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Abstract

Location-related evidence recovered from mobile devices is frequently used
both in the investigation stages and the trial stage of criminal case proceed-
ings. Due to societal factors and incomplete understanding of the factors
involved, these traces are often taken as face value and without a proper sep-
aration between the device and the person carrying it. This work proposes
a structured Bayesian approach for the evaluation of these traces consistent
with existing approaches for physical evidence. The approach not only al-
lows for the evaluation of location-related evidence, but also proposes ways
to bridge the Person-Device Gap. In four simulated scenarios, it is shown
that the presented approach can be applied on real data and that a likelihood
ratio (LR) for digital traces can be obtained.

Des preuves liées à l’emplacement, récupérées d’appareils mobiles, sont
fréquemment utilisées dans des procédures pénales. Des causes sociétales et
une mécompréhension des facteurs entrant en jeu conduisent à ce que les
traces soient souvent acceptées telles quelles, sans considération de la sé-
paration entre l’appareil et la personne le portant. Ce travail propose un
approche Bayesienne structuré pour l’évaluation de ces traces. Cette ap-
proche est en ligne avec les approches existantes pour des traces physiques et
permet d’appröcier les incertitudes liées à la localisation et l’écart personne-
appareil. En 4 scénarios, il est demontré que l’approche peut être appliquée
à des données réelles et que des rapports de vraisemblances (LR) peuvent
être obtenus pour des traces numériques.

Scripts used in this work are available at https://github.com/HSpichig/
Thesis.

https://github.com/HSpichig/Thesis
https://github.com/HSpichig/Thesis
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Chapter 1

Introduction

Even in the very connected world we live in, many crimes that are commit-
ted require the perpetrator to be present on the crime scene. This fact is
the basis for many investigative and forensic approaches and manifests itself
in two ways: either by gathering traces of presence on the crime scene, or
by putting a person at another place during the time of interest. In both
of these situations, the aim is to establish locality. The possible existence
of such traces is postulated by the Locard’s Principle of Exchange (Locard,
1920). Due to the interactions between a perpetrator and the surrounding
environment, he or she may leave traces on the scene as well as take elements
away from the scene, the intensity of the interaction being key to the quality
and quantity of traces that are exchanged. This interaction with its envi-
ronment is particularly intense for mobile devices, amplifying the quantity
of traces that may be recovered. A modern mobile device interacts heavily
with its surroundings: sensors measure its orientation, acceleration, time and
location, antennas exchange information with nearby devices and cell towers;
and integrated cameras have replaced handheld cameras for most amateur,
and even some professional, applications. As such, a modern mobile device
knows most moments where it is and, due to very detailed logging, it is also
often possible to reconstruct its movement at a later stage. It is, therefore,
no surprise that data stored on and transmitted by mobile devices has re-
ceived growing attention from investigators and attorneys alike. (Casey and
Turnbull, 2011)

In addition, mobile devices have culturally very much developed as per-
sonalized devices. Although it is technically possible to have more than one
user profile on Android, this feature is disabled by default since version 5.0
(AOSP, 2020). On Apple iOS devices, only a single user profile is permit-
ted. As such, mobile devices distinguish themselves from other devices that
are designed to support multiple user profiles such as personal computers
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and servers. A multitude of technical applications work on the assumption
of "one user one device," such as two factor authentication for personal ac-
counts (Rogers, 2011), targeted advertising (Knowlson, 2003), and device
based traffic detection (Thiagarajan et al., 2009). These applications func-
tioning in general without larger issues indicates that the assumption is suf-
ficiently supported for large scale applications to work acceptably well. Even
though singular counterexamples exist, such as a German artist provoking
artificial "traffic" on Google crowd-sourcing services with a trolley full of mo-
bile devices (Shammas, 2020), the assumption is supposed to be sufficiently
strong that multiple countries based the core concept of COVID-19 tracking
applications on a mobile device being associated with a particular person
(Troncoso et al., 2020; FOPH, 2020).

No formal studies exist whether this assumption remains valid in criminal
investigations. However, it is common practice to call upon practitioners to
exercise caution (FSR, 2020), indicating that a significant part of the forensic
science community considers the distinction between device and person to
be essential. It is unclear to what degree the distinction between device and
person is actively considered in court. The UK Forensic Science Regulator’s
guideline to cell tower evidence specifically addresses issues of device location
or general ownership, without directly discussing the possession at a given
moment (FSR, 2020). Analysis of cases involving mobile device location
evidence revealed a lack of discussion of this person-device distinction, leaving
the assumption that it was not contested (Kuhn, 2018), sometimes enforced
by the circumstances of the case (Circuit Court of Albermarle County, 2015).
In cases where such evidence was rejected or deemed insufficient, it was
done so on other grounds (Swiss Federal Court, 2019; Poser, 2017). Cases
are known where the ownership of a mobile device was contested by the
accused, and respective evidence was presented, including which cell towers
the phones connected to. Both of these cases were, however, on the level
of general ownership and the court’s decision focused on the quality of the
evidence given, not the reasoning itself (EWCA, 2017, 2020). A few cases
are known to the author where it was questioned who was the author of a
message written on a device or using a social media account. In at least one
case, the case was dismissed based on the prosecution not having met the
burden of proof to show general ownership in the account (Superior Court of
Pennsylvania, 2018). To identify the author of a specific message, linguistic
analysis such as stylometry have been used. For example, two independent
analyses claim to have identified the two authors between Q-Anon messages
as Ron Watkins and Paul Furber (Kirkpatrick, 2022).

In this thesis, it is postulated that, due to the aforementioned high inten-
sity sensory properties of mobile devices, it is not only possible to find traces
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supporting the location of the device but also traces that give indications
about the physical identity of the person holding the device at the moment
of interest. Therefore, logically, it should be possible to make inferences
about the location of the physical person at the moment of interest.

To this day, different approaches are applied in crime laboratories and
police forces around the world to address the issue of a person’s location
based on smartphone traces. The following approaches were mentioned to
the author in personal exchanges between 2019 and 2022 and represent the
practice at the moment the exchange took place. It is well possible that these
practices were in the mean time adapted, so no indications are given as to
which services are using these approaches.

• Several services consider their job done once the data is recovered from
the device and a report containing all the data is generated and passed
on to investigators or the court. This approach is highly problematic,
as the investigators and prosecutors treating the case are unlikely to
have the specialised knowledge required to evaluate or question the
recovered traces.

• In multiple services, conclusions are systematically presented as the
location of the device, leaving it to the prosecutor or investigator to
link the device to the person.

• Some services systematically write conclusions as the location of the
person, assuming the person using the device at time t is the general
user of said device. This assumption is made explicit and it is indicated
that information contrary to the assumption may change the conclu-
sion.

• Some services do investigate the ownership of the device, however only
on a general level and not at a specific moment in time. This approach
is, for example, indicated in the forensic science regulator for England
and Wales’ guideline to the presentation of cell tower evidence (FSR,
2020).

With growing literacy of lawyers and judges in the domain of digital
evidence, it should be expected that this «person-device gap» will rightfully
be raised more frequently.

One core aspect of the issue is handling uncertainties linked to digital
traces through evaluation. This is currently not a practice that is widespread.
Of all services talked to, only the NFI indicated conducting evaluation of the
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results on a regular basis, based on a Bayesian approach still under develop-
ment (cf. Bosma (2022)). The Vaud cantonal police (CH) have conducted
such an evaluation once so far (Bassi and Scoundrianos, 2022). Both these
approaches are based on likelihood ratios (LR).

LR approaches have been criticised for use on digital traces, with one
author going as far as to state that «achieving a scientific mechanism for
quantifying [uncertainty in] digital evidence may not actually be feasible due
to the nature of digital evidence» (Horsman (2020), p.1). Whilst not too
often stated in published literature, this manner of thinking about digital
forensic science is widespread among practitioners, considering digital traces
to be fundamentally different from classical traces. In an answer to the article
by Horsman, this position of «digital evidence exceptionalism» (Biedermann
and Kotsoglou, 2020) was strongly questioned, going as far as to question
the use of digital traces if Horsman’s assumption were to be true: «If this
is what (digital) forensic science is or aims at, then it is difficult to see how
it can meaningfully serve the needs of factfinders in the pursuit of justice»
(Biedermann and Kotsoglou (2020), p.272). In this work, it is shown that
Horsman’s assumption is in fact erroneous, by presenting a means to quantify
the uncertainty of selected pieces of digital evidence. By doing that, it is also
shown that digital forensic science has the potential to be of use to decision
makers and that it should not be considered as exceptional in regards to
evaluation.

Additionally, this dissertation provides the following novel contributions:

• The problem is analysed in detail and structured.

• Means to close the Person-Device gap are discussed.

• A Baysian approach to address uncertainties resulting from the Person-
Device gap is presented.

• A Bayesian network for the evaluation of location-related traces on
person-level is proposed, studied and tested.

• The possibility to distinguish between two users on the same device is
demonstrated.

• It is shown that it is possible to quantify uncertainties linked to digital
traces.

• A rudimentary approach for the evaluation of cell tower evidence is
proposed.

• An approach for the evaluation of device localisations is presented.
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• Issues related to the application of this approach in real world cases
are discussed.

In this work, the Person-Device Gap is frequently discussed. To simplify
the discussion of this issue, a taxonomy of propositions is introduced, allowing
to more easily state on what level an opinion is expressed.

Definition 1. The subject-level of a proposition describes the entity at the
center of the action described by the proposition.

The subject level is a hierarchical taxonomy. The levels are stated in
Table 1.1. It is based on the identity-concept presented in (Jacquet-Chiffelle,
2008) and allows to distinctively describe levels that may be encountered
when working with object evidence of any type.

Level Explanation Example
Person The subject is a physical

identity.
P : Person X is responsible for
the hack.

User The subject is a tautological
virtual identity.

P : The user of machine Y is
responsible for the hack.

(«The user of the object /
device»)

Account The subject is a virtual
identity.

P : User account «Z» was used
in the hack.

Object /
Device

The subject is an object /
device.

P : Machine Y was at the ori-
gin of the hack.

Table 1.1: Different subject-levels and their meaning

This thesis is structured as follows: The problem is defined and structured
in the remainder of Chapter 1. Existing literature is discussed in Chapter 2.
Chapter 3 develops and explains the framework used in this work and studies
its behaviour. Chapters 4 through 7 each contain a scenario illustrating the
use of the presented framework and showing its applicability to real world
scenarios:

• A scenario with location-focus on device-level in Chapter 4.

• A scenario focused on the identity of the user in Chapter 5.

• A scenario with location-focus on person-level with direct evidence of
usage in Chapter 6.
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• A scenario with location-focus on person-level with indirect evidence
of usage in Chapter 7.

Finally, a conclusion is reached in Chapter 8

1.1 Motivation and Problem Statement
An object is considered a device, once «virtual components are added to
allow the object to act on both the physical and virtual world» (Casey et al.,
2020b). That definition of a device is used as a basis to define a mobile
device:

Definition 2. A mobile device is a transportable object that can act and
sense both on the physical and virtual world.

As such, mobile devices comprise not only smartphones and tablets, but
also mobile IoT objects of varying forms, such as drones, smartcars or wear-
ables. Due to their heavy interactivity with their environment, such devices
are known to generate large quantities of data (Casey et al., 2020b). Mobile
devices, in turn, are of particular interest, because they generally also create
large quantities of data about their position. The extension to the location of
the user of the device is often insinuated, potentially leading to the common
mistake of assuming that the location of the device is always the same as its
owner. In fact, there are multiple circumstances in which this assertion is
wrong: the device was elsewhere, a different person was carrying the device,
or the device belongs to a different person altogether. The interactivity of
mobile devices with their environment is, however, to such a high degree that
it is clearly conceivable that evidence supporting the link between the device
and the person, and consequently between the person and the device, can be
found on the device. This work aims to establish whether this assumption is
true.

Research Hypothesis 1. It is possible to gain, from a mobile device, for
a given moment in time, relevant traces about where that device was and
who was using it, allowing an expert to express an opinion on a person’s
whereabouts, supported by a structured reasoning process.

Figure 1.1 shows a visualisation of the relations articulated in Research
Hypothesis 1.

These traces are subject to numerous inherent uncertainties and impre-
cisions. Even if issues related to recovery and interpretation of the data are

6



Figure 1.1: Visualisation of Relations Articulated in Research Hypothesis 1

ignored1, there is uncertainty related to the position as well as resulting from
the separation of the device and the user. Current approaches attempting to
resolve this issue rely heavily on what an expert considers to be justifiable
and defensible, without being supported by data. This is not a problem, per
se, but there is widespread consensus that structured approaches supported
by measurable data would be an improvement (Biedermann and Kotsoglou,
2020). Biases in forensic science in general, but with digital traces in par-
ticular, can have a high degree of diversity, carrying an increased risk of
misjudgements that may not even be based on bad scientific foundations,
but simply because the assessment of the strength of evidence was clouded
(Sunde and Dror, 2019). These biases can be mitigated by explicit and
structured assessment of evidence based on measurements. Such approaches
are expected to be supported by the ISO/CD 21043-4 standard on Forensic
Science (Interpretation) currently under development (ISO/TC 272 Forensic
sciences) and may be required by judges or regional standards (e.g. (FSR,
2021) for England and Wales). Indeed, multiple cases exist in which the
reliability of location evidence was considered insufficient and thrown out by
judges (Gavin, 2017; Swiss Federal Court, 2019), where adapted evaluation
could have led to the evidence being helpful for the case. There does not
currently exist a way to structure and combine uncertainties into an over-
arching result in cases where mobile device evidence is used to pinpoint the
location of a person. This work aims to address this issue and provide the
groundwork to resolve it.

1These sources of error should not be ignored, however, this is out of the scope of this
work.
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Research Hypothesis 2. Traces from a mobile device can be evaluated in a
logically consistent manner under a pair of location-focused propositions with
a physical person as a subject.

The overall aim in this work is to evaluate traces under propositions of
the following form:

P1: Person A was at location X at time t.
P2: Person A was at location Y at time t.

There are subtleties linked to these propositions. A detailed understand-
ing of them can help with the understanding of the issues at hand. First,
the propositions only differ in where person A was at time t. Neither the
identity of person A, nor the moment in time is doubted. Second, person A
is a physical person. As stated, the observed location-related trace is only
directly connected to the device. A reconstruction linking the physical per-
son to the location is proposed in this work, allowing to conduct evaluation
on the person-level. Third, the hierarchy following Cook et al. (1998) should
be inquired, as it may be counter-intuitive to some. With classical object
traces, evaluation on a person-level was inherently linked to at least activity-
level propositions, as object traces by themselves did not allow to reach such
a conclusion Cook et al. (1998). As already argued, this is no longer the
case. As neither relevance, a central element of offence-level evaluation, nor
transfer and persistence, central elements of activity-level evaluation, are in-
vestigated here, it is concluded that these propositions are on source-level,
despite talking about the location of the person and not the device. One way
this can be understood is by looking at the element of interest: the location.
As it is aimed to distinguish between two locations, traces inspected are gen-
erated by the environment at those locations, assumed to be distinguishable.
In other words, the question is whether location X or location Y is the source
of the observed trace, and not the person or the device.

Based on this understanding of the propositions2, a structured and formal
approach for evaluation can be established.

1.2 Structuring the Problem
As already stated, the problem can be split up in two steps. As visualised in
Figure 1.1, 1) the device needs to be localised, and 2) the usage of the device
needs to be established at the moment of interest t. This two-step approach

2The present analysis is valid for the overarching pair of propositions. In this work,
the propositions are treated in sub-hypotheses, which may have different classifications.
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is reproduced at a later stage in this work on the level of the likelihood ratio
(LR). The scenario has basically two extreme states. If it is categorically
known that the device was used by person A at time t, the location of the
device is identical to the one of the person and related uncertainties are the
same as well. In this situation, the LR on the person-level is identical to the
LR on the device-level. The second extreme, if it is known that the device
was not used by person A, the location of the device cannot give any relevant
information about the whereabouts of person A and the LR becomes 1. For
all other situations, the person-level LR will be found somewhere on the
spectrum between those two extremes, based on the impact of the evidence of
usage. In other words, the location-related evidence gives a range of possible
person-level LR and the evidence on usage indicates where in this range, the
person-level LR lies exactly. This process is visualised for LogLR in Figure
1.23.

Figure 1.2: Process of moving from a device-level level LogLR to a person-
level LogLR.
First, the location-related evidence gives a range between 0 (signifying irrel-
evant evidence, corresponding to an LR of 1) and the device-level LogLR,
second, the evidence of usage indicates where in this range the overall value
is situated.

In more detail, the problem is structured as a reasoning tree, visualized
in Figure 1.3. Each node of the tree represents its own forensic question,
complete with at least a pair of competing propositions and a non-extensive
list of traces that have the potential to be relevant for the answering of this
particular node. At the end of each node stands an evaluative conclusion

3The process is equivalent for LR. The visualisation with LogLR is chosen for the axis
to be symmetrical.
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for this particular question. Arrows feeding into a node represent evaluative
conclusions reached in earlier nodes.

This reasoning model is intentionally independent of the chosen evaluative
method. Even though this work applies a Bayesian approach using Likelihood
Ratios, the reasoning structure can be used just as well for any other method
cited in Section 2.1. As such, it is still valid in cases where the answer to the
question of one node is categorically known. In this case, all nodes leading
up to this node can be ignored and only the rest of the tree has to be treated.

Figure 1.3: Underlying reasoning structure of the problem.

Preliminary Phase

Can the traces be used for further analysis?
The preliminary stage consists of a technical verification of the traces.

Conclusions on digital evidence may only be drawn when the following three
aspects have been verified:
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Authentication of the Trace: The data of interest has been correctly
recovered from the device and is correctly interpreted by used tools. This
aspect also takes into account issues that may result from the state of the
device at the moment of the creation of the traces such as geo-spoofing or
technical errors. The verification of trace authenticity remains a challenging
issue that is likely to be the topic of many research projects in the following
years. Current approaches favour the correct application of methods and
internal consistency of the traces to affirm a low risk of authentication not
being met. (Kuntze et al., 2012; Arshad et al., 2018)

Authentication of the Timestamp: The entirety of the reasoning within
this work is for a specific moment in time. Consequently, only traces in
temporal proximity to this moment can have relevance for the answering of
the question. Therefore, only traces where the correctness of the timestamps
can either be reasonably assumed or verified can be taken into account for
further reasoning. To the knowledge of the author, the authenticity of the
timestamp can currently only be assessed by a lack of contrary evidence,
comparison with other sources containing traces of the same information as
well as the verification of internal consistency.

Authentication of the Origin of the Traces: As the argument for using
mobile device traces is based on the strong interaction of the device with its
environment, evidence can only be relevant if it is generated by the device
itself. Due to the inter-connectivity of modern mobile devices, it is not
sufficient to have extracted data from a device to ensure it was also created
by it. It is for example known that Apple services send the location of WiFi
access points and cell towers to the device independent of whether the device
was ever connected to them or has even detected their presence (Forensic
Focus, 2011). This data can be found in device extractions and may be
mistaken as location-related evidence. The question of origin is particularly
pronounced for media files, as they are frequently exchanged by users through
messaging apps. Logically, they can only give information about a particular
device, if they have been recorded by it and not transferred to it from another
device. On mobile devices, the location of storage, the file name and the
metadata are generally indicative of this. For images, more in-depth analysis
possibilities such as PRNU exist (Houten et al., 2011; Spichiger, 2017).

These verification steps are required for all digital traces, independent of
the context of their use. Since this stage is of quite advanced complexity, it
would greatly surpass the scope of this work. It is therefore assumed that the
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authenticity and the source can be affirmed for all available traces. Section
3.1 will briefly discuss how non-categorical statements from the preliminary
state would have to be introduced in the Bayesian network, but none of the
cases will work with such situations and only treat traces assumed to be
categorically reliable.4

Identification of the General User

Who is the person generally using the device?
In this stage, the physical person using the device normally is identified.

As mentioned in the introduction, it is assumed by society that this is one
person, even though there is no particular reason that this would always be
the case. Identifying who generally uses a device is common practice for many
Digital Forensic practitioners. Traces generally considered in those cases
contain but are not exclusive to usernames, selfies, interests and activities,
as well as contacts.

Identification of the User at Time t

At time t, was the person using the device the general user?
This stage is somewhat abstract: The aim is to authenticate whether

or not at time t, the same person is using the device as the person that
normally uses the device. This process is to be considered an identification
process in which the link between the «user at time t» and «the general
user of the device», is established. Indeed, in absence of the previous stage,
the conclusion of this stage is only whether the same person as normally is
using the device, without expressing anything about the physical identity of
this person. Traces giving information about this stage are considered to be
found within the activities on the device. It is postulated that a change in
the person using the device would result in a change in the activity traces
recorded by the device. In some cases, the conclusion of this stage may be
that no one was using this device at time t. In this case, the localisation of
the phone becomes irrelevant for the localisation of anyone.

Identification of the Person at Time t

Who is the person using the device at time t?
4This is not be interpreted as a statement, that these traces should be considered this

way. It is the sincere conviction of the author that none of the above should ever be
assumed without having concrete evidence. Consequently, resolving the issue of traces
authentication will likely be one of the most pressing issues of the years to come.
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This stage combines the results of the previous stages (If the general user
is identified and the general user is the one using the device at time t, then
the person using the phone at time t has to be the general user.) but its
conclusion can also by itself be directly supported by traces. There may
for example be media recordings containing biometric information about the
person using the device at the time of the recording.

Localisation of the Device at Time t

Where is the analysed device at time t?
This stage comprises the localisation of the mobile device, as it is clas-

sically done by digital forensic experts. Existing literature relevant for this
stage of reasoning is cited in Section 2.2. At the end of the stage stands an
evaluative statement on the location of the device at time t, independent of
the person in which possession it was at this moment.

Localisation of the Person

Where is the person of interest at time t?
This final stage of the reasoning process is quite simple, as it is just

a logical combination of all previously reached conclusions. If the person of
interest was in possession of the device at the moment of interest, the position
of the person is the same as the one of the device. Otherwise, if the person
was not in possession of the device, the position of the phone is irrelevant to
determine the position of the device.

1.3 Practitioner Considerations
The approach presented in this work aims to be applicable to real world
situations. However, practitioners should consider whether expressing an
opinion on the location of the person of interest is actually adapted for their
case. The following situations may indicate that the presented approach is
not well adapted:

The person is known to have had the device: If, for whatever reason,
the person of interest is known to have been in possession of the device during
the time in question, or this is not contested, the location of the person has
to be the location of the device, including associated uncertainties. In such
situations, the LR on person-level becomes equal to the LR on device-level
(as detailed in (Casey et al., 2020a)), and the entire reasoning about the user
of the device can be left out.
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The person is known to not have had the device: If the person
is known to not have been in possession of the device during the time in
question, information about the device’s location cannot be relevant for the
question of the person’s location. Time spent on analyses in that regard is
better spent otherwise.

High uncertainty about usage: If the observed evidence on the user is
very weak, it may be better to express an LR on the device-level, whilst
clearly stating the limitations of the conclusions. That way, the analysis can
still be of use to the court if they manage to place the device in the hand
of the person of interest. Such a situation was encountered in the scenario
presented in Chapter 7.

The location of the device is clear: If the location of the device is clear,
or the LR on the device-level approaches infinity, the overall LR is likely to
become quite volatile, changing orders of magnitude based on small changes
in the likelihoods of usage. In such a situation, it is recommended to address
the two issues separately and provide LR for both questions.

Situations with large LR on device-level may result from large distances
between the observed location and one of the propositions. This is more likely
to occur if both propositions are far apart. In the past, practitioners have
based their reasoning on the distance between the two locations indicated in
the propositions. This information is not relevant for evaluation and should
not be taken into account; it is the distance of the device from each location
in each proposition that is relevant to the evaluation as demonstrated in this
work.

14



Chapter 2

Existing Work

The three core aspects of this work are evaluation, evidence in relation to
location, and evidence in relation to user identity. Existing work for each
of these aspects is laid out in this chapter. Section 2.1 studies literature
on evaluation as a methodology to quantify uncertainty in forensic evidence.
As there is very little discussion of the evaluation of digital evidence, with
Subsection 2.1.1 focusing on this topic aims to be as exhaustive as possible.
Location-related evidence and existing literature are discussed in Section 2.2.
An overview of literature addressing user identification is given in Section 2.3.

2.1 Evaluation of Forensic Evidence
For many, the most visible aspects of forensic science are the technical ex-
aminations, chemical treatments or, for the layperson almost magical, ap-
plications revealing so far invisible traces. But just as important is a much
later stage, where the found and treated traces are put into context with
the case and the competing propositions in the latter. This phase is called
Evaluation. In classical comparative domains of forensic science, the evalua-
tion is the third stage in the so called ACE-V process, where the meaning of
observed correspondences and differences is assessed (Huber, 1959). A more
general definition of Evaluation is given by the OSAC committee for digital
and multimedia evidence:

Definition 3. Evaluation: Produce a value that can be fed into a decision
process. (Pollitt et al., 2018)

The term «value» from this definition is understood in a broad sense and
does not have to be numerical. Any at least ordinal classification system can
be used as an output of an evaluation process. In the context of forensic sci-
ence, evaluation is often associated with the attribution of a likelihood ratio,
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in short LR. First proposed in (Finkelstein and Fairley, 1970) for identifica-
tion evidence, the concept was published following a series of court cases in
which probabilities were presented incorrectly. Finkelstein and Fairley base
their approach on the theorem for conditional probabilities, attributed to
Reverend Thomas Bayes1 (Bayes and Price, 1763). Bayes’ theorem (Formula
2.1) describes how the probability of an event can be calculated if another
event is known to have taken place.

Pr(P |E) = Pr(E|P )Pr(P )
Pr(E)

(2.1)

Applied to court proceedings, the theorem formalises how the observation
of a piece of evidence (E) influences the belief held into the truth of a propo-
sition (P ). As generally at least two concurring propositions are disputed in
front of a court, the theorem is often represented in its odds form (Formula
2.2), the division of two conditional probabilities.

Pr(P1|E; I)
Pr(P2|E; I)

=
Pr(E|P1; I)

Pr(E|P2; I)
× Pr(P1|I)
Pr(P2|I)

(2.2)

In its odds form, the theorem can be read as a mathematical represen-
tation of the judicial process: On the right, with the prior odds, the proba-
bilities of the presented propositions before presented evidence is taken into
account (Pr(Pn|I)), purely based on the relevant information about the case
(I). Next, the power of the evidence to sway the odds in one direction or the
other is represented through the likelihood ratio (LR). It is the quotient of
the probabilities to observe the traces alternately assuming the propositions
to be true (Pr(E|Pn; I)). In other words, a universe is imagined, in which
the proposition is known to be true as a fact. The probability to observe the
presented findings in this universe is then assigned. Finally, by combining the
two previous terms, the posterior odds on the far left are obtained. They rep-
resent the belief in the propositions after having integrated the information
about the observed evidence and are the quotient of the probabilities that the
respective propositions are true given the observed evidence (Pr(Pn|E; I)).
If multiple pieces of evidence are presented, the process can be applied in a
cyclical manner where the posteriors of the previous step become the priors
for the next one, if the propositions remain the same and the later pieces of
evidence are evaluated conditioned by the evidence evaluated earlier. In a

1The essay was published posthumously by Richard Price who found it amongst Rev.
Bayes’ papers.
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court setting, it is generally considered to be the forensic scientists role to
only talk about the likelihood ratio. The narrow nature of this role is due to
insufficient knowledge about the priors as well as it quite simply not being
the task of the expert to talk about them and often require knowledge out-
side of the experts area of expertise (Thompson et al., 2013). The very same
framework can however also be used to support decisions in an investigative
or pre-analysis phase. In this case, the forensic scientist may indeed be well
placed to address the entirety of the process, including posterior odds, if the
necessary information is available2 (Ryser et al., 2020; Baechler et al., 2020).
To put numerical LR in context, experts have often chosen to present their
results using a verbal scale, generally based on a logarithmic grouping of val-
ues in verbal categories (ENFSI, 2010; Marquis et al., 2016). This concept of
logarithmic quantification can be found in an approach as well, whereas the
logarithm of the LR is presented instead of the LR itself. The multiplica-
tive property of LR then becomes an additive one, which has been argued is
more intuitive to people without a strong background in probability theory
(Pierce, 1877; Aitken et al., 2018). Addressing problems of increasing diffi-
culty, it has become commonplace to use Bayesian networks, or Bayes Nets
for short, to calculate LR. A Bayes Net is a directional, acyclic graph where
variables are represented by nodes and dependencies between the variables
are represented by edges (Taroni et al., 2014). Each node has assigned a ta-
ble of conditional probabilities that can be updated dynamically if states for
some variables become known. Bayes Nets are particularly of interest when
propositions on activity- or crime-level are considered or multiple pieces of
interdependent evidence are observed. Especially with complex problems,
they have the advantage that, in addition to the calculations they do, Bayes
Nets follow in their structure generally the structure of logical reasoning and
can therefore also be used to talk about the influence of a variable on the LR
as a whole (Taroni et al., 2014).

2.1.1 Evaluation of Digital Evidence

For a long time, and in some circles still today, digital evidence has been
considered as purely factual. For example, an expert may state that «the
device was at place X at time t» without taking into account uncertainties
linked to the found data. Other used terminology «the data is consistent
with», whilst technically correct, fails to acknowledge alternate possibilities
and the strength of the evidence in light of them (Bunch, 2014). With dig-

2This is more likely to be the case early in the investigative process, or if the question
addresses purely technical aspects.
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ital evidence becoming more integrated with Forensic Science as a domain
with principles valid for all subdomains, reflections about the presentation
of evidence are starting to catch up with classical Forensic Science domains.

The first known instance of an author explicitly addressing the inherent
uncertainty of digital evidence and attempting to quantify that uncertainty
can be found in (Casey, 2002). The proposed approach, called the C-scale, is
an ordinal scale where each level has a clear description of what requirements
have to be met for a level to be attained with a strong focus on protection
against tampering. This initial C-scale (shown in Table 2.1) had multiple
issues, notably that the description of the levels sometimes stopped addi-
tional evidence from having an impact on the classification level. Also, the
scale was a hybrid between evidence-focused and proposition-focused, which
meant that it was very difficult to assess whether its use was appropriate
or not. The C-scale was reworked in (Casey, 2020) to address these exact
issues. In its new, adapted form, the C-scale (shown in Table 2.2) is purely
focused on evidence and allows for intermediary steps, as such allowing a
more differentiated evaluation of the evidence. The C-scale can be catego-
rized as a proto-Bayesian approach that can be used following a Bayesian
logic, without having to ascribe probabilities (Ryser et al., 2020). As such,
the C-scale, especially with the indicators associated to the different values,
has the potential to serve as an intermediary for practitioners wanting to fol-
low a Bayesian logic but not yet feeling comfortable with the use of numerical
probabilities.

Some attempts were made to resolve issues with digital evidence using
Bayesian Networks. Most of them suffer from fundamental shortcomings
relating to the use and understanding of the Bayesian Approach and frame-
work. Kwan et al. (2008) present a Bayes Net to address the question of
whether a computer seized in a BitTorrent case was the initial seeder for a
pirated file. This work used the Bayes Net to provide posterior probabilities,
not to obtain an LR. Prior probabilities are assumed as uniform, but their
origin is not discussed3. The network also includes «uncertain» states for
some nodes, all evidence was considered to be independent from each other
without justification of the latter, and conditional probabilities within sub-
hypotheses are assigned without justification and in a way that the main
hypothesis could be true, even if all sub-hypotheses were found to be false.
One interesting aspect of the work is that values are assigned based on a
weighted mean from opinions given by experts in the field. A sensitivity
analysis of the same Bayes Net is conducted in Overill et al. (2010) varying

3This would allow to easily obtain an LR from the network if it were to be used in such
a way.
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Certainty
Level

Description/Indicators Commensurate Quali-
fication

C0 Evidence contradicts known facts. Erroneous/Incorrect
C1 Evidence is highly questionable. Highly Uncertain
C2 Only one source of evidence that is not

protected against tampering.
Somewhat Uncertain

C3 The source(s) of evidence are more dif-
ficult to tamper with but there is not
enough evidence to support a firm con-
clusion or there are unexplained incon-
sistencies in the available evidence.

Possible

C4 Evidence is protected against tamper-
ing or multiple, independent sources of
evidence agree but evidence is not pro-
tected against tampering.

Probable

C5 Agreement of evidence from multiple,
independent sources that are protected
against tampering. However small un-
certainties exist (e.g., temporal error,
data loss).

Almost Certain

C6 The evidence is tamper proof and un-
questionable.

Certain

Table 2.1: Initial C-Scale according to Casey (2002).

the probabilities indicated by domain specialists from the lowest indicated
value to the highest and observing the impact of missing evidence and shown
to be relatively robust against these changes (Overill et al., 2010). However,
as the Bayes Net is reused without addressing the flaws in the original de-
sign, there is limited use in their results. In particular, the «uncertain» states
are susceptible to mitigate these changes quite a bit. The same network is
used as an illustrative example in Tse et al. (2012) where a methodology to
construct Bayes Nets is presented (Tse et al., 2012).

In 2012, Overill and Silomon proposed an approach based on a complex-
ity estimation to approximate the likelihood of cybercrimes being committed
using a Trojan horse program. The underlying argument, that more com-
plex operations are less likely to be performed inadvertently, seems pertinent
to some extent. However, the authors fail to provide a rationale for the
persistence of the inverse proportionality between the proposed complexity
measure and the probability of the proposition given the evidence. As with
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C-Value Verbal level Illustrative indicators
C0 Erroneous/Incorrect Evidence contradicts known facts. (Extreme

dissonance of observations in light of the hy-
pothesis)

C1 Extremely weak ev-
idence

Evidence is highly questionable (very strong
dissonance of observations in light of the hy-
pothesis).

C2 Very weak evidence Only one source of evidence that is not diffi-
cult to tamper with.

C3 Weak evidence The source(s) of evidence are more difficult
to tamper with but there is not enough ev-
idence to support a firm conclusion or there
are unexplained inconsistencies (dissonance)
in the observed evidence in light of the hy-
pothesis.

C4 Strong evidence The source(s) of evidence are much more dif-
ficult to tamper with evidence from multiple,
independent sources (strong harmonious ob-
servations in light of the hypothesis).

C5 Very strong evi-
dence

The source(s) of evidence are very much more
difficult to tamper with and evidence from
multiple, independent sources (very strong
harmonious observations in light of the hy-
pothesis). However, small uncertainties exist
(e.g. temporal error, data loss).

C6 Extremely strong
evidence

The evidence is tamper proof (or tamper ev-
ident) and extremely strong harmonious ev-
idence in light of the hypothesis unquestion-
able

Table 2.2: Adapted C-Scale as presented in (Casey et al., 2020a)
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previous publications by the same authors, the paper positions itself on ex-
pressing posterior odds, without discussing the implications of this. The
authors finally propose what they presume to be an "upper bound plausi-
bility" for the Trojan horse defence strategy (Overill and Silomon, 2012).
In Overill et al. (2013) the probability of inadvertently downloading a given
number of child sexual assault materials (CSAM) amongst a larger number
of legal pornography is modeled. In this work the authors only assess the
probability of the evidence under the defence proposition. In addition, a
number of assumptions are made to model the problem as an element selec-
tion problem. In reality, this problem is likely to be more complex and no
evidence is provided to show that the stated assumptions hold up in reality.
An overview of the papers by Overill and Kwan was published in (Overill
and Collie, 2021) without discussing the issues with those papers discussed
above.

An ostensibly functional approach has been proposed by Biedermann and
Vuille in 2016. They analyse the use of evidence by the Swiss Federal Crim-
inal Court in a case of attempted homicide by the use of explosives. In the
case, cell tower evidence was discussed and the authors present a Bayes Net
to assess the findings. That network shows similarities to parts of the net-
work used later in this work. Casey et al. (2020a) have criticised some of the
conclusions reached in (Biedermann and Vuille, 2016). Indeed, in the ruling
the courts states that, «at the moment of the act, no mobile device belonging
to the appellant could be located at the scene»4. This poses a problem as the
network Biedermann and Vuille present is not built to take this possibility
explicitly into account. Their node E, representing the findings has only two
states, the phone connecting on the antenna in question and the phone not
connecting to the antenna in question. For the network to provide a sensible
answer in absence of any observation, the second state should be split up to
take into account the possibility of a connection elsewhere and no connec-
tion at all, as these two cases drastically differ in their evaluation. Overall,
the LR of absence of localising information is likely to be 1 (Casey et al.,
2020a). A more general structured approach for the evaluation of location
related evidence was provided in (Casey et al., 2020a). Their work presents
the evaluation process as part of a decision process independent of the type
of evidence and the chosen way to communicate results. Like this work as
well, (Casey et al., 2020a) is limited to the issue of precision and assumes
the evidence to be recovered and represented properly. In structuring the

4Translated from German. The original sentence is «[...] zum Tatzeitpunkt keine
Verkehrsdaten der Mobilfunkgeräte des Beschwerdeführers am Tatort geortet werden kon-
nten.» (Swiss Federal Criminal Court, 2014)
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issue, they discuss typical propositions encountered in those cases and what
the consequences of those propositions are. A real world case from the Vaud
cantonal police in Switzerland, in which this approach was applied was pre-
sented by Bassi and Scoundrianos (2022). Based on simulations reproducing
what was claimed to have happened by the prosecution and the accused in a
homicide, they expressed an expert opinion in the form of LR. The question
of whether two mobile devices were used by the same person was addressed
by Bosma et al. (2020) and De Bie (2022). Their LR approach is based on
comparing two series of cell tower connections and estimating the probability
of observing the present similarities with the same or two different persons
using the devices respectively (Bosma et al., 2020; De Bie, 2022). The same
group of researchers is also working on a model to evaluate connections to a
given cell tower under a pair of location related propositions. Their model
is based on large quantities of data measured from police patrol cars. Com-
bining data from distance and angle to the cell tower, they present a model
that, once sufficiently complete, may have the potential to provide LR-values
for cell tower evidence without having to conduct measurements in the field
if sufficient knowledge of the terrain and cell tower configuration is available.
This ongoing work was presented in (Bosma, 2022).

Galbraith et al. (2020) propose two approaches to evaluate whether two
sets of geolocation-data obtained through geofencing warrants were created
by the same person. With both likelihood ratios obtained through kernel-
density estimation and a similarity-score based approach, they obtain numer-
ical LR to support a decision whether or not the data should be supposed to
be from the same individual (Galbraith et al., 2020). Their approach is inher-
ently linked to an investigative phase, as the common-source proposition can
then be tested with user data that may be obtained through a warrant. In
their tests, the score based LR yields a higher rate of misleading evidence. As
there is however no calibration of their system, there is a chance that there
may be improved upon that. There is no discussion whether two persons
travelling together may cause an unexpected similarity through this type of
data.

Skepticism has been expressed towards the use of probabilities for eval-
uating digital evidence, mostly because for many cases, it seems to be chal-
lenging to find data supporting the assignment of any probability (Horsman,
2020). That this is a misconception has notably been pointed out by Bieder-
mann and Kotsoglou (2020). Referencing the ENFSI guideline for evaluative
reporting in forensics science (ENFSI, 2010), they indicate the possibility to
draw from experience and training in the absence of relevant databases or
structured evidence (ENFSI, 2010; Biedermann and Kotsoglou, 2020). With
digital and biometrical evidence, the use of automated tools may have to be
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considered in addition as well (Bollé et al., 2020a). The usefulness of the
underlying logic of a likelihood ratio, even in absence of probabilistic models,
was also emphasized in Tart (2020) and Tart et al. (2021) in regards to cell
site analysis. A real world example of expert opinion framed in a Bayesian
manner was presented in Bollé et al. (2020b).

An alternative approach for evaluation was proposed by Horsman in 2020.
His «Digital Evidence Certainty Descriptors» (DECDs, cf. Table 2.3) are
similar to the original C-scale (Casey, 2002) in that they provide an ordinal
scale of levels depending on how strong the expert believes a proposition to
be true Horsman (2020). His descriptors aim to qualify what in a Bayesian
approach would correspond to posterior probabilities. They are not conceived
to compare multiple scenarios against each other and which could signify that
their integration in a logical approach could prove complicated. Additionally,
as the lowest and highest level require absolute certainty, something that
is close to impossible to reach, the scale comes essentially down to a four
level scale where the middle levels are not mutually exclusive. Also, the
scale does not provide a level for situation where observations suggest that
the scenario is not what happened, but where an absolute level of certainty
cannot be reached. As such, the scale does not meet the requirements to
address the issue of uncertainty in an adapted manner and their use is not
recommended. These aspects are extensively discussed in (Biedermann and
Kotsoglou, 2020).

Level Descriptor Significance
1 Conclusive Fact The scenario is known to be true with abso-

lute certainty.
2 Persuasive All observations are "consistent" with the

scenario, however it cannot be categorically
proven.

3 Conceivable No disagreeing observations were made, how-
ever, multiple scenarios remain equally pos-
sible.

4 Insufficient
Information

There is not enough information available to
reach a conclusion.

5 Implausible The scenario cannot be disproved, but none
of the available data suggests it did.

6 Impossible Given the functionality of the observed de-
vice, the proposed scenario is impossible.

Table 2.3: Digital Evidence Certainty Descriptors (DECDs) as presented by
(Horsman, 2020), the signification is paraphrased.
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The OSAC framework postulates an entire range of possibilities for eval-
uative approaches. To the knowledge of the author, aside from the updated
C-Scale (Casey, 2020) and the use of LR in combination with verbal scales
(Casey et al., 2020a; Marquis et al., 2016), none of the proposed approaches
have actually gained traction within the research community. To this day,
examples where digital forensic results are properly evaluated are very rare.
Instead, results are presented as factual, despite ample evidence that this
should not be done.

2.2 Location-Related Digital Evidence
Definition 4. A Location-Related Digital Trace is data generated by
the operation of a mobile device as a function of its geographical location.
(Casey et al., 2020a)

In this work, it is proposed to further separate Location-Related Digital
Evidence into Localisations and Location-Related Features, as these cate-
gories have a distinct behaviour regarding how they are evaluated. This
separation is done to raise awareness of the fundamental difference regarding
the information carried by those traces.

2.2.1 Localisation

Definition 5. A Localisation is a location-related digital trace that results
from a process attempting to determine the geographical location of the mobile
device.

Examples of localisation contain results from GPS, A-GPS or cell tower-
and WiFi-triangulation. A localisation can be visualised through a coordi-
nate (e.g. longitude and latitude) and has an associated accuracy. Conse-
quently, it is important to consider accuracy, which can vary highly depending
on the technology used. Table 2.4 gives an overview of accuracies of the most
common localisation technologies.

Instead of looking at individual technologies, other researchers have looked
at precision of localisation as a whole. Their studies and reported average
precisions are presented in Table 2.5. In Rodriguez et al. (2018), the accu-
racy of Google timeline entries, the locations stored by Google based on the
information it receives from an Android device linked to a Google account,
were tested. The authors report an almost 50% rate of locations outside the
indicated uncertainty radius for any localisation. (Rodriguez et al., 2018)
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Technology Accuracy Source
GPS 5m van Diggelen and Enge (2015)
WiFi (Signal Strength) 0.4m-40m Kotaru et al. (2015)
WiFi (Fingerprinting) 5m-40m Maghdid et al. (2016)
BLE 1m-10m Faragher and Harle (2014)

Table 2.4: Accuracy of common localisation technologies. Omitted are Inertia
sensors as no study on their accuracy was found.

Study Sample size Device Type Precision
Syed et al. (2013) 5 Selected 7m-17m
PlaceIQ (2016) 150 No restrictions 30m
Merry and Bettinger (2019) 1 iPhone 6 7m-13m

Table 2.5: Reported precision in studies looking at localisation process in
mobile devices as a whole.

It is important to note that the error on a localisation cannot always be
simply modeled as a random error around the true location of the device.
Systematic error may be introduced through effects such as shadowing and
mirroring, where the direct view of a satellite is obstructed, but a reflective
surface allows the device to communicate with the satellite anyway. As this
reflected beam takes an indirect way to the device, its time of travel is longer
than would be expected based purely on the location. This can introduce
uncertainties, especially in urban regions where such topology is frequent
(Kos et al., 2010). Merry and Bettinger (2019) have shown this effect in an
extensive study with an iPhone 6 comprising in total 955 individual mea-
surements to study the influence on accuracy of different parameters. Their
results notably show a directional bias on some of the survey sites (Merry
and Bettinger, 2019).

Errors in both the storing and the interpretation process of the data
can lead to erroneous data. The most famous example of this is likely the
so called «null-island», a non-existing place off the coast of Africa located
at the origin of the global coordinate system. «Null-island» tends to be
populated by localisations as a consequence of a tool interpreting or storing
the absence of data (a NULL-Value) as the value 0, causing a localisation
at the coordinates at 0,0 instead of no localisation at all (St. Onge, 2016).
Other known effects on localisation can result from synchronisation delays
or tampering with the internal clock. Through intentional manipulation, the
localisation process can be completely bypassed and any location can be given
to the device. This process called geo-spoofing is known to have been used by
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players of augmented reality games such as Pokemon Go (Harber-Lamond,
2020). GPS relying on exchange of the device with the satellites, it is possible
to induce external spoofing by overpowering the signal sent by the satellites
by emitting a stronger signal in proximity (Eichelberger et al., 2020). It has
been reported, that the Russian government may be using active geo-spoofing
in order to stop Drone attacks on their president (Burgess, 2019).

2.2.2 Location-Related Feature

Definition 6. A Location-Related Feature is a location-related digital
trace that results as a by-product from a process whose primary function is
not to determine the geographical location of the mobile device.

As such, location-related features are all types of location related evidence
that are not localisations. Examples of location-related features are frequent.
They contain network connections, stored LAC in SIM cards, or multimedia
content. Location-related features do not position the phone, but put the
phone in an area with particular characteristics, for example, the area from
which the device can connect to a certain cell tower. Consequently, this
information can and should not be represented through coordinates with a
related accuracy. Indeed the information "was within this area" cannot have
an accuracy assigned.

Probably the most frequent type of location-related features are connec-
tions to cell towers. Even before mobile devices systematically recorded con-
nections with them, they were used as evidence in court, as the information
through which cell tower a call or SMS was routed is available to the phone
service provider. These call data records, or CDR for short, indicate the
location of said cell tower, giving evidence that the device was in the area
in which this particular cell tower is accessible. Whilst in theory, the closest
cell tower is expected to be the one to which a device connects, reality is
much more complex. Especially in landscapes with an expansive and unin-
terrupted view, such as in close proximity to lakes, mobile devices are known
to sometimes connect to far away cell towers. Measurements must therefore
be made in the field using appropriate equipment to identify what towers
serve a given location Tart et al. (2019); Jovanovic and Cummings (2022).
Tart et al. (2012) have conducted a series of experiments where they have
shown that obtaining complete data of serving cell towers is hard to obtain.
In a series of measurements both with spot samples and location surveys,
it is possible to miss serving cells for a given location. In their experiment,
only area survey measurements in a 300m radius have reliably managed to
detect all serving sites for the location they surveyed, however also picking
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up a series of neighbouring cells as serving as well (Tart et al., 2012). A 2021
study by the same authors looked at whether these measurement devices are
able to detect cells to which a series of controlled devices connected to. De-
pending on the measurement approach and the network provider, between
78% and 100% of cells connected to were detected (Tart et al., 2021). A de-
veloping question regarding cell site analysis is how to evaluate the recorded
measurements when both proposed sites are served by the observed cell, as
was the case in (Circuit Court of Albermarle County, 2015). The use of
Bayesian logic is advocated in several publications (Tart et al., 2019; Tart,
2020; Tart et al., 2021; Casey et al., 2020a). So far, no full statistical model
has been published, although first results from models in development have
been presented (Bosma, 2022).

A very similar functionality as with cell towers may be applied to WiFi
access points. Two main differences exist: First, the WiFi having a lower
range, the area within which it is possible to connect to a WiFi access point
is smaller, meaning that a lower uncertainty about the whereabouts of a
device exists. Second, whilst cell tower infrastructure is generally owned
and maintained by a limited number of enterprises that detain connection
information in a centralised manner, WiFi infrastructure is often owned by
a wide range of actors, from individuals to restaurants, enterprises or public
organisations. Consequently, in addition to it being more difficult to obtain
information from the network side, there is also generally no official register
of the sites where the access points are located. Open source registers based
on crowd sourced measurements exist, but are often incomplete and not
particularly up to date. As with public cell tower databases, they do not
show the effective site of the tower, but an estimated location based on
measurements (Fu et al., 2012; Amundsen and Ovens, 2017).

Multimedia has for a long time been used as a matter of location identifi-
cation. The use of visual media as a matter to show the presence of a person
at a given place is frequent, both through the use of surveillance cameras or
pictures taken on mobile devices, both by bystanders and persons involved in
the matter. To the knowledge of the author, no scientific publication exists
on this topic. A likely reason for this is that the location of the pictures is
rarely contested and it would in many cases likely be possible to rule out
most presented alternative locations. This approach has, however, gained
traction in open source communities where potential locations are rarely
known at the beginning or inaccessible to the investigator. Such approaches
have been made possible by the surge of social media and the wide avail-
ability of open source geo-located information. Two prominent initiatives
exploiting available online imagery to localise events are presented here for
illustrative purpose. First, the "Trace an object"-initiative by Europol where
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the public is asked to recognize an object, building or landscape outcropped
from child abuse imagery profits from the internet by showing the images
to a wide public. The underlying idea is that the localised availability of
some objects allows to restrict the potential area in which the video was shot
and therefore allows to be more specific in the search for potential suspects
(EuroPol, 2017). Second, the open source initiative Bellingcat has used the
wide availability of satellite images and verified localised imagery to localise
videos and images from contested origin. Amongst other, they used build-
ings to localise an execution (Fiorella, 2020), followed Venezuelan politicians
through Europe using social media posts and landscape imagery (Belling-
cat Investigation Team, 2017) and localised ISIS training camps (Bellingcat
Investigation Team, 2014). All without having ever been on site (Higgins,
2014).

As humans rely heavily on visuals, the use of location related features in
audio recordings may be less intuitive to many. Nevertheless, such an ap-
proach is prevalent in popular media, for example in an episode of the crime
series «NCIS» (Libman, 2006), or the third season of supernatural horror se-
ries «Stranger Things» (Levy, 2019). In reality, acoustic environment identifi-
cation (AEI), started developing around 1980 in relation to forensic analysis
of magnetic band recordings. Whilst the appearance of digital recordings
initially complicated things due to low quality and compression, the rise of
personalised mobile devices also made way to audio recordings being frequent
traces found on mobile devices. Modern techniques in AEI primarily follow
two paths: The first approach is based on the influence of the surroundings
on the sounds recorded. In this approach, the surroundings themselves do
not produce a sound, but reflect and change sound produced within them.
Statistical analysis of reverberation has shown to provide good results for dis-
tinguishing small spaces, large spaces and outside recordings (Malik, 2013;
Patil et al., 2019). Whilst this approach can be useful to exclude or categorize
locations, it may only have limited use in the identification of a specific lo-
cation. The second approach is based on elements in the surroundings of the
recording device actively producing sounds. These often chaotic sounds can
be modeled as a dynamic probabilistic process, which could be characteristic
of a particular location. So far, such approaches have only been used to de-
tect manipulation of audio (Ikram and Malik, 2010). Combined approaches
creating a feature vector composed of both background noise and reverbera-
tion characteristics have been proposed and shown to be able to distinguish
between locations with reasonable error rates in their respective experimental
setting (Zhao and Malik, 2012, 2013; Moore et al., 2013). Whilst a poten-
tially promising approach, AEI is to be considered a developing branch of
digital audio forensics (Zakariah et al., 2018).
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In some cases, location-related features may contain sufficient information
so that further analysis can provide a result that has the same characteristics
as a localisation. This has been done by experts to reconstruct the position
of an object based on image, for example an unmarked grave based on the
images taken on the day of the funeral 30 years prior to the exhumation
(Pless et al., 2013). It is important to note that this analysis process does
not change the nature of the traces it is based on. Similarly, the result of
this analysis is not a trace, but a reconstruction based on the traces.

2.3 User Identification
Identifying the user of a device is a core challenge of system security. Inspired
by classifications of authentication factors for access control (Dasgupta et al.,
2017; Casey and Jaquet-Chiffelle, 2017), traces of identity on a mobile device
can be classified in the following categories:

• Something the user is

• Something the user does

• Something the user has

• Something the user knows

• Somewhere the user is

Something the user is: Mobile devices contain user names, linked ac-
counts, associated email-addresses and so on that may be close to the name
or known nickname of someone (Casey and Turnbull, 2011). Stored contacts
may give information about the persons relation, as for example the contact
stored as «Mom» may actually be the persons mothers phone number.

Traces of physical characteristics can often be found in media record-
ings found on the device. Many characteristics that can be observed within
images of the device’s user are the subject matter of forensic disciplines pre-
dating mobile devices. Mentioned in literature are notably faces, finger- and
palm-marks (or in the case of phone pictures, visible ridge skin patterns),
ears, irises, scars, tattoos, as well as vein- and knuckle patterns. Whilst
analysis and comparison is in many cases still based on manual compar-
ison by an expert, automated systems for comparison are used in several
domains (Champod and Tistarelli, 2017). Additionally, devices have started
to incorporate physical biometry as active unlocking mechanisms and both
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fingerprint detectors and facial recognition software are common features of
modern mobile devices (Bhagavatula et al., 2015).

Something the user does: How a user interacts with his device can be
quite characteristic and allow for identification. The domain occupying itself
with just that is called Behavioural Biometrics. Behavioural approaches of
biometry can be classified in five categories based on the type of informa-
tion that is collected about the individual to be identified (Yampolskiy and
Govindaraju, 2008). Description of those categories and examples can be
found in Table 2.6. It is important to note, that a specific technique may be
part of multiple categories.

Category Description Examples
Authorship Identification based on the

characteristics of a piece of
text, code or art created by the
individual

Vocabulary, punctuation,
painting style, coding style

Direct
Human-
Computer
interaction
(HCI)

Identification based on direct
interaction with a digital de-
vice. May be software- or in-
put device-based.

Keyboard & mouse dynam-
ics (input device), com-
mand line lexicon (software)

Indirect
HCI

Identification based on traces
resulting from user interaction.

Audit logs, network traffic,
system calls

Motor-
Skills

Identification based on muscle
movements

Walking pattern, vocal
recognition, lip movement

Purely Be-
havioural

Identification based on be-
haviour not directly concen-
trating on measurements of
body parts.

Calling behaviour, driving
style, credit card usage

Table 2.6: Categories of behavioural biometric approaches according to
(Yampolskiy and Govindaraju, 2008)

Something the user has: Many mobile devices contain SIM-cards, that,
in many countries, may only be purchased with identification (Casey and
Turnbull, 2011). Additionally, as with physical biometry, objects, such as
clothing, the user possesses may be seen in imagery found on the device,
and it may be possible to uniquely identify those objects (Jaha and Nixon,
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2016). As this type of identification generates an additional indirection for
identification, it is not considered in this work.

Something the user knows: Something the user knows may be the PIN,
password or pattern used to unlock the phone. Similarly, if the user uses the
device to access a password protected service, types in a phone number or
makes a note of something only a limited number of people know, this may
allow some degree of identification.

Somewhere the user is: Places where a person frequently goes, such as his
or her home address, place of work or preferred restaurant, pub or cinema
may be found on a device (Casey and Turnbull, 2011) and allow to identify
a person. Several authors have been interested in using location as a means
of identifying the user of a device or account as the person using another
device / account for which the user is known (Galbraith et al., 2020; Bosma
et al., 2020; De Bie, 2022). As this work is interested in location-focused
propositions, this category of identity-related traces is not further considered,
as it may be cause for inadvertent co-dependence of traces.
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Chapter 3

Mathematical Framework

As described in Chapter 1, at the core of this work is a mathematical frame-
work for combining uncertainties from different phases in the reasoning pro-
cess to produce an overall LR on the position of the person of interest. This
chapter is structured as follows: The Bayesian network used as a basis for the
framework is constructed and explained in Section 3.1. Then in Section 3.2
it is demonstrated mathematically that the Bayes Net behaves as expected
in extreme cases. Finally, Section 3.3 shows the influence of variables that
cannot be easily informed by external parameters on the final result.

3.1 Creation of the Bayesian Framework
A Bayesian Network is created to allow for a mathematical combination of
the results. The network is structured in a way that contains a propositions-
node for each step explained in Section 1.2 except the preliminary phase. As
noted there, this authentication phase will be considered to have already been
completed with an affirmative conclusion for each question and each piece of
evidence. Consequentially, no nodes for it appears in the Bayes Net1. The
network is constructed from the proposition nodes outwards, adding evidence,
and supplementary nodes to evaluate this evidence, where possible. Nodes
deriving from one proposition node should be only interdependent with nodes
deriving from the same proposition node. That way, the model becomes
independent of the type of evidence used for reasoning. The scenarios studied
and presented in this work are chosen in a way to ensure this independence.
Whether it holds true for other cases should be reconsidered for each pairing

1If this assumption were not made, the Bayes Net would have to be configured in a way
that the evidence becomes irrelevant if a piece of evidence fails one of the three preliminary
tests.
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of evidence.
The general structure of the model is shown without any evidence-nodes

in Figure 3.1. This is an extension of the model presented in (Biedermann
and Vuille, 2016) without the H node that denotes whether the accused is
the perpetrator or not. The P node of Biedermann and Vuille’s network is
represented as the node LocP and the node M as LocD. E is generalized to
be any piece of evidence relating to the location of the device and shown in
Figure 3.2 as E1. The potential states of the respective nodes are extended
to take into account a higher variability of scenarios. All propositions are
shown in Table 3.1. Depending on the case at hand, it is likely that some
states are ruled out by the parties. Under such circumstances, the excluded
states can either be removed from the network or their probability can be
set to zero. Due to the restriction of this work, the nodes about locality are
restricted to two alternatives.

LocD

LocP

UseU

UseP

User

Figure 3.1: Bayesian Network containing the Proposition-Nodes of the phases
cited in the previous section. The possible propositions are listed in Table
3.1

The Propositions of the node «LocP» are the ones in which the expert is
interested in for the scope of the expertise. The nodes «UseU» and «LocD»,
as well as some states of «UseP», are in large part the result of logical com-
bination of prior probabilities. The probability table for «UseP» is shown
in Table 3.2. If no one is using the device in general (P3 is true in node
«User»), then no one is using the device at time t either (P3 is true in node
«UseP» as well). The other probabilities are not defined as such, but it is to
be expected that α is larger than β and δ is larger than γ, as the probability
of someone being the user at a given moment should be increased by the fact
that this person is the general user of the device. The influence of the values
α, β, γ and δ is studied in Section 3.3.

The probability table for node «UseU» is shown in Table 3.3. For most
of the fields, 1 and 0 values can be inserted through logical comparison.
Whenever either «UseP» or «User» is in state 3, corresponding to to «no
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Node Propositions / Node States

User
User1 : Person A is the general user of the device.
User2 : Someone else is the general user of the device.
User3 : No one is using the device.

UseU
UseU1 : The general user of the device is the user at time t.
UseU2 : At time t, there is another user than the general user.
UseU3 : No one is using the device at time t.

UseP
UseP1 : Person A is using the device at time t.
UseP2 : Someone else is using the device at time t.
UseP3 : No one is using the device at time t.

LocD LocD1 : The device was located at location X at time t.
LocD2 : The device was located at location Y at time t.

LocP LocP1 : The person was located at location X at time t.
LocP2 : The person was located at location Y at time t.

Table 3.1: States of all nodes in Figure 3.1

User P1 P2 P3

UseP
P1 α γ 0
P2 β δ 0
P3 1− α− β 1− γ − δ 1

Table 3.2: Probability table of node UseP.

one using the devices», «UseU» also takes on state 3, also representative
of no one using the device. If A is the general user of the device (User1)
and is also using the device at time t (UseP1), then the general user is the
one using the device at time t (UseU1). And if the state of «User» and
«UseP» designate a different person currently holding the device and being
the general user, the state of «UseU» will always be UseU2, signifying a
different person than the general user is currently using the device. Only two
fields contain a value different from 1 or 0. Indeed, the probability of the
general user using the device if the general user is not Person A and someone
different from Person A is currently using the device, is not evident. The
influence of θ will be studied in Section 3.3, although, given the removed
position of the «UseU»-node, the influence of θ is expected to be minor.

The probability table for «LocD» is shown in Table 3.4. Here, the node
is purely logical because if the state of «UseP» is P1, in other words, if the
Person A is using the device at time t, the person location is equal to the
device location. Indeed, if any other person is using the device, or if no one is
using it, the position of the device cannot actually be relevant to determine
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UseP P1 P2 P3

User P1 P2 P3 P1 P2 P3 P1 P2 P3

UseU
P1 1 0 0 0 θ 0 0 0 0
P2 0 1 0 1 1− θ 0 0 0 0
P3 0 0 1 0 0 1 1 1 1

Table 3.3: Probability table for node UseU.

any information about the position of the person. Consequently, the table is
filled with equal probabilities of 1/2 for all states in the remaining cases.

UseP P1 P2 P3

LocP P1 P2 P1 P2 P1 P2

LocD P1 1 0 1/2
1/2

1/2
1/2

P2 0 1 1/2
1/2

1/2
1/2

Table 3.4: Probability table for node LocD

For each node where direct evidence exists, nodes are added for the ev-
idence. These nodes are derived from the propositions, as the evidence ob-
served is a consequence of the action that took place. Figure 3.2 shows the
network with added evidence nodes for all propositions where it is consid-
ered that direct evidence is possible. The formula for the LR of this Bayes
Net is provided in Annex A. In the given example, the nodes represent the
totality of evidence observed in relation to the respective proposition and
are considered to be independent from each other. Whether or not this as-
sumption is justified will depend on the considered evidence and should be
verified in each case individually. Case examples in this work will be chosen
in a way that the assumption can be reasonably justified, as co-dependence
of evidence would render the problem exponentially more complex. Figure
3.2 considers evidence nodes as black boxes. The expert has no knowledge
about the internal workings that influences the outcome of the evidence. The
probability is purely derived from experiments where the situation was sim-
ulated and then the outcome was observed. If knowledge about the inner
workings of the process is available, the network can be adapted respectively.
Generally, studies that provide data for systems where the internal workings
are easier to conduct and, therefore, are preferable to systems where this is
not the case.

35



E3 E4 E1

LocD

LocP

UseUUser

E2
UseP

Figure 3.2: Bayesian Network containing the Proposition-Nodes and
Evidence-Nodes.

3.2 Demonstration of Expected Behaviour in
Extreme Cases

The Bayes Net constructed above has some extreme cases presented in Sec-
tion 1.3 where we know the expected behaviour. Basically, if some infor-
mation is categorically known, we can input them into the Bayes Net and
see whether the network behaves as expected. In the following, formulaic
demonstrations are conducted to show the following statements are true:

1. If Person A is known to be in the possession of the device at time t,
the overall LR becomes equal to the LR at device level.

2. If Person A is known to not be in possession of the device at time t,
the overall LR becomes 1.

3. If no person has the device at time t, the overall LR becomes 1.

This section shows fundamental validity of the framework: In cases where
we know how the network should behave, we know that there is no funda-
mental flaw with the network.

3.2.1 Notation

The notation used in this work is as follows:
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An designates the state n of node A, e.g. LocP1 indicates state
1 in node LocP .

En designates the observation n.
Pr(A) designates the probability of A.
Pr(A | B) designates the probability of A given that B is known to

be true.

3.2.2 Person A is known to be in possession of the de-
vice at time t

In the case where it is categorically known that Person A was in possession
of the device at time t, the location of the device becomes automatically the
location of the person. Following the same logic, uncertainties regarding the
location of the device must be the same for the location of the person. In
other words, the overall LR (on person-level), written as follows :

(3.1)LR =
Pr(E1, E2, E3, E4 | LocP1)

Pr(E1, E2, E3, E4 | LocP2)

is equal to the LR at device level, written as :

(3.2)LR =
Pr(E1, E2, E3, E4 | LocD1)

Pr(E1, E2, E3, E4 | LocD2)

It is shown in this section that this is indeed the case. To do so, a property
of Bayes Nets is used called "screen off"-effect. This property states, that
if the state of a node is known, the state of this nodes parent-node will not
have any further influence on child-nodes of this node, as long as there are no
other connections between the parent-nodes and the child-node (Taroni and
Aitken, 2006). In the here specified situation, the state of the node UseP is
known, causing a screen-off effect between the identity-focused nodes on the
left of the network and the location-focused nodes on the right. To obtain a
formula for the LR in a Bayes Net where the state of node UseP is known,
the identity-focused nodes as well as any evidence nodes declined from UseP
loose their relevance. This leaves the Bayes Net shown in Figure 3.3.

As can be seen, all evidence-nodes but E1 have been removed. In the
following, the formula for this reduced Bayes Net is developed. This will be
done for a unfixed state of UseP, so that the formula can be reused at a later
stage.

(3.3)LR =
Pr(E1 | LocP1)

Pr(E1 | LocP2)

To be able to properly represent the formulas, numerator and denomina-
tor will initially be treated separately.
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E1

LocD

LocPUseP

Figure 3.3: Reduced Bayesian Network for the case where the possession of
the device is known.

Numerator: The numerator is equal to:

(3.4)Pr(E1 | LocD1;LocP1) · Pr(LocD1 | LocP1)
+ Pr(E1 | LocD2;LocP1) · Pr(LocD2 | LocP1)

Given that the E1-node has only LocD as a parent node, as a consequence
of the screen-off effect, if a probability for E1 is conditioned by a LocD-state,
all other conditions become irrelevant and can be removed.
Pr(E1 | LocD1) · Pr(LocD1 | LocP1) + Pr(E1 | LocD2) · Pr(LocD2 | LocP1)

(3.5)

Including the UseP node

(3.6)

Pr(E1 | LocD1) · [Pr(LocD1 | LocP1;UseP1)
· Pr(UseP1) + Pr(LocD1 | LocP1;UseP2) · Pr(UseP2)
+ Pr(LocD1 | LocP1;UseP3) · Pr(UseP3)]
+ Pr(E1 | LocD2) · [Pr(LocD2 | LocP1;UseP1)
· Pr(UseP1) + Pr(LocD2 | LocP1;UseP2) · Pr(UseP2)
+ Pr(LocD2 | LocP1;UseP3) · Pr(UseP3)]

This expression now only contains values that are in the probability tables
of the Bayes Nets nodes. By substituting with the values from the LocD-node
(cf. Table 3.4), the expression becomes:

(3.7)
Pr(E1 |LocD1) · [1 ·Pr(UseP1)+1/2 ·Pr(UseP2)+1/2 ·Pr(UseP3)]
+ Pr(E1 | LocD2)
· [0 · Pr(UseP1) + 1/2 · Pr(UseP2) + 1/2 · Pr(UseP3)]
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which is equal to

(3.8)Pr(E1 | LocD1) · [Pr(UseP1) + 1/2Pr(UseP2) + 1/2Pr(UseP3)]
+ Pr(E1 | LocD2) · [1/2Pr(UseP2) + 1/2Pr(UseP3)]

If the device is known to be in possession of Person A at time t, then
Pr(UseP1) = 1, Pr(UseP2) = 0 and Pr(UseP3) = 0. The numerator there-
fore becomes:

(3.9)Pr(E1 | LocD1) · [1 + 1/2 · 0 + 1/2 · 0] + Pr(E1 | LocD2) · [1/2 · 0 + 1/2 · 0]

which reduces to
(3.10)Pr(E1 | LocD1)

Denominator: The same reasoning is followed as with the numerator.
The denominator is equal to :

Pr(E1 | LocD1) · Pr(LocD1 | LocP2) + Pr(E1 | LocD2) · Pr(LocD2 | LocP2)
(3.11)

Inluding UseP :

(3.12)

Pr(E1 | LocD1) · [Pr(LocD1 | LocP2;UseP1)
· Pr(UseP1) + Pr(LocD1 | LocP2;UseP2) · Pr(UseP2)
+ Pr(LocD1 | LocP2;UseP3) · Pr(UseP3)]
+ Pr(E1 | LocD2) · [Pr(LocD2 | LocP2;UseP1)
· Pr(UseP1) + Pr(LocD2 | LocP2;UseP2) · Pr(UseP2)
+ Pr(LocD2 | LocP2;UseP3) · Pr(UseP3)]

Substituting from Table 3.4:

(3.13)
Pr(E1 |LocD1)·[0·Pr(UseP1)+1/2·Pr(UseP2)+1/2·Pr(UseP3)]
+ Pr(E1 | LocD2)
· [1 · Pr(UseP1) + 1/2 · Pr(UseP2) + 1/2 · Pr(UseP3)]

which is equal to

(3.14)Pr(E1 | LocD1) · [1/2Pr(UseP2) + 1/2Pr(UseP3)]
+Pr(E1 | LocD2) · [Pr(UseP1) + 1/2Pr(UseP2) + 1/2Pr(UseP3)]

Knowing that the device was held by person A at time t:

(3.15)Pr(E1 | LocD1) · [1/2 · 0+ 1/2 · 0] +Pr(E1 | LocD2) · [1 + 1/2 · 0+ 1/2 · 0]

which reduces to
(3.16)Pr(E1 | LocD2)
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Combining into a fraction: Bringing together numerator and denomi-
nator, the LR becomes:

(3.17)LR =
Pr(E1 | LocD1)

Pr(E1 | LocD2)

Which is equal to the LR at device-level. Q.E.D.

3.2.3 Person A is known to not be in possession of the
device at time t

If there is categorical knowledge that the person was not in possession of the
device at time t, then the evidence of the devices location cannot give any
relevant evidence on the whereabouts of this person. Non-pertinent evidence
is mathematically expressed by an LR of 1. In the following it is shown,
that if the person is known to not be in the possession of the device, the LR
always becomes 1.

Numerator: Starting from Formula 3.8, the numerator is:

(3.18)Pr(E1 | LocD1) · [Pr(UseP1) + 1/2Pr(UseP2) + 1/2Pr(UseP3)]
+ Pr(E1 | LocD2) · [1/2Pr(UseP2) + 1/2Pr(UseP3)]

This time, the person is known to not be in possession of the device at
time t. So, Pr(UseP1) = 0, Pr(UseP2) = 1 and Pr(UseP3) = 0. The
numerator therefore becomes:

(3.19)Pr(E1 | LocD1) · [0 + 1/2 · 1+ 1/2 · 0] +Pr(E1 | LocD2) · [1/2 · 1+ 1/2 · 0]

Which reduces to:

(3.20)1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)

Denominator: Starting from Formula 3.14, the denominator is:

(3.21)Pr(E1 | LocD1) · [1/2Pr(UseP2) + 1/2Pr(UseP3)]
+Pr(E1 | LocD2) · [Pr(UseP1) + 1/2Pr(UseP2) + 1/2Pr(UseP3)]

Following the same logic as with the numerator:

(3.22)Pr(E1 | LocD1) · [1/2 · 1+ 1/2 · 0] +Pr(E1 | LocD2) · [0 + 1/2 · 1+ 1/2 · 0]

Which reduces to:

(3.23)1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)
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Combining into a fraction: Bringing together numerator and denomi-
nator, the LR becomes:

(3.24)LR =
1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)
1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)

= 1

Q.E.D

3.2.4 No person is in possession of the device at time t

If there is categorical knowledge that no person was in possession of the
device at time t, then the evidence of the devices location cannot give any
relevant evidence on the whereabouts of any person. Following the same
logic as in Section 3.2.3 it is shown, that if the device is known to not be in
the possession of anyone at time t, the LR always becomes 1.

Numerator: Starting from Formula 3.8, the numerator is:

(3.25)Pr(E1 | LocD1) · [Pr(UseP1) + 1/2Pr(UseP2) + 1/2Pr(UseP3)]
+ Pr(E1 | LocD2) · [1/2Pr(UseP2) + 1/2Pr(UseP3)]

This time, the person is known to not be in possession of the device at
time t. So, Pr(UseP1) = 0, Pr(UseP2) = 0 and Pr(UseP3) = 1. The
numerator therefore becomes:

(3.26)Pr(E1 | LocD1) · [0 + 1/2 · 0+ 1/2 · 1] +Pr(E1 | LocD2) · [1/2 · 0+ 1/2 · 1]

Which reduces to:

(3.27)1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)

Denominator: Starting from Formula 3.14, the denominator is:

(3.28)Pr(E1 | LocD1) · [1/2Pr(UseP2) + 1/2Pr(UseP3)]
+Pr(E1 | LocD2) · [Pr(UseP1) + 1/2Pr(UseP2) + 1/2Pr(UseP3)]

Following the same logic as with the numerator:

(3.29)Pr(E1 | LocD1) · [1/2 · 0+ 1/2 · 1] +Pr(E1 | LocD2) · [0 + 1/2 · 0+ 1/2 · 1]

Which reduces to:

(3.30)1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)
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Combining into a fraction: Bringing together numerator and denomi-
nator, the LR becomes:

(3.31)LR =
1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)
1/2 · Pr(E1 | LocD1) + 1/2 · Pr(E1 | LocD2)

= 1

Q.E.D

3.3 Behaviour of the Bayes Net
To understand the functionality of the Bayes Net and to study the impact of
the various parameters in the network, Bayesian Networks were modeled in
the decision-making software Hugin version 8.3 (Hugin Expert). Using the
R-library RHugin2 (Konis and Moharil, 2008), these Networks were imported
into R where the impact of the parameters was studied by varying the values
of interest from 0 to 1 and compiling the output for each setting. The LR
for each setting is observed and plotted.

As shown in Section 3.2.2, the person-level LR becomes the device-level
LR if it is categorically known that a specific person was in possession of the
device at the moment of interest. As this is the situation where the least
uncertainty exists, this situation corresponds to the LR the furthest away of
1. In the other extreme, the LR becomes 1 if it is categorically excluded that
the device was in possession of the person of interest, as the location-related
evidence recovered from the device becomes non-pertinent for the question
of the position of this person.

To illustrate the behaviour in between those extremes, a simplified Bayes
Net was created where only the node «UseP» in addition to the location-
related nodes was added (cf. Figure 3.4) and the LR was mapped as a
function of the probability of Person A being in possession of the device. This
simulations allows to understand the behaviour as a function of the degree of
certainty in the fact that Person A was the user of the device at time t. The
result is shown in Figure 3.5. As can be seen, for the interval 0 to about 0.9,
the person-level LR remains quite low, only to rise sharply afterwards until
the device-level LR is attained. This shows that a high posterior believe in
usage has to be obtained to reach a meaningful person-level LR.

2RHugin has not been updated since 2017 and is not supported for current versions
of R. These simulations3 were run on a computer that has not been updated since 2017.
This is obviously not a sustainable approach and effort into developing a stable framework
allowing to do simple manipulations in Python or R should be considered in the future.

42



E1

LocD

LocPUseP

Figure 3.4: Simplified network to study the influence of UseP .

Figure 3.5: Person-level LR as a function of Pr(UseP1) from the Bayes Net
as shown in Figure 3.4. The impact is shown for device-level LR of 10, 100
and 1’000.
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E1

LocD

LocPUseP

E2

Figure 3.6: Bayesian Network with direct evidence of usage: a second evi-
dence node is added to «UseP» to study the influence of UseP-priors.

The posterior probability of UseP1 is constituted of the prior probability
of UseP1 and the weight of the evidence provided in favour of UseP1. In cases
where a conclusion on the person-level is aimed to be achieved, it should be
aimed for the evidence being the dominant factor in the posterior probability
of UseP1. To study the impact of the prior probabilities, the evidence node
«E2» is added to the Bayes Net resulting in the network shown in Figure 3.6.
It’s impact is shown in Figure 3.7. As can be seen, the priors only have a
major impact if the supporting evidence is not particularly strong. This leads
to the general recommendation to only express opinions on the person-level
in situations like this, if evidence of an overall LR in favour of possession of
100 or higher is present. In this case, the distribution is reasonably stable
for justifiable range of priors in UseP.

In cases where indirect evidence of usage is considered, four variables that
cannot be clearly fixed have to be considered in the «UseP»-node. The Bayes
Net for this situation is shown in Figure 3.8. These variables were designated
as follows in Table 3.2:

• α for Pr(UseP1 | User1)

• β for Pr(UseP2 | User1)

• γ for Pr(UseP1 | User2)

• δ for Pr(UseP2 | User2)

α is inherently linked to β, as their sum cannot surpass 1. The same is
true for γ and δ. The analysis for those four variables is done in two series:
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Figure 3.7: Simulations of the influence of Pr(UseP1) on the subject-level
LR (LocP -Node) for the Bayes Net shown in Figure 3.6. The simulation is
run for varying levels of device-level LR and LR on the User of 10 (top left),
100 (top right) and 1000 (bottom).
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Figure 3.8: Bayesian Network with indirect evidence of usage.

First, α is studied with several fixed values for γ. β is modeled as a fraction
of (1-α) with four different values. Second, the analysis is inverted, with
varied γ, δ as a fraction of (1 - γ) and multiple fixed values for α.

The results can be seen in Figure 3.9 for α and Figure 3.10 for γ. As
can be seen, there is little influence of α above 0.3. As it is to be expected
that a person is more likely to have their own phone than someone else,
this is a range in which the value is expected to be. The value of β mostly
influences the form of the distribution. The lower β becomes in relation to
α, the quicker the distribution plateaus.

For γ, the value is expected to be in the lower range, as it is the probability
of Person A having the device is expected to be less likely. As can be seen
in Figure 3.10, this is not too much of an issue, as the value of γ has only
minor impact on the overall LR. The impact of δ is negligible.

Simulations on θ and Pr(User1) show that these variables have close to
no influence on the overall LR.
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Figure 3.9: Simulation of person-level LR (LocP -node) as a function of α

Figure 3.10: Simulation of person-level LR (LocP -node) as a function of γ
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Chapter 4

Scenario 1

The aim of this chapter is to illustrate the use of the model in a simplified
manner: a single piece of location-related evidence is evaluated in light of
propositions on the level of the device. This setting can be applied when
phone possession is not contested or if it is established through means outside
of the experts domain of competence, such as witness testimony. As an
example, a single piece of cell site evidence, the connection established when
placing a phone call, is used as a scenario that is commonly encountered by
law enforcement agencies.

4.1 Description of the Scenario
The aim of this scenario is to illustrate the reasoning and use of an LR
at the device level. The question of interest is from which of two specific
positions was a phone call made. This problem may arise in situations such
as described below:

A suspect is accused of having committed a crime at a given address. The
accused contests having been at the crime scene, claiming that he was at
home the entire time whilst the crime took place. Call data records (CDR)
are presented as evidence. During the time frame of the crime, a phone call
was recorded coming from the accused’s mobile phone. The person with
whom he was talking confirms his identity.

In such a situation, an expert tasked with evaluating the observed evi-
dence would have to assess whether the evidence is more likely to be observed
if the phone was at the crime scene or the accused’s house. The witness testi-
mony should be considered outside of the domain of competence of the expert.
The following pair of device-level propositions are likely to be considered:
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P1: The mobile device was at Location X (the crime scene) at the time
of the phone call.

P2: The mobile device was at Location Y (the accused’s home) at the
time of the phone call.

In most real life situations, the first question to consider is whether the
cell site in question is actually accessible from both locations. If this is not
the case for one of the sites, it can be ruled out and an evaluative assessment
may at most be made about the chance of an error in either the evidentiary
or the reference data. This situation is, however, outside the scope of this
research as device and measurement errors are considered to be excluded from
this work as stated in Section 1.2. To illustrate a probabilistic assessment
based on data assumed to be free of error, locations are chosen that are both
covered by the same cell tower as the tower observed in evidence.

4.2 Theoretical Background of Cell Tower based
Localisation

Mobile device communication has a core issue it needs to overcome: The
handheld devices do not have the antenna, nor the battery life, to send
out signals strong enough to reach an arbitrarily distant receiver it aims to
communicate with. The solution to this problem are cell towers. A network
of antennas spread out over the countryside allowing the devices to connect
with a world spanning communication network and with other end devices,
in turn also connected to a cell tower themselves (cf. Figure 4.1). Generally,
cell towers are provisioned in a way that they all serve more or less the
same quantity of devices. As devices are more prevalent in more populated
places, cell tower ranges can vary significantly from several kilometers in the
countryside to just a block in cities. Heavily trafficked areas, such as airports,
metro lines and shopping malls, may even have their own cell site covering
just the interior of the building (Hoy, 2015). Quickly, the forensic value of
these connections became evident. CDR kept by network providers both
for billing and maintenance purposes, contain details about the cell tower
that a phone call was routed through, and can be used to place a device
in a particular region when the phone call was made. With the evolution
of smartphones and mobile data, the temporal granularity has increased as
there is an almost constant exchange of data, and network providers retain
information about the region a device is operating in effectively at any given
moment.
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Figure 4.1: Illustration of the functionality of mobile networks. Within the
coverage area of a cell tower, mobile devices can connect to this cell tower
through a radio signal. The cell tower is in turn connected to a network
allowing the end device to communicate with any other device connected to
this network.

The evident utility of CDR in investigative contexts and the equally evi-
dent risk for abuse of this data has required legislators all over the world to
formulate laws regulating the storage and access to this data (ISDC, 2013)1
In Switzerland, service providers are required by law to keep these records
for six months, after which point the data is to be erased. Law enforce-
ment agencies can gain access with a warrant through an automated plat-
form, maintained by the Post and Telecommunication Surveillance Service
(PTSS), an independent unit within the federal department of justice and
police. Additionally, the PTSS is responsible for the proper implementation
of postal and telecommunication metrics, and publishes yearly statistics on
the use of those metrics by the different law enforcement agencies within
Switzerland (SPTA, 2016; PTSS, 2021). Figure 4.2 visualises the develop-
ment of requests for CDR, called retroactive surveillance measures, by LEA
from 2018 to 2021. The requests decrease from year to year, which could be
explained by a increasing understanding of investigators in which cases there
is an interest in requesting CDR.

1These laws have also been frequently criticised and challenged. For example, in April
of 2022, the Court of Justice of the European Union found the Irish Law to violate Eu-
ropean law which prohibits indiscriminate data retention and access without independent
safeguard(CJEU, 2022).
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Figure 4.2: Use statistics of retroactive telecommunication surveillance in
Switzerland from 2018 to 2021. Source of Data: (PTSS, 2021). For 2018,
retroactive monitoring and antenna searches were not yet indicated sepa-
rately. Data prior to 2018 is available, however not comparable with the
shown quantities as the counting procedure was adapted in between.

4.2.1 Uncertainties in CDR Data Analysis

For CDR to be of use, one has to know which cell towers are accessible at a
given site. The process of obtaining this information through measurements
with specialised equipment is called cell site surveying. A multitude of ap-
proaches exist, from spot measurements, where connectivity at a singular
location is measured, to cell coverage surveys, where the entire coverage of
an antenna is mapped out. From a measurement action point of view, «Con-
nected Mode»- and «Idle Mode»-surveys are distinguished. In Connected
Mode, mobile devices with SIM cards are used to observe what connections
are established. This approach is generally quite inefficient for obtaining an
understanding of all available towers in a region since devices will only con-
nect to towers from the operator they are subscribed to and might not be
equipped to support all technologies and frequencies. Additionally, even if
the pertinent technology and the operator are known in an investigation, an
active device may not connect to an available antenna, when another is far
more dominant in the vicinity. In Idle Mode, the measuring device does not
interact with the cell towers, but measures the signal of all antennas visible
from the point of measurement. This approach is generally more efficient
because a single measurement can give an initial indication of accessible cell
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towers2 (Hoy, 2015). A major limitation of this approach is that there is
currently no way to predict based on these measurements whether a device
will actually connect to an observed cell tower. There seems to be very lit-
tle awareness of this fact among practitioners. Indeed, some practitioners
stipulate that a mobile device will always connect to the strongest available
cell tower, due to physical laws of signal propagation, generally the closest
one (Griffiths and Hoy, 2018). It is quite easy to demonstrate that this is
not the case. Indeed, if it were, the probabilistic evaluation of cell tower
evidence as presented in this chapter would, some fringe cases reserved, be
completely without use, as anyone would be able to categorically predict the
cell tower a device connects to for a given location. As can be seen from the
data presented in this chapter, mobile devices do not behave in such a de-
terministic manner. Even in publications that acknowledge the possibility of
devices not connecting the best serving cell, the frequency of this happening
is considered to be quite low. Jovanovic and Cummings (2022) indicate a
frequency of 1% at most, a value that is largely surpassed in this simulation.

Existing research is generally content with providing a list of cell towers to
which a device could have connected to at a given location as a result of Idle
Mode surveys. Consequently, little to no information is available on how the
probabilistic behaviour of mobile devices can be modelled. With the current
state of knowledge, only black box simulations of the alleged behaviour in
comparable conditions allow to obtain relevant data. For both versions of
the fact, with sufficient repetition, the fraction of all simulations on which
the same cell sites were observed as in the evidentiary data will approximate
the probability of the evidence given a particular proposition.

Similarly, little research exists on what comprises «comparable condi-
tions». Since network providers can turn off and modulate the intensity of
an antenna signal based on the number of devices attempting to connect at
the same time, it is widely accepted that a moment where a similar amount
of people are in the area is necessary. This necessary condition is generally
approximated by taking measurements during a same time frame on either
a workday or weekend day (Bell, 2015).3

The work presented in this chapter expands upon existing research in as-
2Studies have shown that results from a single survey are likely incomplete and multiple

measurement series, ideally with multiple devices should be made (Tart et al., 2012, 2021;
Lopez, 2021).

3It has been theorised that comparable weather conditions (same season, precipitation,
and air humidity) are required to obtain similar results because water, either as vapour,
fog or rain in the air or in the leaves of trees and other vegetation, has an impact on the
propagation of electromagnetic signals, (Hoy, 2015). However, to the knowledge of the
author, this has never been tested empirically.
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sessing uncertainties in CDR Data Analysis, in that it provides an approach
allowing the evaluation of said uncertainties in light of two concurring propo-
sitions.

4.3 Discussion of the Framework
This section discusses the framework in this scenario. Figure 4.3 shows the
Bayes Net for this particular scenario.

In this situation, the Bayes Net does not provide any particular added
value. Indeed, the formula for the LR (cf. Formula 4.1) in this particular
situation is just the probabilities of the observed evidence E (the connection
to a specific cell tower) given each of the propositions.

LR =
Pr(E | P1)

Pr(E | P2)
(4.1)

For both probabilities in this formula, a value needs to be assigned. This
value should be indicative of the likelihood that the device of the accused
connected to the cell tower observed in the evidence at the moment of the
phone call, at the crime scene or at his home respectively. As discussed in the
previous Section 4.2, with the current knowledge about the workings of these
systems, this value can be approximated only through black box studies in
conditions considered equivalent.

4.4 Simulation of Data
For the scenario presented in this chapter, there is no need to generate evi-
dentiary data, as the connection to a given cell tower can be assumed among
the observed cell towers. Nevertheless, some thought is put into what data is

E1

LocD

Figure 4.3: Bayesian Network for Scenario 1
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assumed to be recovered in Subsection 4.4.1. In the remainder of this section,
the process of choosing the locations representing the location of both propo-
sitions is described (Subsection 4.4.2) as well as the generation of reference
data (Subsection 4.4.3).

4.4.1 Evidentiary Data

For this scenario, data is not simulated through an experiment. Instead,
it is assumed that the cell tower visible at both locations was observed as
the tower through which the call was routed at the moment of the crime.
Nevertheless, some reflections must be made about the circumstances of the
creation of the trace. This conceptualization is completed to help an expert
address common considerations they would encounter in a real world scenario.

Considerations about the time and weather: It is presumed that the
call took place on a workday during the day. The weather is assumed to be
sunny without clouds, the same as the weather on the day of recording of
the reference data. It is also assumed that the investigated event took place
shortly before the measurement of the reference data. As such, it is unlikely
that major changes in the cell network were made by the operator. It could
even be assumed that cell site measurements were conducted by the crime
scene investigator, confirming that no major changes in the network took
place (at least in the surroundings of the crime scene).

Considerations about the device: The device is supposed to be a Sam-
sung Galaxy S 7 (SM-G930A) running under Android version 8.0.0. The
SIM card of the evidentiary device is assumed to be from the Swiss net-
work provider «Swisscom» and running the same phone and data plan as
is used for the reference data creation. Whilst the provider being the same
is essential (as providers have their own distinct network), further research
is required to understand whether data plans and the make and model of
the device have an influence on the connections or not. It is also assumed
that networking settings of the device were investigated and found to be the
standard Android 8.0.0 settings.

Considerations about the evidence: It is assumed that CDR for the
phone of the accused were obtained through Swisscom, the network provider
with whom the SIM used in the phone was registered. In these records, a
call made at the moment in time is observed routed through the cell tower
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with the cell ID 6674430 as indicated in Table 4.3. This ID was chosen based
on the choice of the locations described in the next section (Section 4.4.2).

4.4.2 Choice of the Locations

Two locations were chosen to allow a demonstration of LR evaluation on cell
tower evidence. The two locations needed to be as such that both locations
were covered by the same antenna. To this effect, measurements were con-
ducted using a TSME 6, a device allowing to measure cell tower signals. For
ease of access, signal strength was mapped on the campus of the University
of Lausanne. In anticipation that SIM-cards registered to the Swiss network
provider «Swisscom» were going to be used, the data was filtered for only
cell towers by this provider. Manually, locations were identified where at
least two cell towers were visible. Among those, two locations were chosen
that are both covered by the antenna with ID 6674430 and are protected
from precipitations, as the measurements were ongoing for the entirety of
two days. This last criteria turned out to be a good decision. Both days of
measurement were particularly sunny and being in the shadows stopped all
involved devices from overheating. Figure 4.4 shows the selected locations as
well as the estimated positions of relevant cell towers for this scenario.

4.4.3 Reference Data

During a two day period, single spot measurements in connected mode are
conducted by simulating the claimed behaviour on devices of the same make
and model as the evidenciary device. These simulations are aimed at repro-
ducing the situation in which the trace was generated. It is unclear whether
turning the devices off between each measurement had an influence or not,
however, conducting the call most certainly had. Indeed, it was observed
that the devices mostly connected on a 4G antenna upon startup and then
switched to a 3G antenna when passing the call. It is therefore recommended
to actually reproduce the activity that lead to the evidentiary data being cre-
ated in real world cases as well.

Four devices of the model Samsung Galaxy S 7 (SM-G930A) from the
UNIL School of Criminal Justice device park were used to conduct the sim-
ulations. All devices were running under Android 8.0.0. To differentiate
the devices, the identifier from the material management system is used and
the devices are called ESC-014, ESC-015, ESC-017 and ESC-018 respec-
tively. Two SIM cards were used running a «Swisscom» data and call plan.
Throughout the simulation, the same SIM-card was always used as the caller
SIM and the receiver SIM. Each device had the app «Network Cell Info Lite»
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Figure 4.4: Location of measurements and relevant Cell Towers. Cell Tower
position is estimated from publicly available data (swisstopo) and personal
measurements. Map: OpenStreetMap

56



version 5.0.23 installed, an application giving information about the cellular
network currently connected, allowing to obtain the information about the
connected cell directly from the device itself.

For each location, two half days, an afternoon and a morning were mea-
sured. The location was changed at lunch to reduce the risk of the particular
weekday having an impact. Each half day consisted of the same measurement
program cycling through 4 devices. This was done to allow insight on the
impact of the choice of the device as well as to ensure the battery allowing
the simulation. Indeed, it was observed that the process is quite draining on
the battery of the devices. Table 4.1 shows the program at each site.

Caller Receiver Number of calls
ESC-014 ESC-015 15
ESC-017 ESC-015 10
ESC-018 ESC-015 10
ESC-015 ESC-018 10
ESC-014 ESC-018 15

Table 4.1: Program of simulations per half day at each site. Per site, this
program is conducted twice, once on a morning, once on an afternoon.

In retrospective, this plan may not have been the best choice, as temporal
impacts are consequently correlated with a particular device and not the same
number of calls are conducted per device. Table 4.2 show the number of calls
made per device at each site.

Device ESC-014 ESC-015 ESC-017 ESC-018
Caller 60 20 20 20
Receiver 0 70 0 50
Total 60 90 20 70

Table 4.2: Number of calls per device and location

Each simulation is conducted as follows:

• Both the receiving and the calling phone are started up

• The «Network Cell Info Lite»-app is launched on both devices

• A call is launched from the calling to the receiving phone.

• The call is accepted on the receiving phone.
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• The cell tower to which each phone is connected is noted in an Excel
sheet.

• The call is ended.

• Both phones are turned off.

With the devices used in this simulations, this process took about 2’30"
to complete, with a slightly longer break at the end of each run as the SIM
cards needed to be changed.

In parallel to the simulations, measurements were conducted with both a
TSME 6 and a Snyper Graphyte LTE V3 to detect potential changes in the
environment as well as to create data which might give insight into whether
it is possible to generate data purely on the measurement of signal strength.
As these measurements were conducted on one site per time only, a control
measurement with a second Snyper LTE V3 was conducted at the other site
to ensure that no particular difference is observed on the other site.

4.5 Conducting the Analysis
Using Excels «COUNTIF»-function, occurrences of each cell tower being
observed were counted and frequencies calculated. The fraction is assigned
as the probability value of this observation taking place at the given location.

Analysis was conducted under the following lights:

Per device: Conducting the analysis described above generates data and
leaves the device open to wiping attacks as it has to be connected to the
network. It is therefore preferable to use devices of the same make and model
instead of using the evidentiary device. This analysis was conducted to see
whether there is a substantial difference between the devices. In addition,
as due to experimental design there is a substantial difference on how many
measurements per device were conducted, this separation gives some insight
into the robustness of the method.

Caller vs. Receiver: To conduct such experiments, two devices are al-
ways required: a caller and a receiver. If both devices give in comparable
results, this will effectively allow to double the measurements per time period
by simply noting the connecting cell tower on both devices. As only devices
ESC-015 and ESC-018 were used as both caller and receiver, this analysis is
conducted only on these two devices.
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Temporal analysis: As was quite quickly evident from the measurements,
there is an important temporal factor at hand with the frequency of connec-
tions varying heavily over time. To assess the impact of these variations, a
temporal analysis was conducted. Additionally, this analysis gives an insight
into how many measurements are necessary to obtain stable results.

Per Site: The value of primary interest for this analysis is the probability
to obtain the observed result at a given location. This value is approximated
by conducting an analysis per site.

4.6 Results
For almost all devices and the locations, there is not just one antenna that
is systematically chosen. In the collected data, the 6674430 antenna was
observed at both measurement sites as expected and, at each site there was
one other distinct antenna emitting, each only being visible at their loca-
tion. Figure 4.5 visualises the observed connections and Table 4.3 shows the
characteristics about each cell tower. Measurements at the site revealed that
all these antennas are emitting on band 8 corresponding to the E-GSM-900
technology. It therefore looks as if this particular device only chooses within
a specific technology if available to pass calls. At both sites, an additional
antenna by this provider emitting within this frequency has been observed in
measurements, without any device ever connecting to it. The Snyper mea-
suring device seems not particularly well adapted to detect the secondary
antenna. At location P1 it is only detected once, the one as P2 has not been
observed at all.

MCC 228 (CH) 228 (CH) 228 (CH)
MNC 1 (Swisscom) 1 (Swisscom) 1 (Swisscom)
LAC 101 101 101
Cell ID 6674430 6674432 6619279
Band 8 (E-GSM-900) 8 (E-GSM-900) 8 (E-GSM-900)
Visible at P1 Yes Yes No
Visible at P2 Yes No Yes

Table 4.3: Information about the cell towers observed at the locations of
interest. The cell tower with ID 6674430 is the one assumed to be considered
as evidence.
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Figure 4.5: Schematic visualisation of the observed connections at sites X(P1)
and Y(P2). At both sites, the evidentiary cell tower (E) was observed, as
well as another one, specific to the site.

4.6.1 Influence of Caller versus Receiver

Only the devices ESC-015 and ESC-018 were used both as caller and receiver.
Comparing the fractions of connection to a particular cell tower, there is no
evidence that the role the device has in the call has a major influence on
the choice of cell tower. Differences range from 0.01 for device ESC-015 at
location P2 up to 0.12 for device ESC-018 at location P1. The values are
shown in Table 4.4.

Device Location Caller Receiver Difference

ESC-015 P1 1.00 0.90 0.10
P2 0.75 0.74 0.01

ESC-018 P1 0.85 0.94 0.09
P2 0.80 0.93 0.13

Table 4.4: Fraction of devices connecting to the tower with cell ID 6674430.

4.6.2 Influence of the Device

To observe whether the choice of the device has an influence on the choice of
the antenna, the obtained fractions per site is compared between the different
devices. This comparison has limited value, as due to the way the simulations
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were conducted, there is an intrinsic link between the devices and the time
of the day. As is seen in Subsection 4.6.3, a substantial variation in time
was observed, which could impact the result of the analysis at hand. The
values per device are illustrated in Figure 4.6. Taking a look at the fractions
per device, some difference can be observed. Table 4.5 shows the mean,
standard deviation and range between the fractions. Especially the range is
quite important with values differing as much as 0.21 between ESC-015 and
ESC-017 for site P2. For this present work, it is assumed that this difference
is acceptable. However, further research should definitively be conducted if
the here presented approach is to be used in a real world case.

Location Mean Std. Dev. Range
P1 0.90 0.06 0.13
P2 0.84 0.09 0.21

Table 4.5: Mean, standard deviation and range of fractions per device for
both locations.

Figure 4.6: Fraction of connections per phone that connected to a particular
tower at location P1 (left) and location P2 (right).

4.6.3 Temporal Influence

Already during the simulations, it became quickly evident that the fractions
of connections to a given cell tower did not remain constant throughout
the simulation period. In an attempt to visualise this temporal variability,
a rolling sample over 10 simulations was chosen. For each 10 simulations,
corresponding to 20 data points, the fraction of devices connecting to a given
cell tower was calculated and plotted. The result can be seen in Figure
4.7. As can be observed, the fraction varies from less than 50% on the

61



primary tower to always connecting on the primary tower. Additionally,
some similarity between the two curves can be observed. Both have a major
peak for the secondary antenna around the middle and right at the end,
corresponding to right before lunchtime and at around 16h00. Also, a period
where the primary cell tower is responsible for all the connections can be
observed for the period corresponding to the beginning of the afternoon. It
is possible that these variations are due to a change in signal strength emitted
by the primary cell tower, a behaviour called «cell breathing». In this case,
it would be suspected that the secondary cell on each site was emitting with
a signal strength closer to the primary cell during the periods where the
secondary antenna peaks and significantly weaker during the period where
the primary is dominant. Independent of the reason, these results underline
the necessity to have data that was taken during a time comparable to the
time of interest. Further research is needed to assess what «comparable»
means in this context.

Figure 4.7: Rolling average of fraction of CT connections over 10 measure-
ments.

A graph plotting the cumulative fraction, involving all measurements up
to the current measure was created (cf. Figure 4.8). This is the value that will
then be used to obtain the LR. Despite the strong fluctuations, the fraction
remains relatively stable, as the large quantity of measurements is able to
balance out the fluctuations. For both sites, the graph stabilises at around
30 measurements.

4.6.4 Likelihood Ratio

To calculate an LR, the fractions observed are assigned as probabilities to
observe the evidence on each site respectively. When averaging over the
entirety of the measured data, Pr(E1|P1) = 0.900 and Pr(E1|P2) = 0.821.
This leads to a likelihood ratio of 1,1.
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Figure 4.8: Cumulative fraction of CT connections. The value on which
the graph lands on at the far right corresponding to the overall fraction is
assigned to calculate the LR.

As the temporal influence is the least well controlled factor of all, the
influence of time on the LR is studied. By plotting the cumulative LogLR in
function of the measurements, it can be observed how quickly it stabilises at
a value. The logarithm of the LR is used instead of the LR directly, as this
makes the graph symmetrical around the value of non-probative evidence (0
with the LogLR instead of 1 with the LR). These two graphs are shown in
Figure 4.9. On the cumulative graph it can be seen that the likelihood ratio
stabilises more or less after 30 to 40 measurements. Taking a look at the
rolling LogLR shows that the LR is not quite as stable as it seems from the
cumulative LR, dipping in favour of the alternative hypothesis from time to
time. Again, this may be explained with temporal fluctuations that seem to
be more important at site P2. However, with the LogLR being quite close to
0 anyway,the fluctuations are not massive, never even reaching a value of 1.

Figure 4.9: LogLR based on the fractions from the rolling average fractions
(left, cf. Figure 4.7) and the cumulative fraction (right, cf. Figure 4.8).
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4.7 Discussion
With the scenario presented in this chapter, a case was illustrated where
a single point of cell tower evidence is evaluated under two propositions at
the device level with varying locations. With the chosen locations, an LR
of practically 1 was obtained, indicating that no substantial difference was
observed. This is not particularly surprising, as the evidentiary cell tower was
dominating at both sites. Consequentially, the behaviour of the devices used
for simulation was very similar at both sites and an LR of 1 was the result
that should be obtained in this situation. The results obtained do, however,
indicate that it may very well be possible to obtain LR different from 1.
Indeed, if as an alternative location one was chosen where the evidentiary
cell tower only appeared as frequently as the secondary towers did in this
simulation, an LR of around 10 would be the result. This still is not an
extraordinary value. In the verbal scale proposed in (Marquis et al., 2016),
this would be qualified as limited or weak support for one of the hypotheses
over the other, but it still constitutes support.

The simulations conducted in this work show an abundance of factors
influencing the obtained result that are not properly understood. To this
day, it is quite complicated asserting that two situations can be considered
«comparable» and that measurements therefore are relevant for the situation
of interest. Notably, further research is required to understand temporal fac-
tors. Additionally, it would be beneficial to conduct research into the pos-
sibility of predicting connection fractions based on signal strength measured
by survey devices, as this would render conducting such analyses far less time
consuming.
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Chapter 5

Scenario 2

The scenario presented in this chapter illustrates a question on the level of
the device user. Questions related to location are not touched upon. Instead
it is shown how behavioural biometrics on a device can be evaluated in light
of propositions of user identity.

5.1 Description of Scenario
The aim of this scenario is to show the reasoning on the level of the user. The
question of interest is whether for a given day, the habitual user of a device
was utilising it, or whether another, specified person was using it on the day
in question. A situation, where such a problem may arise is described below:

Digital documents containing trade secrets were stolen from an enterprise.
The theft was traced back to a particular smartphone from the enterprise’s
mobile device pool. The person who normally used this device claims to
have lost her device on this day. She asserts that the device was given back
to her by another employee, which she names as a suspect.

In such a situation, it can be envisioned that the devices of both users
were seized and analysed by a forensic expert. For the sake of this scenario,
it is supposed that a tribunal tasked the expert to conduct an analysis based
on usage patterns to determine which of the two persons was the one using
the device during the day of interest. The observations are to be evaluated
in light of the following two propositions:

P1: Person A was using the device Y at time t.
P2: Person B was using the device Y at time t.
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5.2 Theoretical Background of Behavioural Bio-
metrics

Identifying perpetrators based on their behaviour is nothing new. In crime
analysis, the modus operandi, the way an offense was committed, is used
regularly to link crimes committed by a same offender. For example in bur-
glaries, the choice of target, the time of the day as well as the way the
targeted building was entered present efficient ways to identify cases where
the same intruder was the perpetrator. This approach is based on the idea
that a serial offender will act in the same (or at least similar) way, different
to other offenders, every time he commits an offence. In crimes with a highly
serial character, such as burglaries, the modus operandi has been shown to
be sufficiently specific to identify series (Ribaux, 2014). In a first step, this
approach does not associate a civil identity with the entity of the perpetrator
or the perpetrators, but if at any point in time, this link is made, the entirety
of the series may be resolved instead of just one case.

A similar logic is followed with the analysis in this chapter. For a day
of interest, the way a smartphone is used is analysed, and then compared to
other days within a reference period. If a high correspondence in the way
the device is used is observed, this is an indicator that the device was used
by the same person. Again, by itself, this analysis does not identify which
person was using the device. However, if the identity of the user during the
reference period is known and uncontested, then an opinion can be expressed
on the physical person who was using the device on the day of interest.

Technical solutions that are based on behaviour as a means of identifica-
tion have been proposed and used as means of continuous authentication in
an IT-security context. The idea is that a particular characteristic of user
behaviour is constantly observed. If the behaviour of the user at some point
in time is outside the expected range of behaviour, the device locks itself and
thus prohibits a different person from accessing its content. There are three
approaches to performing this process (Al Solami et al., 2010):

1. either a training set for the legitimate user and a potential adversary
is available

2. a data set is available only for the legitimate user

3. the reference data is constantly generated and only abrupt changes in
behaviour are looked for

Examples of characteristics that have been studied include keystroke dy-
namics (Bhatt and Santhanam, 2013; Saevanee et al., 2015), the usage of
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applications (Li et al., 2011) or the language used when writing messages
(Saevanee et al., 2015).

So far, few concepts of behavioural biometric authentication for mobile
devices have established themselves as widely used real world applications.
Solutions exist for developers to improve authentication through behavioural
biometrics (LexisNexis, 2020). On the user side, some services offer ap-
plication based on swiping over the screen in a particular way as an unlock
mechanism (Q Locker, 2022; Lock Screen Master, 2022), but other than that,
most approaches have not been popularised yet.

In a forensic context, a method proposed in (Guido et al., 2016) is of
particular interest, as, whilst developed for continuous usage, it is based
on data that is available in a forensic extraction of a mobile phone. This
approach was reproduced and adapted for usage in a forensic setting in the
master-thesis of Michelet. He proposes two approaches in his work, one
focusing on classification between two users and one where the distance of
a vector of characteristics is used to quantify the difference in behaviour for
two individuals (Michelet, 2021). Based on the latter of the two approaches,
a slightly modified process is proposed here allowing for the generation of an
LR as an outcome of the analysis.

5.3 Discussion of the Framework
The propositions at hand are identity-focused and have a person-level sub-
ject. The Bayesian Network is adapted in order to represent the reasoning
of the scenario. All location-related nodes are removed. The only evidence
node is derived from «UseU». The evidence observed is the evidence score
between the activity observed in the period of interest and the period of
comparison. Figure 5.1 shows the adapted Bayes Net. Whilst technically,
with the parameters of the scenario at hand, the nodes «User» and «UseU»
could be left out and the evidence could directly be connected to «UseP»,
they were left in to make explicit the reasoning in mounting to a person-level
subject.

Additionally, given the setting of the scenario, the possible states of the
nodes have been adapted, removing the possibility of «no user» and «someone
else», but adding a state for Person B as the user in node UseP . In the node
«User», the prior probabilities of Person A being the general user Pr(User1)
is set to 1 as general usage is not contested by either party.

In most Identity-focused scenarios in forensic science, the alternative
proposition considered is one where an open set of alternate sources are con-
sidered. Generally, P1 considers person A to be the source and P2 considers
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E1

UseUUser

UseP

Figure 5.1: Bayesian Network for Scenario 2. Conditional probability tables
remain the same as indicated in chapter 3.

the source to be not person A, but anyone from a non-nominative population
of alternative persons considered to be relevant for the case at hand. In such
a situation, an LR can be obtained through comparing the intra-variability
of A (the probability to observe E if A is the source) to the inter-variability
of A1 (the probability to observe E if A is not the source). In a Scenario
where person A is compared directly to person B however, there are four
ways an LR can be obtained:

1. Comparing the intra-variability of A to the intra-variability of B.

2. Comparing the intra-variability of A to the inter-variability of A.

3. Comparing the intra-variability of B to the inter-variability of B.

4. Comparing the inter-variability of B to the inter-variability of A.

If probabilities were inherent to an event and it would be possible to know
them, these approaches would be identical. Indeed, in a situation where only
two entities are considered as a potential source, Pr(E | A), the probability
of observing E if A is not the source, and Pr(E | B), the probability of ob-
serving E if B is the source, should be identical. However, in the real world, if
the probability of the evidence can not be given directly, it has to be assigned
based on an approach approximating the probability. This has to be done
based on a limited set of observations and a process that will create different

1Technically, this is the intra-variability of the observed characteristic and not the
intra-variability of the person. This shortcut is made to improve readability.
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results depending on whether one observes the intra- or the inter-variability.
As a consequence, the probabilities will differ based on the approach chosen.
As this problem arises only through the imperfections of the real world, there
is no hope in finding a solution through theoretical considerations about the
interactions of the probabilities. An argument can be made for using the
second variant, as it is the approach used when comparing to the general
population and having one person as the alternative, the present situation
is basically just a fringe case of the general population where the size of the
population is 1. However, this poses an immediate challenge, as Person A
and Person B should be interchangeable without impacting the result. Ap-
proach 2 and 3 should therefore produce the same result (which they will
likely not).

The author is of the opinion, that approach 1 should be prioritised, as
we intuitively expect the probability to observe an element if it comes from
a given source to be independent of what alternative sources are proposed.
Indeed, if the scenario were to change and instead of person B a third person
C is proposed as the alternative source, in approaches 2 and 4, Pr(E | P1)
would have to be reevaluated despite P1 not having changed. The same issue
appears when the first proposition is changed for approach 3. Approach 1
is the only one where this is not the case and is therefore followed for the
present analysis.

5.4 Simulation of Data
To generate needed data, two volunteers were each given an iPhone 6s (A1688)
running iOS 14.4.4. The volunteers (Person A and Person B) were given one
day to prepare their device, Phone 1 and Phone 2 respectively, in order to
reduce the influence of setting up the device on the data. Subsequently, the
volunteers used their device for three consecutive weeks as their principal de-
vice. Then a full file system extraction was conducted using Cellebrite UFED
(Version 7.53). Phone 2 was then given to Person A who, after another day
of setup, was using the device regularly for a full day before an extraction
was conducted on the device again. In this manner, two sub-scenarios were
created: For sub-scenario S1, the last day of the three week period of Phone 1
was considered as the day of interest. In S1, the ground-truth is that Person
A used his own device to download the stolen data. For sub-scenario S2, the
additional day of Person A using Phone 2 is considered as the day of interest.
In this scenario, Person A uses Phone 2 (the phone of Person B, which is the
accused) to access the data that was stolen. In both scenarios, Person A is
the person having committed the theft, in sub-scenario S1 using their own
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device, in sub-scenario S2 using the device of another person, Person B. The
calendar of the measurements is shown in Table 5.1.

Week Weekday Mo Tu We Th Fr Sa Su
1 Phone 1 S(A) A A A A A A

Phone 2 S(B) B B B B B B
2 Phone 1 A A A A A A A

Phone 2 B B B B B B B
3 Phone 1 A A A A A A A

Phone 2 B B B B B B B
4 Phone 1 ES1(A) Ex

Phone 2 B Ex S(A) ES2(A) Ex

Table 5.1: Calendar of the data simulation period.
S(A)/S(B) = Set up Day for person A/B;
A/B = Reference Day for person A/B;
Ex = Extraction of the phone;
ESn = Day of interest for Subscenario n

5.4.1 Application in a Real World Scenario

Using the approach here presented in a real world scenario is challenging.
First of all, a reference period needs to be fixed for which it is agreed that
the same user is using the device. This may not always be evident or even
possible. Additionally, this reference period should be for comparable cir-
cumstances, notably regarding workdays versus vacation, not encompass sick
days or days with a completely different workload. This on its own may prove
to be an impossible task to resolve, especially as there is little to no research
into what factors may be influencing whether two periods are comparable or
not.

Until influencing factors are better understood through future research,
the author considers that application of the present method in a real world
case should be done only with significant reservations and care.

5.5 Conducting the Analysis
This section describes how the analysis was conducted, first discussing the
used characteristics, second describing the mannre used to obtain probabili-
ties.
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5.5.1 Choice of Characteristics

Based on the work conducted in (Michelet, 2021), a distance-based approach
exploiting only system data was chosen for this work. This approach was
chosen for multiple reasons: First, the distance-based approach gives as a
result a one-dimensional measure for similarity: the distance. Based on that,
a distribution under each proposition at hand can be generated with relative
ease. While the classifier used in Michelet’s first approach does generate
probability-scores, it is unclear as to how these scores came to be, what their
meaning is and how they are to be interpreted. Second, the distance-based
approach can more easily be generalised on populations rather than a single
person as the alternative population. This would be somewhat more difficult
for the classification approach, as the model would need to be trained on the
alternative population consisting of the data of multiple other persons. In
addition, it is unknown as to how the model would react if the "someone else"
postulated from the alternative proposition, in this case B, is not actually
part of the population. This is not an issue with the distance-based approach
as scores under the alternative proposition just give an answer to the question
"What distance would we expect if someone else were to have used the device
on this day?". This allows for the same approach to be reused in scenario 4
described in Chapter 7, where the person of interest is compared against an
open set of alternative users.

The focus on system-artefacts2 only has several advantages:

• As shown in (Michelet, 2021), system artefacts provide as good as, and
in some cases even better, results than higher-level artefacts.

• System artefacts should be less dependent on the usage of specific ap-
plications than higher-level traces such as app usage.

• System artefacts do not contain personal information. As such they are
far more innocuous from a data protection perspective, which provides
an advantage when handling the data of experiment subjects.

Using only those characteristics, only the two following files are recovered
from the conducted extraction:

• knowledgeC-database located at /private/var/mobile/Library/CoreDuet/-
Knowledge/knowledgeC.db and its associated wal- and shm-files

• Lockdown-logfile located at private/var/logs/lockdownd.log
2The system-artefacts considered by Michelet consist of characteristics resulting from

system functions of the device.
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From these two files, 90 characteristics are created for each day. These
characteristics contain information about power-on events, the display ori-
entation, whether the device is plugged in, the screen illumination, the lock-
state, airplane mode, WiFi and Bluetooth connections, battery state, Siri,
media playing and app usage. A full table of all the characteristics can be
found in Annex C.

5.5.2 Estimation of the Probabilities

The probabilities of interest in this scenario is the probability to observe the
behavioural characteristics at the date of interest if the person was Person A
(Pr(E | P1) versus if the person was Person B (Pr(E | P2)). To estimate this
probability, the same behavioural characteristics are observed for a reference
period for both persons (cf. Section 5.4). Using the anonymisation-script
from (Michelet, 2021), system-level behavioural characteristics are recovered
from the files of the two iPhone extractions. The characteristics for each
day are stored as a 90-dimensional vector. As the scores for the different
variables vary quite heavily in order of magnitude, the vectors are normalised
using the parameters of the entirety of the vectors in the reference data. A
principal component analysis is conducted on the data and the first five
principal components (PC) are studied in order to assess their suitability as
a separating characteristic. Consecutively plotting the first PC against one
of the other PCs revealed that PCs 2 through 5 did not add anything to
the separation of the two populations at hand. This is shown in Figure 5.2
Based on this analysis, the first PC was chosen as a singular indicator. An
intra-variability-distribution for both populations is created by sampling 15
days out of the reference period repeatedly. One day is randomly chosen as a
"day of interest" and the distance between the PC1-value of this day and the
center of gravity of the PC1-values of the remaining 14 days is calculated.
To see how well the two population separate between each other, the inter-
variability-distribution is generated, with the comparison element originating
from the population of P2. The same process is repeated for the data created
by person B (P2).

By transforming the vector for the day of interest in the same way, a value
is obtained as the evidentiary value: the vector is normalised using the means
and standard deviations obtained from the reference data, then treated using
the parameters obtained from the PCA conducted for the reference data.
The distance of the first PC to the mean of the values3 obtained for the first

3Given that only one dimension is looked at, the mean corresponds to the center of
gravity.
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PC of each population are the values taken as observed values under each
proposition.

Using the fitter function from the python «Fitter» module, a density
distribution is fitted to the data. Evaluating the density function at the evi-
dentiary value observed, the probability of the evidence given the population
at hand can be obtained.

Figure 5.2: Plots of the first vs the second (top left), third (top right), forth
(bottom left) and fifth (bottom right) PC. As can be seen, P1 and P2 separate
out well based on PC1 without the other PC adding anything further to the
separation.

5.6 Results
Plotting the histogram of the intra-variability and the inter-variability for
the distances of both populations shows a good separation between the two
populations, as would be expected based on the PCA plots. This is shown
in Figure 5.3. Fitting a distribution over the intra-variability values, an
exponential was obtained for P1 and a beta-distribution was obtained for P2.
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These distributions were chosen as they resulted in the lowest sum of square
errors and are shown in Figure 5.4.

Figure 5.3: Histogram of distances observed for intra- and inter-variability of
P1 (top) and intra- and inter-variability of P2 (bottom). The values obtained
for both E are indicated as lines.

E (S1) E (S2)
Pr(E | P1) 0.327 0.193
Pr(E | P2) 0.001* (3.414×10−07) 0.001* (6.653×10−06)

Table 5.2: Probabilities assigned for the evidence given the propositions for
both scenarios.
*: values were lower bound at 103. Density values obtained from the distri-
bution are indicated in brackets.

The values obtained under the alternative hypothesis are rather small.
They are obtained from a region of the distribution where no actual values
were observed. Whilst it is justifiable to use those values directly, there is also
a strong argument to be made, that these values are far too impactful given
the low quantity of data available. Indeed, at the far ends of a given density
function, values may easily vary several orders of magnitude depending on
very little. To address this issue, the expert may assign lower bound values
under which the values of the distribution are ignored and the lower bounds
value is taken as a probability instead. In the current situation, the author is
of the opinion, that values below 10−3 are not justified given there were only
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Figure 5.4: Density distributions for the intra-variability of P1 (top) and P2

(bottom). The distances observed as evidence are indicated as vertical lines

21 initial observations for the alternative proposition, although the sampling
has allowed to simulate a larger population. Lower bounding the probabilities
ensures that no astronomically high LR are presented that have no sufficient
support in data. A disadvantage of this approach is that once a certain level
of dissimilarity reached, the similarity of the evidence with the reference
element does not really have an impact on the LR anymore. This can be
seen by looking at the two subscenarios presented here. Despite ES2 being
more similar to P2 than ES1, the probability under P2 that is assigned ends
up being the same in both cases.

Inputting the values into the formula for the LR or the Bayesian Network,
the following LRs are obtained:

S1 S2
LR 327 193

Table 5.3: LR for both subscenario.

Following the verbal scale by (Marquis et al., 2016), both these LR are
qualified as strong support for the proposition that person A was the person
using the device at the day of interest.
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5.7 Discussion
LRs of 327 respectively of 193 in favour of person A using the phone during
the period of interest are obtained in this chapter. These LRs support the
correct proposition, person A indeed having been the user of the device at
both days of interest. The analysis conducted technically only compares the
usage of the device at the day of interest to the usage during the period
of reference, which would result in propositions of the form "At the day of
interest, the person usually using phone 1 (respectively 2) has used the device
of interest." However, given the circumstances of the case, it is not contested
who the person was that used each phone in the reference period (person
A and person B respectively), allowing the expert to express an opinion on
the person-level and not just on the user-level. This reasoning is categorical,
requiring no further probabilistic evaluation. The LR on the user-level is
therefore identical to the LR on the person-level.

The characteristics used in this chapter were reused from (Michelet, 2021).
It is likely that quite a degree of co-dependency exists between some of the
variables whilst others do basically never change. This would mean that it
is possible to reduce the number of analysed characteristics rendering the
process more efficient. However, a larger data set with high diversity of
participants would be required to conduct the necessary analysis.

Whilst the here presented method may provide interesting insight if a high
degree of similarity is observed between the reference period and the period of
interest, there is limited use for the method if differing results are obtained.
Indeed, there may be reasons why a person changes their behaviour, such
as them going on vacation, changing job or getting heavily invested in a
new app. Research from psychiatric research suggests that based on similar
characteristics, it may be possible to predict phases of mental illness (Ben-
Zeev et al., 2015). It is to be expected, that changing behaviour due to mental
illness would also impact the analysis presented in this chapter. Finally, as
most offenders are single time offenders (Kuhn, 2012), the moment in which
they do commit a crime is per definition a time frame of unusual behaviour.
Future research should focus on addressing these questions.

No calibration of the used density distribution was conducted. In further
research, this should be considered.
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Chapter 6

Scenario 3

In this chapter, a scenario with a location-focused question is presented,
which involves direct evidence of a user being in possession of the device.
Two elements of evidence, one for location and one for user identity, are
evaluated together under propositions of the location of a person.

6.1 Description of Scenario
In this scenario, it is shown how direct evidence of device possession allows to
evaluate the evidence under person-level evaluation. Here, the parties do not
just disagree on the location of the device but also on who had the device at
the moment in time. The following scenario may describe such a situation:

A crime was committed at Location X and time t. A suspect, Person A,
is arrested some time after and his smartphone is seized for extraction. On
the device, a picture is found showing a finger with visible friction ridge
patterns, localised at the crime scene and timestamped around the moment
of the crime. The suspect insists that their phone was stolen during the
period in which the crime was committed and that he only found the phone
the next day by pure coincidence. Person A claims that during the period
of which the crime was committed, he was at home sleeping (Location Y ).

The claim by the suspect may seem outlandish. This should however not
impact the analysis conducted by the expert in this case, as the plausibility of
an advanced proposition is in the domain of the court and is represented in the
prior probabilities of said proposition. A structured Bayesian approach will
allow to counter biases one may have against believing in such a proposition.
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Other circumstances in which the present approach can be employed may
arise when no specific information about device possession is available (e.g.
when the suspect refuses to make a claim regarding possession during the
period of time, or when the person that would have had this information is
deceased), or when one of the parties wants to preempt an eventual claim
that someone else was in possession of the device at the moment of the crime.

Either way, the following pair of propositions is considered:

P1: Person A was at Location X at time t.
P2: Person A was at Location Y at time t.

6.2 Theoretical Background of Location Traces
The global positioning system (GPS) is a network of satellites equipped with
a very precise atomic clock and knowledge of their own position, perpetually
verified through a network of ground-stations. Transmitting their position
and their current time ([xi; yi; zi; si] for Satellite i), they allow devices that
have vision of at least four GPS-satellites to calculate their own position in
4 dimensional timespace.

To understand these calculations, a simplified model can be considered,
where the speed of light in the atmosphere is considered to be equal to the
speed of light in a vacuum (c) and relativistic effects are ignored. In this
model, the distance between a satellite and the device can be expressed
through two ways. First, based on the time travelled, where ti is the time of
reception of the signal by the device and b is the bias of the devices clock in
comparison to the GPS-time :

di = (ti − b− si)c (6.1)

Second, based on the geometrical distance to the satellites using Pythago-
ras’ theorem where x, y and z are the spatial coordinates of the device:

di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (6.2)

Obtaining a package [xi; yi; zi; si] from at least four distinct satellites al-
lows a device to solve for x,y,z and b and therefore localise the device. If more
than four satellites are available, the system becomes overdefined, leading to
the need of approaches to mitigate differences1. Given that measurements

1For four satellites, the equations give a single possible solution, which is likely less
correct
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Figure 6.1: Visualisation of GPS masking and multipath: Because the direct
signal from the satellite is blocked (path a), the phone receives the signal
reflected from a nearby building (path b). As the calculations assume direct
line of sight, the phone will localise at position X ′ instead of X.

are subject to error, having more than four satellites can help increase the
precision of the system (Blewitt, 1997).

A major source of systematic errors with GPS are effects of multipath and
masking, prevalent mostly in large cities. If a device attempting localisation
through GPS is standing in the space between two high objects, such as
buildings or mountains, it can happen that one of those objects blocks the
direct line of sight to a GPS-satellite. If the surface of the second object is
sufficiently flat, the signal sent out by this satellite may bounce off of this
surface and still reach the device. This reflected signal has taken a longer
path than a direct transmission would have taken and therefore a longer time
of flight. As it is assumed that the signal has travelled in a straight line, the
device appears to be further away from the hidden satellite than it actually
is, causing the computed localisation to be at the wrong position (Van Sickle,
2020). Figure 6.1 schematically shows the mechanism behind the shadowing
and echo-effect.

Nowadays, other technologies are used to improve upon localisation by
GPS. Notably, so called fingerprinting techniques are employed. These ap-
proaches are based on huge databases containing lists of cell towers and WiFi
access points that are visible at a given location. Reverse-lookups of these
databases allow a device to improve the accuracy of its position even if only a
small number of GPS-satellites are visible. Especially in cities, where a large
quantity of WiFi networks are available, the precision can be improved sub-
stantially through fingerprinting (Cedergren, 2005). The technology is, how-
ever, dependent on the accuracy of the reference databases. These databases
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are kept updated through the measurements of devices using them, which
has shown to be challenging to correct errors once they are in the database,
sometimes causing errors exceeding what would be expected from GPS-only
locations.

This effect has been documented in studies looking at real world systems.
Over the period of one year, Merry and Bettinger conducted a large number of
measurements using the same phone at six precise locations surrounding their
faculties building. They were the first ever to record a directional bias in one
of the measurements they conducted. This particular location was situated
on the side of their building towards the parking lot. They theorised that
the observed effect may have something to do with echo from the building
(Merry and Bettinger, 2019). Such effects were also reported in Ryser and
Jacquet-Chiffelle (2021), where the accuracy of the geolocation associated
to images was investigated. In their work, Ryser and Jacquet-Chiffelle not
only observed errors up to 27km for some locations, they also reported that
these errors are heavily biased in specific directions. They conclude, that
depending on the location, error of localisation may vary heavily (Ryser and
Jacquet-Chiffelle, 2021).

The source of these systematical errors is not definitely known, although
the theory has been proposed that it is caused by a bias towards locations
where many people are, caused by databases being more frequently updated
at these locations than where fewer people are.

6.3 Theoretical Background of Finger Marks
Increasing the capacity to grip, friction ridge skin on the hands and feet is
a feature shared by all primates (Berry and Stoney, 2001). The way they
are generated, a chaotic process involving stretching and pulling during the
development of the fetus, causes friction ridge patterns on hands to have a
very high degree of variation between not only different individuals but also
between different fingers of a same person. Additionally, due to the way the
dermis regenerates, the pattern is generally stable, set aside major injuries
or illnesses afflicting the skin (Champod et al., 2017). This combination
makes finger friction ridge pattern a characteristic well suited to identify an
individual. Whilst earlier anecdotal evidence suggesting awareness of the
individuality exists, the scientific foundations for the use of fingerprints as
a means of identification came about in the middle of the 19th century,
when multiple British researchers more or less at the same time became
interested in the properties and use of fingermarks both for the identification
of persons, mostly criminals, and as a means of solving crimes through traces
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left on crime scenes (Berry and Stoney, 2001). As the very act of touching is
likely to leave behind traces of high discriminatory power, dactyloscopy, the
discipline of identifying a person based on their finger friction ridge pattern,
has become a poster domain of forensic science.

A dactyloscopical analysis is done following an ACE-V2 methodology.
This process begins with the trace and a reference print produced from a
suspected source’s finger being analysed on three levels:

• The general pattern, which is the macro-structure of the ridge flow.

• The minutiae, which are points where ridges end or merge or other
macrofeatures.

• The positions of pores and other micro-features within the ridges.

These characteristics are then compared between the trace and the ref-
erence print. Both correspondences and differences are indicated, whereas
an inexplicable difference systematically leads to an exclusion of the print’s
owner as the source of the trace. The entirety of agreements and differences
are evaluated under a pair of concurring propositions, generally in the form
outlined below, before finally being verified by another expert (Champod
et al., 2017).

P1: Person A is at the source of the trace.
P2: Someone else is at the source of the trace.

Automatic systems for the evaluation of fingermark analysis exist, accord-
ing to Champod et al. (2017) generally following one of two approaches. The
first consists in creating a statistical model allowing to quantify the rarity
of a given configuration of minutiae, as for example proposed by Neumann
et al. (2011) at the Forensic Science Service for the UK and Wales. A second
approach is based on comparing the analysis to the results of comparisons
with known sources. Such an approach is for example followed in Egli (2009)
which is at the basis of the evaluative functionalities of the tool «PiAnoS»,
the solution created and hosted by the School of Criminal Justice at the
University of Lausanne (Furrer et al., 2020) and used in this work. The
approach is based on using AFIS3-scores as a measure for similarity, upon
which probability distributions are based (Egli, 2009).

From a security perspective, finger print scanners for unlocking digital
devices have become a frequent feature of smartphones and computers. Un-
like classical finger mark analysis, finger print scanners to unlock devices are

2Analysis, Comparison, Evaluation, Verification
3Automated Fingerprint Identification System
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generally not based on a picture of the ridge pattern, but are based on a scan
of the 3-dimensional features of the ridge pattern. The scan is then com-
pared to reference scans stored within the device, and, if a sufficient level of
proximity is achieved, the device is unlocked.

In recent years, identifying someone through their friction ridge pattern
has extended further into the digital dimension. With the evolution of digital
cameras built in smartphones reaching a resolution sufficient to distinguish
the ridges on the hands visible in pictures taken and cases have occasionally
happened where such evidence was considered. Two early cases where such an
analysis was done are a 2015 identification conducted by the FBI to identify a
perpetrator of child abuse in Georgia (USA) from fingers visible in the illegal
material (FBI, 2018) or a drug case investigated by the South Wales Police
(UK) in 2018, where finger mark experts were able to identify a drug dealer
based on a picture of him holding the wares offered for sale (Wood, 2018).

6.4 Discussion of the Framework
When direct evidence of possession is available, there will in most cases not
be much use to discuss general ownership of the device. Evidence of a given
physical person having the device at a given moment in time will generally
be more impactful than indirect evidence. Whilst there is no direct screen-
off effect, as there is no categorical conclusion of ownership, the impact the
evidence has on the overall LR will be overshadowed by the direct evidence.
Consequently, the nodes on overall usage (User) and abstract usage (UseU)
are removed from the Bayes Net used in this chapter. Based on the analysis
conducted in Section 3.3, Pr(UseP1) is fixed at 0.8. Figure 6.2 shows the
reduced Bayes Net.

Given the directional bias observed in real world systems (Merry and
Bettinger, 2019; Ryser and Jacquet-Chiffelle, 2021), it is proposed that GPS
evidence is best evaluated using a two step approach: First, the direction in
which the measurement is situated from the proposed location is considered.
Second, the distance of the measurement to the location given this particular
direction is taken into consideration. This leads to the following LR where
ϕ is the angle of the direction from the north and d is the distance from the
location considered in propositions 1 and 2 respectively (cf. Figure 6.3 for
an illustration of the two parameters):
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E1

LocDE2

LocPUseP

Figure 6.2: Bayesian Network for Scenario 3

(6.3)

LRE1 =
Pr(E1 | LocD1)

Pr(E1 | LocD2)

=
Pr(d1;ϕ1 | LocD1)

Pr(d2;ϕ2 | LocD2)

=
Pr(d1 | ϕ1;LocD1)Pr(ϕ1 | LocD1)

Pr(d2 | ϕ2;LocD2)Pr(ϕ2 | LocD2)

As such, d and ϕ can be considered as two separate, although not inde-
pendent, traces and the Bayes Net can be adapted consequently as shown
in Figure 6.4. As the distance and angle are dependent on the coordinates
of the location considered in each position, the values ϕ and d are different
in the numerator and the denominator. This may seem counter-intuitive. It
can however be shown that the above term is equivalent to the original LR
formula.

As it is easier to condition a continuous distribution by a discrete measure,
the angle ϕ is not evaluated as the probability of the angle being exactly ϕ
for a given position. Instead, this probability is approximated with the prob-
ability that the observed angle for a localisation created at a given position
falls in a section of the circle [ϕ−ε;ϕ+ε]. A distribution of d is then created
for all simulated data points that fall within this circle segment. An ε of
30° is used in this work, giving an overall wedge size of 60°. The wedge size
is chosen intentionally quite large to ensure sufficient data for the modeli-
sation of the distance is available. Smaller angles are just as justifiable, for
larger angles, care must be taken for the analysis to still be meaningful. This
approach is visualised in Figure 6.5.
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Figure 6.3: Illustration of the parameters d and ϕ for a given position (P )
and observed localisation (E). d is the distance between P and E and ϕ is
the angle between the PE-vector and north.

E1dE1ϕ

LocDE2

LocPUseP

Figure 6.4: Bayesian Network for Scenario 3 adapted to take into account
both elements of E1 separately
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Figure 6.5: Illustration of data points retained for a given location P . Instead
of evaluating ϕ, the probability of data points laying within a sector of [ϕ−
ε;ϕ+ ε] is evaluated.

6.5 Simulation of Data
This section describes the creation of all the data required to conduct the
analysis at hand. Given this is a simulated case, many parameters could
freely be chosen. What considerations should be made when conducting
such an analysis in a real world case is indicated in Subsection 6.5.4.

6.5.1 Choice of the Concurring Locations

Two locations were chosen on the campus of the University of Lausanne. The
first location, considered under P1 is within the localities of the School of
Criminal Justice and represents Location X. The second location considered
under P2 is in the cafeteria area of the neighbouring building and represents
Location Y. There is a distance of about 200m between the two locations.

The coordinates of locations X and Y are measured from the interactive
map of the University of Lausanne campus (University of Lausanne) and are
indicated in Table 6.1.

Longitude Latitude
P1: Location X 6.575116326 46.521954786
P2: Location Y 6.573832039 46.521592273

Table 6.1: Coordinates of the positions considered in each proposition.
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6.5.2 Simulation of the Evidence

A picture showing the left index finger of the author was taken with a Sam-
sung Galaxy S20 5G whilst location services, mobile data and WiFi were
turned on. The picture was taken at Location X, within the localities of the
School of Criminal Justice at the University of Lausanne. When the pic-
ture was taken, an active Swisscom SIM card was in the device and it was
connected to the WiFi network.

6.5.3 Simulation of Reference Location-Data

Reference data was generated at the locations described by both proposi-
tions. The same phone used to create the evidentiary data was used with
the exact same settings. The phone was set on a table and approximately
every minute, a picture was taken. This was done at both sites over a period
of 3 days, with the first two days being Wednesday and Thursday of the
same week, and the third being Monday of the following week. Overall, 1627
pictures were taken. A logical extraction of the device was conducted with
Cellebrite UFED 7.53.0.24 extracting only pictures. The result was opened
in Cellebrite Physical Analyser 7.54.1.7 and an Excel-report was generated
from the locations tab. Manually, this report was split up into two Excel
lists, each one containing the reference data points for one of the locations
indicated in the propositions.

6.5.4 Considerations for a Real World Case

In Chapter 4 it was mentioned that little is known about the factors influenc-
ing the choice of cell tower, even less is known about the factor influencing
localisation precision. To preserve evidence, it is not recommended to use
the evidentiary device in a real world case. Given that the systems providing
these locations are mostly proprietary, owned and operated by Google in the
case of Android- and by Apple in the case of iOS-Systems. As such, it is im-
perative to use a device from the same ecosystem as the evidentiary device
when simulating the data. Given that the sensitivity of a device in regards to
WiFi- and CT-signals is likely to vary from one model to another, it is also
recommended to use a device of the same make and model. Also, whether or
not these signals are detected or not is dependent on the devices connectivity
settings. As far as possible, the settings of the device at the moment of inter-
est should be recreated. In Merry and Bettinger (2019), no obvious temporal
influence was observed, nevertheless, further research should be conducted
to strengthen these results.
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6.6 Conducting the Analysis
This section describes the analysis process for both the localisation evidence
and the fingermark evidence.

6.6.1 Location Evidence

The coordinates recorded in the EXIF-data of the picture taken at Location
X are shown in Table 6.2.

Longitude Latitude
E1 6.5750922 46.5219326

Table 6.2: Coordinates recovered from the Evidence E1

The two lists containing the measurements for each location were auto-
matically analysed using Python scripts. Whilst parsing the lists, consecutive
data points with exactly the same location were discarded, as it is considered
that it is more likely that in between, the location has not been updated by
the phone, rather than the location service providing exactly the same loca-
tion twice in a row. Table 6.3 shows the number of remaining measurements
after this elimination.

Location P1 P2

N 275 239

Table 6.3: Number of data points per location after eliminating consecutive
identical locations

To gain a first impression of the distribution, all points were plotted on
a scatter plot. This distribution is shown in Figure 6.6. As can be seen, the
data for the location P1 is systematically out to the west of the measuring
position, forming a conic pattern. Whilst most of the measurement points
are quite close, there are several points that are multiple meters away. For
location P2, the large majority of the measurement points is very close to
the location, off to the south of the latter. One single data point is several
hundreds meters off to the northeast. Already, it can be seen quite clearly
that the evidentiary location is in the midst of P1-data points, suggesting
that an LR favouring P1 will be obtained and that the location-evidence
obtained will indeed be pertinent for the question of device location. As
described in Section 6.4, the angle and distance are analysed separately to
address the influence of the angular bias that can be observed particularly
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Figure 6.6: Plotted coordinates of the reference data for both locations, E1,
P1 and P2. (The (lat,long)-values are directly used as coordinates. x and x
distances do therefore not correspond to reality)
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well in the data for P1. This is achieved by calculating the distance and the
azimuth between the evidentiary coordinates and the relevant proposition.
The values obtained are shown in Table 6.4. The same was then done for
reference data point for both propositions. The probability of the angle was
approximated by the fraction of data points that were within the 60° wedge
where the angle of the evidentiary data is in the middle. The probability of
the distance was assigned based on a distribution fitted over the measured
distances between the origin and each data point for all points that lie within
the wedge. The value was obtained from the function density at the observed
distance.

Location d [m] ϕ [radians]
P1 3.6 3.8851
P2 144.6 0.2586

Table 6.4: Distance and angle observed for each position

6.6.2 Fingermark

In Photoshop, the picture of the finger was cropped to only show the finger
and realigned to be upright. The image was then turned black and white and
a curve filter was applied to improve the contrast between the ridges and the
valleys. Finally, to correspond to the print it will be compared to, the image
was flipped along the vertical axis. The finger visible in the picture presents a
general pattern classified as accidental with an outer tracing ridge according
to the NCIC classification (United States Department of Justice, and Federal
Bureau of Investigation, 1984). A scan of an ink print of the person of interest
was obtained as reference material. From the reference print, the size of the
evidentiary mark was estimated based on the distance between the centre of
the whorl and a minutia with a very characteristic form to the left of the right
delta. This approach does bring along the issue that it only is consistent if
the finger actually comes from the suspected source and may reinforce the
LR in this regard. Additionally, the curvature of the finger in the picture
will generate additional differences to a comparison to an imprinted trace.
For the given case, it is however assumed, that the quantity of available
corresponding features (see below), would be sufficiently dominant in the
creation of the LR that this assumption will not impact the comparison too
much. Both the reference print and the trace were loaded into the ESC-
internal instance of the fingermark annotation and comparison tool PiAnoS
(Furrer et al., 2020). In PiAnoS, first the trace then the comparison were
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Figure 6.7: Original image recovered from the device of interest (left) and
image in black and white with the area chosen for further analysis indicated
in red (right).

annotated, the corresponding minutiae linked and evaluated using the built-
in comparison tool. On the trace, 35 minutiae were identified, 33 of them
could then be linked to minutiae on the reference print. The two remaining
minutiae are located in an area of low picture quality for the trace and many
different minutiae on the reference. It was consequently not clear which of the
observed features corresponded and no matching was done. Several minutiae
are identified on the print in regions also visible on the trace. However,
the ridges in these regions are almost indistinguishable, explaining why they
could not be observed on the trace. Figure 6.7 shows the original picture and
the selected area. Figure 6.8 shows the treated selection and the reference
print, both with and without annotation.

6.7 Results
In this section, the probability values for each piece of evidence under each
proposition are discussed before combining them in an overall LR.

6.7.1 Location-Evidence

174 out of 275 points were located within the wedge for P1 and 1 out of
239 within the one for P2. For the distance-values, a t-distribution could be
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Figure 6.8: Evidentiary image, cropped, realigned and treated (left) and
reference print from Person a (right); both the original picture (top) and the
annotated (bottom). Minutiae are indicated in red, correspondences between
mark and print are shown in yellow.
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Figure 6.9: Distribution of distances within the wedge for P1. The value
observed for E1 is indicated in red.

fitted over the values created at P1. Figure 6.9 shows the distribution of the
distances for the measurements within that wedge.

For P2, a single data point was within the wedge, which causes a particular
challenge regarding the distance-analysis for P2 that is likely to occur in such
analyses: As the evidence was created supposing P1 to be true, there are only
few data points that are within the wedge observed for the evidence under
P2, leaving behind a very meagre data set to work with for the distance-
distribution. Several approaches could be envisioned for this situation:

• Instead of only the data in the wedge, the entirety of the available data
is used. In the current situation, this would not create too much of an
issue, as the bulk of the measurements is very close to the proposition-
coordinates. In a situation however where a distribution such as with
P1 is observed, this would artificially increase the probability for the
observed data in an unjustified manner.

• The small number of data points is ignored and a distribution is blindly
fitted over the few available points.

• The coordinates for the proposition can be moved to the centre of
gravity of the reference data. This way, some of the core data points
are moved in the wedge without the more distant data points having
too much of an influence on the actual distribution.
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• Instead of a fitted distribution, a lower bounds probability is used. This
value can be informed by how many data points are further out than
the observed distance.

There is no obvious answer to the problem, none of them are easily defensible
from a theoretical point of view. In the first approach, the angular depen-
dency, which can quite clearly be shown to exist empirically, is ignored. This
can lead to arbitrarily inflated probabilities. The second approach has the
issue that distribution fitted over a small number of measurements are heav-
ily dependent on singular data points and become quite volatile. If a single
data point is added or removed, a completely different result may be ob-
served. As such, it is very hard to justify an approach like this. The third
approach is problematic as the proposition is adapted based on the measure-
ments. Whilst in many cases, this may pragmatically be defensible, as the
coordinates assigned to the proposition may not quite be as precise and the
centre of gravity of the data cloud is often quite close to the point that was
assigned, it is not a sign of good scientific practice. It becomes particularly
problematic, if the points have been agreed upon by the parties, as the ex-
pert would be clearly overstepping his boundaries. The final approach has
the issue that it is not evident to find a good value as a lower bound, it is
however less problematic to defend from a conceptual point of view. Rec-
ognizing that the ideal approach leads to unstable results in the scenario at
hand, an expert would assign a value based on his experience. This is the
approach recommended by the author and applied here.

The value to choose is the probability to observe a value at a distance of
144m, given that the device was indeed at position P2 and said location is
in the wedge northeast of P2. The single point that was observed within the
wedge was at 260m from position P2, which is almost double the distance of
the evidence. Nevertheless, it would be expected that locations are closer to
the actual location than what was observed. The value of 0.05 is assigned
here as a very conservative value where the risk of blowing up the final LR too
much is minimal, given that the Pr(d1 | ϕ1, P1) is only double the probability
despite it being in the bulk of the reference. The probability values obtained
from the analysis are summed up in Table 6.5.

With these results, it is possible to calculate a device-level LR based on
Formula 6.3.

LRE1 =
Pr(d1 | ϕ1;LocD1)Pr(ϕ1 | LocD1)

Pr(d2 | ϕ2;LocD2)Pr(ϕ2 | LocD2)
=

0.640 ∗ 0.116
0.004 ∗ 0.05

= 371.2 (6.4)

A device-level LR of 371 is obtained. This corresponds to the maximal
value that may be obtained for the person-level LR.
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Location Pr(ϕ | P ) Pr(d | ϕ;P )
LocD1 0.640 0.116
LocD2 0.004 0.05 (0.000*)

Table 6.5: Probabilities assigned based on the analysis.
*: As described, the value for Pr(d2 | ϕ2;P2) was assigned based on the
experts personal knowledge and experience. The value provided by the model
is indicated in brackets.

Figure 6.10: Score distribution under the assumption of same source (red)
and different source (blue). The black bar indicates the score obtained from
the evidentiary image compared to the print.

6.7.2 Fingermark

The LR-module of PiAnoS returns for the annotated minutiae a calibrated
LR of 3 × 1010. Figure 6.10 shows the density functions obtained from the
automated evaluation process. Table 6.6 shows the probability table of E2

based on this assessment. The probability of E2 given UseP3, the case where
no one was using the phone at this moment in time is assigned at 0, as it
would be quite hard to explain how this picture was created if no one was
using the phone at the moment of interest.

The obtained values signify a very high support for usage at the moment
of interest and it is to be expected that the overall LR is therefore very close to
the LR on the device-level. To observe the effect of the considered possession,
a thought experiment is conducted, in which only the general pattern is taken
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UseP UseP1 UseP2 UseP3

Pr(E2 | UsePn) 4× 10−5 5× 10−17 0
Pr(E2 | UsePn) 1− 4× 10−5 ∼ 1 1

Table 6.6: Conditional probability Table of node E2 based on minutiae com-
parison.

into account. As indicated in the previous section, the general pattern is an
accidental with external ridge tracing(Corresponding to the NCIC code of
XO). If the suspect is indeed the person at the source of the picture, the
general picture is expected to correspond and the probability is therefore 1.
In Champod et al. (2017), frequency data from an FBI collection is published
showing the frequency of each category of general pattern for each finger. If
it is assumed that it is known that the finger in the picture is a left index, the
probability to observe the general pattern of XO is 0.003. The assumption
about the finger is considered to be defensible, as it not only corresponds to
the most natural position of the hand, it is also the most favorable to the
defendant, as the XO pattern is the most likely to be observed on the left
index. The probability table for this situation is shown in Table 6.7. This
configuration gives an LR on the question of possession of 333.

UseP UseP1 UseP2 UseP3

Pr(E2 | UsePn) 1 0.003 0
Pr(E2 | UsePn) 0 0.997 1

Table 6.7: Probability Table of node E2 based on the general pattern.

6.7.3 Overall LR

The overall LR is obtained by inputting the values shown in this section so
far into the Bayesian Network shown in Figure 6.4. As expected, using the
values obtained from the minutiae comparison, the LR on the person-level is
371, which corresponds to the device-level LR. According to the verbal scale
proposed in (Marquis et al., 2016), this constitutes strong support for the
proposition that Person A was at Location X at the moment of interest.

Using only the general pattern, the LR is slightly lower at 325. This is
only marginally lower and the qualification according to the verbal scale does
not change.
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6.8 Discussion
For the present scenario, an LR of 371 was obtained for a full fingermark
analysis and an LR of 325 was obtained with just the general pattern. The
reference measurements conducted at both locations indicated that a result
in favour of P1 was to be expected, as the evidence is in the middle of the
reference data points taken at Location X and the picture was indeed taken
there. As such, the obtained result is what was expected.

As can be seen with the example where only the general pattern of the
fingermark was considered, even when the support for the proposition of pos-
session is not astronomical, an LR close to the device level can be obtained.
It can therefore be concluded, that considering the person-level is not very
impactful if direct evidence is available.

This chapter not only presents an approach on using finger friction ridge
patterns to mount to person-level propositions, it also presents an approach
to evaluate GPS-evidence with proportional effort.

Experiments treating the probability function for Pr(E1 | Pn) as a two di-
mensional function of d and ϕ should be considered as a possibility for further
research into the probabilistic treatment of localisation evidence. This would
eliminate the requirement to find an adapted ε value for the experiment, is
however likely to require a larger number of data points to obtain a stable
probability distribution. A larger scale study should also be conducted to
investigate the universality of the present approach and to properly calibrate
the LR. Finally, for future reproductions of the here presented approach, it
should be considered to automate the registering of reference measurements.
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Chapter 7

Scenario 4

In this chapter, a scenario with a location-focused question involving indirect
evidence is presented. Three pieces of evidence are evaluated:

• Evidence of general usage

• Evidence that the general user utilized the device at moment of interest

• Evidence of location at the moment of interest

These three pieces of evidence are evaluated all together under a pair of
person-level propositions.

7.1 Description of Scenario
This scenario illustrates the use of indirect evidence of ownership when eval-
uating digital traces under person-level propositions. In that setting, the
usage of the device is not just contested for a given moment, but for the
device in general. Evidence for all three sub-stages (general usage, usage at
time t and location) is required. The following scenario illustrates a situation
where this would be the case.

A crime was committed at Location X and time t and a mobile device is
found in close proximity to the crime scene. A suspect, Person A, is arrested
some time later. The suspect denies all involvement with the crime and
claims never to have seen the found device. When searching the apartment
of the suspect, a note with a password is found that allows to unlock the
found device.
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In this Scenario, the following pieces of evidence are observed:

• Password

• Behavioural Pattern

• Location found within the Device

These pieces of evidence are evaluated under a pair of location-focused,
person-level propositions with a specific location as the alternate proposition:

P1: Person A was at Location X at time t.
P2: Person A was at Location Y at time t.

7.2 Theoretical Background of Passwords
Passwords are a typical example of a "Something you know"-identifier as
specified in Section 2.3. They have established themselves as a de facto stan-
dard for user authentication on a large multitude of devices and accounts.
They have although also been criticised as an insecure means of authentica-
tion, as experience has shown two major issues: first, people tend to re-use
their passwords over multiple sites, creating a security risk if the password
for a given site is compromised (Ives et al., 2004; Das et al., 2014). This
behaviour has also frequently been used by investigators and forensic practi-
tioners. If a suspect refuses to give up his or her password, passwords that are
used by that same person for other accounts are a valuable piece of informa-
tion as they may have the potential to allow access to the account or device
of interest as well. If password reuse is sufficiently persistent behaviour to
allow investigators access locked devices, the suggestion can be made that
reused passwords could be used as a means of identification. If it is indeed
possible to access the account of a given person by entering a password that
is known to be used by this person on another platform, the conclusion that
the person may also be the user of this device seems to impose itself.

If password reuse is considered as evidence in a Bayesian manner, two
factors of the issue need to be known: How likely is it, that a same person
uses for the device or account of interest a password he or she already uses
elsewhere (intra-variability), and how likely it is that another person has used
the very same password independently of the first person (inter-variability).
These two factors are discussed in the following.
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Intra-variability: The ideal source to gain information about the reuse of
passwords by a given person would consist this persons password manager if
the person uses one and access can be obtained. This will not always be the
case as password managers are still only used by a, admittedly growing, mi-
nority of persons (Gaw and Felten, 2006; Google and Harris Poll, 2019). Over
the years, a series of studies based on questionnaires have been conducted
to assess the behaviour of persons when using passwords (Dhamija and Per-
rig, 2000; Brown et al., 2004; Riley, 2006; Gaw and Felten, 2006). Albeit
generally very thorough, these studies are limited by their relatively small
sample size and being limited to a specific population, either students (Brown
et al., 2004; Riley, 2006; Gaw and Felten, 2006) or employees of a given firm
(Dhamija and Perrig, 2000). A very large scale study was conducted by Flo-
rencio and Herley using a optional extension for the Windows Live toolbar.
Their measurement method consists in recording inputs in fields designated
as password-entry fields (Florencio and Herley, 2007). Their method has the
advantage of measuring password behaviour at a large scale and independent
of user self-reporting has a huge advantage of making their results more ob-
jective as it is not dependent on users memories and honesty. However, as
the authors are not able to distinguish between erroneous password entries
and actual password entries, they decided to eliminate all entries within their
recorded data that have a complexity below 20 bit complexity are ignored.
The authors consider this to be just a minor source of error. However, analy-
sis of the real world password dump from Burnett (2015c) indicates that this
assessment is likely wrong. Indeed, this criteria eliminates about 3% of the
1’000 most frequent password in the data set, indicating a large quantity of
discarded passwords. In recent years, some vendors of password management
tools have conducted analyses about the password habits of their customers
and published them for mostly promotional purposes (c.f. LastPass, 2019).
These studies are focused on users of password management services, likely
reporting better behaviour than for a wider population, as users of a password
manager are by default more likely to be aware of risks related to passwords.
Nevertheless, these studies do give an interesting insight in the habit of users
regarding passwords. As they are based on actual passwords stored and can
refer to a large quantity of data, this study is likely to be representative for
this specific population. Table 7.1 gives an overview of reported password
numbers per person and number of unique passwords per persons, allowing
to draw conclusions about password reuse.

Inter-variability: A widely known fact about passwords is that there is
a very low diversity in the passwords that are chosen by different users. In-
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Study Year N # of PW # of unique PW
Dhamija and Perrig 2000 30 10-50 1-7
Brown et al. 2004 218 3-20 1-11
Riley 2006 328 - 3.1*
Gaw and Felten 2006 49 7.8* 3.3*
Florencio and Herley 2007 544’960 25* 8.11*
LastPass 2019 47’000** 75 5***

Table 7.1: Reported rates of password reuse.
(*: Mean values reported; **: Number of organisations ranging from 1 to
10’000+ employees; ***: calculated based on reported average password
reuses)

deed, based on collections of compromised credentials is has been estimated
that the 1’000 most frequent passwords allow to access 85% of all online ac-
counts. These collections allow to estimate how frequent a given password
is, although there are strong indications that these dumps may not always
be well adapted for this task. As generally, services with lower security stan-
dards get leaked, it is well possible that many of the passwords were chosen
with a lower requirement for security than would have been chosen for more
important services. Additionally, it has been suggested, that requirements
by the service have a major influence on the passwords chosen. (Florencio
and Herley, 2007). It can therefore be expected that the requirements of the
password will have an influence on the choice of password. Similarly, the
type of input very likely has an influence and passwords typically entered
through a computer keyboard will not have the same characteristics as pass-
words entered from a smartphone. For example passwords with letters all on
one row of the keyboard are generally more frequent (Brown et al., 2004).
As these arrangements change from one region to another, so are password
frequencies likely to vary.

A study by Kanta et al. recently found that the type of service for which
the password is used will have an influence on the password as well. For
example, a wordlist generated from a Manga forum password dump will be
more efficient in cracking passwords for Manga-related services than other
passwords list are (Kanta et al., 2021). There is also a high probability that
the choice of password is influenced by the language spoken by the person
choosing the password, at least for passwords containing words.
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Figure 7.1: Bayesian Network for scenario 4. As in scenario 3, the E1-node
has been split up to take into account the distance and angle of the evidence.
The node PW has been added to simplify the evaluation of E2.

7.3 Discussion of the Framework
The Bayes Net used in this scenario (cf. Figure 7.1) is based on the network
shown in Figure 3.2 in Chapter 3. The node PW is adapted to model three
different possible behaviours of Person A regarding password reuse: Person
A never reuses a password (PW1), Person A sometimes reuses a password
(PW2) and person A only uses one password for all their services (PW3).
Table 7.2 shows the probability table of node E2, the password evidence,
adapted accordingly. Given that node PW only describes Person A, its state
only has an impact on the probabilities of E2 if Person A is the general user
of the device, in other words, if User1 is true. In this case, if Person A never
reuses a password (PW1), they would not have chosen the password found at
their apartment for their mobile device as well and the probability to observe
E2 is therefore 0. If Person A uses the same password everywhere (PW3, the
probability to observe E2 would become 1, as they would certainly be using
this password. Finally, if they sometimes reuse their passwords (PW2), there
needs to be an assessment made about the probability of Person A using this
particular password for the phone. This probability (f1) together with the
probability of E2 if User2 is true and the prior probabilities in node PW are
discussed in Section 7.5.3.
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User User1 User2 User3
PW PW1 PW2 PW3 PW1 PW2 PW3 PW1 PW2 PW3

E2 0 f1 1 f2 f2 f2 0 0 0
E2 1 1-f1 0 1-f2 1-f2 1-f2 1 1 1

Table 7.2: Probability table of node E2.

7.4 Simulation of Data
All data used in this scenario was generated on an iPhone 6s (A1688) running
under iOS 14.4.4, although not at the same time. The behavioural data used
is the same as in scenario 2 and the location data was created simultaneously
to the data used in scenario 3. As such, the two locations X and Y remain
the same as in scenario 3. Their coordinates are shown in Table 7.3.

Longitude Latitude
P1: Location X 6.575116326 46.521954786
P2: Location Y 6.573832039 46.521592273

Table 7.3: Coordinates of the positions considered in each proposition.

7.4.1 Localisation

As with scenario 3, pictures were taken as the phone was sitting on the ta-
ble at both locations. The period during which the pictures were taken was
somewhat shorter and only 699 pictures were obtained. The quite important
difference to the number obtained in scenario 3 is mostly due to the reali-
sation that a longer interval between two pictures is required for a location
change to actually take place, and so the rhythm at which pictures were
taken was reduced. A logical extraction of the device was conducted with
Cellebrite UFED 7.53.0.24 extracting only pictures. The result was opened
in Cellebrite Physical Analyser 7.54.1.7 and an Excel-report was generated
from the locations tab. Manually, this report was split up into two Excel
lists, each one containing the reference data points for a given location.

7.4.2 Password

A password has to be chosen as the password found by the investigators.
During the analysis stage, this password’s frequency will be compared against
the frequency of the password in a reference sample. To observe the influence
of password rarity, three different passwords are chosen as different version
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of the evidence: The most frequent password (123456), a password with
medium frequency, in the dump ranked at 1’000, (wildcat) and a password
that is not present in the dump (dorigny).

7.4.3 Behavioural Biometrics

As the behaviour biometrics-evidence, the data from scenario 2 was reused.
In this scenario, the alternative hypothesis is an open set population and not
a specific person, the data for the alternative population is expanded by the
anonymised data used in Michelet (2021). This data consists of a set of 7
different persons, using four different devices of the same make and model
used here. The data set contains more than just the system characteristics
recovered from the devices in Chapter 5. These additional characteristics are
filtered out and the remaining characteristics are integrated in the group of
reference data under proposition P2.

7.4.4 Considerations for a Real World Case

The approach to assess the probability of password reuse attempts to con-
struct a general probability that any person, randomly chosen from the gen-
eral population, would reuse a password. This is likely not particularly well
adapted to a specific person, as password reuse is highly dependent on aware-
ness, background and other general habits of the person of interest. Here,
a general probability of any person belonging to one of three groups of be-
haviour is used to construct the above probability. Based on the available
information of a person, it is likely possible to know which group the person
actually belongs to. Often several passwords used by the person on mul-
tiple accounts are known to investigators, giving an insight into password
behaviours of the person. If lists of passwords or password storage services
are available, the likelyhood of the person reusing a given password may di-
rectly be inspired by these. Regarding the frequency of a password, it may
be possible to generate a more adapted reference data set based on the data
stored in case management systems of the lab. Often, passwords of analysed
devices are recorded in a dedicated field when documenting the device, as
this information may be required during the extraction. If the analyst can
query this field in his database, he may be able to obtain a very relevant
reference collection of passwords, specific to a given region, specific to a type
of device and specific to the part of the general population whose device is
likely to be analysed by a forensic expert.
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At the moment of writing, there are no publicly available data sets of
behavioural biometric reference data, and it may not be evident to obtain
such a data set. If a lab envisions conducting such analysis on a regular
basis, quite a bit of thought should be put into how such a dataset may be
constructed with proportional effort.

7.5 Conducting the Analysis
For this scenario, the three elements of evidence are analysed separately and
the results are combined only at the end. As the approach for GPS analysis
is already presented in Chapter 6 and behavioural biometrics is presented
in Chapter 5, these approaches are not explained in detail anymore here.
Instead, the approach is broadly described, stating the specific values for the
present scenario and only describing details where the process diverges from
what was done in the two earlier chapters.

7.5.1 Localisation

To analyse and evaluate the Location-Evidence, the same approach was fol-
lowed as in Chapter 6. The location indicated by the evidence E is shown in
Table 7.4

Longitude Latitude
E1 6.57394444444444 46.5213305555556

Table 7.4: Coordinates recovered from the Evidence E1

Again, eliminating identical consecutive coordinates, the measurements
were automatically analysed using a python script. Table 7.5 shows the
number of remaining measurements after this elimination. A plot of all those
coordinates can be found in Figure 7.2. As was already the case in scenario
3, the measurements spread out to the west for Location X and to the south
for Location Y. However, this time the spread is quite a bit larger. E1 is
right in the middle of the points measured at Location Y, suggesting an LR
in favour of P2 will be obtained. Table 7.6 Shows the observed angles and
distances under each proposition.

7.5.2 Behavioural Biometrics

The analysis process of the behavioural biometric evidence is done following
the same approach as presented in Section 5.5 : The data is normalised and
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Figure 7.2: Plotted coordinates of the reference data for both locations, E,
P1 and P2. (The (lat,long)-values are directly used as coordinates. x and y
distances do therefore not correspond to reality)
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Location P1 P2

N 50 149

Table 7.5: Number of data points per location after eliminating consecutive
identical locations

Location d [m] ϕ [radians]
P1 146.8 3.6310
P2 32.3 5.1235

Table 7.6: Distance and angle observed for each position

a PCA is conducted. In scenario 2, the first PC was sufficient to separate
out the two distributions. This is no longer the case here. Visualising the
distribution of the first 40 PC, no evident cut off point is visible (cf. Figure
7.3). A decision is made to use the first 10 PC as values. A data point for
single day therefore consists of a 10-dimensional vector where each dimension
is the corresponding PC-value of this day. Geometric analysis is conducted
in 10-dimensional space instead of one dimensional. The distances compared
for the evidence are obtained by calculating the distance of the observed data
to the center of mass of the reference data. The results are shown in Table
7.7.

Figure 7.3: PC-value of the first 40 PC for reference values observed under
P1 and P2
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Subscenario S1 S2
Distance 6.588 4.055

Table 7.7: Distances observed in behavioural biometric analysis for the day
of interest in both subscenario.

7.5.3 Password-Evidence

To assess the impact of the password evidence, two values must be assigned:
First, the probability of this password unlocking the phone if the suspect
is indeed the general user of the device. Second, the probability, that the
password unlocks the device despite the user not being the general user of
the device.

Given the suspect as the primary user

If the suspect is indeed the primary user, the probability whether they would
be reusing the password found in the apartment would depend on their be-
haviour regarding password reuse. As already indicated in Section 7.3, a node
is added to the Bayes Net to model this behaviour. This node PW contains
three states: Person A never reuses passwords (PW1), Person A sometimes
reuses passwords (PW2) or Person A only uses one password for all their ac-
counts (PW3). A 2019 survey of 3000 adults in the US asked participants to
answer in which of those categories they fall (Google and Harris Poll, 2019).
The reported frequencies from this study are used here to approximate the
prior probabilities of Person A falling in each of the presented categories.
The probability table of PW is shown in Table 7.8.

PW Pr(PWn)
PW1 0.35
PW2 0.52
PW3 0.13

Table 7.8: Probability table of node PW . Data from Google and Harris Poll
(2019).

Based on this separation, only a value for the probability of E2 if the
primary user is Person A and Person A sometimes reuses their passwords
(Pr(E2|User1;PW2)) has to be assigned. This probability is assigned based
on another study from 2019, when LastPass, a provider of password man-
agement services, published an analysis based on the data from 47’000 en-
terprises using their services. They found that in Switzerland, the average
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person has 74 passwords stored in their application. This value is very close
to the international average of 75. Additionally, the average employee, both
in Switzerland and internationally, reuses a password 13 times (LastPass,
2019). If it is assumed, that all passwords are equally probable to be used by
a given person, there is a probability of 13/74 that an average person would
be reusing a specific password. This value is assigned as the probability
Pr(E2|User1;PW2).

Given another primary user

If someone else is the primary user, this comes down to the probability of
someone else choosing the password that was found at the suspects home. It
is here assumed, that whoever was the person that chose the password would
not be aware that the suspect is using this password as well. Given the high
degree of password reuse (cf. Section 7.2), this is not per se an outlandish
possibility. To quantify this possibility, a data-set of real world, leaked pass-
words is used. This password dump containing 10 million passwords was
published by Burnett in 2015. The dump is a collection of different password
leaks, and while some passwords have been removed as they were linked to
sensitive infrastructure or allowed to identify their users, it is generally quite
representative of the overall distribution of data sets (Burnett, 2015c,b). At
the moment of writing, the data set is not available on the original site
anymore, but a copy is available on the Internet Archive (Burnett, 2015a).
From this data, the required probability is assigned based on the frequency
of the observed password within the password dump. The specific values are
discussed in Section 7.6.2.

Several criticisms can be raised regarding the choice of the data set:

The age of the data set: The data set was published in 2015c and whilst
overall, password frequencies have not massively changed over the years, some
tendencies could be observed, such as «12345678» overpassing «123456» as
the most frequent password, likely because an increased number of services
requiring at least 8 character long passwords for their services. This effect as
well as passwords containing cultural references more recent than 2015 would
not be represented in this data set.

The sources of the data set: The data set is comprised of passwords
recovered from password dumps, mostly when the databases of online services
were compromised (Burnett, 2015b). Given that system requirements and
limitations will impact the choice of password, it can rightly be argued that
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the passwords are not a good representation of the passwords the population
of potential passwords.

The language of the data set: The majority of the users of the data set
appear to be heavily influenced by the English language. For example, the
English word «monkey» is the 15th most frequent password in the data set
with 3246 appearances throughout, whilst the French «singe» ranks 51’696th
with just 16 appearances. If the potential user of the device is suspected to
not be English speaking, a strong argument can be made against the use of
this data set.

The cultural context of the data set: As has been shown in (Kanta
et al., 2022), the cultural environment in which a password was chosen, im-
pacts the choice of password. The present data set is thought to be a more
or less general data set given its size and the way it was constituted. Con-
sequently, it may not be adapted if the potential «other» users are not the
general population, but a subgroup of a very specific cultural context. If the
phone was for example found in a football stadium, football related terms
are likely to be underrepresented in the data set.

As can be seen, the data set is by far not ideal for the analysis at hand.
However, for the present proof of concept, it is considered sufficiently appro-
priate.

7.6 Results
This section presents results obtained for the different types of evidence. The
results are presented regarding the question of device location first, device
ownership second and, combining the two intermediate results to an LR on
the question of the location of the person. At both intermediate stages, an
LR is given on the level of the addressed question to give an impression of
the strength of the observed values.

7.6.1 Location of Device

19 out of 50 points were located within the wedge for P1 and 137 out of 149
within the one for P2. T distributions were fitted over both distributions,
as these distributions resulted in the smallest sum of square errors. Figure
7.4 shows the distribution of the distances for the measurements within both
wedges.
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Figure 7.4: Distribution of distances within the wedge for P1 (left, n=19)
and P2 (right, n=137). The value observed for E1 is indicated in red.

This time, the distribution under P1 is based on a very small number
of values (19). Additionally, the observed value lies in the tail end of the
distribution which is more likely to be affected by variations in the overall
function. To address this issue, the choice was made to assign a lower bounds
value of 0.001 to Pr(d1 | ϕ1;P1) to not assign probability values far below
what is justified with the size of the reference data sample.

With these results, it is possible to calculate a device-level LR based on
Formula 6.3 presented in Chapter 6.

LRE1 =
Pr(d1 | ϕ1;LocD1)Pr(ϕ1 | LocD1)

Pr(d2 | ϕ2;LocD2)Pr(ϕ2 | LocD2)
=

0.380 ∗ 0.001
0.919 ∗ 0.054

= 0.007657

(7.1)

A device-level LRE1 of 7× 10−3 is obtained (cf. Formula 7.1). As values
below one are generally not very well readable, an inversion of the proposition
can be envisioned (ENFSI, 2010), where the above value correspond to an
LR of 130 in favour of LocD2.

Location Pr(ϕ | P ) Pr(d | ϕ;P )
LocD1 0.380 0.001 (7× 10−8*)
LocD2 0.919 0.054

Table 7.9: Probabilities obtained from the analysis.
*: As described, the value for Pr(d2 | ϕ2;P2) was assigned based on the
experts personal knowledge and experience. The value provided by the model
is indicated in brackets.
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7.6.2 Usage of Device

Password

The password dump contains 5’189’382 distinct passwords. Table 7.10 shows
the observed number of appearances for the considered passwords. «Dorigny»
does not appear in the data set. It is therefore assigned a value of 1.00×10−7

corresponding to it appearing one single time, as the value is considered
to be at its highest that high, but there being insufficient data available
justifying assigning a lower value. Inputting the values in the Bayes Net,
an LR can be obtained on the question of who is the general user of the
device. The obtained LR are all in favour of Person A being the general
user(User1). The strength of the support varies heavily depending on the
rarity of the password, from 40 for 123456 (qualified as moderate according
to Marquis et al. (2016)), over 6’687 for wildcat (qualified as strong support),
to 2.214× 106 for dorigny (qualified as extremely strong). Table 7.10 shows
the assigned probabilities and obtained LR for the different passwords.

Password (E2) rank # of appearances Pr(E2 | User2) LR
123456 1 55’893 5.59× 10−3 40
wildcat 1’000 331 3.31× 10−5 6687
dorigny - 0 1.00× 10−7 2.214× 106

Table 7.10: Number of appearances and of the considered passwords in the
reference dump, assigned probability and obtained LR in favour of Person A
being the general user of the device (User1).

Behavioral biometrics

The visualisation (cf. Figure 7.5) of the observed reference values shows
quite a bit of overlap between the two populations. It is therefore to be
expected, that no particularly high LR values will be obtained. Plotting both
observed values, it can be seen that the evidentiary value in sub-scenario 1
is very close to the overlap.The evidence in sub-scenario 2 is in the midst
of the distribution from P1. A burr12 distribution was fitted over the P1-
values and a double weibull distribution was fitted over the P2-values. From
these distributions, density values for the observed evidentiary distances were
obtained. Figure 7.6 shows the density functions and Table 7.11 shows the
probabilities obtained based on these distributions.

These values are fed into the Bayes Net to obtain the LR for the question
at hand. They do however also allow to obtain an LR on the question of
the abstract user by comparing Pr(E3 | UseU1) and Pr(E3 | UseU2). The
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Sub-scenario S1 S2
Pr(E3 | UseU1) 0.05951 0.25435
Pr(E3 | UseU2) 0.10816 0.02897

Table 7.11: Probabilities of observing the evidentiary distance under each
proposition for both sub-scenarios.

Figure 7.5: Histogram of distances of behavioural biometric observations.

obtained LR are shown in Table 7.12. These LR values are quite low, in the
case of S1 even wrongly in favour of UseU2, although very feebly with a value
of approximately two1.

Subscenario S1 S2
LR on abstract User 0.5464 8.779

Table 7.12: LR in favour of UseU1.

7.6.3 Location of Person

The probability values obtained in the previous sections were input into the
Bayes Net and LR for each scenario were calculated. As all LR were in favour
of P2, the propositions were exchanged to obtain LR over 1. Table 7.13 shows
the likelihood ratios in favour of Person A being at Location Y (P2). All LR

1This value is obtained by exchanging the propositions as proposed by (ENFSI, 2010)
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Figure 7.6: Density distribution of behavioural biometrics distances.

support the correct proposition, are however all very close to one. According
to the scale by Marquis et al. (2016), the support is qualified as weak or
limited. The reason for this is the very weak support from the behavioural
biometrics regarding the abstract user of the device.

Behavioural Biometrics S1 S2
Password
123456 2.2 7.5
wildcat 2.2 7.6
dorigny 2.2 7.6

Table 7.13: Table containing the overall LR in favour of P2 for each scenario

7.7 Discussion
The obtained LR are slightly in favour of P2, but do not really add much
value. The issue stems from the very low values of the general user having the
device on them. As such, even though the analysis of the password heavily
supporting the suspect being the general user of the device, there is almost
no added value to the initially asked question. In such a situation, the expert
should consider whether the evidence available is indeed adapted to express
an opinion on the level of the person.
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It can also be observed, that the evidence of the password does not do
much to influence the final result. It’s impact is minimal, the LR mostly
being dominated by the behavioural biometrics result.

The absence of the password dorigny from the reference data set illustrates
two issues:

• How to handle an absent password.

• The issue of how well the data set is adapted to the situation at hand.

Especially the second aspect is quite evident. Dorigny being the name of the
campus at the University of Lausanne, most persons being present there are
likely to know this word and potentially susceptible to choosing the name as
a password. In a general, worldwide population, Dorigny is unlikely to be a
name that is known and therefore chosen as a password2.

In the present scenario, a password without a particular relation to the
person was considered. It is known from research that sometimes, people
tend to include identifying information in their password, such as their name
or birthday (Brown et al., 2004). If such a password were to be found, a more
complex evaluation approach could be considered based on the frequency of
the characteristic used in the password.

2It may even be argued, that this fact questions the independence between E2 and E1
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Chapter 8

Discussion and Conclusion

Location-related evidence is a valuable asset for criminal courts, as for most
crimes, a person has to be on the crime scene to commit the act. Whilst
having been used extensively for quite some time, and due to wider availabil-
ity also increasingly more often, there has been put only little thought into
their reliability. A wide variety of sources for uncertainty exist for digital
location-related traces, some linked to the way they are created and anal-
ysed, others a direct consequence of the person-device gap, an issue inherent
to the problem at hand. These uncertainties can only be addressed by prop-
erly evaluating the observed traces. However, formal evaluation of digital
evidence in general is to this day not widespread among practitioners, and
when it is done, it is rarely approached in a structured manner.

In this work, a structured approach to address uncertainties linked to
location-related evidence was presented. This approach is flexible, allowing
to address situations of device- or person-level. Such an approach is urgently
needed, as practitioners become more aware of limitations and are looking
for solutions (Bassi and Scoundrianos, 2022), courts reject presented evidence
(Poser, 2017; Swiss Federal Court, 2019) and emerging standards call for the
application of a logical framework (ISO/TC 272 Forensic sciences).

8.1 Signification of Scenario Results
Two research hypotheses were presented in the beginning of this work. Hy-
pothesis 1 was stated as follows:

Research Hypothesis 1. It is possible to gain, from a mobile device, for
a given moment in time, relevant traces about where that device was and
who was using it, allowing an expert to express an opinion on a person’s
whereabouts, supported by a structured reasoning process.
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Whilst not completely surprising, this work has shown that such traces
can exist on a mobile device. Already in existing literature, these possibil-
ities are discussed (cf. Chapter 2), but the results in this thesis show that
evidence capable of distinguishing between propositions of the discussed type
do clearly exist. Chapters 4, 6 and 7 present scenarios where evidence differs
depending on whether it was created at one location compared to another.
Chapters 5, 6 and 7 present scenarios with evidence that differs from one user
to another. As such, the here presented results confirm the stated research
hypothesis.

This finding is unlikely to be surprising to specialists in the field, however,
to the knowledge of the author, this reasoning has been explicitly stated for
the first time in this work.

Hypothesis 2 was stated as follows:

Research Hypothesis 2. Traces from a mobile device can be evaluated in a
logically consistent manner under a pair of location-focused propositions with
a physical person as a subject.

This work presents an LR approach for the evaluation of location-related
evidence under location-focused propositions with a person-level subject.
The approach is modeled as a Bayesian Network allowing for the combi-
nation of the different sub-stages of the reasoning and the different elements
of evidence. As shown in Chapter 3, this Bayesian Network behaves as ex-
pected in extreme cases and its behaviour otherwise is consistent with ex-
pectations. In Chapters 4, 5, 6 and 7, four scenarios have been presented
where evidence was evaluated using the proposed approach. The probabili-
ties assigned were based on simulated data, not only contradicting the claim
by Horsman (2020) that probabilistic evaluation of digital evidence is unfea-
sible, but also showing that the evaluation of digital traces can be done using
the same approaches well established for other traces. The results obtained
from the simulations were consistent with expectations, although in some
cases close to being irrelevant. Overall, the work in this work confirms both
the presented hypotheses.

In this work, an approach has been presented to bridge the person-device
gap in relation to location-focused questions. Using this approach may allow
an expert to express an opinion on the location of a specific person instead
of the location of a device. This may be a relevant tool depending on the
case at hand. The person-device gap is not just an issue in cases where the
location of a person is questioned. Especially regarding actions committed
on digital devices, this issue arises frequently. Due to the often cited large
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quantity of logs, it is often not too hard to reconstruct the activity that took
place. As a consequence, the question is more likely to be «Who has used
the device at this moment in time?» than «What activity has taken place?».
Whilst not explicitly discussed, the approach for bridging the gap in this work
is applicable to these scenarios as well. Indeed, if it can be shown, that the
device was being used by a given person at time t, activities conducted by the
user of that device have to be done by that person. The same logic applies
for probabilistic reasoning, leaving open the possibility that the conclusion
may err on the user at time t.

Whilst not explicitly an aim of the work, this thesis has yielded some
additional results that are of interest.

• Scenario 1 presented in Chapter 4 gives a very rudimentary way to
evaluate cell tower connections1.

• Scenario 2 and 4 present an approach to evaluate results from be-
havioural profiling such as presented by Michelet (2021) and Guido
et al. (2016). Whilst still requiring much more research, these ap-
proaches may be of interest in the future.

• Scenario 3 presents a novel approach to evaluate GPS-traces. This
approach seems to be a promising method for evaluating this type of
trace, although more testing and calibration is required.

• Scenario 3 also presents a combination of physical and digital traces to
form an overall conclusion. Whilst having been postulated in (Spichiger,
2021), to the knowledge of the author, this is the first time this has been
done in published literature. This enforces once more the idea that
digital forensic science should be considered as a subdomain of forensic
science and that digital traces should not be treated as fundamentally
different from physical traces.

8.2 Application in Real World Cases
The scenarios presented in this work were simulated and chosen in a way
to explain and illustrate the working of the here presented framework. In
real world cases, a series of additional challenges are to be expected, some
operational, some technical. This section discusses some of them.

1This approach is very likely to be surpassed by more advanced approaches currently
being researched (cf. Bosma (2022)).
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Choice of evidence: In many situations, there will not be a single obser-
vation but a multitude of data points. This work does not have a solution for
that. One may be tempted to evaluate multiple observations separately and
then multiply them. However, multiple pieces of location-related evidence
recovered from the same device are unlikely to be independent from each
other, making this approach unsubstantiated. Two approaches are possible
to resolve this issue: Either, select one single observation and evaluate this
one, or take a holistic approach and assign a value to the entirety of the
observed data.

Time-Constraints: In criminal investigations, providing results is often
time-sensitive. Results that arrive later than the moment of the decision are
of no value at all (unless for a potential appeal). Given that practitioners
working in digital forensic units frequently report large backlogs, keeping
analysis as quick as possible is an understandable wish. The here presented
approaches are all rather time intensive. For a single point of data, two
days were invested at least to gather data. It is not feasible to conduct
such analysis for every single location data point that crosses the desk of a
digital forensic practitioner. In a real world case, the practitioner will have
to work with a selection of the traces that will become evidence and do the
evaluative work for those only. An approach will have to be chosen based on
the time the practitioner can justifiably invest on the evidence based on the
importance of the case and the present workload.

Technical Capabilities: The tools available to an entity tasked with con-
ducting forensic analysis on a mobile device may vary heavily, mostly de-
pendent on budgetary factors. While some police forces and forensic labs
invested heavily into the development of digital forensic capabilities, other
still not have advanced beyond recovering files from storage devices. Depend-
ing on the source device, and the state in which it is recovered, automated
tools for extraction may not be able to recover the traces here discussed, even
if these tools are available. In such situations, labs may need to request help
from other organisations that have the capabilities to recover these traces.

Skill and Knowledge of the Practitioner: Not every practitioner may
have the necessary knowledge to conduct the here presented evaluations.
Indeed, due to a lack of specialists, personnel working in digital forensic
laboratories and units often have only limited specialised knowledge on the
workings of the systems of interest. Even if they have technical knowledge,
they may have never been taught about how to conduct an evaluation as
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presented in this work, as the concept of evaluation in digital forensic sci-
ence is still very young (cf Chapter 2.1.1). A unit may find itself faced with
a situation where evaluation is required without having members with the
required knowledge to conduct the analysis. In such situations, it is essential
that they look for help, either by tasking an expert with conducting the eval-
uation or by requesting an expert to assist them in conducting the analysis
themselves2.

Legal Constraints: Depending on the jurisdiction, requirements towards
expert testimony may vary heavily. Due to the structure and traditions of
a legal system, what the expert is allowed to express opinions on and what
information is available to the expert may be different. This can have an
impact on what analyses and evaluations can be conducted, on what level an
opinion can be expressed and with what data this opinion can be supported.
It is therefore to be expected that the strength and type of an evaluated
result may vary from one jurisdiction to another. It is strongly advised to a
reader interested to apply the here presented approach, to inform themselves
about the legal requirements of the jurisdiction their testimony takes place
in.

Understanding of Partners: For most humans, working with uncer-
tainty is not something intuitive. As a consequence, it may be challenging
for police officers, lawyers, judges and members of juries to understand the
results presented in the manner here proposed. Especially in jurisdictions
where a Bayesian presentation of results is not already the norm for physical
traces, an expert may have to do an important bit of explaining the approach
to his partners. This is not easy to do, however preliminary results of recent
research suggests that reports presenting LR are equally well understood as
more categorical reports (Salonen, 2022).

8.3 Future Work
This work took first steps in a multitude of young and developing domains.
As such, a broad range of future research possibilities have opened up.

2This is somewhat of a «teach a man to fish»-situation. Long term, the aim must be
that all entities working with that kind of trace are capable to evaluate their results in a
structured manner.
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8.3.1 Preliminary Phase

The reasoning structure presented in Section 1.2 begins with a preliminary
stage, in which the fundamental adaptability of the traces in view of the
question is investigated. In this work, it is presumed that the examiner has
sufficient contextual information to verify that the traces were

• Correctly recovered and represented by the analytic tool.

• Generated on the device they were recovered from.

• Generated at the moment in time indicated by the timestamp.

It is not always possible or justified to make these affirmations in a cat-
egorical manner. An overall expression of uncertainty should consider this
as well. Consequently, further research should explore the possibility and
find ways to integrate uncertainties from the preliminary stage into the over-
all LR. This consists not only in finding ways to quantify the uncertainties
linked to those preliminary questions, but also finding ways to integrate them
into the overarching evaluation. Existing work on Lab error (e.g. Thompson
et al. (2003)) should provide a relevant foundation to resolve this issue.

8.3.2 Cell Towers

As discussed in Chapter 4, there is currently little empiric research into the
factors that influence cell tower connections of a mobile device. When looking
to simulate a situation comparable to the moment of creation of the trace
for reference data gathering, it is currently unclear what factors need to be
addressed. In particular, systematic research into the influence of weather,
seasons, the time of day and the day of the week should be conducted. For
older cases, when the traces were created several years or even decades ago,
a longitudinal study investigating the persistence of cell tower systems would
be of interest.

A research group at the NFI is currently working at a probabilistic model
for cell tower evaluation that would not require field testing for the evalu-
ation of cell tower connections and have presented first results in (Bosma,
2022). The author of the present work is somewhat sceptical whether com-
plete independence from in situ measurements will be possible, as the ob-
served behaviour within this thesis is chaotic to a degree that surpasses sim-
ple description. However, if the model could be validated, this would greatly
reduce the work required to evaluate cell tower connections. Failing a general
validation, approaches could be developed allowing for the validation of the
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model to a specific situation using a predefined protocol, or the model could
be built in a way that specific measures would allow a calibration for a given
situation.

Finally, the measurements conducted in this work were done completely
manually, by restarting, calling and noting the current cell tower by hand.
For further research, it should be considered to look into the automation of
these measurement processes.

8.3.3 A-GPS / Location Services

Similarly as with cell towers, there is little empiric research into what impacts
the result of the location services for Apple and Google. Again, it is difficult
to know what consists comparable conditions for reference data creation. In
addition to the factors to be studied for the cell towers, the effect of changing
networks should be investigated for location services. As A-GPS is partially
based on databases of cell towers and WiFi-access points, the behaviour of
these services when cell towers or access points appear or disappear should
be investigated.

The model for evaluation presented in Chapter 6 seems promising to be
adaptable for general use. Further improvements could be achieved by mod-
eling the probability as a two-dimensional distribution instead of splitting
up the probabilities for angle and distance. A larger scale validation and
calibration study should be conducted to test the model. As with the Cell
Towers, the possibility to model the location without on site measurements
should be investigated, however due to the even higher complexity of the
process, it is even less likely this will be possible.

The possibility to automate the reference data collection should be con-
sidered.

8.3.4 Behavioural Biometrics

Whilst showing potential for one to one comparison, the here presented be-
havioural biometrics approach still has quite a way to go for comparison
against a larger population. Future research should focus on improving the
efficiency and the discriminatory power of the method by studying alterna-
tive characteristics. Research should be conducted with a large scale data set
containing data from different ages, professions, genders and socio-economic
background to study the influence of these factors on device usage.

So far, the approach only gives useful information if a high degree of
correspondence is observed, as there is a plethora of reasons why such a
difference may come to be. A change in daily activity, such as vacation, a
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new job or an especially stressful day at work may cause activity to change.
Also, behaviour may change with varying mental well being3. Additionally,
the question persists whether the approach also works for period during which
criminal activity takes place. Whilst for serial perpetrators, committing a
crime may consist «normal» behaviour, the majority of criminals are single
time offenders (Kuhn, 2012). As such, criminal behaviour, per definition,
is extraordinary behaviour. It is currently unknown whether this is also
reflected in phone usage. A study specifically addressing this aspect would
be required.

Beyond identifying a person, there may be other uses for behavioural
biometric analysis. As the method is signaling different behaviour, the ap-
proach may also be used to find periods of anomalous activity and identify
time frames of interest such as deviations from a person’s routine. Showing
consistent behaviour over a given time frame may be used to authenticate
digital traces as it is unlikely that a altered data set would manage to be
consistent. Further research would help developing approaches adapted for
these situations.

8.3.5 Likelihood Ratio

In this work, some general issues related to LR and probabilities have come
up. Especially for propositions that are not actually true, trace values are
likely to be quite a bit outside of the reference values. Whilst this is in
principle a good thing, as it indicates that the observed characteristic is
well adapted to distinguish between the propositions at hand, it poses a
problem regarding the stability of the probability of the evidence under this
proposition. Indeed, small variations in the data may cause a change of
order of magnitude in the probability. Additionally, probabilities of 10−6 or
lower are very hard to defend if they are based on just about a hundred of
measurements. Further research should be conducted to develop approaches
to handle such situations.

One approach, used in this work is defining lower bound probabilities be-
low which the expert does not feel justified to go. Although not encountered
in this thesis, the same issue may arise with very high values. For example,
if the device-level LR would be approaching infinity, the overall LR is likely
to become unstable. It would be useful to have guidelines supporting experts
in choosing these lower or upper bound values.

3Psychotherapists have proposed methods of predicting such phases based on changed
behaviour for therapeutic uses (see for example (Messner et al., 2019).
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8.4 Conclusion
Location-related mobile device evidence is increasingly being used to address
forensic questions in criminal investigations, particularly the location of a
person alleged to have possessed and / or operated the device during the
time of interest. A significant part of the forensic science community consid-
ers the distinction between device and person to be essential. However, some
practitioners incorrectly present person-location information as fact rather
than interpretation. Others neglect their duty to render an expert opin-
ion by simply reporting device-level information, leaving it to non-specialists
(e.g., prosecutor, investigator, jury) to form their own non-scientific opinion
on the person-device link. Some practitioners attempt to establish general
ownership of the device, but do not use a robust, repeatable, method. More
importantly, practitioners do not have a structured framework for formu-
lating and expressing scientific evaluation of mobile device evidence under
person-level, location-focused propositions. It is necessary to properly struc-
ture and interpret this evidence to avoid mistakes, misinterpretations, and
miscarriages of justice.

This work makes a large step into the relatively young field of the in-
terpretation of location-related digital evidence. This work provides a ro-
bust framework that clearly distinguishes between "what has been observed"
(i.e., what data are available) and how those data may inform about uncer-
tain propositions in the case at hand. Specifically, this work structures the
problem and provides a Bayesian framework to handle uncertainties in the
context of the problem. The proposed approach also provides a possibility
to address the person-device gap that may be applicable to other situations
where this issue arises. In four simulated case scenarios, it was shown that it
is possible to apply the approach to situations as one may encounter in real
world scenarios. This work also provides guidance for practitioners to apply
the framework to actual cases, enabling them to evaluate location-related
evidence and uncertainties resulting from the Person-Device gap in a logical
consistent manner, supporting decision-makers with balanced and founded
results.

Overall, this work provides the following contributions to existing re-
search:

• The problem is analysed in detail and structured.

• Means to close the Person-Device Gap are discussed.

• A Bayesian approach to address uncertainties resulting from the Person-
Device Gap is presented.

123



• A Bayesian network for the evaluation of location-related evidence on
person-level is proposed, studied and tested.

• The possibility to distinguish between two users on the same device is
demonstrated.

• It is shown that it is possible to quantify uncertainties linked to digital
traces.

• A rudimentary approach for the evaluation of cell tower evidence is
proposed.

• An approach for the evaluation of device localisations is presented.

• Issues related to the application of this approach in real world cases
are discussed.

Large parts of this work being exploratory, many questions and issues
encountered remain unresolved. Especially research related to the work-
ings of location services, the viability of behavioural biometrics in real world
cases and the integration of uncertainties of the preliminary stage remain a
challenge. However, this work provides a solid foundation to address these
questions and motivation for future research.
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Appendix A

Development of LR formula

This Appendix shows the development of the formula for the overall LR of
the entire Bayes Net. This is not used in this work and provided for interested
readers.

(A.1)LR =
Pr(E1;E2;E3;E4 | LocP1; I)

Pr(E1;E2;E3;E4 | LocP2; I)

The I representing the general information available to the expert in
the case and will condition every probability throughout the entirety of the
coming development. For the sake of brevity, it is omitted in the following
and can be considered implied.

Using Bayes’ theorem:

(A.2)LR =
Pr(E1 | E2;E3;E4;LocP1)

Pr(E1 | E2;E3;E4;LocP2)
· Pr(E2;E3;E4 | LocP1)

Pr(E2;E3;E4 | LocP2)

It can be shown, that in this particular situation, the probability of the
states E2, E3 and E4 are independent from the state of LocP . In other words

(A.3)
Pr(E2;E3;E4 | LocP1) = Pr(E2;E3;E4

| LocP2)
= Pr(E2;E3;E4)

As a consequence, the second fraction of formula A.2 reduces to one and
the LR becomes as follows:

(A.4)LR =
Pr(E1 | E2;E3;E4;LocP1)

Pr(E1 | E2;E3;E4;LocP2)

A property of Bayesian Networks is that the probability of the states of
a given node is only directly dependent from their parent nodes ("Screen
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off" effect) (Taroni and Aitken, 2006). The screen off effect can be observed
for any three nodes, A,B and C, in a divergent, convergent or consecutive
relationship where node B is in any way linked to A and C whilst A and C
are not directly dependent upon each other (such as shown in figure A.1).
If in such a situation, the state of B is known, the state of A will no longer
influence the probabilities of the state of C any longer and vice versa. Ex-
pressed as a formula, for any state An of node A and any state Cm of node
C:

(A.5)Pr(An | B,C) = Pr(An

| B)

and

(A.6)Pr(Cm | B,An) = Pr(Cm

| B)

C

B

AC

B

A B

C A

Figure A.1: Types of structures in a Bayesian network where screen off effects
between A and C can be observed if the state of B is known.

For this particular situation, if the states of the LocD-Node are consid-
ered, the probabilities of E1 can be expressed as only conditioned by the
states of LocD. LocD has two states, LocD1 (The device was located at
location X at time t.) and LocD2 (The device was located at location Y at
time t.) which leads to the following development for the nominator:

Pr(E1 | E2−4;LocP1/2) =
2∑

n=1

Pr(E1 | LocDn) · Pr(LocDn | E2−4;LocP1/2)

(A.7)

The probability for a given state of LocD is given as follows:
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(A.8)Pr(LocDn | E2−4;LocP1/2) =
3∑

m=1

Pr(LocDn | UsePm;LocP1/2;E2−4)

· Pr(UsePm | E2−4)

The UseP-node is situated as such in the Bayesnet that a screen off ef-
fect exists between LocD and E2 through E4. Applying formula A.5, this
dependency can be eliminated:

(A.9)Pr(LocDn | E2−4;LocP1/2) =
3∑

m=1

Pr(LocDn | UsePm;LocP1/2)

· Pr(UsePm | E2−4)

The probability of any state of the node UseP given nodes E2 through E3

is obtained applying Bayes’ theorem in its original form (cf. formula A.10).

(A.10)Pr(A | B) =
Pr(B | A) · Pr(A)

Pr(B)

(A.11)Pr(UsePm | E2−4) =
Pr(E2 | UsePm;E3;4) · Pr(UsePm | E3;4)

Pr(E2 | E3;4)

The probability of E2 can be expressed as the sum of it probabilities
conditioned by the states of the UseP-node times the probability of those
states:

Pr(UsePm | E2−4) =
Pr(E2 | UsePm;E3;4) · Pr(UsePm | E3;4)∑3

m=1 Pr(E2 | UsePm;E3;4) · Pr(UsePm | E3;4)

(A.12)

With UseP being situated between the E2-node and the E3- and E4-nodes,
the probability, the dependency for E2 from E3 and E4 can be eliminated:

(A.13)Pr(UsePm | E2−4) =
Pr(E2 | UsePm) · Pr(UsePm | E3;4)∑3

m=1 Pr(E2 | UsePm) · Pr(UsePm | E3;4)

The probability for each state of the UseP node can be expressed as
follows:

(A.14)Pr(UsePm | E3;4) =
Pr(E3 | UseP;E4) · Pr(UsePm | E4)

Pr(E3 | E4)

Where
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(A.15)
Pr(UsePm | E4) =

3∑
l=1

Pr(UsePm

| Userl;E4) · Pr(Userl
| E4)

With the user-node being located between the UseP- and the E4-node, the
screen off effect allows to eliminate the direct dependencies between states
of the two nodes:

(A.16)
Pr(UsePm | E4) =

3∑
l=1

Pr(UsePm

| Userl) · Pr(Userl
| E4)

The probability of any state of the user-node given E4 is as follows:

(A.17)Pr(Userl | E4) =
Pr(E4 | Userl) · Pr(Userl)

Pr(E4)

Which is equal to:

(A.18)Pr(Userl | E4) =
Pr(E4 | Userl) · Pr(Userl)∑3
l=1 Pr(E4 | Userl) · Pr(Userl)

Additionnally:

(A.19)
Pr(E3 | UsePm;E4) =

3∑
k=1

Pr(E3

| UseUk;UsePm;E4) · Pr(UseUk

| UsePm;E4)

Using the screen-off-effect from the UseU-node situated between E3 and
other nodes, this simplifies to:

(A.20)
Pr(E3 | UsePm;E4) =

3∑
k=1

Pr(E3

| UseUk) · Pr(UseUk

| UsePm;E4)
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Where:

(A.21)
Pr(UseUk | UsePm;E4) =

3∑
l=1

Pr(useUk

| Userl;UsePm;E4) · Pr(Userl
| UsePm;E4)

Which (using the screen-off effect from the User-node situated between
E4 and the UseU-node) simplifies to:

(A.22)
Pr(UseUk | UsePm;E4) =

3∑
l=1

Pr(useUk

| Userl;UsePm) · Pr(Userl
| UsePm;E4)

Where:

(A.23)Pr(Userl | UsePm;E3) =
Pr(UsePm | Userl;E4) · Pr(Userl | E4)

Pr(UsePm | E4)

Also:

(A.24)

Pr(E4 | E3) =
3∑

l=1

Pr(E4

| E3;Userl) · Pr(Userl
| E3)

=
3∑

l=1

Pr(E4

| Userl) · Pr(Userl
| E3)

For the probability of the states of the User-node given E3, the following
development has to be made:

(A.25)Pr(Userl | E3) =
Pr(E3 | Userl) · Pr(Userl)

Pr(E3)

Where

148



(A.26)
Pr(E3 | Userl) =

3∑
k=1

Pr(E3

| UseUk) · Pr(UseUk

| Userl)

Where

(A.27)Pr(UseUk | Userl) =
3∑

m=1

Pr(UseUk

| UsePm;Userl)

Also

(A.28)Pr(E3) =
3∑

k=1

Pr(E3

| UseUk) · Pr(UseUk)

Where

(A.29)Pr(UseUk) =
3∑

l=1

3∑
m=1

Pr(UserUk

| Userl;UsePm) · Pr(Userl;UsePm)

Which is equal to:

(A.30)
Pr(UseUk) =

3∑
l=1

3∑
m=1

Pr(UserUk

| Userl;UsePm) · Pr(UsePm

| Userl) · Pr(Userl)

Inputting these formulae in the previous instances, a overall formula for the
likelihood ratio can be obtained. for brevity reasons, this is not done here.
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Appendix B

R-Scripts for Simulation of Bayes
Nets

These R-scripts were used to simulate the behaviour of the Bayes Nets in Sec-
tion 3.3. These scripts are available here: https://github.com/HSpichig/
Thesis/blob/main/BB_anonimize.py. The Bayes Nets can be found here:
https://github.com/HSpichig/Thesis/blob/main/BN_Hugin.zip

B.1 Influence of UseP

setwd ( "C: /Users/Hannes/ sw i t chdr i v e/Thes i s " )

l ibrary (RHugin )

BayesNet <− read . rhd ( "BN_Reduced_Sim1 . net " )

r e s o l u t i o n = 100

LR <− function ( BayesNet , useP1 , useP2 , e1_1 , e1_2) {

tabUseP <− get . table ( BayesNet , ’UseP ’ )
tabUseP [ 1 , ’ Freq ’ ] = useP1
tabUseP [ 2 , ’ Freq ’ ] = useP2
tabUseP [ 3 , ’ Freq ’ ] = 1−useP1−useP2
set . table ( BayesNet , ’UseP ’ , tabUseP )

tabE1 <− get . table ( BayesNet , ’E1 ’ )
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tabE1 [ 1 , ’ Freq ’ ] = e1_1
tabE1 [ 2 , ’ Freq ’ ] = 1−e1_1
tabE1 [ 3 , ’ Freq ’ ] = e1_2
tabE1 [ 4 , ’ Freq ’ ] = 1−e1_2
set . table ( BayesNet , ’E1 ’ , tabE1 )

compi le ( BayesNet )
set . f i n d i n g (BayesNet , ’E1 ’ , ’E1 ’ )
propagate ( BayesNet )
odds <− get . b e l i e f ( BayesNet , ’LocP ’ )
uncompile ( BayesNet )

l r <− odds [ ’ LocP1 ’ ] / odds [ ’ LocP2 ’ ]

return ( l r [ [ ’ LocP1 ’ ] ] )
}

l r_vector <− function ( e1_1 , e1_2) {
l r_de l t a = vector ( )
for ( counter in c ( 0 : r e s o l u t i o n ) ) {

useP1 = counter/ r e s o l u t i o n
l r = LR(BayesNet = BayesNet , useP1 = useP1 , useP2 =

1−useP1 , e1_1 = e1_1 , e1_2 = e1_2)
l r_de l t a <− rbind ( l r_de l ta , c ( useP1 , l r ) )

}
return ( l r_de l t a )

}

plot ( l r_vector (1 , 0 . 1 ) , xl im = c ( 0 , 1 ) , yl im=c (0 ,120) ,
xlab = ’Pr (UseP1 ) ’ , y lab = ’LR ’ , type = ’ l ’ , main =
’LR␣on␣person−l e v e l ␣ ( vary ing ␣Pr (UseP1 ) ) ’ )

l ines ( l r_vector ( 1 , 0 . 0 1 ) , l t y = 2)

l ines ( l r_vector ( 1 , 0 . 0 01 ) , l t y = 4)

abline (h=1, l t y = 3)
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legend ( x=0,y=120 , cex =0.7 , legend = c ( ’LR_dev␣=␣10 ’ , ’LR_
dev␣=␣100 ’ , ’LR_dev␣=␣1000 ’ ) , l t y=c ( 1 , 2 , 4 ) )

B.2 Influence of Pr(UseP1)

setwd ( "C: /Users/Hannes/ sw i t chdr i v e/Thes i s " )

l ibrary (RHugin )

BayesNet <− read . rhd ( "BN_Reduced_Sim2 . net " )

LR <− function ( BayesNet , useP1 , useP2 , e1_1 , e1_2 , e2_
1 , e2_2) {

tabUseP <− get . table ( BayesNet , ’UseP ’ )
tabUseP [ 1 , ’ Freq ’ ] = useP1
tabUseP [ 2 , ’ Freq ’ ] = useP2
tabUseP [ 3 , ’ Freq ’ ] = 1−useP1−useP2
set . table ( BayesNet , ’UseP ’ , tabUseP )

tabE1 <− get . table ( BayesNet , ’E1 ’ )
tabE1 [ 1 , ’ Freq ’ ] = e1_1
tabE1 [ 2 , ’ Freq ’ ] = 1−e1_1
tabE1 [ 3 , ’ Freq ’ ] = e1_2
tabE1 [ 4 , ’ Freq ’ ] = 1−e1_2
set . table ( BayesNet , ’E1 ’ , tabE1 )

tabE2 <− get . table ( BayesNet , ’E2 ’ )
tabE2 [ 1 , ’ Freq ’ ] = e2_1
tabE2 [ 2 , ’ Freq ’ ] = 1−e2_1
tabE2 [ 3 , ’ Freq ’ ] = e2_2
tabE2 [ 4 , ’ Freq ’ ] = 1−e2_2
set . table ( BayesNet , ’E2 ’ , tabE2 )

compi le ( BayesNet )
set . f i n d i n g (BayesNet , ’E1 ’ , ’E1 ’ )
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set . f i n d i n g (BayesNet , ’E2 ’ , ’E2 ’ )
propagate ( BayesNet )
odds <− get . b e l i e f ( BayesNet , ’LocP ’ )
uncompile ( BayesNet )

l r <− odds [ ’ LocP1 ’ ] / odds [ ’ LocP2 ’ ]

return ( l r [ [ ’ LocP1 ’ ] ] )
}

l r_vector <− function ( e1_1 , e1_2 , e2_1 , e2_2) {
l r_de l t a = vector ( )
for ( counter in c ( 0 : r e s o l u t i o n ) ) {

useP1 = counter/ r e s o l u t i o n
l r = LR(BayesNet = BayesNet , useP1 = useP1 , useP2 =

1−useP1 , e1_1 = e1_1 , e1_2 = e1_2 , e2_1 = e2_1 ,
e2_2 = e2_2)

l r_de l t a <− rbind ( l r_de l ta , c ( useP1 , l r ) )
}
return ( l r_de l t a )

}

r e s o l u t i o n = 100

sim_run <− function ( e2_1 , e2_2 , y_l im ) {
LR_P = e2_1 / e2_2
t i t l e = paste ( ’LR␣on␣person−l e v e l ␣\n( vary ing ␣Pr (UseP1

) , ␣LR(E2)=’ , LR_P, ’ ) ’ )
plot ( l r_vector (1 , 0 . 1 , e2_1 , e2_2) , xl im = c ( 0 , 1 ) ,

yl im=c (0 , y_l im ) , xlab = ’Pr (UseP1 ) ’ , y lab = ’LR ’ ,
type = ’ l ’ , main = t i t l e )

l ines ( l r_vector (1 , 0 . 01 , e2_1 , e2_2) , l t y = 2)
l ines ( l r_vector (1 , 0 . 001 , e2_1 , e2_2) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=y_lim , cex =0.7 , legend = c ( ’LR_dev␣=␣10 ’ ,

’LR_dev␣=␣100 ’ , ’LR_dev␣=␣1000 ’ ) , l t y=c ( 1 , 2 , 4 ) )
}

sim_run (1 , 0 . 1 , 150)
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sim_run (1 , 0 . 01 , 1100)
sim_run (1 , 0 . 001 , 1100)

B.3 Influence of α and β

setwd ( "C: /Users/Hannes/ sw i t chdr i v e/Thes i s " )

l ibrary (RHugin )

BayesNet <− read . rhd ( "BN_Reduced_Sim3 . net " )

LR <− function ( BayesNet , alpha , beta , gama , de l ta ,
theta , e1_1 , e1_2 , e3_1 , e3_2 , e4_1 , e4_2 , P_user1 ,
P_user2 ) {

tabUseP <− get . table ( BayesNet , ’UseP ’ )
tabUseP [ 1 , ’ Freq ’ ] = alpha
tabUseP [ 2 , ’ Freq ’ ] = beta
tabUseP [ 3 , ’ Freq ’ ] = 1−alpha−beta
tabUseP [ 4 , ’ Freq ’ ] = gama
tabUseP [ 5 , ’ Freq ’ ] = de l t a
tabUseP [ 6 , ’ Freq ’ ] = 1−gama−de l t a
set . table ( BayesNet , ’UseP ’ , tabUseP )

tabE1 <− get . table ( BayesNet , ’E1 ’ )
tabE1 [ 1 , ’ Freq ’ ] = e1_1
tabE1 [ 2 , ’ Freq ’ ] = 1−e1_1
tabE1 [ 3 , ’ Freq ’ ] = e1_2
tabE1 [ 4 , ’ Freq ’ ] = 1−e1_2
set . table ( BayesNet , ’E1 ’ , tabE1 )

tabE3 <− get . table ( BayesNet , ’E3 ’ )
tabE3 [ 1 , ’ Freq ’ ] = e3_1
tabE3 [ 2 , ’ Freq ’ ] = 1−e3_1
tabE3 [ 3 , ’ Freq ’ ] = e3_2
tabE3 [ 4 , ’ Freq ’ ] = 1−e3_2
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set . table ( BayesNet , ’E3 ’ , tabE3 )

tabE4 <− get . table ( BayesNet , ’E4 ’ )
tabE4 [ 1 , ’ Freq ’ ] = e4_1
tabE4 [ 2 , ’ Freq ’ ] = 1−e4_1
tabE4 [ 3 , ’ Freq ’ ] = e4_2
tabE4 [ 4 , ’ Freq ’ ] = 1−e4_2
set . table ( BayesNet , ’E4 ’ , tabE4 )

tabUser <− get . table ( BayesNet , ’ User ’ )
tabUser [ 1 , ’ Freq ’ ] = P_user1
tabUser [ 2 , ’ Freq ’ ] = P_user2
tabUser [ 3 , ’ Freq ’ ] = 1 − P_user1 −P_user2

tabUseU <− get . table ( BayesNet , ’UseU ’ )
tabUseU [13 , ’ Freq ’ ] = theta
tabUseU [14 , ’ Freq ’ ] = 1−theta

compi le ( BayesNet )
set . f i n d i n g (BayesNet , ’E1 ’ , ’E1 ’ )
set . f i n d i n g (BayesNet , ’E3 ’ , ’E3 ’ )
set . f i n d i n g (BayesNet , ’E4 ’ , ’E4 ’ )
propagate ( BayesNet )
odds <− get . b e l i e f ( BayesNet , ’LocP ’ )
uncompile ( BayesNet )

l r <− odds [ ’ LocP1 ’ ] / odds [ ’ LocP2 ’ ]

return ( l r [ [ ’ LocP1 ’ ] ] )
}

r e s o l u t i o n = 100

e1_1 = 1
e1_2 = 0.001
e3_1 = 1
e3_2 = 0.001
e4_1 = 1
e4_2 = 0.001
useP1 = 0 .5
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theta = 0 .8

l r_vector <− function (gama) {
l r_vec = vector ( )
for ( counter in c ( 0 : r e s o l u t i o n ) ) {

y_va l = counter/ r e s o l u t i o n
l r = LR(BayesNet = BayesNet , alpha = y_val , beta =

(1 − y_va l ) ∗ f a c_bet , gama = gama , de l t a = (1 −
gama) ∗ f a c_de l ta , P_user1 = useP1 , P_user2 =

1−useP1 , e1_1 = e1_1 , e1_2 = e1_2 , e3_1 = e3_1 ,
e3_2 = e3_2 , e4_1 = e4_1 , e4_2=e4_2 , theta =
theta )

l r_vec <− rbind ( l r_vec , c ( y_val , l r ) )
}
return ( l r_vec )

}

ylim_top = 1300

f a c_bet = 1
fa c_de l t a = 1
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’ alpha ’ , y lab = ’LR ’ , type = ’ l ’ , main = ’
alpha ␣ var ied , ␣gamma␣ f ixed , ␣ beta ␣=␣1␣−␣ alpha ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’gamma␣=␣ 0 .9 ’ ,

’gamma␣=␣ 0 .5 ’ , ’gamma␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

f a c_bet=0.9
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’ alpha ’ , y lab = ’LR ’ , type = ’ l ’ , main = ’
alpha ␣ var ied , ␣gamma␣ f ixed , ␣ beta ␣=␣ 0 .9 ␣ (1 ␣−␣ alpha ) ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’gamma␣=␣ 0 .9 ’ ,

’gamma␣=␣ 0 .5 ’ , ’gamma␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )
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f a c_bet=0.5
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’ alpha ’ , y lab = ’LR ’ , type = ’ l ’ , main = ’
alpha ␣ var ied , ␣gamma␣ f ixed , ␣ beta ␣=␣ 0 .5 ␣ (1 ␣−␣ alpha ) ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’gamma␣=␣ 0 .9 ’ ,

’gamma␣=␣ 0 .5 ’ , ’gamma␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

f a c_bet=0.1
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’ alpha ’ , y lab = ’LR ’ , type = ’ l ’ , main = ’
alpha ␣ var ied , ␣gamma␣ f ixed , ␣ beta ␣=␣ 0 . 1 ( 1 ␣−␣ alpha ) ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’gamma␣=␣ 0 .9 ’ ,

’gamma␣=␣ 0 .5 ’ , ’gamma␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

B.4 Influence of γ and δ

setwd ( "C: /Users/Hannes/ sw i t chdr i v e/Thes i s " )

l ibrary (RHugin )

BayesNet <− read . rhd ( "BN_Reduced_Sim3 . net " )

LR <− function ( BayesNet , alpha , beta , gama , de l ta ,
theta , e1_1 , e1_2 , e3_1 , e3_2 , e4_1 , e4_2 , P_user1 ,
P_user2 ) {

tabUseP <− get . table ( BayesNet , ’UseP ’ )
tabUseP [ 1 , ’ Freq ’ ] = alpha
tabUseP [ 2 , ’ Freq ’ ] = beta
tabUseP [ 3 , ’ Freq ’ ] = 1−alpha−beta
tabUseP [ 4 , ’ Freq ’ ] = gama
tabUseP [ 5 , ’ Freq ’ ] = de l t a
tabUseP [ 6 , ’ Freq ’ ] = 1−gama−de l t a
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set . table ( BayesNet , ’UseP ’ , tabUseP )

tabE1 <− get . table ( BayesNet , ’E1 ’ )
tabE1 [ 1 , ’ Freq ’ ] = e1_1
tabE1 [ 2 , ’ Freq ’ ] = 1−e1_1
tabE1 [ 3 , ’ Freq ’ ] = e1_2
tabE1 [ 4 , ’ Freq ’ ] = 1−e1_2
set . table ( BayesNet , ’E1 ’ , tabE1 )

tabE3 <− get . table ( BayesNet , ’E3 ’ )
tabE3 [ 1 , ’ Freq ’ ] = e3_1
tabE3 [ 2 , ’ Freq ’ ] = 1−e3_1
tabE3 [ 3 , ’ Freq ’ ] = e3_2
tabE3 [ 4 , ’ Freq ’ ] = 1−e3_2
set . table ( BayesNet , ’E3 ’ , tabE3 )

tabE4 <− get . table ( BayesNet , ’E4 ’ )
tabE4 [ 1 , ’ Freq ’ ] = e4_1
tabE4 [ 2 , ’ Freq ’ ] = 1−e4_1
tabE4 [ 3 , ’ Freq ’ ] = e4_2
tabE4 [ 4 , ’ Freq ’ ] = 1−e4_2
set . table ( BayesNet , ’E4 ’ , tabE4 )

tabUser <− get . table ( BayesNet , ’ User ’ )
tabUser [ 1 , ’ Freq ’ ] = P_user1
tabUser [ 2 , ’ Freq ’ ] = P_user2
tabUser [ 3 , ’ Freq ’ ] = 1 − P_user1 −P_user2

tabUseU <− get . table ( BayesNet , ’UseU ’ )
tabUseU [13 , ’ Freq ’ ] = theta
tabUseU [14 , ’ Freq ’ ] = 1−theta

compi le ( BayesNet )
set . f i n d i n g (BayesNet , ’E1 ’ , ’E1 ’ )
set . f i n d i n g (BayesNet , ’E3 ’ , ’E3 ’ )
set . f i n d i n g (BayesNet , ’E4 ’ , ’E4 ’ )
propagate ( BayesNet )
odds <− get . b e l i e f ( BayesNet , ’LocP ’ )
uncompile ( BayesNet )

l r <− odds [ ’ LocP1 ’ ] / odds [ ’ LocP2 ’ ]
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return ( l r [ [ ’ LocP1 ’ ] ] )
}

r e s o l u t i o n = 100

e1_1 = 1
e1_2 = 0.001
e3_1 = 1
e3_2 = 0.001
e4_1 = 1
e4_2 = 0.001
useP1 = 0 .5
theta = 0 .8

l r_vector <− function ( alpha ) {
l r_vec = vector ( )
for ( counter in c ( 0 : r e s o l u t i o n ) ) {

y_va l = counter/ r e s o l u t i o n
l r = LR(BayesNet = BayesNet , alpha = alpha , beta =

(1 − alpha ) ∗ f a c_bet , gama = y_val , d e l t a = (1
− y_va l ) ∗ f a c_de l ta , P_user1 = useP1 , P_user2 =
1−useP1 , e1_1 = e1_1 , e1_2 = e1_2 , e3_1 = e3_1 ,
e3_2 = e3_2 , e4_1 = e4_1 , e4_2=e4_2 , theta =

theta )
l r_vec <− rbind ( l r_vec , c ( y_val , l r ) )

}
return ( l r_vec )

}

ylim_top = 1400

f a c_bet = 0 .9
f a c_de l t a = 1
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’gamma ’ , ylab = ’LR ’ , type = ’ l ’ , main = ’
gamma␣var ied , ␣ alpha ␣ f ixed , ␣ de l t a ␣=␣1␣−␣gamma ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
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legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’ alpha ␣=␣ 0 .9 ’ ,
’ a lpha ␣=␣ 0 .5 ’ , ’ alpha ␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

f a c_de l t a =0.9
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’gamma ’ , ylab = ’LR ’ , type = ’ l ’ , main = ’
gamma␣var ied , ␣ alpha ␣ f ixed , ␣ de l t a ␣=␣ 0 . 9 ( 1 ␣−␣gamma) ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’ alpha ␣=␣ 0 .9 ’ ,

’ a lpha ␣=␣ 0 .5 ’ , ’ alpha ␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

f a c_de l t a =0.5
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’gamma ’ , ylab = ’LR ’ , type = ’ l ’ , main = ’
gamma␣var ied , ␣ alpha ␣ f ixed , ␣ de l t a ␣=␣ 0 . 5 ( 1 ␣−␣gamma) ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’ alpha ␣=␣ 0 .9 ’ ,

’ a lpha ␣=␣ 0 .5 ’ , ’ alpha ␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

f a c_de l t a =0.1
plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,

xlab = ’gamma ’ , ylab = ’LR ’ , type = ’ l ’ , main = ’
gamma␣var ied , ␣ alpha ␣ f ixed , ␣ de l t a ␣=␣ 0 . 1 ( 1 ␣−␣gamma) ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’ alpha ␣=␣ 0 .9 ’ ,

’ a lpha ␣=␣ 0 .5 ’ , ’ alpha ␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

B.5 Influence of Pr(User1) and θ

setwd ( "C: /Users/Hannes/ sw i t chdr i v e/Thes i s " )
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l ibrary (RHugin )

BayesNet <− read . rhd ( "BN_Reduced_Sim3 . net " )

LR <− function ( BayesNet , alpha , beta , gama , de l ta ,
theta , e1_1 , e1_2 , e3_1 , e3_2 , e4_1 , e4_2 , P_user1 ,
P_user2 ) {

tabUseP <− get . table ( BayesNet , ’UseP ’ )
tabUseP [ 1 , ’ Freq ’ ] = alpha
tabUseP [ 2 , ’ Freq ’ ] = beta
tabUseP [ 3 , ’ Freq ’ ] = 1−alpha−beta
tabUseP [ 4 , ’ Freq ’ ] = gama
tabUseP [ 5 , ’ Freq ’ ] = de l t a
tabUseP [ 6 , ’ Freq ’ ] = 1−gama−de l t a
set . table ( BayesNet , ’UseP ’ , tabUseP )

tabE1 <− get . table ( BayesNet , ’E1 ’ )
tabE1 [ 1 , ’ Freq ’ ] = e1_1
tabE1 [ 2 , ’ Freq ’ ] = 1−e1_1
tabE1 [ 3 , ’ Freq ’ ] = e1_2
tabE1 [ 4 , ’ Freq ’ ] = 1−e1_2
set . table ( BayesNet , ’E1 ’ , tabE1 )

tabE3 <− get . table ( BayesNet , ’E3 ’ )
tabE3 [ 1 , ’ Freq ’ ] = e3_1
tabE3 [ 2 , ’ Freq ’ ] = 1−e3_1
tabE3 [ 3 , ’ Freq ’ ] = e3_2
tabE3 [ 4 , ’ Freq ’ ] = 1−e3_2
set . table ( BayesNet , ’E3 ’ , tabE3 )

tabE4 <− get . table ( BayesNet , ’E4 ’ )
tabE4 [ 1 , ’ Freq ’ ] = e4_1
tabE4 [ 2 , ’ Freq ’ ] = 1−e4_1
tabE4 [ 3 , ’ Freq ’ ] = e4_2
tabE4 [ 4 , ’ Freq ’ ] = 1−e4_2
set . table ( BayesNet , ’E4 ’ , tabE4 )
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tabUser <− get . table ( BayesNet , ’ User ’ )
tabUser [ 1 , ’ Freq ’ ] = P_user1
tabUser [ 2 , ’ Freq ’ ] = P_user2
tabUser [ 3 , ’ Freq ’ ] = 1 − P_user1 −P_user2

tabUseU <− get . table ( BayesNet , ’UseU ’ )
tabUseU [13 , ’ Freq ’ ] = theta
tabUseU [14 , ’ Freq ’ ] = 1−theta

compi le ( BayesNet )
set . f i n d i n g (BayesNet , ’E1 ’ , ’E1 ’ )
set . f i n d i n g (BayesNet , ’E3 ’ , ’E3 ’ )
set . f i n d i n g (BayesNet , ’E4 ’ , ’E4 ’ )
propagate ( BayesNet )
odds <− get . b e l i e f ( BayesNet , ’LocP ’ )
uncompile ( BayesNet )

l r <− odds [ ’ LocP1 ’ ] / odds [ ’ LocP2 ’ ]

return ( l r [ [ ’ LocP1 ’ ] ] )
}

r e s o l u t i o n = 100

e1_1 = 1
e1_2 = 0.001
e3_1 = 1
e3_2 = 0.001
e4_1 = 1
e4_2 = 0.001
alpha = 0 .5
beta = 0.3
gama = 0.2
de l t a = 0 .5

l r_vector <− function ( theta ) {
l r_vec = vector ( )
for ( counter in c ( 0 : r e s o l u t i o n ) ) {

y_va l = counter/ r e s o l u t i o n
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l r = LR(BayesNet = BayesNet , alpha = alpha , beta =
beta , gama = gama , de l t a = del ta , P_user1 =
r e s o l u t i on , P_user2 = 1− r e s o l u t i on , e1_1 = e1_1 ,
e1_2 = e1_2 , e3_1 = e3_1 , e3_2 = e3_2 , e4_1 =

e4_1 , e4_2=e4_2 , theta = theta )
l r_vec <− rbind ( l r_vec , c ( y_val , l r ) )

}
return ( l r_vec )

}

ylim_top = 1300

e3_1 = 1
e3_2 = 0.001
e4_1 = 1
e4_2 = 0.001

plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,
xlab = ’P( User1 ) ’ , y lab = ’LR ’ , type = ’ l ’ , main = ’
P( User1 ) ␣ var ied , ␣ theta ␣ f i x ed ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’ theta ␣=␣ 0 .9 ’ ,

’ theta ␣=␣ 0 .5 ’ , ’ theta ␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )

e3_1 = 1
e3_2 = 0.01
e4_1 = 1
e4_2 = 0.01

plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,
xlab = ’P( User1 ) ’ , y lab = ’LR ’ , type = ’ l ’ , main = ’
P( User1 ) ␣ var ied , ␣ theta ␣ f i x ed ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’ theta ␣=␣ 0 .9 ’ ,

’ theta ␣=␣ 0 .5 ’ , ’ theta ␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )
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e3_1 = 1
e3_2 = 0 .5
e4_1 = 1
e4_2 = 0 .5

plot ( l r_vector ( 0 . 9 ) , xl im = c ( 0 , 1 ) , yl im=c (0 , yl im_top ) ,
xlab = ’P( User1 ) ’ , y lab = ’LR ’ , type = ’ l ’ , main = ’
P( User1 ) ␣ var ied , ␣ theta ␣ f i x ed ’ )

l ines ( l r_vector ( 0 . 5 ) , l t y = 2)
l ines ( l r_vector ( 0 . 1 ) , l t y = 4)
abline (h=1, l t y = 3)
legend ( x=0,y=ylim_top , cex =0.6 , legend = c ( ’ theta ␣=␣ 0 .9 ’ ,

’ theta ␣=␣ 0 .5 ’ , ’ theta ␣=␣ 0 .1 ’ ) , l t y=c ( 1 , 2 , 4 ) )
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Appendix C

Sc2 & 4: List of behavioural
biometric characteristics

In the following a full list of the observed event-categories used in chapters 5
and 7 as indicators for user-behaviour is presented. They are reused as such
from (Michelet, 2021).

Each event is in one of three categories:

Punctual: Punctual events happen from time to time. For each punctual
event-type, the number of events is counted and the total duration of these
events as well as the average event duration are calculated.

Non-Punctual: Non-punctual events are constant and have one of two
states: off (0) and on (1). At any given moment in time, the phone is in
either one of those two states. For each state, the number of events in this
state is counted and the total duration and the average duration per event
are calculated, resulting in 6 variables per event-type.

Specific: Specific event-types are treated in their own individualised man-
ner:

• N
¯
otifications: The number of events is calculated for each of the fol-

lowing events:

– «Hidden»

– «Dismiss»

– «IndirectClear»

– «Recieve»
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– «Orb»

– «DefaultAction»

• B
¯
attery Percentage: Total amount of battery percents used.

• S
¯
iri: Number of Siri usages

• A
¯
pp usage & in Focus: The day is split up in 12 sessions of 2h length.

For each session, events in this event-type are treated as punctual
events.

• L
¯
ockdown: Number of power-on events of the device
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Appendix D

Sc2 & 4: Code used for Feature
Extraction

This Python script was used in Chapters 5 and 7 to import and anonymize
characteristics from the knowledgeC.db and the lockdown.log. This script is
mostly adapted from (Michelet, 2021).

The script is available at https://github.com/HSpichig/Thesis/blob/
main/BB_anonimize.py

#imports des d i f f r e n t s modules u t i l e s au p r o j e t
import pandas as pd
import s q l i t e 3
from datet ime import ∗
import re
import os
import subproces s
import numpy as np

#Cette f onc t i on permet de c r e r un dataframe contenant
t ou t e s l e s da te s a l l a n t de l a date du d b u t ( S t a r t

) l a date de f i n (End)
def create_default_dataframe ( Start , End) :

#c r a t i o n du date t ime pour l a date de d p a r t
x = datet ime . s t rpt ime ( Sta r t . s t r f t ime ( "%d/%m/%y␣" ) +

" 13 : 00 : 00 " , "%d/%m/%y␣%H:%M:%S" )
da t e_ l i s t = [ ]
#bouc l e a jou tan t l a date pour chaque jour contenu

ent re l a date de d p a r t e t l a date d ’ a r r i v e
while x . date ( ) <= End :
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da t e_ l i s t . append (x . date ( ) )
x += t imede l ta ( hours=24)

#c r a t i o n d ’un dataframe p a r t i r de c e t t e l i s t e
de da te s

df_dict = {"Date" : da t e_ l i s t }
df = pd . DataFrame ( df_dict )

return df

#fonc t i on permettant de c r e r p l u s i e u r s vnements
se d r o u l a n t chacun sur une j o u r n e l o r s qu e l ’ un
des vnements se d r o u l e sur p l u s i e u r s j our s

def set_time_and_sort ( df ) :
#compteur
c = 1
#parcour t l e dataframe e t supprime l e s anomalies (

timestamp p lu s p e t i t s que 0)
for x in df . index :

i f df . l o c [ x ] [ " Start_ts " ] < 0 or df . l o c [ x ] [ "
End_ts" ] < 0 :
df = df . drop ( index=x , ax i s=0)
print ( f " i gno r i ng ␣ l i n e ␣{x}" )

# chaque f o i s
while True :

#ind i que l e num ro de passage
print ( " passage ␣n␣" + str ( c ) )
c += 1
t e s t = False
l 1 = [ ]
c2 = 0
counter = 0
#parcour t tous l e s lments du dataframe
for x in df . index :

#s i un vnement a l i e u sur p l u s i e u r s
j our s e t que l e compteur e s t p l u s p e t i t
que 31

i f datet ime . fromtimestamp ( df . l o c [ x ] [ "
Start_ts " ] ) . date ( ) != datet ime .
fromtimestamp (
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df . l o c [ x ] [ "End_ts" ] ) . date ( ) and c
<= 31 :

t e s t = True
#copie l e s lments r e l a t i f s c e t

vnement deux f o i s
temp_dic_1 = { index : df . l o c [ x ] [ index ]

for index in df . l o c [ x ] . index }
temp_dic_2 = { index : df . l o c [ x ] [ index ]

for index in df . l o c [ x ] . index }
#modi f i e l a date de f i n de l a p r em i r e

cop ie pour qu ’ e l l e se termine l e
m me jour que l a date de
commencement , mais 23 :59 :59

End_dt_1 = datet ime . s t rpt ime ( str (
datet ime . fromtimestamp ( temp_dic_1 [ "
Start_ts " ] ) . date ( ) ) + "␣ 23 : 59 : 59 " ,

"%Y−%m−%d␣
%H:%M:%
S" )

# modi f i e l a date de commencement de l a
d e u x i m e cop ie . Cet te date sera l e
jour su i van t l e jour de

commencement , mais 00 :00 :00
Start_temp = datet ime . fromtimestamp (

temp_dic_2 [ " Start_ts " ] ) + t imede l ta (
days=1)

Start_dt_2 = datet ime . s t rpt ime ( str (
Start_temp . date ( ) ) + "␣ 00 : 00 : 00 " ,

"%Y−%m−%
d␣%H
:%M:%
S" )

#r c a l c u l e l a d u r e des vnements
temp_dic_1 [ "End_ts" ] = int ( datet ime .

timestamp (End_dt_1) )
temp_dic_1 [ "Duration" ] = temp_dic_1 [ "

End_ts" ] − ( temp_dic_1 [ " Start_ts " ] )
temp_dic_2 [ " Start_ts " ] = int ( datet ime .

timestamp ( Start_dt_2 ) )
temp_dic_2 [ "Duration" ] = ( temp_dic_2 [ "

End_ts" ] ) − temp_dic_2 [ " Start_ts " ]
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#ajou t e l e s deux lments f ra ichement
c r s une l i s t e , e t supprimme

l ’ ancien
l 1 . append ( temp_dic_1 )
l 1 . append ( temp_dic_2 )
df = df . drop ( index=x , ax i s=0)
c2 += 1

print ( f "{c2}␣ e lements ␣were␣ c l eaned " )

#s ’ i l n ’ y a p l u s d ’ lments t r a i t e r ou que
l e compteur d p a s s e 31 , s o r t de l a bouc l e

i f t e s t == False :
print ( "No␣more␣ element ␣ to ␣ c l ean " )
break

#ajou t e s l e s vnements nouve l l ement c r s
au dataframe avant de recommencer l a bouc l e

d = {key : [ ] for key in l 1 [ 0 ] . keys ( ) }
for dico in l 1 :

for key in dico . keys ( ) :
d [ key ] . append ( d ico [ key ] )

df = pd . concat ( [ pd . DataFrame (d) , df ] ) .
sor t_values ( by=[" Start_ts " ] ) . reset_index ( )

df = df . drop ( columns=" index " )

#lo r s qu e l a bouc l e e s t f i n i e , c a l c u l e l e s champs
manquants n c e s s a i r e s

df = df . a s s i gn (
#date e t heure de commencement
Start_Date=l i s t (map(lambda x : datet ime .

fromtimestamp ( int ( x ) ) . date ( ) , df . Start_ts ) ) ,
Start_Time=l i s t (map(lambda x : datet ime .

fromtimestamp ( int ( x ) ) . time ( ) , df . Start_ts ) ) ,
#date e t heure de f i n
End_Date=l i s t (map(lambda x : datet ime .

fromtimestamp ( int ( x ) ) . date ( ) , df . End_ts ) ) ,
End_Time=l i s t (map(lambda x : datet ime .

fromtimestamp ( int ( x ) ) . time ( ) , df . End_ts ) ) ,
#date t ime de commencement e t de f i n
Start_dt=l i s t (map(lambda x : datet ime .

fromtimestamp ( int ( x ) ) , df . Start_ts ) ) ,
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End_dt=l i s t (map(lambda x : datet ime .
fromtimestamp ( int ( x ) ) , df . End_ts ) ) ,

#champ u t i l e l ’ a g r g a t i o n
Count=lambda y : [ 1 for _ in df .Z_PK]

)
#retourne l e dataframe n e t t o y
return df

#fonc t i on permettant de c o n t r l e r s i un vnement a
eu l i e u durant une s e s s i on ou non ( i l n ’ appa r t i en t
pas une s e s s i on s i l e d b u t e t l a f i n de l ’

vnement se s i t u e n t tous deux avant l e d b u t de
l a s e s s i on ou a p r s l a f i n de l a s e s s i on

def i s_ in_ses s i on ( s ta r t , end , time ) :
return 0 i f ( ( s t a r t <datet ime . s t rpt ime ( s t a r t .

s t r f t ime ( "%Y−%m−%d␣" ) + time [ 0 ] , "%Y−%m−%d␣%H:%M
:%S" ) and end<datet ime . s t rpt ime ( end . s t r f t ime ( "%Y
−%m−%d␣" ) + time [ 0 ] , "%Y−%m−%d␣%H:%M:%S" ) ) or (
s t a r t >datet ime . s t rpt ime ( s t a r t . s t r f t ime ( "%Y−%m−%d
␣" ) + time [ 1 ] , "%Y−%m−%d␣%H:%M:%S" ) and end>
datet ime . s t rpt ime ( end . s t r f t ime ( "%Y−%m−%d␣" ) +
time [ 1 ] , "%Y−%m−%d␣%H:%M:%S" ) ) ) else 1

#fonc t i on permettant de c r e r l e s d i f f r e n t e s
s e s s i on s d ’ u t i l i s a t i o n du t l p h o n e

def s e t_s e s s i on s ( df ) :
l = [ ]
#c r e 12 s e s s i on s de 2h (00:00:00 −01:59:59 /

02:00:00 −03:59:59 / . . . )
for x in range (12) :

i f x >= 5 :
l . append ( ( str (2∗x ) + " : 0 0 : 0 0 " , str (2∗x+1) +

" : 5 9 : 5 9 " ) )
else :

l . append ( ( "0" + str (2∗x ) + " : 0 0 : 0 0 " , "0" +
str (2∗x+1) + " : 5 9 : 5 9 " , "%H:%M:%S" ) )

#pour chacune des se s s i ons , c o n t r l e s i l ’
vnement a eu l i e u durant l a s e s s i on (1) ou

non (0)
df = df . a s s i gn (
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Session_0=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 0 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_1=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 1 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_2=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 2 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_3=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 3 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_4=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 4 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_5=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 5 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_6=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 6 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_7=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 7 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_8=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 8 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_9=l i s t (map(lambda x , y : i s_in_ses s ion (x ,
y , l [ 9 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_10=l i s t (map(lambda x , y : i s_in_ses s ion (x
, y , l [ 1 0 ] ) , d f . Start_dt , df . End_dt) ) ,

Session_11=l i s t (map(lambda x , y : i s_in_ses s ion (x
, y , l [ 1 1 ] ) , d f . Start_dt , df . End_dt) )

)

#retourne l e dataframe
return df

#fonc t i on permettant de c r e r l e datframe de base pour
l e s vnements non ponc tue l s

def get_default_df_knowledge_non_ponctual ( Start , End ,
name) :
#r c u p r e l e dataframe avec tous l e s j our s d ’

u t i l i s a t i o n
df = create_default_dataframe ( Start , End)

# c r l e s co lonnes de 0
df = df . a s s i gn ( col_1=[0 for x in df . Date ] ,

col_2=[0 for x in df . Date ] ,
col_3=[0 for x in df . Date ] ,
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col_4=[0 for x in df . Date ] ,
col_5=[0 for x in df . Date ] ,
col_6=[0 for x in df . Date ] )

#renomme l e s co lonnes sous l e format :
n om_ v nemen t + nom_variable

df = df . rename (
columns={"col_1" : name + "_1_nb" , "col_2" : name

+ "_0_nb" ,
"col_3" : name + "_1_duration" ,
" col_4" : name + "_0_duration" , " col_5"

: name + "_1_duration_mean" ,
"col_6" : name + "_0_duration_mean"})

#Met l a date en index e t re tourne l e dataframe
df = df . rename ( columns={"Date" : "Start_Date" })
df = df . set_index ( "Start_Date" )

return df

#fonc t i on permettant d ’ a g r g e r l e s d o n n e s des
vnements non ponc tue l s

def anonimize_knowledge_dataframe_non_ponctual_events (
df , name) :

#nombre de po s i t i o n on
is_on = df . l o c [ ( df . ValueDouble != 0 . 0 ) & ( df .

ValueDouble != 2 . 0 ) ] [ [ "Start_Date" , "Count" ] ] .
groupby ( "Start_Date" ) .sum( "Count" )

is_on = is_on . rename ( columns={"Count" : name + "
_1_nb"})

# nombre de p o s i t i o n o f f
i s_o f f = df . l o c [ ( df . ValueDouble == 0 . 0 ) | ( df .

ValueDouble == 2 . 0 ) ] [ [ "Start_Date" , "Count" ] ] .
groupby ( "Start_Date" ) .sum( "Count" )

i s_o f f = i s_o f f . rename ( columns={"Count" : name + "
_0_nb"})

# d u r e t o t a l e en po s i t i o n on
is_on_duration = df . l o c [ ( df . ValueDouble == 1 . 0 ) ] [ [ "
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Start_Date" , "Duration" ] ] . groupby ( "Start_Date" ) .
sum(
"Duration" )

is_on_duration = is_on_duration . rename ( columns={"
Duration" : name + "_1_duration" })

# d u r e t o t a l e en po s i t i o n o f f
i s_of f_durat ion = df . l o c [ ( df . ValueDouble == 0 . 0 ) ] [ [

"Start_Date" , "Duration" ] ] . groupby ( "Start_Date" )
.sum(
"Duration" )

i s_of f_durat ion = is_of f_durat ion . rename ( columns={"
Duration" : name + "_0_duration" })

# d u r e moyenne en po s i t i o n on
is_on_duration_mean = df . l o c [ ( df . ValueDouble ==

1 . 0 ) ] [ [ "Start_Date" , "Duration" ] ] . groupby ( "
Start_Date" ) .mean(
"Duration" )

is_on_duration_mean = is_on_duration_mean . rename (
columns={"Duration" : name + "_1_duration_mean"})

# d u r e moyenne en po s i t i o n o f f
is_off_duration_mean = df . l o c [ ( df . ValueDouble ==

0 . 0 ) ] [ [ "Start_Date" , "Duration" ] ] . groupby ( "
Start_Date" ) .mean(
"Duration" )

is_off_duration_mean = is_off_duration_mean . rename (
columns={"Duration" : name + "_0_duration_mean"})

#regroupement des dataframe , l i s par l a date qu i
e s t devenue l ’ index v ia l e s groupby

merge = pd . concat (
[ is_on , i s_o f f , is_on_duration , i s_of f_durat ion ,

is_on_duration_mean , is_off_duration_mean ] ,
ax i s=1)

#remp l i s sage des lments nu l s avec des 0 e t
r e tour du dataframe

merge = merge . f i l l n a (0 )
return merge
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#fonc t i on permettant de c r e r l e dataframe de base
pour l e s lments ponc tue l s

def get_default_df_knowledge_ponctual ( Start , End , name) :
#c r a t i o n du dataframe avec l e s j our s d ’

u t i l i s a t i o n
df = create_default_dataframe ( Start , End)

#c r a t i o n des co lonnes de 0
df = df . a s s i gn ( col_1=[0 for x in df . Date ] ,

col_2=[0 for x in df . Date ] ,
col_3=[0 for x in df . Date ] )

#renomme l e s co lonnes au format : n om_ v nemen t +
nom_variable

df = df . rename (
columns={"col_1" : name + "_event_nb" , "col_2" :

name + "_event_duration" ,
" col_3" : name + "_event_duration_mean"

})

#Met l a date en index e t re tourne l e dataframe
df = df . rename ( columns={"Date" : "Start_Date" })
df = df . set_index ( "Start_Date" )

return df

#fonc t i on permettant d ’ a g r g e r l e s d o n n e s r e l a t i v e s
aux vnements ponc tue l s

def anonimize_knowledge_dataframe_ponctual_events ( df ,
name) :
#nombre d ’ vnements
event = df . l o c [ ( df . ValueDouble != 0 . 0 ) ] [ [ "

Start_Date" , "Count" ] ] . groupby ( "Start_Date" ) .sum
( "Count" )

event = event . rename ( columns={"Count" : name + "
_event_nb"})

#d u r e t o t a l e des vnements
event_duration = df . l o c [ ( df . ValueDouble != 0 . 0 ) ] [ [ "

Start_Date" , "Duration" ] ] . groupby ( "Start_Date" ) .
sum(
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"Duration" )
event_duration = event_duration . rename ( columns={"

Duration" : name + "_event_duration" })

#d u r e moyenne des vnements
event_duration_mean = df . l o c [ ( df . ValueDouble !=

0 . 0 ) ] [ [ "Start_Date" , "Duration" ] ] . groupby ( "
Start_Date" ) .mean(
"Duration" )

event_duration_mean = event_duration_mean . rename (
columns={"Duration" : name + "
_event_duration_mean" })

#fus i on des dataframe v ia l a date ( devenue index
avec l e s groupby )

merge = pd . concat (
[ event , event_duration , event_duration_mean ] ,
ax i s=1)

#remp l i s sage des lments nu l s avec des 0 e t
r e tour du dataframe

merge = merge . f i l l n a (0 )
return merge

#c r a t i o n du dataframe de base pour l e s lments
n o t i f i c a t i o n

def get_default_df_knowledge_not i f i cat ion ( Start , End) :
#r c u p r a t i o n du dataframe avec l e s j ou r s d ’

u t i l i s a t i o n
df = create_default_dataframe ( Start , End)

#c r a t i o n des co lonnes de 0 ( nomm es correctement
car l e s 6 noms sont connus )

df = df . a s s i gn (Hidden=[0 for x in df . Date ] ,
Rece ive=[0 for x in df . Date ] ,
Dismiss=[0 for x in df . Date ] ,
Orb=[0 for x in df . Date ] ,
I nd i r e c tC l e a r =[0 for x in df . Date ] ,
Defau l tAct ion=[0 for x in df . Date ] )

#La date e s t mise en index e t l e dataframe e s t
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r e t o u r n
df = df . rename ( columns={"Date" : "Start_Date" })
df = df . set_index ( "Start_Date" )

return df

#fonc t i on permettant d ’ a g r g e r l e s d o n n e s l i e s aux
vnements n o t i f i c a t i o n s

def anonimize_knowledge_not i f i cat ion ( df ) :

#nombre de n o t i f i c a t i o n s hidden
Hidden = df . l o c [ ( df . Value == "Hidden" ) ] [ [ "

Start_Date" , "Count" ] ] . groupby ( "Start_Date" ) .sum
( "Count" )

Hidden = Hidden . rename ( columns={"Count" : "Hidden_nb
"})

# nombre de n o t i f i c a t i o n s r e c e i v e
Receive = df . l o c [ ( df . Value == "Receive " ) ] [ [ "

Start_Date" , "Count" ] ] . groupby ( "Start_Date" ) .sum
( "Count" )

Receive = Receive . rename ( columns={"Count" : "
Receive_nb"})

# nombre de n o t i f i c a t i o n s d i smis s
Dismiss = df . l o c [ ( df . Value == "Dismiss " ) ] [ [ "

Start_Date" , "Count" ] ] . groupby ( "Start_Date" ) .sum
( "Count" )

Dismiss = Dismiss . rename ( columns={"Count" : "
Dismiss_nb"})

# nombre de n o t i f i c a t i o n s orb
Orb = df . l o c [ ( df . Value == "Orb" ) ] [ [ "Start_Date" , "

Count" ] ] . groupby ( "Start_Date" ) .sum( "Count" )
Orb = Orb . rename ( columns={"Count" : "Orb_nb"})

# nombre de n o t i f i c a t i o n s i n d i r e c t c l e a r
I nd i r e c tC l e a r = df . l o c [ ( df . Value == " Ind i r e c tC l e a r "

) ] [ [ "Start_Date" , "Count" ] ] . groupby ( "Start_Date"
) .sum( "Count" )

I nd i r e c tC l e a r = Ind i r e c tC l e a r . rename ( columns={"
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Count" : " IndirectClear_nb "})

# nombre de n o t i f i c a t i o n s d e f a u l t a c t i o n
DefaultAct ion = df . l o c [ ( df . Value == "Defaul tAct ion "

) ] [ [ "Start_Date" , "Count" ] ] . groupby ( "Start_Date"
) .sum( "Count" )

Defaul tAct ion = DefaultAct ion . rename ( columns={"
Count" : "DefaultAction_nb"})

#fus i on des dataframe v ia l a date (mise en index
par l e groupby )

merge = pd . concat (
[ Hidden , Receive , Dismiss , Orb , Ind i r e c tC l ea r ,

Defau l tAct ion ] ,
ax i s=1)

#remp l i s sage des lments nu l s avec des 0 e t
r e tour du dataframe

merge = merge . f i l l n a (0 )
return merge

#fonc t i on permettant de c r e r l e dataframe de base
pour l e s d o n n e s b a t t e r i e e t s i r i

def get_default_df_knowledge_percentage_sir i ( Start , End ,
name) :
#r c u p r a t i o n du dataframe c ompo s des j our s d ’

u t i l i s a t i o n
df = create_default_dataframe ( Start , End)

#c r a t i o n de l a co lonne de 0
df = df . a s s i gn ( col_1=[0 for x in df . Date ] )

#renommage de l a co lone ( nom_ v nemen t +
nom_variable )

df = df . rename (
columns={"col_1" : name + "_nb"})

#Mise en index de l a date e t r e tour du dataframe
df = df . rename ( columns={"Date" : "Start_Date" })
df = df . set_index ( "Start_Date" )
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return df

#fonc t i on permettant d ’ anonimiser l e s d o n n e s l i e s
aux vnements b a t t e r i e e t s i r i

def anonimize_percentage_and_sir i ( df , name) :

#nombre d ’ occurences de l ’ vnement
Count = df [ [ "Start_Date" , "Count" ] ] . groupby ( "

Start_Date" ) .sum( "Count" )
Count = Count . rename ( columns={"Count" : name + "_nb"

})

#remp l i s sage des va l e u r s n u l l e s avec des 0 e t
r e tour du dataframe

Count = Count . f i l l n a (0 )

return Count

#fonc t i on permettant de r c u p r e r l e datframe de base
pour l e s vnements l i s l ’ u t i l i s a t i o n d ’

a p p l i c a t i o n s
def get_default_df_knowledge_app_usage ( Start , End , name)

:
#r c u p r a t i o n du dataframe contenant l e s j our s d ’

u t i l i s a t i o n
df = create_default_dataframe ( Start , End)

#c r a t i o n des co lonnes de 0
df = df . a s s i gn ( col_1=[0 for x in df . Date ] ,

col_2=[0 for x in df . Date ] ,
col_3=[0 for x in df . Date ] ,
col_4=[0 for x in df . Date ] ,
col_5=[0 for x in df . Date ] ,
col_6=[0 for x in df . Date ] ,
col_7=[0 for x in df . Date ] ,
col_8=[0 for x in df . Date ] ,
col_9=[0 for x in df . Date ] ,
col_10=[0 for x in df . Date ] ,
col_11=[0 for x in df . Date ] ,
col_12=[0 for x in df . Date ] )
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#renommage des co lonnes ( nom_ v nemen t +
nom_variable )

df = df . rename (
columns={"col_1" : name + "_Session_0" , "col_2" :

name + "_Session_1" , "col_3" : name + "
_Session_2" ,

"col_4" : name + "_Session_3" , "col_5" :
name + "_Session_4" ,

"col_6" : name + "_Session_5" ,
"col_7" : name + "_Session_6" , "col_8" :

name + "_Session_7" ,
"col_9" : name + "_Session_8" ,
" col_10" : name + "_Session_9" , " col_11

" : name + "_Session_10" , " col_12" :
name + "_Session_11" })

#Mise en index de l a date e t r e tour du dataframe
df = df . rename ( columns={"Date" : "Start_Date" })
df = df . set_index ( "Start_Date" )

return df

#fonc t i on permettant d ’ a g r g e r l e s d o n n e s l i e s aux
vnements d ’ u t i l i s a t i o n des a p p l i c a t i o n s

def anonimize_app_usage ( df , name) :
#u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 0
Session_0 = df [ [ "Start_Date" , "Session_0" ] ] . groupby (

"Start_Date" ) .sum( "Count" )
Session_0 = Session_0 . a s s i gn ( Session_0=l i s t (map(

lambda x : 1 i f int ( x )>0 else 0 , Session_0 .
Session_0 ) ) )

Session_0 = Session_0 . rename ( columns={"Session_0" :
name + "_Session_0"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 1
Session_1 = df [ [ "Start_Date" , " Session_1" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_1 = Session_1 . a s s i gn ( Session_1=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_1 .
Session_1 ) ) )

Session_1 = Session_1 . rename ( columns={"Session_1" :
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name + "_Session_1"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 2
Session_2 = df [ [ "Start_Date" , " Session_2" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_2 = Session_2 . a s s i gn ( Session_2=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_2 .
Session_2 ) ) )

Session_2 = Session_2 . rename ( columns={"Session_2" :
name + "_Session_2"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 3
Session_3 = df [ [ "Start_Date" , " Session_3" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_3 = Session_3 . a s s i gn ( Session_3=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_3 .
Session_3 ) ) )

Session_3 = Session_3 . rename ( columns={"Session_3" :
name + "_Session_3"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 4
Session_4 = df [ [ "Start_Date" , " Session_4" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_4 = Session_4 . a s s i gn ( Session_4=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_4 .
Session_4 ) ) )

Session_4 = Session_4 . rename ( columns={"Session_4" :
name + "_Session_4"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 5
Session_5 = df [ [ "Start_Date" , " Session_5" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_5 = Session_5 . a s s i gn ( Session_5=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_5 .
Session_5 ) ) )

Session_5 = Session_5 . rename ( columns={"Session_5" :
name + "_Session_5"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 6
Session_6 = df [ [ "Start_Date" , " Session_6" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
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Session_6 = Session_6 . a s s i gn ( Session_6=l i s t (map(
lambda x : 1 i f int ( x ) > 0 else 0 , Session_6 .
Session_6 ) ) )

Session_6 = Session_6 . rename ( columns={"Session_6" :
name + "_Session_6"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 7
Session_7 = df [ [ "Start_Date" , " Session_7" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_7 = Session_7 . a s s i gn ( Session_7=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_7 .
Session_7 ) ) )

Session_7 = Session_7 . rename ( columns={"Session_7" :
name + "_Session_7"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 8
Session_8 = df [ [ "Start_Date" , " Session_8" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_8 = Session_8 . a s s i gn ( Session_8=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_8 .
Session_8 ) ) )

Session_8 = Session_8 . rename ( columns={"Session_8" :
name + "_Session_8"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 9
Session_9 = df [ [ "Start_Date" , " Session_9" ] ] . groupby

( "Start_Date" ) .sum( "Count" )
Session_9 = Session_9 . a s s i gn ( Session_9=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_9 .
Session_9 ) ) )

Session_9 = Session_9 . rename ( columns={"Session_9" :
name + "_Session_9"})

# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 10
Session_10 = df [ [ "Start_Date" , " Session_10" ] ] .

groupby ( "Start_Date" ) .sum( "Count" )
Session_10 = Session_10 . a s s i gn ( Session_10=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_10 .
Session_10 ) ) )

Session_10 = Session_10 . rename ( columns={"Session_10
" : name + "_Session_10" })
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# u t i l i s a t i o n du t l p h o n e dans l a s e s s i on 11
Session_11 = df [ [ "Start_Date" , " Session_11" ] ] .

groupby ( "Start_Date" ) .sum( "Count" )
Session_11 = Session_11 . a s s i gn ( Session_11=l i s t (map(

lambda x : 1 i f int ( x ) > 0 else 0 , Session_11 .
Session_11 ) ) )

Session_11 = Session_11 . rename ( columns={"Session_11
" : name + "_Session_11" })

#fus i on des dataframe v ia l a date (mise en index
par l e s groupby )

merge = pd . concat (
[ Session_0 , Session_1 , Session_2 , Session_3 ,

Session_4 , Session_5 , Session_6 , Session_7 ,
Session_8 , Session_9 , Session_10 , Session_11 ] ,

ax i s=1)
#remp l i s sage des lments v i d e s avec des 0 e t

r e tour du dataframe
merge = merge . f i l l n a (0 )
return merge

#fonc t i on permettant de r c u p r e r l e s vnements de
knowledgec , pu i s de l e s a g r g e r

def KnowledgeC_Events ( Start , End , path ) :
print ( " Sta r t ␣KnowledgeC␣ events " )
#r e q u t e SQLite
print ( path )
db = s q l i t e 3 . connect ( path )
df = pd . read_sql_query ( ’SELECT␣ZOBJECT.Z_PK, ␣ (

ZOBJECT.ZSTARTDATE␣+␣978307200) ␣ as ␣" Start_ts " , ␣
datet ime ( (ZOBJECT.ZSTARTDATE)␣+␣978307200 ,"
unixepoch ") ␣ as ␣"Start_dt " , ␣ (ZOBJECT.ZENDDATE␣+␣
978307200) ␣ as ␣"End_ts" , datet ime ( (ZOBJECT.
ZENDDATE)␣+␣978307200 ," unixepoch ") ␣ as ␣"End_dt" , ␣
(ZOBJECT.ZENDDATE−ZOBJECT.ZSTARTDATE)␣as ␣"
Duration " , ␣ZOBJECT.ZSTREAMNAME␣as ␣"Name" , ␣
ZOBJECT.ZVALUESTRING␣as ␣"Value " , ␣ZOBJECT.
ZVALUEDOUBLE␣as ␣"ValueDouble"␣FROM␣ZOBJECT␣ORDER
␣BY␣Start_ts ’ ,

db )
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db . c l o s e ( )

#net toyage du dataframe
df = set_time_and_sort ( df )

#c r a t i o n des s e s s i on s
df = s e t_s e s s i on s ( df )

#r c u p r a t i o n des vnements ayant eu l i e u
durant l a p r i o d e d ’ u t i l i s a t i o n

df = df . l o c [ ( df . Start_Date>=Star t ) & ( df . End_Date<=
End) ]

#r c u p r a t i o n des vnements "/ d i s p l a y /
o r i e n t a t i o n "

#s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,
s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

d f_or i en ta t i on = df . l o c [ ( df .Name=="/ d i sp l ay /
o r i e n t a t i o n " ) ]

i f len ( d f_or i en ta t i on ) ==0 :
d f_or i en ta t i on =

get_default_df_knowledge_non_ponctual ( Start ,
End , " o r i e n t a t i o n " )

else :
d f_or i en ta t i on =

anonimize_knowledge_dataframe_non_ponctual_events
( d f_or i entat ion , " o r i e n t a t i o n " )

# r c u p r a t i o n des vnements "/ dev i c e /
i sP lugged In "

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_plugged = df . l o c [ ( df .Name=="/ dev i c e / i sP luggedIn "
) ]

i f len ( df_plugged )==0 :
df_plugged =

get_default_df_knowledge_non_ponctual ( Start ,
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End , " i sP lugged " )
else :

df_plugged =
anonimize_knowledge_dataframe_non_ponctual_events
( df_plugged , " i sP lugged " )

# r c u p r a t i o n des vnements "/ d i s p l a y /
i s B a c k l i t "

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

d f_ i s ba ck l i t = df . l o c [ ( df .Name=="/ d i sp l ay / i sB a c k l i t
" ) ]

i f len ( d f_ i s b a ck l i t )==0 :
d f_ i s ba ck l i t =

get_default_df_knowledge_non_ponctual ( Start ,
End , " i sB a c k l i t " )

else :
d f_ i s ba ck l i t =

anonimize_knowledge_dataframe_non_ponctual_events
( d f_ i sback l i t , " i sB a c k l i t " )

# r c u p r a t i o n des vnements "/ dev i c e / isLocked
"

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_i s l ocked = df . l o c [ ( df .Name=="/ dev i c e / isLocked " ) ]
i f len ( d f_i s l ocked ) == 0 :

d f_i s l ocked =
get_default_df_knowledge_non_ponctual ( Start ,
End , " i sLocked " )

else :
d f_ i s l ocked =

anonimize_knowledge_dataframe_non_ponctual_events
( d f_is locked , " i sLocked " )

# r c u p r a t i o n des vnements "/ system/
airplaneMode"
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# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_ai rp lane = df . l o c [ ( df .Name=="/system/
airplaneMode" ) ]

i f len ( d f_ai rp lane )==0:
d f_ai rp lane =

get_default_df_knowledge_non_ponctual ( Start ,
End , " airplaneMode" )

else :
d f_ai rp lane =

anonimize_knowledge_dataframe_non_ponctual_events
( df_airplane , " airplaneMode" )

# r c u p r a t i o n des vnements "/ w i f i / connect ion
"

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements ponctue l s , s inon
r c u p r e l e dataframe des d o n n e s a g r g e s

df_wi f i = df . l o c [ ( df .Name=="/ w i f i / connect ion " ) ]
i f len ( d f_wi f i )==0 :

d f_wi f i = get_default_df_knowledge_ponctual (
Start , End , " w i f i " )

else :
d f_wi f i =

anonimize_knowledge_dataframe_ponctual_events
( df_wif i , " w i f i " )

# r c u p r a t i o n des vnements "/ b l u e t o o t h /
isConnected "

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_bluetooth = df . l o c [ ( df .Name=="/ bluetooth /
isConnected " ) ]

i f len ( df_bluetooth ) == 0 :
df_bluetooth =

get_default_df_knowledge_non_ponctual ( Start ,
End , "Bluetooth " )
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else :
df_bluetooth =

anonimize_knowledge_dataframe_non_ponctual_events
( df_bluetooth , "Bluetooth " )

# r c u p r a t i o n des vnements "/ dev i c e /
ba t t e r ySave r "

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements ponctue l s , s inon
r c u p r e l e dataframe des d o n n e s a g r g e s

df_batterysaver = df . l o c [ ( df .Name=="/ dev i c e /
batterySaver " ) ]

i f len ( d f_batterysaver )==0:
df_batterysaver =

get_default_df_knowledge_ponctual ( Start , End ,
" batterySaver " )

else :
d f_batterysaver =

anonimize_knowledge_dataframe_ponctual_events
( df_batterysaver , " batterySaver " )

# r c u p r a t i o n des vnements "/ audio /
outputRoute "

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_audiooutput = df . l o c [ ( df .Name=="/audio /
outputRoute" ) ]

i f len ( df_audiooutput )==0:
df_audiooutput =

get_default_df_knowledge_non_ponctual ( Start ,
End , "audioOutput" )

else :
df_audiooutput =

anonimize_knowledge_dataframe_non_ponctual_events
( df_audiooutput , "audioOutput" )

# r c u p r a t i o n des vnements "/ audio /
inputRoute "

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
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de base pour l e s vnements non ponctue l s ,
s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_audioinput = df . l o c [ ( df .Name=="/audio / inputRoute
" ) ]

i f len ( df_audioinput )==0:
df_audioinput =

get_default_df_knowledge_non_ponctual ( Start ,
End , " audioInput " )

else :
df_audioinput =

anonimize_knowledge_dataframe_non_ponctual_events
( df_audioinput , " audioInput " )

# r c u p r a t i o n des vnements n o t i f i c a t i o n
# s i l e dataframe e s t v ide , r c u p r e l e dataframe

de base pour l e s vnements n o t i f i c a t i o n s ,
s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

d f_no t i f i c a t i onu sag e = df . l o c [ ( df .Name=="/
n o t i f i c a t i o n /usage " ) ]

i f len ( d f_no t i f i c a t i onu sag e ) == 0 :
d f_no t i f i c a t i onu sag e =

get_default_df_knowledge_not i f i cat ion ( Start ,
End)

else :
d f_no t i f i c a t i onu sag e =

anonimize_knowledge_not i f i cat ion (
d f_no t i f i c a t i onu sag e )

# r c u p r a t i o n des vnements "/ dev i c e /
lowPowerMode"

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_lowpowermode = df . l o c [ ( df .Name=="/ dev i c e /
lowPowerMode" ) ]

i f len ( df_lowpowermode )==0:
df_lowpowermode =

get_default_df_knowledge_non_ponctual ( Start ,
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End , "lowPowermode" )
else :

df_lowpowermode =
anonimize_knowledge_dataframe_non_ponctual_events
( df_lowpowermode , "lowPowermode" )

# r c u p r a t i o n des vnements b a t t e r i e
# s i l e dataframe e s t v ide , r c u p r e l e dataframe

de base pour l e s vnements b a t t e r i e e t s i r i ,
s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

df_batterypercentage = df . l o c [ ( df .Name=="/ dev i ce /
batteryPercentage " ) ]

i f len ( d f_batterypercentage ) == 0 :
df_batterypercentage =

get_default_df_knowledge_percentage_sir i (
Start , End , " batteryPercentage " )

else :
d f_batterypercentage =

anonimize_percentage_and_sir i (
df_batterypercentage , " batte ryPercentage " )

# r c u p r a t i o n des vnements s i r i
# s i l e dataframe e s t v ide , r c u p r e l e dataframe

de base pour l e s vnements b a t t e r i e e t s i r i ,
s inon r c u p r e l e dataframe des d o n n e s
a g r g e s

d f_ s i r i = df . l o c [ ( df .Name=="/ s i r i / u i " ) ]
i f len ( d f_ s i r i )==0:

d f_ s i r i =
get_default_df_knowledge_percentage_sir i (
Start , End , " s i r i " )

else :
d f_ s i r i = anonimize_percentage_and_sir i ( d f_s i r i

, " s i r i " )

# r c u p r a t i o n des vnements "/media/
nowPlaying"

# s i l e dataframe e s t v ide , r c u p r e l e dataframe
de base pour l e s vnements non ponctue l s ,

s inon r c u p r e l e dataframe des d o n n e s
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a g r g e s
df_mediaplaying = df . l o c [ ( df .Name=="/media/

nowPlaying" ) ]
i f len ( df_mediaplaying )==0 :

df_mediaplaying =
get_default_df_knowledge_non_ponctual ( Start ,
End , "mediaPlaying" )

else :
df_mediaplaying =

anonimize_knowledge_dataframe_non_ponctual_events
( df_mediaplaying , "mediaPlaying" )

# r c u p r a t i o n des vnements "/app/usage "
# s i l e dataframe e s t v ide , r c u p r e l e dataframe

de base pour l e s vnements ponc tue l s e t pour
l e s vnements d ’ u t i l i s a t i o n d ’ app l i c a t i on s ,

# sinon r c u p r e l e s dataframes des d o n n e s
a g r g e s

df_appusage = df . l o c [ ( df .Name=="/app/usage " ) ]
i f len ( df_appusage )==0 :

df_appusage_1 =
get_default_df_knowledge_app_usage ( Start , End
, "appUsage" )

df_appusage_2 =
get_default_df_knowledge_ponctual ( Start , End ,
"appUsage" )

else :
df_appusage_1 = anonimize_app_usage ( df_appusage

, "appUsage" )
df_appusage_2 =

anonimize_knowledge_dataframe_ponctual_events
( df_appusage , "appUsage" )

# r c u p r a t i o n des vnements "/app/ inFocus"
# s i l e dataframe e s t v ide , r c u p r e l e dataframe

de base pour l e s vnements ponc tue l s e t pour
l e s vnements d ’ u t i l i s a t i o n d ’ app l i c a t i on s ,

# sinon r c u p r e l e s dataframes des d o n n e s
a g r g e s

df_appinfocus = df . l o c [ ( df .Name=="/app/ inFocus " ) ]
i f len ( df_appinfocus )==0 :
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df_appinfocus_1 =
get_default_df_knowledge_app_usage ( Start , End
, " appInfocus " )

df_appinfocus_2 =
get_default_df_knowledge_ponctual ( Start , End ,
" appInfocus " )

else :
df_appinfocus_1 = anonimize_app_usage (

df_appinfocus , " appInfocus " )
df_appinfocus_2 =

anonimize_knowledge_dataframe_ponctual_events
( df_appinfocus , " appInfocus " )

#fus i on de tous l e s dataframe v ia l a date ( qu i a
t mise en index par l e s groupby )

merge = pd . concat (
[ d f_or i entat ion , df_plugged , d f_ i sback l i t ,

d f_is locked , df_airplane , df_wif i , df_bluetooth
, df_batterysaver , df_audioinput ,

df_audiooutput , d f_not i f i c a t i onusage ,
df_lowpowermode , df_batterypercentage ,
d f_s i r i , df_mediaplaying , df_appusage_1 ,

df_appusage_2 , df_appinfocus_1 , df_appinfocus_2
] ,

ax i s=1)

#remp l i s sage des lments nu l s avec des 0
merge = merge . f i l l n a (0 )
#Mise en index de l a date
merge = merge . reset_index ( )
merge = merge . rename ( columns={"Start_Date" : "Date"

})
merge = merge . set_index ( "Date" )

#enreg i s t r ement dans un csv e t r e tour du dataframe
merge . to_csv ( "knowledge . csv " )

return merge

#fonc t i on permettant de r c u p r e r l e dataframe de
base pour l e s d o n n e s l i e s au lockdown
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def get_default_df_lockdown ( Start , End) :
#r c u p r a t i o n du dataframe contenant l e s j our s d ’

u t i l i s a t i o n
df = create_default_dataframe ( Start , End)

#c r a t i o n de l a co lonne de 0
df = df . a s s i gn ( Starting_up_nb=[0 for x in df . Date ] )

#mise en index de l a date e t r e tour du dataframe
df = df . set_index ( "Date" )
return df

#fonc t i on permettant de r c u p r e r l e s d o n n e s
l i e s au lockdown , de c a l c u l e r l e s champs manquants
e t d ’ a g r g e r l e s d o n n e s

def Lockdown ( Start , End , path ) :
#s i l e chemin vaut 0 , l a base de d o n n e s e s t

i n d i s p o n i b l e e t l e dataframe de base pour l e
lockdown e s t r e t o u r n

i f path == 0 :
return get_default_df_lockdown ( Start , End)

day = [ ]
count = [ ]
f = open( path )
#ouvre l e f i c h i e r lockdown e t parcour t l e s l i g n e s
for x in f . r e a d l i n e s ( ) :

#s ’ i l y a "main : S t a r t i n g Up" dans l a l i gne ,
r c u p r e l a date e t a j ou t e 1 au compteur

i f "main : ␣ S ta r t i ng ␣Up" in x :
y = x . s p l i t ( "␣" ) [ 0 ] + "␣" + x . s p l i t ( "␣" )

[ 1 ] . s p l i t ( " . " ) [ 0 ]
z = datet ime . s t rpt ime (y , "%m/%d/%y␣%H:%M:%S"

)
day . append ( z )
count . append (1)

else :
pass

# c r un dataframe avec t ou t e s l e s in format ions
sur l e s mises en route du t l p h o n e

data_lockdown = {"Date_dt" : day , "Count" : count , "
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Date_ts" : l i s t (map(lambda x : x . timestamp ( ) , day )
) }

df = pd . DataFrame ( data_lockdown )

#s i l e dataframe l e s t v ide , re tourne c e l u i de
base pour l e s d o n n e s lockdown

i f len ( df ) == 0 :
return get_default_df_lockdown ( Start , End)

#ca l c u l e l a date e t l ’ heure pour chaque vnement
df = df . a s s i gn (Date=l i s t (map(lambda x : datet ime .

fromtimestamp ( int ( x ) ) . date ( ) , df . Date_ts ) ) ,
Time=l i s t (map(lambda x : datet ime . fromtimestamp (

int ( x ) ) . time ( ) , df . Date_ts ) ) )

# s i l e dataframe ne con t i en t aucun lment
durant l a p r i o d e d ’ u t i l i s a t i o n , re tourne c e l u i
de base pour l e s d o n n e s lockdown

i f len ( df . l o c [ ( df . Date>=Star t ) & ( df . Date<=End) ] )
== 0 :
return get_default_df_lockdown ( Start , End)

#nombre d ’ a l lumages du t l p h o n e
df_anonimized = df . l o c [ ( df . Date>=Star t ) & ( df . Date

<=End) ] [ [ "Date" , "Count" ] ] . groupby ( "Date" ) .sum( "
Count" )

df_anonimized = df_anonimized . rename ( columns={"
Count" : "Starting_up_nb"})

#en r e g i s t r e l e dataframe e t l e re tourne
df_anonimized . to_csv ( " lockdown . csv " )
return df_anonimized

i f __name__ == ’__main__ ’ :
#Date du d b u t de l ’ u t i l i s a t i o n au format "dd .mm.

yy hh :mm: ss "
Star t = datet ime . s t rpt ime ( " 06 . 04 . 22 ␣ ␣ 00 : 00 : 00 " , "%

d.%m.%y␣ ␣%H:%M:%S" ) . date ( )
# Date de f i n de l ’ u t i l i s a t i o n au format "dd .mm. yy

hh :mm: ss "
End = datet ime . s t rpt ime ( " 06 . 04 . 22 ␣ ␣ 23 : 59 : 59 " , "%d
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.%m.%y␣ ␣%H:%M:%S" ) . date ( )
#id messenger de l ’ u t i l i s a t e u r s i messenger e s t

i n s t a l l , s inon 0
#chemin du do s s i e r contenant l e s d i f f r e n t s

d o s s i e r s dans l e s q u e l s sont s t o c k e s l e s
f i c h i e r s e t bases de d o n n e s

Base_path = ""
# m me chemin qu ’ avant mais en bru t
Brut_base_path = r ""
#id de l ’ u t i l i s a t e u r
id_user = 2
#id du t l p h o n e
id_phone = 2

#app e l l e t o u t e s l e s f on c t i on s qu i r c u p r e n t l e s
d o nn e s , c a l c u l e l e s champ manquants e t
a g r g e n t l e s d o n n e s

#i l f au t donner l a date de d b u t d ’ u t i l i s a t i o n , l a
date de f i n d ’ u t i l i s a t i o n e t l e chemin des

bases de d o n n e s
#s i l a base de d o n n e s n ’ e s t pas d i s p on i b l e ou n ’

e x i s t e pas , i l f a u t mettre 0
#pour c e r t a i n e s fonc t i ons , i l f aur donner des

p a r am t r e s en p l u s ( ud_messenger ou l i s t e des
mai l s )

print ( " d b u t ␣du␣programme␣ : ␣" + str ( datet ime . now( )
) )

kn = KnowledgeC_Events ( Start , End , Base_path + "/
knowledgeC . db" )

l o = Lockdown( Start , End , Base_path + "/ lockdownd . l og
" )

#fus ionne tous l e s dataframe ( v ia l a date )
merge = pd . concat ( [ kn , l o ] , ax i s=1)

#rempl i l e s lments nu l s de 0
merge = merge . f i l l n a (0 )

#en r e g i s t r e l e dataframe f i n a l dans un f i c h i e r csv
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merge . to_csv ( "anonimized_data_user_" + str ( id_user )
+ "_phone_" + str ( id_phone ) +"_2 . csv " )

print ( " f i n ␣programme␣ : ␣" +str ( datet ime . now( ) ) )

#Auteur : Miche l e t G a t a n
#Adapted by Hannes Sp i ch i g e r
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Appendix E

Sc2: Code used for behavioural
biometrics analysis

This Python script was used in Chapter 5 to generate an LR from the be-
havioural characteristics extracted using the script in Annex D. This script
is partially based on (Michelet, 2021).

The script is available at https://github.com/HSpichig/Thesis/blob/
main/BB_Sc2_LR.py

# import des modules d ’ i n t r t
import pandas as pd
import numpy as np
from s k l e a rn . c l u s t e r import KMeans
from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler
from s k l e a rn . decomposit ion import PCA
import math
import random
import matp lo t l i b . pyplot as p l t
import csv
from f i t t e r import F i t t e r

# pip i n s t a l l pandas , s k l e a rn

# groupe contenant l e s v a r i a b l e s s y s t m e
f eatures_system = [ ’ orientation_1_nb ’ , ’

orientation_0_nb ’ , ’ or ientat ion_1_durat ion ’ ,
’ or ientat ion_0_durat ion ’ , ’

orientation_1_duration_mean ’ ,
’ orientation_0_duration_mean ’ , ’
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isPlugged_1_nb ’ , ’ isPlugged_0_nb ’
,

’ isPlugged_1_duration ’ , ’
isPlugged_0_duration ’ , ’
isPlugged_1_duration_mean ’ ,

’ isPlugged_0_duration_mean ’ ,
’ isBacklit_1_nb ’ , ’ isBacklit_0_nb ’ ,

’ i sBackl i t_1_durat ion ’ ,
’ i sBackl i t_0_durat ion ’ , ’

isBacklit_1_duration_mean ’ ,
’ isBacklit_0_duration_mean ’ , ’

isLocked_1_nb ’ , ’ isLocked_0_nb ’ ,
’ isLocked_1_duration ’ , ’

isLocked_0_duration ’ ,
’ isLocked_1_duration_mean ’ , ’

isLocked_0_duration_mean ’ ,
’ airplaneMode_1_nb ’ , ’

airplaneMode_0_nb ’ , ’
airplaneMode_1_duration ’ ,

’ airplaneMode_0_duration ’ , ’
airplaneMode_1_duration_mean ’ ,

’ airplaneMode_0_duration_mean ’ , ’
wifi_event_nb ’ , ’
wi f i_event_durat ion ’ ,

’ wifi_event_duration_mean ’ , ’
Bluetooth_1_nb ’ , ’ Bluetooth_0_nb ’
,

’ Bluetooth_1_duration ’ , ’
Bluetooth_0_duration ’ ,

’ Bluetooth_1_duration_mean ’ , ’
Bluetooth_0_duration_mean ’ ,

’ batterySaver_event_nb ’ , ’
batterySaver_event_duration ’ ,

’ batterySaver_event_duration_mean ’ ,
’ audioInput_1_nb ’ ,

’ audioInput_0_nb ’ , ’
audioInput_1_duration ’ , ’
audioInput_0_duration ’ ,

’ audioInput_1_duration_mean ’ , ’
audioInput_0_duration_mean ’ ,

’ audioOutput_1_nb ’ , ’
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audioOutput_0_nb ’ , ’
audioOutput_1_duration ’ ,

’ audioOutput_0_duration ’ , ’
audioOutput_1_duration_mean ’ ,

’ audioOutput_0_duration_mean ’ , ’
Hidden_nb ’ , ’ Receive_nb ’ , ’
Dismiss_nb ’ ,

’Orb_nb ’ , ’ IndirectClear_nb ’ , ’
DefaultAction_nb ’ , ’
lowPowermode_1_nb ’ , ’
lowPowermode_0_nb ’ ,

’ lowPowermode_1_duration ’ ,
’ lowPowermode_0_duration ’ , ’

lowPowermode_1_duration_mean ’ ,
’ lowPowermode_0_duration_mean ’ , ’

batteryPercentage_nb ’ , ’ s i r i_nb ’ ,
’mediaPlaying_1_nb ’ , ’

mediaPlaying_0_nb ’ , ’
mediaPlaying_1_duration ’ ,

’ mediaPlaying_0_duration ’ , ’
mediaPlaying_1_duration_mean ’ ,

’ mediaPlaying_0_duration_mean ’ , ’
appUsage_Session_0 ’ ,

’ appUsage_Session_1 ’ , ’
appUsage_Session_2 ’ , ’
appUsage_Session_3 ’ ,

’ appUsage_Session_4 ’ , ’
appUsage_Session_5 ’ , ’
appUsage_Session_6 ’ ,

’ appUsage_Session_7 ’ , ’
appUsage_Session_8 ’ , ’
appUsage_Session_9 ’ ,

’ appUsage_Session_10 ’ , ’
appUsage_Session_11 ’ , ’
appUsage_event_nb ’ ,

’ appUsage_event_duration ’ , ’
appUsage_event_duration_mean ’ ,

’ Starting_up_nb ’ ]

# Returns the id o f e lement w i th in l i s c h t e
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def get_l i s t_id ( l i s c h t e , element ) :
for i in range ( len ( l i s c h t e ) ) :

i f l i s c h t e [ i ] == element :
return i

return −1

# Function c a l c u l a t i n g the cen ter o f g r a v i t y o f a l i s t
o f v e c t o r s

def cent_of_gravity ( v e c t o r_ l i s t ) :
weight = len ( v e c t o r_ l i s t ) # Number o f v e c t o r s to

c a l c u l a t e the cen te r o f g r a v i t y o f . Used f o r
we i gh t ing

dim = len ( v e c t o r_ l i s t [ 0 ] ) # dimension o f the
passed v e c t o r s

r e s u l t = [ 0 . 0 ] ∗ dim # in s t a n t i a t e a nu l l−vec t o r
wi th dimension dim

for v in v e c t o r_ l i s t :
for i in range (dim) :

r e s u l t [ i ] += v [ i ] / weight

return r e s u l t

# Function import ing v e c t o r s from data f i l e csv . Takes
s u b f o l d e r path from base path as input and re turns

# array o f v e c t o r s
def get_vectors ( subpath ) :

v e c t o r s = [ ]

with open(Base_path + subpath ) as f i le_name :
f i l e_r ead = csv . r eader ( f i le_name )
array = l i s t ( f i l e_r ead )

index_ l i s t = [ ]

for k in f eatures_system :
index_ l i s t . append ( ge t_l i s t_ id ( array [ 0 ] , k ) )

200



for k in array [ 1 : ] :
turn = [ ]
for j in i ndex_ l i s t :

turn . append (k [ j ] )
v e c t o r s . append ( turn )

#pr in t ( v e c t o r s )
return vec to r s

# Normalises over a l l v e c t o r s in p lay .
# Accepts as an input a l i s t o f a l i s t o f v e c t o r s . The

v e c t o r s w i l l be assembled t o g e t h e r and normal ised .
# Returns a l i s t o f a l i s t o f normal ised v e c t o r s

grouped and ordered the same way as the input
def normal i s e ( l i s t_o_ l i s t ) :

input_structure = [ ]
v e c t o r_ l i s t = [ ]
output = [ ]
for i in l i s t_o_ l i s t :

input_structure . append ( len ( i ) )
v e c t o r_ l i s t += i

sc = StandardSca ler ( )
transformed = sc . f i t_trans fo rm (X=ve c t o r_ l i s t ) .

t o l i s t ( )
for i in input_structure :

m = [ ]
for j in range ( i ) :

m. append ( transformed . pop (0 ) )
output . append (m)

return output

# Ca l cu l a t e l e n g t h o f a vec to r
def vector_len ( vec to r ) :

elements_sum = 0
for i in vec to r :

i
elements_sum += f loat ( i ) ∗ f loat ( i )

return math . s q r t ( elements_sum )
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# Ca l cu l a t e s the vec to r d i s t ance between two v e c t o r s
def vector_dis tance ( v1 , v2 ) :

dim = len ( v1 )
i f dim == len ( v2 ) :

d i s tance_vector = [ 0 . 0 ] ∗ dim
for i in range (dim) :

d i s tance_vector [ i ] = v1 [ i ] − v2 [ i ]
return vector_len ( d i s tance_vector )

else :
print ( "Vector ␣dimension ␣ i s ␣not␣ equal " )
return −1

# Gets the d i f f e r e n c e from the comparison vec t o r to the
cen te r o f g r a v i t y o f the r e f e r ence

# Takes as an input a l i s t o f v e c t o r s ( r e f e r ence ) and a
s i n g l e v e c t o r ( comparison )

# Returns the d i s t ance as a f l o a t
def get_value ( r e f e r en c e , comparison ) :

cog = cent_of_gravity ( r e f e r e n c e )
return vector_dis tance ( cog , comparison )

def get_dist_values_intra (pop , sample_size ) :
v a l u e s_ l i s t = [ ]
for i in range ( sample_size ) :

v e c t o r_se l e c t i on = random . cho i c e s (pop , k=15)
random . s h u f f l e ( v e c t o r_se l e c t i on )
v a l u e s_ l i s t . append ( get_value ( v e c t o r_se l e c t i on

[ : −1 ] , v e c t o r_se l e c t i on [ −1]) )
return va l u e s_ l i s t

# Conducts a PCA on the inpu t t ed va l u e s ( l i s t_ o_ l i s t )
and re turns the n_c f i r s t coord ina t e s .

def pca_transform ( l i s t_o_ l i s t s , n_c) :
l i s t_o_lengths = [ ]
maste r_l i s t = [ ]
for i in l i s t_o_ l i s t s :

l i s t_o_lengths . append ( len ( i ) )
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maste r_l i s t += i
pca = PCA(n_components=n_c)
temp = l i s t ( pca . f i t_trans fo rm ( maste r_l i s t ) )
output = [ ]
for i in l i s t_o_lengths :

m = [ ]
for j in range ( i ) :

m. append ( temp . pop (0 ) )
output . append (m)

return output

def get_dist_values_inter ( pop1 , pop2 , sample_size ) :
v a l u e s_ l i s t = [ ]
for i in range ( sample_size ) :

v e c t o r_se l e c t i on = random . cho i c e s ( pop1 , k=14)
vector_re f = random . cho i c e s ( pop2 , k=1)
random . s h u f f l e ( v e c t o r_se l e c t i on )
v a l u e s_ l i s t . append ( get_value ( vec to r_se l e c t i on ,

vec tor_re f [ 0 ] ) )
return va l u e s_ l i s t

samp = 10000 # Number o f samples f o r the c r ea t i on o f
the r e f e r ence data .

p l o t t i n g = True
f i t t i n g = 0

Base_path = "" # Path o f f o l d e r con ta in ing anonymized
Data

# Recover v e c t o r s from csv f i l e
v_Pop1 = get_vectors ( "/User1_Ref/

anonimized_data_user_1_phone_1_2 . csv " )
v_Pop2 = get_vectors ( "/User2_Ref/

anonimized_data_user_2_phone_2_2 . csv " )
v_DoI = get_vectors ( "/Phone1_DoI/

anonimized_data_user_1_phone_1_2 . csv " ) # Vector o f
va l u e s f o r the day o f i n t e r e s t

v_DoI_2 = get_vectors ( "/Phone2_DoI/
anonimized_data_user_1_phone_2_2 . csv " )
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N_Pop1 = len (v_Pop1) # Number o f days in r e f e r ence
popu la t i on 1

N_Pop2 = len (v_Pop2) # Number o f days in r e f e r ence
popu la t i on 2

normal i sed = normal i s e ( [ v_Pop1 , v_Pop2 , v_DoI , v_DoI_2
] )

pcad = pca_transform ( normal ised , 1)

Pop1_intra = get_dist_values_intra ( pcad [ 0 ] , samp)
Pop1_inter = get_dist_values_inter ( pcad [ 0 ] , pcad [ 1 ] ,

samp)
Pop2_intra = get_dist_values_intra ( pcad [ 1 ] , samp)
Pop2_inter = get_dist_values_inter ( pcad [ 1 ] , pcad [ 0 ] ,

samp)
dist_DoI_Pop1 = get_value ( pcad [ 0 ] , pcad [ 2 ] [ 0 ] )
dist_DoI_Pop2 = get_value ( pcad [ 1 ] , pcad [ 2 ] [ 0 ] )

dist_DoI2_Pop1 = get_value ( pcad [ 0 ] , pcad [ 3 ] [ 0 ] )
dist_DoI2_Pop2 = get_value ( pcad [ 1 ] , pcad [ 3 ] [ 0 ] )

print ( dist_DoI_Pop1 )
print ( dist_DoI_Pop2 )
print ( dist_DoI2_Pop1 )
print ( dist_DoI2_Pop2 )

i f f i t t i n g :
f 1 = F i t t e r ( Pop1_intra , d i s t r i b u t i o n s=’ beta ’ )
f 1 . f i t ( )
print ( "Pop␣1" )
print ( f 1 . summary ( ) )
print ( f 1 . get_best ( ) )

f 2 = F i t t e r ( Pop2_intra , d i s t r i b u t i o n s=’ expon ’ )
f 2 . f i t ( )
print ( "Pop␣2" )
print ( f 2 . summary ( ) )
print ( f 2 . get_best ( ) )
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# t i t r e
i f p l o t t i n g :

p l t . t i t l e ( "Distance ␣ from␣ cente r ␣Pop␣1" )
p l t . subp lot (211)
p l t . h i s t ( Pop1_intra , f c =(0 , 0 , 0 , 0 . 2 ) , edgeco l o r=’

black ’ , b ins=np . arange (0 , 15 , 0 . 25 ) , dens i ty=
True , s tacked=True , l a b e l="P1␣ i n t r a " )

i f f i t t i n g :
f 1 . plot_pdf ( )

p l t . h i s t ( Pop1_inter , f c =(0 , 0 , 0 , 0 . 5 ) , edgeco l o r=’
black ’ , b ins=np . arange (0 , 15 , 0 . 25 ) , dens i ty=
True , s tacked=True , l a b e l="P1␣ i n t e r " )

#poin t du premier u t i l i s a t e u r ( appartenant au
groupe )

#b = p l t . a x v l i n e (new_v_y , co l o r=’g ’ , l i n e s t y l e =’
dashed ’ , l a b e l="Groupe")

# # poin t du d e u x i m e u t i l i s a t e u r (n ’ appartenant
pas au groupe )

#c = p l t . a x v l i n e (new_v_z , co l o r=’r ’ , l i n e s t y l e =’
dashed ’ , l a b e l="Autre ")

# #ajou t des l g e n d e s
#p l t . l e gend ( hand les=[b , c ] , bbox_to_anchor =(0.8 ,0 .95)

)
#axes nomm s
p l t . p l o t (2 ∗ [ dist_DoI_Pop1 ] , [ 0 . 0 0 , 0 . 5 ] , c o l o r=’

black ’ , l a b e l="E_S1" )
p l t . p l o t (2 ∗ [ dist_DoI2_Pop1 ] , [ 0 . 0 0 , 0 . 5 ] , c o l o r=’

black ’ , l i n e s t y l e=’ dashed ’ , l a b e l="E_S2" )

p l t . l egend ( )

p l t . y l ab e l ( "Occurrence " )

p l t . subp lot (212)
p l t . h i s t ( Pop2_intra , f c =(0 , 0 , 0 , 0 . 5 ) , edgeco l o r=’

black ’ , b ins=np . arange (0 , 15 , 0 . 25 ) , dens i ty=
True , s tacked=True , l a b e l="P2␣ i n t r a " )

p l t . h i s t ( Pop2_inter , f c =(0 , 0 , 0 , 0 . 2 ) , edgeco l o r=’
black ’ , b ins=np . arange (0 , 15 , 0 . 25 ) , dens i ty=
True , s tacked=True , l a b e l="P2␣ i n t e r " )

i f f i t t i n g :
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f 2 . plot_pdf ( )
p l t . p l o t (2 ∗ [ dist_DoI_Pop2 ] , [ 0 . 0 0 , 1 . 5 ] , c o l o r=’

black ’ , l a b e l="E_S1" )
p l t . p l o t (2 ∗ [ dist_DoI2_Pop2 ] , [ 0 . 0 0 , 1 . 5 ] , c o l o r=’

black ’ , l i n e s t y l e=’ dashed ’ , l a b e l="E_S2" )
p l t . x l ab e l ( "Distance " )
p l t . y l ab e l ( "Occurrence " )
p l t . l egend ( )

p l t . show ( )

# Auteur : Sp i ch i g e r Hannes
# Adapted from Miche l e t G a t a n
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Appendix F

Sc3 & 4: Code used for
GPS-Analysis

This Python script was used in Chapters 6 and 7 to generate the probabili-
ties for the GPS evidence. The script is available at https://github.com/
HSpichig/Thesis/blob/main/BB_Sc4_LR.py

import pandas as pd
from math import ∗
import matp lo t l i b . pyplot as p l t
from f i t t e r import F i t t e r
from pyproj import Geod
from s c ipy . s t a t s import t
import numpy as np

# Transforms coord ina t e s o f the form [ long , l a t ] to
d i s t ance to r e f e r ence po in t ( d ) and ang l e from north
( phi ) in rad

# Takes as input the coord ina t e s o f the r e f e r ence po in t
( zero ) and o f the po in t to transform ( coords )

# Both po in t s are to be format ted as f o l l o w s [ long , l a t
]

# Returns [ d , phi ] o f coords
def transform_to_rad ( zero , coords ) :

g = Geod( e l l p s=’WGS84 ’ ) # I n i t i a t e Geode based on
WGS84

a , phi , d = g . inv ( zero [ 1 ] , z e ro [ 0 ] , coords [ 1 ] ,

207

https://github.com/HSpichig/Thesis/blob/main/BB_Sc4_LR.py
https://github.com/HSpichig/Thesis/blob/main/BB_Sc4_LR.py


coords [ 0 ] )
#pr in t ( phi )
return [ d , rad ians ( phi ) ]

def read_reference_data ( path ) :
report_raw = pd . read_excel ( path ) . va lue s . t o l i s t ( )

[ 1 : ]
r epo r t = [ ]
for i in range ( len ( report_raw ) ) :

id = report_raw [ i ] [ 0 ]
name = report_raw [ i ] [ 1 ]
l a t = report_raw [ i ] [ 9 ]
long = report_raw [ i ] [ 1 0 ]
i f i < len ( report_raw ) − 1 :

i f ( report_raw [ i +1 ] [ 9 ] != l a t ) | (
report_raw [ i +1 ] [ 10 ] != long ) :
# Remove e n t r i e s where l o c a t i o n was not

updated
r epo r t . append ( [ id , name , long , l a t ] )

return r epo r t

# Function re tu rn ing the p r o b a b i l i t y o f E g iven P
# Inputs :
# P: Coordinates o f po in t P in form [ long , l a t ]
# E: Coordinates o f po in t E in form [ long , l a t ]
# hw : h a l f o f the wedge s i z e used to c a l c u l a t e the

angu lar p r o b a b i l i t y
# Ref : l i s t o f r e f e r ence measures from po in t P in form

[ [ x0 , y0 ] , . . . ]
# Returns l i s t o f p r o b a b i l i t i e s in form [ pphi , p d i s t ]

where
# pphi : the p r o b a b i l i t y to observe a measurement in a

(2 ∗ hw) wedge cen tered around the ang l e o f the
ev idence

# pd i s t : the p r o b a b i l i t y to observe a measurement at
the d i s t ance o f the ev idence g iven i t i s w i th in the
g iven wedge

def g e t_p r obab i l i t i e s (P, E, Ref , hw) :
E_rad = transform_to_rad (P,E)
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Ref_rad = [ ]

for i in Ref :
Ref_rad . append ( transform_to_rad (P, [ f loat ( i [ 2 ] )

, f loat ( i [ 3 ] ) ] ) )

phi_c = 0 # I n i t i a l i s e counter f o r measurement
po in t s w i th in ang l e

wedge = [ ] # I n i t i a l i s e l i s t o f d i s t an c e s w i th in
the wedge

for i in Ref_rad :
i f ( i [ 1 ] >= E_rad [ 1 ] − hw) & ( i [ 1 ] <= E_rad [ 1 ]

+ hw) :
wedge . append ( i [ 0 ] )
phi_c += 1

print (wedge )
i f wedge :

f = F i t t e r (wedge , d i s t r i b u t i o n s=’ t ’ )
f . f i t ( )
t_par = f . get_best ( ) [ ’ t ’ ]
pd = t . pdf (E_rad [ 0 ] , t_par [ ’ d f ’ ] , t_par [ ’ l o c ’ ] ,

t_par [ ’ s c a l e ’ ] )
else :

pd = 0
return [ f loat ( phi_c ) / f loat ( len (Ref_rad ) ) , pd ]

# Press the green but ton in the g u t t e r to run the
s c r i p t .

i f __name__ == ’__main__ ’ :

hw = pi /6 # Hal f o f the wedge s i z e used f o r the
angu lar p r o b a b i l i t y

P1_measurements = read_reference_data ( ’Report_P1 .
x l sx ’ )

print ( "P1 : ␣" + str ( len (P1_measurements ) ) )
P2_measurements = read_reference_data ( ’Report_P2 .

x l sx ’ )
print ( "P2 : ␣" + str ( len (P2_measurements ) ) )

209



P1 = [6 .575116326 , 46 .521954786 ] # Coordinates o f
P1

P2 = [6 .573827788 , 46 .521598142 ] # Coordinates o f
P2

E = [6 . 5750922 , 46 .5219326 ] # Coordinates o f E

e_p1 = transform_to_rad (E, P1)
e_p2 = transform_to_rad (E, P2)
print ( "E␣−>␣P1" + str ( e_p1) )
print ( "E␣−>␣P2" + str ( e_p2) )

x_val = [ ]
y_val = [ ]
for i in P1_measurements :

x_val . append ( f loat ( i [ 2 ] ) )
y_val . append ( f loat ( i [ 3 ] ) )

#p l t . s c a t t e r ( x_val , y_val , s=15, c=’ darkgray ’ ,
marker=’x ’ , l a b e l =’P1 re f e r ence ’ )

x_val = [ ]
y_val = [ ]
for i in P2_measurements :

x_val . append ( f loat ( i [ 2 ] ) )
y_val . append ( f loat ( i [ 3 ] ) )

#p l t . s c a t t e r ( x_val , y_val , c=’dimgray ’ , s=15,
marker=’x ’ , l a b e l =’P2 re f e r ence ’ )

#p l t . s c a t t e r (P1 [ 0 ] , P1 [ 1 ] , c=’ darkgray ’ , s=7, l a b e l
=’P1 ’)

#p l t . annotate ("P1" , (P1[0 ]+0.00002 , P1 [ 1 ] ) , c=’
darkgray ’ )

#p l t . s c a t t e r (P2 [ 0 ] , P2 [ 1 ] , c=’dimgray ’ , s=7, l a b e l
=’P2 ’)

#p l t . annotate ("P2" , (P2[0 ]+0.00002 , P2 [ 1 ] ) , c=’
dimgray ’ )

#p l t . s c a t t e r (E[ 0 ] , E[ 1 ] , c=’ b l a c k ’ , s=7, l a b e l =’E1
’)

#p l t . annotate ("E1" , (E[0] −0.0001 , E[1] −0.00005) , c
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=’ b l a c k ’ )

#p l t . l e gend ()

P1_probs = ge t_p r obab i l i t i e s (P1 , E, P1_measurements
, hw)

P2_probs = ge t_p r obab i l i t i e s (P2 , E, P2_measurements
, hw)

print ( "Angular␣ p r obab i l i t y ␣ g iven ␣P1 : ␣" + str (
P1_probs [ 0 ] ) )

print ( "Angular␣ p r obab i l i t y ␣ g iven ␣P2 : ␣" + str (
P2_probs [ 0 ] ) )

print ( "Distance ␣ p r obab i l i t y ␣ g iven ␣P1␣and␣phi1 : ␣" +
str (P1_probs [ 1 ] ) )

print ( "Distance ␣ p r obab i l i t y ␣ g iven ␣P2␣and␣phi2 : ␣" +
str (P2_probs [ 1 ] ) )

#E_P1 = transform_to_rad (P1 , E)
#p l t . p l o t ( [ P1 [ 0 ] , P1 [ 0 ] + 1 ∗ E_P1[ 0 ] ∗ s in (E_P1

[1]−hw) ] , [ P1 [ 1 ] , P1 [ 1 ] + 20 ∗ E_P1[ 0 ] ∗ cos (
E_P1[1]−hw) ] , c=’ darkgray ’ )

#p l t . p l o t ( [ P1 [ 0 ] , P1 [ 0 ] + 1 ∗ E_P1[ 0 ] ∗ s in (E_P1
[1]+hw) ] , [P1 [ 1 ] , P1 [ 1 ] + 20 ∗ E_P1[ 0 ] ∗ cos (
E_P1[1]+hw) ] , c=’ darkgray ’ )

#E_P2 = transform_to_rad (P2 , E)
#p l t . p l o t ( [ P2 [ 0 ] , P2 [ 0 ] + 1 ∗ E_P2[ 0 ] ∗ s in (E_P2

[1]−hw) ] , [ P2 [ 1 ] , P2 [ 1 ] + 1.2 ∗ E_P2[ 0 ] ∗ cos (
E_P2[1]−hw) ] , c=’dimgray ’ )

#p l t . p l o t ( [ P2 [ 0 ] , P2 [ 0 ] + 1 ∗ E_P2[ 0 ] ∗ s in (E_P2
[1]+hw) ] , [P2 [ 1 ] , P2 [ 1 ] + 1.2 ∗ E_P2[ 0 ] ∗ cos (
E_P2[1]+hw) ] , c=’dimgray ’ )

#p l t . show ()

#Author : Sp i ch i g e r Hannes
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Appendix G

Sc4: Code used for behavioural
biometrics analysis

This Python script was used in Chapter 7 to generate the probabilities for
the behavioural characteristics extracted using the script in Annex D. This
script is partially based on (Michelet, 2021).

The script is available at https://github.com/HSpichig/Thesis/blob/
main/BB_Sc4_LR.py

# import des modules d ’ i n t r t
import pandas as pd
import numpy as np
from s k l e a rn . c l u s t e r import KMeans
from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler
import math
import random
import matp lo t l i b . pyplot as p l t
import csv
from f i t t e r import F i t t e r
from s k l e a rn . decomposit ion import PCA

# pip i n s t a l l pandas , s k l e a rn

# groupe contenant l e s v a r i a b l e s s y s t m e
f eatures_system = [ ’ orientation_1_nb ’ , ’

orientation_0_nb ’ , ’ or ientat ion_1_durat ion ’ ,
’ or ientat ion_0_durat ion ’ , ’

orientation_1_duration_mean ’ ,
’ orientation_0_duration_mean ’ , ’
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isPlugged_1_nb ’ , ’ isPlugged_0_nb ’
,

’ isPlugged_1_duration ’ , ’
isPlugged_0_duration ’ , ’
isPlugged_1_duration_mean ’ ,

’ isPlugged_0_duration_mean ’ ,
’ isBacklit_1_nb ’ , ’ isBacklit_0_nb ’ ,

’ i sBackl i t_1_durat ion ’ ,
’ i sBackl i t_0_durat ion ’ , ’

isBacklit_1_duration_mean ’ ,
’ isBacklit_0_duration_mean ’ , ’

isLocked_1_nb ’ , ’ isLocked_0_nb ’ ,
’ isLocked_1_duration ’ , ’

isLocked_0_duration ’ ,
’ isLocked_1_duration_mean ’ , ’

isLocked_0_duration_mean ’ ,
’ airplaneMode_1_nb ’ , ’

airplaneMode_0_nb ’ , ’
airplaneMode_1_duration ’ ,

’ airplaneMode_0_duration ’ , ’
airplaneMode_1_duration_mean ’ ,

’ airplaneMode_0_duration_mean ’ , ’
wifi_event_nb ’ , ’
wi f i_event_durat ion ’ ,

’ wifi_event_duration_mean ’ , ’
Bluetooth_1_nb ’ , ’ Bluetooth_0_nb ’
,

’ Bluetooth_1_duration ’ , ’
Bluetooth_0_duration ’ ,

’ Bluetooth_1_duration_mean ’ , ’
Bluetooth_0_duration_mean ’ ,

’ batterySaver_event_nb ’ , ’
batterySaver_event_duration ’ ,

’ batterySaver_event_duration_mean ’ ,
’ audioInput_1_nb ’ ,

’ audioInput_0_nb ’ , ’
audioInput_1_duration ’ , ’
audioInput_0_duration ’ ,

’ audioInput_1_duration_mean ’ , ’
audioInput_0_duration_mean ’ ,

’ audioOutput_1_nb ’ , ’

213



audioOutput_0_nb ’ , ’
audioOutput_1_duration ’ ,

’ audioOutput_0_duration ’ , ’
audioOutput_1_duration_mean ’ ,

’ audioOutput_0_duration_mean ’ , ’
Hidden_nb ’ , ’ Receive_nb ’ , ’
Dismiss_nb ’ ,

’Orb_nb ’ , ’ IndirectClear_nb ’ , ’
DefaultAction_nb ’ , ’
lowPowermode_1_nb ’ , ’
lowPowermode_0_nb ’ ,

’ lowPowermode_1_duration ’ ,
’ lowPowermode_0_duration ’ , ’

lowPowermode_1_duration_mean ’ ,
’ lowPowermode_0_duration_mean ’ , ’

batteryPercentage_nb ’ , ’ s i r i_nb ’ ,
’mediaPlaying_1_nb ’ , ’

mediaPlaying_0_nb ’ , ’
mediaPlaying_1_duration ’ ,

’ mediaPlaying_0_duration ’ , ’
mediaPlaying_1_duration_mean ’ ,

’ mediaPlaying_0_duration_mean ’ , ’
appUsage_Session_0 ’ ,

’ appUsage_Session_1 ’ , ’
appUsage_Session_2 ’ , ’
appUsage_Session_3 ’ ,

’ appUsage_Session_4 ’ , ’
appUsage_Session_5 ’ , ’
appUsage_Session_6 ’ ,

’ appUsage_Session_7 ’ , ’
appUsage_Session_8 ’ , ’
appUsage_Session_9 ’ ,

’ appUsage_Session_10 ’ , ’
appUsage_Session_11 ’ , ’
appUsage_event_nb ’ ,

’ appUsage_event_duration ’ , ’
appUsage_event_duration_mean ’ ,

’ Starting_up_nb ’ ]

# Returns the id o f e lement w i th in l i s c h t e
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def get_l i s t_id ( l i s c h t e , element ) :
for i in range ( len ( l i s c h t e ) ) :

i f l i s c h t e [ i ] == element :
return i

return −1

# Function c a l c u l a t i n g the cen ter o f g r a v i t y o f a l i s t
o f v e c t o r s

def cent_of_gravity ( v e c t o r_ l i s t ) :
weight = len ( v e c t o r_ l i s t ) # Number o f v e c t o r s to

c a l c u l a t e the cen te r o f g r a v i t y o f . Used f o r
we i gh t ing

dim = len ( v e c t o r_ l i s t [ 0 ] ) # dimension o f the
passed v e c t o r s

r e s u l t = [ 0 . 0 ] ∗ dim # in s t a n t i a t e a nu l l−vec t o r
wi th dimension dim

for v in v e c t o r_ l i s t :
for i in range (dim) :

r e s u l t [ i ] += v [ i ] / weight

return r e s u l t

# Function import ing v e c t o r s from data f i l e csv . Takes
s u b f o l d e r path from base path as input and re turns

# array o f v e c t o r s
def get_vectors ( subpath ) :

v e c t o r s = [ ]

with open(Base_path + subpath ) as f i le_name :
f i l e_r ead = csv . r eader ( f i le_name )
array = l i s t ( f i l e_r ead )

index_ l i s t = [ ]

for k in f eatures_system :
index_ l i s t . append ( ge t_l i s t_ id ( array [ 0 ] , k ) )
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for k in array [ 1 : ] :
turn = [ ]
for j in i ndex_ l i s t :

turn . append (k [ j ] )
v e c t o r s . append ( turn )

#pr in t ( v e c t o r s )
return vec to r s

# Normalises over a l l v e c t o r s in p lay .
# Accepts as an input a l i s t o f a l i s t o f v e c t o r s . The

v e c t o r s w i l l be assembled t o g e t h e r and normal ised .
# Returns a l i s t o f a l i s t o f normal ised v e c t o r s

grouped and ordered the same way as the input
def normal i s e ( l i s t_o_ l i s t ) :

input_structure = [ ]
v e c t o r_ l i s t = [ ]
output = [ ]
for i in l i s t_o_ l i s t :

input_structure . append ( len ( i ) )
v e c t o r_ l i s t += i

sc = StandardSca ler ( )
transformed = sc . f i t_trans fo rm (X=ve c t o r_ l i s t ) .

t o l i s t ( )
for i in input_structure :

m = [ ]
for j in range ( i ) :

m. append ( transformed . pop (0 ) )
output . append (m)

return output

# Ca l cu l a t e l e n g t h o f a vec to r
def vector_len ( vec to r ) :

elements_sum = 0
for i in vec to r :

i
elements_sum += f loat ( i ) ∗ f loat ( i )

return math . s q r t ( elements_sum )
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# Ca l cu l a t e s the vec to r d i s t ance between two v e c t o r s
def vector_dis tance ( v1 , v2 ) :

dim = len ( v1 )
i f dim == len ( v2 ) :

d i s tance_vector = [ 0 . 0 ] ∗ dim
for i in range (dim) :

d i s tance_vector [ i ] = v1 [ i ] − v2 [ i ]
return vector_len ( d i s tance_vector )

else :
print ( "Vector ␣dimension ␣ i s ␣not␣ equal " )
return −1

# Gets the d i f f e r e n c e from the comparison vec t o r to the
cen te r o f g r a v i t y o f the r e f e r ence

# Takes as an input a l i s t o f v e c t o r s ( r e f e r ence ) and a
s i n g l e v e c t o r ( comparison )

# Returns the d i s t ance as a f l o a t
def get_value ( r e f e r en c e , comparison ) :

cog = cent_of_gravity ( r e f e r e n c e )
return vector_dis tance ( cog , comparison )

def get_dist_values_intra (pop , sample_size ) :
v a l u e s_ l i s t = [ ]
for i in range ( sample_size ) :

v e c t o r_se l e c t i on = random . cho i c e s (pop , k=15)
random . s h u f f l e ( v e c t o r_se l e c t i on )
v a l u e s_ l i s t . append ( get_value ( v e c t o r_se l e c t i on

[ : −1 ] , v e c t o r_se l e c t i on [ −1]) )
return va l u e s_ l i s t

# Conducts a PCA on the inpu t t ed va l u e s ( l i s t_ o_ l i s t )
and re turns the n_c f i r s t coord ina t e s .

def pca_transform ( l i s t_o_ l i s t s , n_c) :
l i s t_o_lengths = [ ]
maste r_l i s t = [ ]
for i in l i s t_o_ l i s t s :

l i s t_o_lengths . append ( len ( i ) )

217



maste r_l i s t += i
pca = PCA(n_components=n_c)
temp = l i s t ( pca . f i t_trans fo rm ( maste r_l i s t ) )
output = [ ]
for i in l i s t_o_lengths :

m = [ ]
for j in range ( i ) :

m. append ( temp . pop (0 ) )
output . append (m)

return output

def get_dist_values_inter ( pop1 , pop2 , sample_size ) :
v a l u e s_ l i s t = [ ]
for i in range ( sample_size ) :

v e c t o r_se l e c t i on = random . cho i c e s ( pop1 , k=14)
vector_re f = random . cho i c e s ( pop2 , k=1)
random . s h u f f l e ( v e c t o r_se l e c t i on )
v a l u e s_ l i s t . append ( get_value ( vec to r_se l e c t i on ,

vec tor_re f [ 0 ] ) )
return va l u e s_ l i s t

samp = 10000 # Number o f samples f o r the c r ea t i on o f
the r e f e r ence data .

p l o t t i n g =0
f i t t i n g = 1

Base_path = "" # Path o f f o l d e r con ta in ing anonymized
Data

# Recover v e c t o r s from csv f i l e
v_Pop1 = get_vectors ( "/User1_Ref/

anonimized_data_user_1_phone_1_2 . csv " )
v_Pop2 = [ ]
P2_adresses = [ "anonimized_data_user_2_phone_2_2 . csv " ,

"anonimized_data_user_1_phone_4 . csv " ,
"anonimized_data_user_2_phone_4 . csv " , "

anonimized_data_user_3_phone_2 . csv " ,

218



"anonimized_data_user_3_phone_3 . csv " , "
anonimized_data_user_4_phone_2 . csv " ,

"anonimized_data_user_4_phone_3 . csv " , "
anonimized_data_user_5_phone_1_1 . csv "
,

"anonimized_data_user_5_phone_1_2 . csv " ,
"anonimized_data_user_6_phone_4 . csv " ,

"anonimized_data_user_7_phone_4 . csv " ]

for i in P2_adresses :
v_Pop2 += ( get_vectors ( "/P2/" + i ) )

v_DoI = get_vectors ( "/Phone1_DoI/
anonimized_data_user_1_phone_1_2 . csv " ) # Vector o f
va l u e s f o r the day o f i n t e r e s t

v_DoI_2 = get_vectors ( "/Phone2_DoI/
anonimized_data_user_1_phone_2_2 . csv " )

N_Pop1 = len (v_Pop1) # Number o f days in r e f e r ence
popu la t i on 1

N_Pop2 = len (v_Pop2) # Number o f days in r e f e r ence
popu la t i on 2

normal i sed = normal i s e ( [ v_Pop1 , v_Pop2 , v_DoI , v_DoI_2
] )

pcad = pca_transform ( normal ised , 10)

Pop1_intra = get_dist_values_intra ( pcad [ 0 ] , samp)
Pop1_inter = get_dist_values_inter ( pcad [ 0 ] , pcad [ 1 ] ,

samp)
dist_DoI_Pop1 = get_value ( pcad [ 0 ] , pcad [ 2 ] [ 0 ] )

dist_DoI2_Pop1 = get_value ( pcad [ 0 ] , pcad [ 3 ] [ 0 ] )

print ( dist_DoI_Pop1 )
print ( dist_DoI2_Pop1 )

i f f i t t i n g :
f 1 = F i t t e r ( Pop1_intra )
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f 1 . f i t ( )
print ( "Pop␣1" )
print ( f 1 . summary ( ) )
print ( f 1 . get_best ( ) )

f 2 = F i t t e r ( Pop1_inter )
f 2 . f i t ( )
print ( "Pop␣2" )
print ( f 2 . summary ( ) )
print ( f 2 . get_best ( ) )

# t i t r e
i f p l o t t i n g :

p l t . t i t l e ( "Distance ␣ from␣ cente r ␣Pop␣1" )
p l t . h i s t ( Pop1_intra , f c =(0 , 0 , 0 , 0 . 2 ) , edgeco l o r=’

black ’ , b ins=np . arange (0 , 15 , 0 . 25 ) , dens i ty=
True , s tacked=True , l a b e l="P1␣ i n t r a " )

i f f i t t i n g :
f 1 . plot_pdf ( )

p l t . h i s t ( Pop1_inter , f c =(0 , 0 , 0 , 0 . 5 ) , edgeco l o r=’
black ’ , b ins=np . arange (0 , 15 , 0 . 25 ) , dens i ty=
True , s tacked=True , l a b e l="P1␣ i n t e r " )

#poin t du premier u t i l i s a t e u r ( appartenant au
groupe )

#b = p l t . a x v l i n e (new_v_y , co l o r=’g ’ , l i n e s t y l e =’
dashed ’ , l a b e l="Groupe")

# # poin t du d e u x i m e u t i l i s a t e u r (n ’ appartenant
pas au groupe )

#c = p l t . a x v l i n e (new_v_z , co l o r=’r ’ , l i n e s t y l e =’
dashed ’ , l a b e l="Autre ")

# #ajou t des l g e n d e s
#p l t . l e gend ( hand les=[b , c ] , bbox_to_anchor =(0.8 ,0 .95)

)
#axes nomm s
p l t . p l o t (2 ∗ [ dist_DoI_Pop1 ] , [ 0 . 0 0 , 0 . 5 ] , c o l o r=’

black ’ , l a b e l="E_S1" )
p l t . p l o t (2 ∗ [ dist_DoI2_Pop1 ] , [ 0 . 0 0 , 0 . 5 ] , c o l o r=’

black ’ , l i n e s t y l e=’ dashed ’ , l a b e l="E_S2" )

p l t . l egend ( )
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p l t . y l ab e l ( "Occurrence " )
p l t . x l ab e l ( "Distance " )

p l t . show ( )

# Author : Sp i ch i g e r Hannes
#Adapted from Miche l e t G a t a n
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Appendix H

Sc4: Code used for
Password-Analysis

These Python scripts were used in Chapter 7 to obtain the inter-variability-
probabilities for the password-evidence. The first script conducts an analysis
of the 10 million passwords-dump (Burnett, 2015a) counting the number of
appearances of each password. The second script allows to search the that
way generated statistics.

The scripts are available at https://github.com/HSpichig/Thesis/blob/
main/PW_stats.py and https://github.com/HSpichig/Thesis/blob/main/
PW_LR_getStats.py

import math
import operator

def wr i t e_to_f i l e ( d i c t i onary , f i l e ) :
so r ted_dict = sorted ( d i c t i ona ry . i tems ( ) , key=

operator . i t emge t t e r (1 ) , r e v e r s e=True )
print ( "Ten␣most␣ f r equent ␣passwords : ␣" )
for k in sor ted_dict [ : 1 1 ] :

print ( k )
return

f i l ename = "10−mi l l i on−combos . txt "

s t a t s = {}
count = 1
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error_count = 0

print ( " S ta r t i ng ␣ ana l y s i s " )
with open( f i l ename , ’ r ’ ) as i npu t_ f i l e :

for l i n e in i npu t_ f i l e :
try :

pw = l i n e . s p l i t ( ) [ 1 ]
i f pw in s t a t s :

s t a t s [ pw ] += 1
else :

s t a t s [ pw ] = 1
i f ( count % 100000) == 0 :

print ( str ( count /100000) + ’%␣Done ’ )
except :

error_count += 1
count += 1

print ( str ( error_count ) + ’ ␣ e r r o r s ␣ detec ted ’ )
print ( str ( len ( s t a t s . keys ( ) ) ) + ’ ␣ d i s t i n c t ␣passwords ␣

found ’ )

wr i t e_to_f i l e ( s t a t s , "PW_stats . txt " )
print ( str ( count ) + ’ ␣ e lements ␣ analyzed ’ )

#Author : Sp i ch i g e r Hannes

password = input ( ’ Enter ␣password␣you␣would␣ l i k e ␣ the ␣
number␣ o f ␣ occur r ence s ␣ o f : ␣ ’ )

num_of_elements = 9997987
num_of_occurrences = 0

print ( " Search ing . . . " )

with open( ’PW_stats . txt ’ , ’ r ’ ) as f :
for l i n e in f :

pw_stat = l i n e . s p l i t ( ’ \ t ’ )
i f pw_stat [ 0 ] == password :

num_of_occurrences = f loat ( pw_stat [ 1 ] )
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print ( ’ Password␣ found ’ )
break

i f num_of_occurrences == 0 :
print ( ’ Password␣not␣ found ’ )

f requency = num_of_occurrences / num_of_elements

LR = 1 / ( f requency ∗ 6 . 5 )

print ( "Found␣" + str ( int ( num_of_occurrences ) ) + "␣ found
␣ in ␣" + str ( num_of_elements ) + "␣ elements " )

print ( "Frequency : ␣" + str ( f requency ) )
print ( "LR: ␣" + str (LR) )

#Author : Sp i ch i g e r Hannes
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