Science. 2008;321:1455–6.

17. Hettelingh JP, Posch M, Slootweg J, Reinds GJ, Spranger T,
Tarrason L. Critical loads and dynamic modelling to
assess European areas at risk of acidification and eutrophication.
In: Brimblecombe P, Hara H, Houle D, Novak M, editors. Acid
rain—deposition to recovery. Dordrecht: Springer; 2007. p.
379–84.

18. IPCC (2014). Climate Change 2014: synthesis report. Con-
tribution of working groups I, II and III to the Fifth assessment
report of the Intergovernmental Panel on Climate Change. Core
Writing Team, Pachauri RK, Meyer LA, editors. Geneva, Swit-
zerland: IPCC. p. 151.

19. Hagedorn F, Gavazov K, Alexander JM. Above- and below-
ground linkages shape responses of mountain vegetation to cli-
mate change. Science. 2019;365:1119–23.

20. Monteith DT, Evans CD. The United Kingdom Acid Waters
Monitoring Network: a review of the first 15 years and intro-
duction to the special issue. Environ Pollut. 2005;137:3–13.

21. Augustin S, Achermann B. Deposition von Luftschadstoffen in
der Schweiz: Entwicklung, aktueller Stand und Bewertung.
Schweizerische Z fur Forstwes. 2012;163:323–30.

22. Blaser P, Zysset M, Zimmermann S, Luster J. Soil acidification
in southern Switzerland between 1987 and 1997: A case study
based on the critical load concept. Environ Sci Technol.
1999;33:2383–9.

23. McGovern ST, Evans CD, Dennis P, Walmsley CA, Turner A,
McDonald MA. Resilience of upland soils to long term envir-
onmental changes. Geoderma. 2013;197-198:36–42.

Predicting spatial patterns of soil bacteria under current and future environmental conditions 2557

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


24. Kirk GJD, Bellamy PH, Lark RM. Changes in soil pH across
England and Wales in response to decreased acid deposition.
Glob Change Biol. 2010;16:3111–9.

25. Kosonen Z, Schnyder E, Hiltbrunner E, Thimonier A, Schmitt
M, Seitler E, et al. Current atmospheric nitrogen deposition still
exceeds critical loads for sensitive, semi-natural ecosystems in
Switzerland. Atmos Environ. 2019;211:214–25.

26. Tipping E, Davies JAC, Henrys PA, Kirk GJD, Lilly A, Dra-
gosits U, et al. Long-term increases in soil carbon due to eco-
system fertilization by atmospheric nitrogen deposition
demonstrated by regional-scale modelling and observations. Sci
Rep. 2017;7:1890.

27. Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R.
Globally rising soil heterotrophic respiration over recent decades.
Nature. 2018;560:80–83.

28. Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW,
Woebken D, et al. Microbial temperature sensitivity and biomass
change explain soil carbon loss with warming. Nat Clim Change.
2018;8:885–9.

29. Kirschbaum MUF. The temperature dependence of soil organic
matter decomposition, and the effect of global warming on soil
organic C storage. Soil Biol Biochem. 1995;27:753–60.

30. Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M,
Buchmann N, et al. Soil warming alters microbial substrate use
in alpine soils. Glob Change Biol. 2014;20:1327–38.

31. Lettens S, Van Orshoven J, Van Wesemael B, Muys B, Perrin D.
Soil organic carbon changes in landscape units of Belgium
between 1960 and 2000 with reference to 1990. Glob Change
Biol. 2005;11:2128–40.

32. Yang Y, Fang J, Smith P, Tang Y, Chen A, Ji C, et al. Changes
in topsoil carbon stock in the Tibetan grasslands between the
1980s and 2004. Glob Change Biol. 2009;15:2723–9.

33. Yang Y, Li P, Ding J, Zhao X, Ma W, Ji C, et al. Increased
topsoil carbon stock across China’s forests. Glob Change Biol.
2014;20:2687–96.

34. Smith P. Soils and climate change. Curr Opin Environ Sustain.
2012;4:539–44.

35. Davidson EA, Janssens IA. Temperature sensitivity of soil car-
bon decomposition and feedbacks to climate change. Nature.
2006;440:165–73.

36. Glenn AR, Dilworth MJ. Soil acidity and the microbial popu-
lation: survival and growth of bacteria in low pH. In: Wright RJ,
Baligar VC, Murrmann RP, editors. Developments in plant and
soil sciences. Dordrecht: Springer; 1991. p. 567–79.

37. Xue P-P, Carrillo Y, Pino V, Minasny B, McBratney AB. Soil
properties drive microbial community structure in a large scale
transect in South Eastern Australia. Sci Rep. 2018;8:11725.

38. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil
microbial community responses to multiple experimental climate
change drivers. Appl Environ Microbiol. 2010;76:999–1007.

39. Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard
KS, et al. Reconstructing the microbial diversity and function of
pre-agricultural tallgrass prairie soils in the United States. Sci-
ence. 2013;342:621–4.

40. Evans SE, Wallenstein MD. Climate change alters ecological
strategies of soil bacteria. Ecol Lett. 2014;17:155–64.

41. Zhang X, Zhang G, Chen Q, Han X. Soil bacterial communities
respond to climate changes in a temperate steppe. PLoS ONE.
2013;8:e78616.

42. Guisan A, Thuiller W, Zimmermann NE. Habitat suitability and
distribution models: with applications in R. Cambridge, UK:
Cambridge University Press; 2017.

43. D’Amen M, Rahbek C, Zimmermann NE, Guisan A. Spatial
predictions at the community level: from current approaches to
future frameworks. Biol Rev Camb Philos Soc. 2017;92:169–87.

44. Guisan A, Rahbek C. SESAM—a new framework integrating
macroecological and species distribution models for predicting
spatio-temporal patterns of species assemblages. J Biogeogr.
2011;38:1433–44.

45. Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat J-P, Guisan
A. Predicting spatial patterns of plant species richness: a com-
parison of direct macroecological and species stacking modelling
approaches. Divers Distrib. 2011;17:1122–31.

46. Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa
M, Guisan A. Are niche-based species distribution models
transferable in space? J Biogeogr. 2006;33:1689–703.

47. Buri A, Grand S, Yashiro E, Adatte T, Spangenberg JE, Pinto‐
Figueroa E, et al. What are the most crucial soil variables for
predicting the distribution of mountain plant species? A com-
prehensive study in the Swiss Alps. J Biogeogr. 2020;47:1143–
53.

48. Bouët M. Climat et météorologie de la Suisse romande. Lau-
sanne: Payot edn; 1985.

49. Zingg B. Modélisation de la réserve hydrique des sols dans les
Alpes vaudoises méridionales. Master thesis. Lausanne, Swit-
zerland: University of Lausanne; 2015.

50. Swisstopo. Geological map of Switzerland. 2019.
51. Hirzel A, Guisan A. Which is the optimal sampling strategy for

habitat suitability modelling. Ecol Model. 2002;157:331–41.
52. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L,

Østerås M, et al. Metagenomic study of the oral microbiota by
Illumina high-throughput sequencing. J Microbiol Methods.
2009;79:266–71.

53. Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T,
Niculita-Hirzel H, et al. Meta-scale mountain grassland obser-
vatories uncover commonalities as well as specific interactions
among plant and non-rhizosphere soil bacterial communities. Sci
Rep. 2018;8:5758.

54. Edgar RC. Updating the 97% identity threshold for 16S ribo-
somal RNA OTUs. Bioinformatics. 2018;34:2371–5.

55. Myers EW, Miller W. Optimal alignments in linear space.
Bioinformatics. 1988;4:11–17.

56. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C,
et al. The SILVA and “All-species Living Tree Project (LTP)”
taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.

57. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-
González A, Eldridge DJ, Bardgett RD, et al. A global atlas of
the dominant bacteria found in soil. Science. 2018;359:320–5.

58. McCarthy DJ, Chen Y, Smyth GK. Differential expression
analysis of multifactor RNA-Seq experiments with respect to
biological variation. Nucleic Acids Res. 2012;40:4288–97.

59. McMurdie PJ, Holmes S. phyloseq: an R package for repro-
ducible interactive analysis and graphics of microbiome census
data. PLoS ONE. 2013;8:e61217.

60. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman
FD, Costello EK, et al. QIIME allows analysis of high-
throughput community sequencing data. Nat Methods.
2010;7:335.

61. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL,
Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. Appl Environ
Microbiol. 2006;72:5069–72.

62. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozu-
pone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA
diversity at a depth of millions of sequences per sample. Proc
Natl Acad Sci U S A. 2011;108:4516–22.

63. Dubuis A, Giovanettina S, Pellissier L, Pottier J, Vittoz P,
Guisan A. Improving the prediction of plant species distribution
and community composition by adding edaphic to topo-climatic
variables. J Veg Sci. 2013;24:593–606.

2558 H. K. Mod et al.



64. Zubler EM, Fischer AM, Liniger MA, Croci-Maspoli M,
Scherrer SC, Appenzeller C. Localized climate change scenarios
of mean temperature and precipitation over Switzerland. Clim
Change. 2014;125:237–52.

65. Buri A. Above- and belowground biogeography: spatial model-
ling of a hidden system. PhD thesis. Lausanne: University of
Lausanne; 2019.

66. Guisan A, Theurillat J-P. Assessing alpine plant vulnerability to
climate change: a modeling perspective. Integr Assess.
2000;1:307–20.

67. Wood SN. Generalized additive models: an introduction with R.
Boca Raton, USA: Chapman and Hall/CRC; 2017.

68. Greenwell B, Boehmke B, Cunningham J, Developers G. gbm:
Generalized boosted regression models, 2.1.5. edn. 2019.

69. Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial
regression: how should we model overdispersed count data?
Ecology. 2007;88:2766–72.

70. Hartig F. DHARMa: residual diagnostics for hierarchical (Multi-
Level/Mixed) regression models. R package, 0.2.4 edn. 2019.

71. Friedman JH. Greedy function approximation: a gradient
boosting machine. Ann Stat. 2001;29:1189–232.

72. Scherrer D, D’Amen M, Fernandes RF, Mateo RG, Guisan A.
How to best threshold and validate stacked species assemblages?
Community optimisation might hold the answer. Methods Ecol
Evol. 2018;9:2155–66.

73. Evans JD. Straightforward statistics for the behavioral sciences.
Pacific Grove, USA: Thomson Brooks/Cole Publishing Co;
1996.

74. Elith J, Ferrier S, Huettmann F, Leathwick J. The evaluation
strip: a new and robust method for plotting predicted responses
from species distribution models. Ecol Model. 2005;186:280–9.

75. Bradie J, Leung B. A quantitative synthesis of the importance of
variables used in MaxEnt species distribution models. J Bio-
geogr. 2017;44:1344–61.

76. Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM,
Kovacs KM, et al. Assessing species vulnerability to climate
change. Nat Clim Change. 2015;5:215.

77. Fierer N, Schimel JP, Holden PA. Influence of drying–rewetting
frequency on soil bacterial community structure. Micro Ecol.
2003;45:63–71.

78. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C,
Caporaso JG, et al. Soil bacterial and fungal communities across
a pH gradient in an arable soil. ISME J. 2010;4:1340.

79. Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-
based assessment of soil pH as a predictor of soil bacterial
community structure at the continental scale. Appl Environ
Microbiol. 2009;75:5111–20.

80. Fierer N, Bradford MA, Jackson RB. Toward an ecological
classification of soil bacteria. Ecology. 2007;88:1354–64.

81. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr.
Mapping the niche space of soil microorganisms using taxonomy
and traits. Ecology. 2012;93:1867–79.

82. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB,
Cornell HV, et al. Niche conservatism as an emerging principle
in ecology and conservation biology. Ecol Lett.
2010;13:1310–24.

83. Pearman PB, Guisan A, Broennimann O, Randin CF. Niche
dynamics in space and time. Trends Ecol Evol. 2008;23:149–58.

84. Bååth E, Anderson TH. Comparison of soil fungal/bacterial
ratios in a pH gradient using physiological and PLFA-based
techniques. Soil Biol Biochem. 2003;35:955–63.

85. Nottingham AT, Baath E, Reischke S, Salinas N, Meir P.
Adaptation of soil microbial growth to temperature: using a
tropical elevation gradient to predict future changes. Glob
Change Biol. 2019;25:827–38.

86. Li L, Xu M, Eyakub Ali M, Zhang W, Duan Y, Li D. Factors
affecting soil microbial biomass and functional diversity with the
application of organic amendments in three contrasting
cropland soils during a field experiment. PLoS ONE. 2018;13:
e0203812.

87. Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper
to find unique microbial communities: the strong effect of depth
on the structure of bacterial and archaeal communities in soil.
Soil Biol Biochem. 2012;50:58–65.

88. Galloway JN. Acid deposition: perspectives in time and space.
Water Air Soil Pollut. 1995;85:15–24.

89. Tian D, Niu S. A global analysis of soil acidification caused by
nitrogen addition. Environ Res Lett. 2015;10:024019.

90. Falkengren-Grerup U, Brink D-Jt, Brunet J. Land use effects on
soil N, P, C and pH persist over 40–80 years of forest growth on
agricultural soils. For Ecol Manage. 2006;225:74–81.

91. Saby NPA, Arrouays D, Antoni V, Lemercier B, Follain S,
Walter C, et al. Changes in soil organic carbon in a
mountainous French region, 1990–2004. Soil Use Manage.
2008;24:254–62.

92. Cianfrani C, Buri A, Verrecchia E, Guisan A. Generalizing soil
properties in geographic space: approaches used and ways for-
ward. PLoS ONE. 2018;13:e0208823.

93. Ren B, Hu Y, Chen B, Zhang Y, Thiele J, Shi R, et al. Soil pH
and plant diversity shape soil bacterial community structure
in the active layer across the latitudinal gradients in
continuous permafrost region of Northeastern China. Sci Rep.
2018;8:5619.

94. Lembrechts JJ, Nijs I, Lenoir J. Incorporating microclimate into
species distribution models. Ecography. 2019;42:1267–79.

95. Schink B. Synergistic interactions in the microbial world.
Antonie Van Leeuwenhoek. 2002;81:257–61.

96. Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K,
Frey SD, et al. Biotic interactions mediate soil microbial feed-
backs to climate change. Proc Natl Acad Sci U S A.
2015;112:7033–8.

97. Schröder B. Challenges of species distribution modeling
belowground. J Plant Nutr Soil Sci. 2008;171:325–37.

98. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber
CL, et al. Cross-biome metagenomic analyses of soil microbial
communities and their functional attributes. Proc Natl Acad Sci
U S A. 2012;109:21390–5.

99. Araújo MB, Anderson RP, Márcia Barbosa A, Beale CM, Dor-
mann CF, Early R, et al. Standards for distribution models in
biodiversity assessments. Sci Adv. 2019;5:eaat4858.

100. Pinto-Figueroa EA, Seddon E, Yashiro E, Buri A, Niculita-
Hirzel H, van der Meer JR, et al. Archaeorhizomycetes spatial
distribution in soils along wide elevational and environmental
gradients reveal co-abundance patterns with other fungal sap-
robes and potential weathering capacities. Front Microbiol.
2019;10:656.

101. Smith AB, Godsoe W, Rodriguez-Sanchez F, Wang HH, Warren
D. Niche estimation above and below the species level. Trends
Ecol Evol. 2019;34:260–73.

102. Hadly EA, Spaeth PA, Li C. Niche conservatism above the
species level. Proc Natl Acad Sci U S A. 2009;106 Suppl
2:19707–14.

103. Peterson AT. Ecological niche conservatism: a time-structured
review of evidence. J Biogeogr. 2011;38:817–27.

104. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS,
Fierer N, et al. is abundant in soil and obscures estimates of soil
microbial diversity. Nat Microbiol. 2016;2:16242.

105. Gardner W, Mulvey EP, Shaw EC. Regression analyses of
counts and rates: Poisson, overdispersed Poisson, and negative
binomial models. Psychol Bull. 1995;118:392–404.

Predicting spatial patterns of soil bacteria under current and future environmental conditions 2559



106. Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC,
Aspinall R, et al. Making better biogeographical predictions of
species’ distributions. J Appl Ecol. 2006;43:386–92.

107. Elith J, Graham CH. Do they? How do they? WHY do they
differ? On finding reasons for differing performances of species
distribution models. Ecography. 2009;32:66–77.

108. Sites JW, Marshall JC. Delimiting species: a Renaissance issue
in systematic biology. Trends Ecol Evol. 2003;18:462–70.

109. Ward DM. A macrobiological perspective on microbial species.
Microbe. 2006;1:269.

110. Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kühl M,
Grossman A. Genomics, environmental genomics and the issue
of microbial species. Heredity. 2008;100:207–19.

111. Vandermeer J. Niche theory. Annu Rev Ecol Syst.
1972;3:107–32.

112. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A,
Ward DM, et al. Identifying the fundamental units of
bacterial diversity: a paradigm shift to incorporate ecology into
bacterial systematics. Proc Natl Acad Sci U S A. 2008;
105:2504–9.

113. Song H-K, Shi Y, Yang T, Chu H, He J-S, Kim H, et al.
Environmental filtering of bacterial functional diversity along an
aridity gradient. Sci Rep. 2019;9:866.

114. Parmesan C, Yohe G. A globally coherent fingerprint of climate
change impacts across natural systems. Nature. 2003;421:37–42.

115. Lenoir J, Svenning J-C. Climate-related range shifts—a global
multidimensional synthesis and new research directions. Eco-
graphy. 2015;38:15–28.

116. Hoffmann AA, Sgrò CM. Climate change and evolutionary
adaptation. Nature. 2011;470:479–85.

2560 H. K. Mod et al.


	Predicting spatial patterns of soil bacteria under current and future environmental conditions
	Abstract
	Introduction
	Material and methods
	Study area
	Sample collection and 16S rRNA gene amplicon sequencing
	Bioinformatic processing
	Environmental data
	Spatial analyses

	Results
	Discussion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




