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ABSTRACT 

Background: There is a high inter-individual variability in risperidone and its active 

metabolite, 9-hydroxyrisperidone, plasma concentrations that might lead to suboptimal drug 

concentration.  

Aim: Using population pharmacokinetic approach, we aimed at characterizing the genetic 

and non-genetic sources of variability affecting risperidone and 9-hydroxyrisperidone 

pharmacokinetics and relate them to common side effects.  

Methods:  150 psychiatric patients (178 observations) treated with risperidone were 

genotyped for common polymorphisms in NR1I2, POR, PPARα, ABCB1, CYP2D6 and 

CYP3A genes. Plasma risperidone and 9-hydroxyrisperidone were measured; clinical data 

and common clinical chemistry parameters were collected. Drug and metabolite 

concentrations were analyzed by non-linear mixed effect modelling (NONMEM®). 

Correlations between trough concentrations of the active moiety (risperidone plus 9-

hydroxyrisperidone) and common side effects were assessed using logistic regression and 

linear mixed modelling. 

Results: CYP2D6 phenotype explained 52% of inter-individual variability in risperidone 

pharmacokinetics. AUC of the active moiety was found to be 28% higher in CYP2D6 poor 

metabolizers compared to intermediate, extensive and ultrarapid metabolizers. No other 

genetic markers were found to significantly affect risperidone concentrations. 9-

hydroxyrisperidone elimination was decreased by 26% by doubling of age. A correlation 

between trough predicted concentration of active moiety and neurologic symptoms was 

found (p=0.03), suggesting that a concentration >40 ng/ml should be targeted only in cases 

of insufficient or absence of response. 

Conclusions: Genetic polymorphisms of CYP2D6 play an important role in risperidone, 9-

hydroxyrisperidone and active moiety plasma concentration variability, which were 

associated with common side effects. These results highlight the importance of a 

personalized dosage adjustment during risperidone treatment. 

 



3 
 

INTRODUCTION 

Risperidone, an atypical antipsychotic, is widely prescribed in adults, but also in pediatric and 

elderly patients. Beside an overall good therapeutic efficacy, several adverse events have 

been described during risperidone treatment, including neurologic symptoms, 

hyperprolactinemia, weight gain, insulin resistance, some of which have been shown to be 

dose and plasma concentration dependent[1]. There is a high inter-individual variability in 

plasma concentration of risperidone, which can be explained by genetic (i.e. cytochrome 

P450 2D6 (CYP2D6)) and non-genetic factors (i.e. age, sex or renal function)[2,3].  In humans, 

risperidone undergoes an important first pass effect and is metabolized mainly by 

CYP2D6[4,5] with a contribution of cytochrome 3A (CYP3A) as shown by several interaction 

studies with CYP3A inducers[6,7] or inhibitors[8,9]. Risperidone’s main metabolite, 9-hydroxy-

risperidone[4], is mainly eliminated by the kidneys [10]. Risperidone and 9-hydroxyrisperidone 

are generally considered to have the same pharmacodynamic properties and the sum of both 

substances defines the “active moiety”[11].  

The CYP2D6 genetic polymorphism has been well described with the existence of four 

predicted phenotypes: poor (PM), intermediate (IM), extensive (EM) or ultra rapid (UM) 

metabolizers[12]. A growing number of reports underline the impact of CYP2D6 polymorphism 

on risperidone and 9-hydroxyrisperidone pharmacokinetics and on clinical outcomes. A 

significant median increase of steady-state risperidone concentration in PM patients 

compared to other genotypes was indeed found in a Caucasian schizophrenic cohort[13]. 

Moreover,  discontinuation rate due to adverse reactions was found to be higher in PM 

carriers compared to IM, EM or UM[14]. CYP3A is the combination of 3 isoforms, CYP3A4, 

CYP3A5 and CYP3A7 with overlapping activities. Several genetic polymorphisms of CYP3A 

isoforms have been described, such as the 3A5*3 variant resulting in a loss of CYP3A5 

protein synthesis or the CYP 3A4*22 allele resulting in a decrease of CYP3A4 mRNA 

expression, polymorphisms which have been associated with differences in clinical outcome 

for drugs such as simvastatin and cyclosporine[15,16]. Few studies investigated the effect of 

CYP3A polymorphism on risperidone plasma concentration, with opposite results [17,18]. This 
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may be partly due to the fact that genotyping methods allow to capture only a small extent of 

the variability of CYP3A activity[19-21]. Mutations of other non-CYP genes, such as the 

cytochrome P450 oxydo-reductase (POR), which provides the necessary electrons to P450 

activity, have also been found to influence CYP activity. POR*28 allele was found to be 

associated with decreased CYP3A activities[22]. In addition, many nuclear receptors such as 

the pregnane X receptor (encoded by the NR1I2 gene) or the peroxisome proliferator-

activated receptor alpha (PPARα) may regulate the expression of genes involved in drug 

disposition, such as CYP450 and ABCB1 which encodes the permeability glycoprotein (Pgp), 

a drug transporter[23]. In-vitro experiments identified several SNPs in the promoter region of 

NR1I2 which may affect CYP3A expression[24,25]. Recent studies also showed associations 

between NR1I2 genotypes and an increased risk of delayed graft rejection[26] or side effects 

during treatment with long-acting risperidone[27].  

Risperidone treatment can induce neurologic side effects such as akathisia, rigidity or tremor. 

Conflicting results were however obtained in several studies examining the relationship 

between risperidone or 9-hydroxyrisperidone concentrations with neurological toxicity[28-31]. 

Hyperprolactinemia is also a common issue for patients receiving risperidone. It may induce 

sexual dysfunction and, in the long term, be a risk factor for cardiovascular disorders and 

decreased bone mineral density[32]. A relationship between plasma concentration of 

risperidone or 9-hydroxyrisperidone and prolactin have been shown in several reports[33,34]. 

To date, several population pharmacokinetic studies on risperidone in psychiatric populations 

have been published indicating an influence of carbamazepine on the active moiety’s plasma 

concentration[35], an age-related decrease of 9-hydroxyrisperidone clearance and a decrease 

in risperidone clearance in male patients and in patients under paroxetine or fluoxetine 

treatment[36]. One study found higher average active moiety plasma concentration in 

CYP2D6 PMs, and an association between active moiety and dystonia and parkinsonism[28]. 

The objectives of the present study are to characterize the population pharmacokinetics of 

risperidone, 9-hydroxyrisperidone and/or the active moiety in a cohort of psychiatric patients, 
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to study genetic and non-genetic sources of variability, and identify a threshold level 

associated to common side effects.  
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METHODS 

Study design and participants: 

Participants were selected from three observational pharmacogenetic studies whose main 

inclusion criteria were the prescription of second generation antipsychotic drugs. 35 patients 

were included in a first cross-sectional study as detailed previously[37]. 78 patients were 

included during a longitudinal study conducted at the psychiatric department of the Lausanne 

University Hospital, with data collection during the first year of treatment. 37 patients came 

from a retrospective study conducted from 2010 to 2011 in two out-patients centers of the 

psychiatric department of Lausanne University Hospital. Blood samples for pharmacokinetic 

measurements were collected after a median (interquartile range, IQR) time of 13h(4h), in 

steady-state conditions (at least one week under constant dose), with variable duration of 

treatment (median duration of treatment: 7.3 months (IQR: 33.5 months)). A median of one 

sample (range 1-3) of risperidone and 9-hydroxyrisperidone was collected per patient.  

In addition to the exact time of last drug intake and blood sampling, the following informations 

were recorded at the same time than the blood samples drawn for pharmacokinetic 

measurements : gender, age, race, grapefruit consumption, smoking status, renal and liver 

function tests (creatinine, ASAT, ALAT), creatinine clearance (CLcreat, estimated by the 

Modification of Diet in Renal Disease (MDRD)[38] and Salazar-Corcoran[39] formulas), co-

medications, including possible co-prescription of a second generation antipsychotic 

(classified as strong or moderate CYP2D6 inhibitors, CYP3A4 inducers and Pgp inhibitors or 

inducers) and several genetic polymorphisms[40-45]. Side effects for the 78 subjects from the 

longitudinal study were classified according to the Udvalg for Kliniske Undersøgelser (UKU) 

side effect rating scale and categorized as absent, light, medium or  severe[46]. All 

investigated side effects were reported on the same day that the blood samples drawn for 

pharmacokinetic measurements. They were classified into 5 groups: neurologic (akathisia, 

rigidity and tremor), gastro-intestinal (constipation, increased/reduced salivation and 

nausea), cardiovascular (hypertension, hypotension and lower-extremity edema), central 

nervous system (asthenia, sleepiness) and sexual side effects (diminished sexual desire, 
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ejaculatory dysfunction, erectile dysfunction and orgasmic dysfunction). All three studies 

were approved by local ethics committees (Geneva and Lausanne), and written informed 

consents (also for genetic analysis) were obtained from all patients or from their legal 

representatives. 

Plasma concentration determinations: 

All blood samples were collected in EDTA containing tubes. After centrifugation, plasma 

samples were stored at -20°C until routine analysis. Risperidone concentrations were 

determined by a HPLC-MS method as described previously[27]. Prolactin, creatinine, 

aspartate aminotransferase (ASAT) and alaninetransaminase (ALAT) concentrations were 

determined by immunoassay on an Abbott Axsym system (Abbott, Wiesbaden, Germany). 

Concerning prolactin, only blood samples drawn between 8h00 and 10h30 AM were 

analysed.  

Genotyping: 

Genomic DNA was extracted from EDTA blood samples with the FlexiGene DNA extraction 

kit (QIAGEN, Hombrechtikon, Switzerland) according to the manufacturer’s protocol. The 

following SNPs were detected by real-time polymerase chain reaction according to 

manufacturer’s instructions (ABI PRISM 7000; Applied Biosystems, Rotkreuz, Switzerland) : 

CYP2D6*3 (rs35742686), CYP2D6*4 (rs3892097), CYP2D6*6 (rs5030655), CYP3A4*1B 

(rs2740574), CYP3A4 intron 7 (rs4646437)C>T, CYP3A4 (rs35599367)G>A,  CYP3A5*3 

(rs776746), CYP3A7*1C (2262T>A and 2270T>G), POR*28 (rs1057868), NR1I2 

(rs1523130), NR1I2 (rs2472677), NR1I2 (rs7643645), NR1I2 (rs2276707), PPARA 

(rs4253728), ABCB1 2677G>T (rs2032582), ABCB1 61A>G (rs9282564), ABCB1 1199G>A 

(rs2229109), ABCB1 3435C>T (rs1045642), ABCB1 1236C>T (rs1128503). Detection of 

duplication/multiplication of CYP2D6*xN were performed by long PCR, as previously 

described[47] and gene deletion CYP2D6*5 (Hs0001001_cn) was analyzed by TaqMan copy 

number assay. In each set of analyses, controls DNAs with known genotypes were included.  
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Model-based pharmacokinetic analysis 

Structural and error model: 

Since metabolite formation occurs rapidly via first pass metabolism and systemic 

biotransformation of risperidone[4], a simultaneous parent drug/metabolite pharmacokinetic 

analysis was conducted. A one-compartment model with first-order absorption and 

elimination was used for both risperidone and 9-hydroxyrisperidone, using a linear 

conversion from risperidone to 9-hydroxyrisperidone (Figure 1). In order to account for the 

pre-systemic metabolism, the fraction (FR) of risperidone dose converted during the first 

pass effect was estimated. The absorption rate constants k12 and k13 were defined 

respectively as (1-FR)*ka and FR*ka, with ka representing the total absorption rate constant. 

Because of the limited amount of measurements in the absorption phase, ka was fixed to 3.1 

h-1 to achieve risperidone peak plasma concentration as reported in the literature [48,35,36]. 

Since risperidone was administered orally, risperidone and 9-hydroxyrisperidone 

pharmacokinetic parameters represent apparent values. Owing to identifiability problems, 

both compounds were assumed to have the same apparent volume of distribution (V). Inter-

patient variability of all the pharmacokinetic parameters but FR was described by exponential 

errors following a log-normal distribution. The logit of FR was used to constrain individual FR 

to vary between 0 and 1 and its inter-individual variability calculated as previously 

reported[49]. Correlations between pharmacokinetic parameters were investigated. Finally, 

several error models were compared to describe the intra-patient (residual) variability for 

both drug and metabolite. The correlation between risperidone and 9-hydroxyrisperidone 

concentration measurements was tested using the L2 function in NONMEM®. 

Covariate model: 

The covariate analysis was performed using a stepwise insertion/deletion approach. Visual 

inspection of the correlation between post hoc individual estimates of the pharmacokinetic 

parameters and the available factors was first conducted. Potentially influential covariates 

were then incorporated sequentially in the model using linear or non-linear functions as 

appropriate (categorical variables coded as 0 and 1, a fixed effect was associated to each of 
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the ethnic group within the population, continuous covariates were centered on their median 

value or to 80 ml/min for CLcreat). Sequential analysis of the impact of genetic polymorphisms 

on pharmacokinetic parameters was conducted categorizing patients into genotypic groups, 

or in the case of CYP2D6, into predicted phenotypic groups. Parameters values were then 

estimated for each genotypic/phenotypic group (rich model) or for further regrouped (reduced 

model) sub-populations. 

Parameter estimation and model selection: 

Risperidone and 9-hydroxyrisperidone data were fitted by use of the first-order conditional 

estimation (FOCE) method with interaction using NONMEM® version 7.2[50] with the PsN-

Toolkit version 3.5.3[51]. Concentrations below the quantification limit of the assay were 

replaced by LOQ/2 (M6 method[52]). The log-likelihood ratio test, based on changes in the 

OFV value (∆OFV), was employed to discriminate between hierarchical models. Since a 

∆OFV between any two models approximates a χ2 distribution, a decrease of the objective 

function was considered statistically significant if it exceeded 3.84 (p<0.05) or 6.63 (p<0.01) 

for 1 additional parameter in model-building and backward-deletion steps respectively. 

Diagnostic goodness-of-fit plots and precision of the pharmacokinetic parameters were also 

used to assess the reliability of the results. 

Model evaluation and assessment: 

Final model stability was assessed by means of the bootstrap method implemented in 

PsN[51], generating two-thousand datasets by re-sampling from the original dataset. Mean 

parameters values with their 95% confidential interval (CI95%) were compared with the 

original model estimates. The predictive performance of the final pharmacokinetic model was 

evaluated by calculation of the normalized prediction distribution errors (NPDEs)[53]. In 

addition, visual predictive checks stratified on CYP2D6 phenotype were performed for model 

validation. Figures were generated with GraphPad Prism® (Version 6.00 for Windows, 

GraphPad Software, USA). 
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Simulations:  

Simulations of 1000 individuals for each CYP2D6 phenotype based on the final model with 

variability were conducted to derive average AUC0-24 with 95% prediction intervals (PI95%) for 

risperidone, 9-hydroxyrisperidone and the active moiety (AUCRISP, AUC9OHR, AUCactive moiety= 

AUCRISP+ AUC9OHR). Differences in average AUC0-24 between metabolic groups were 

analyzed by one-way ANOVA with the Bonferroni correction (STATA Version 12, StataCorp, 

College Station, USA).  

Concentration-adverse events relationship: 

Relation between UKU reported side effects and final model-predicted trough plasma 

concentration of risperidone, 9-hydroxyrisperidone and active moiety (Cmin-RISP, Cmin-9OHR, Cmin-

active moiety) were investigated by logistic regression analyses. Side effect ratings were 

dichotomized in absent versus presence while including side-effect reported at the last visit. 

Relation between prolactin and Cmin-RISP, Cmin-9OHR and Cmin-active moiety were investigated by 

linear mixed effect model using the “nlme” package of R[54]. Statistically significant results 

were considered as p≤0.05.  
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RESULTS 

Demographic: 

A total of 178 sample concentrations were available from 150 included patients, receiving 

risperidone at a total dose ranging from 0.5 mg to 8 mg daily given either once (n=21 in the  

morning, n=106 in the evening) or twice (n=51) daily. All concentrations were measured in 

steady-state conditions and 47 concentrations were on trough. The measured concentrations 

for drug and metabolite ranged respectively between 0-62 ng/ml and 0.5-69 ng/ml. Median 

prolactin concentration of 31 µg/l and 85 µg/l were observed in male and females, 

respectively. Three patients treated with haloperidol, levomepromazine and pipamperone and 

two patients with a prolactin level of 345 µg/l (previous co-administration of pipamperone) 

and 238 µg/l (breast-cancer) were discarded from the prolactin analysis. Other 

characteristics of the study population are presented in table 1. In our population with 

completed UKU rating scale, 43%, 40%, 7%, 45% and 30% of the patients reported 

neurologic, autonomic, cardiovascular, psychic and sexual dysfunction side effects, 

respectively. 9 patients were discarded from the side effect analysis (biperiden=11, 

haloperidol=5, levomepromazine=1, pipamperone=1, with some patients receiving more than 

one of these 4 drugs at the same time). Numbers and frequencies of all side effects are 

described in eTable 1. For all Caucasian patients, genotype frequencies are in Hardy 

Weinberg equilibrium. Genetic characteristics of patients are presented in eTable 2. 

Structural model: 

The model illustrated in figure 1 adequately described risperidone and 9-hydroxyrisperidone 

data. However, because of the important pre-systemic metabolism, the metabolic rate 

constant (k23) could not be properly estimated and, therefore, fixed to 0. Association of inter-

individual variability on FR (∆OFV=-22.2; p=2.4·10-6) in addition to risperidone clearance 

(CLRISP) markedly improved the model fit, which was further improved by inclusion of an inter-

patient variability on 9-hydroxyrisperidone clearance (CL9OHR) (∆OFV=-38.3; p=6.1·10-10) but 

not on V (∆OFV=-3.6; p=0.06). Allowing for a correlation between FR and CL9OHR (∆OFV=-



12 
 

54.9; p=1.3·10-13) and, successively, between FR and CLRISP (∆OFV=-7.5; p=6.3·10-3) 

resulted in a noticeable improvement of the model fit. Residual intra-patient variability on 

both risperidone and 9-hydroxyrisperidone was satisfactorily described using a proportional 

error model. Drug and metabolite concentration measurements were found to be significantly 

correlated (∆OFV=-6.3; p=0.01). The parameter estimates with inter-patient variability (CV%) 

of the basic pharmacokinetic model were a CLRISP of 3.8 L/h (42%), a V of 290 L, a CL9OHR of 

5.8 L/h (44%), a FR of 89% (19%) and a ka fixed to 3.1 h-1.  

Covariate analysis:  

Univariate analyses testing the influence of the non-genetic covariates on risperidone 

pharmacokinetics revealed a significant impact of age and sex on both FR (∆OFV≤-6.5; 

p≤0.01) and CL9OHR (∆OFV≤-8.2; p≤4.0•10-3). All the remaining demographic, environmental 

and physiologic characteristics were not associated with the drug pharmacokinetics (∆OFV>-

2.7; p>0.10). Because of the high correlation between CL9OHR and FR, only the effects of sex 

and age on CL9OHR were retained for further investigations (∆OFV>-2.2; p>0.14). Multivariate 

analyses showed that solely age influenced CL9OHR (∆OFV=-2.9; p=0.08 with respect to the 

model with age and sex on CL9OHR). A decrease of 27% in CL9OHR with doubling age as 

compared to the median population age (39 years) was observed. 

Co-administration of strong and moderate Pgp and CYP2D6 inhibitors affected both FR 

(∆OFV≤-6.1; p≤0.01) and CLRISP (∆OFV≤-4.0; p ≤ 0.05), while CYP3A4 did not impact 

risperidone pharmacokinetics (∆OFV≥-1.0; p≥0.32). Multivariate analyses allowed discarding 

the effect of inhibitors on CLRISP while keeping it on FR (∆OFV≥-0.8; p≥0.37). Only CYP2D6 

inhibitors on FR were finally retained (∆OFV=-1.8; p=0.19 with respect to the model with both 

CYP2D6 and Pgp inhibitors on FR) and were found to decrease FR by 5% and 9% if 

categorized as moderate or strong inhibitors respectively. 

The effect of common polymorphisms in CYP2D6, CYP3A4/5/7, POR, NR1I2 and ABCB1 on 

CLRISP, CL9OHR and FR showed that the predicted CYP2D6 phenotypes had by far the most 

important influence on FR (∆OFV=-82.6; p=8.5•10-18), CLRISP (∆OFV=-31.8; p=5.8•10-7) and 

CL9OHR (∆OFV=-30.3; p=1.2•10-6). Carriers of the CYP3A4 rs35599367 GA allele were found 



13 
 

to have a CL9OHR 30% lower than the GG individuals (∆OFV=-7.0; p=8.0•10-3). NR1I2 

rs1523130 and NR1I2 rs2276707 polymorphisms, respectively, affected CLRISP and FR 

(∆OFV=-8.7; p=0.01 and ∆OFV=-7.5; p=0.02). A reduced model in which the NR1I2 

rs1523130 CT and TT or NR1I2 rs2276707 CT and TT individuals were grouped 

characterized as well the influence of PXR rs1523130 on CLRISP or NR1I2 rs2276707 on FR 

(∆OFV≥0.01; p=1.0), suggesting a recessive effect of the gene. CLRISP was found to be 33% 

higher in NR1I2 rs1523130 CT/TT than in CC individuals, while FR was 6% higher in NR1I2 

rs2276707 CT/TT with respect to CC individuals. No other genetic polymorphisms were 

significant (∆OFV≥-5.7; p≥0.06). 

Multivariate combination of the influential genetic polymorphisms showed that only the 

CYP2D6 phenotype remained significant. Moreover, the influence of this phenotype on FR 

captured its previously observed effect on both CLRISP and CL9OHR (∆OFV≥-3.6; p≥0.31) and 

markedly stabilized the model fit, allowing for the estimation of k23. No statistical significant 

difference was observed between CYP2D6 UM and EM compared to the rich model in which 

a FR was assigned to each CYP2D6 phenotypic group (∆OFV=0.10; p=0.76). Estimated 

average FRs were 92% for EM/UM (n=99), 86% for IM (n=41) and 19% (n=10) for PM 

individuals. CYP2D6 polymorphisms and inhibitors on FR and age on CL9OHR remained 

statistically significant in the multivariate analysis and backward deletion step. Estimated 

average fraction of risperidone dose converted into 9-hydroxyrisperidone were 93%, 85% 

and 8.8% for EM/UM, IM and PM patients, suggesting that IMs and PMs have, respectively, a 

decrease of 8% and of 91% in FR compared to EM/UM individuals. Co-administration of 

moderate and strong CYP2D6 inhibitors decreased FR by 4% and 19%. Predicted CYP2D6 

phenotypes and CYP2D6 inhibitors intake explained altogether 52% of initial FR inter-patient 

variability. Moreover, our results show that age doubling with respect to the median age of 

the population reduced CL9OHR by 26%, explaining 26% of its inter-patient variability. The final 

model parameters’ estimates and bootstrap estimations are given in table 2. The model was 

considered reliable since the obtained parameter estimates laid within the bootstrap CI95%. 

NPDE analysis confirmed that the model adequately described the observed data. Dose-
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normalized concentration-time plots of risperidone and 9-hydroxyrisperidone with PI95% for 

EM/UM and PM patients aged of population median age is shown in figure 2. 

Simulations  

Model-based simulations were performed to estimate and compare AUCRISP, AUC9OHR and 

AUCactive moiety for individuals characterized by different CYP2D6 metabolic strengths (figure 

3). Simulated average AUCRISP indicates a risperidone exposure 8 and 1.8 times higher in 

PMs and IMs compared to EM patients (eTable3). Both AUCRISP and AUC9OHR were found to 

vary significantly within individuals carrying different CYP2D6 phenotype (p<0.0001). 

EM/UMs and IMs AUCactive moiety are not significantly different (p=0.99), while AUCactive moiety 

was 28% (CI95%:24-32%) higher in PMs compared to CYP2D6 EM/UM or IM individuals 

(p<0.0001). 

Concentration-adverse event relationship: 

No associations were observed between CYP2D6 predicted phenotype and/or inhibitor with 

reported side effects. Autonomic, cardiovascular, psychic and sexual sides effects were not 

associated with Cmin-active moiety (eFigure 1). However, the presence of neurologic symptoms 

were associated with Cmin-active moiety (p=0.03, figure 4). In particular, only the severity of tremor 

was associated with Cmin-active moiety (p=0.01, eFigure 2). By correcting for age and gender, an 

increase of Cmin-active moiety was associated with developing neurologic symptoms (p=0.03). In 

the neurologic group, Cmin-active moiety increase was associated with tremor and akathisia 

(p=0.01, p=0.02, respectively, table3) but not with rigidity. Logistic regression plot indicates a 

70% and more probability to develop neurologic symptoms at Cmin-active moiety 40 ng/ml and 

higher (figure 4). 

Prolactin was found to be more elevated in PM, IM or in presence of CYP2D6 inhibitor but 

only in women (p=0.04) (eFigure 3). Mixed linear model corrected by age revealed a 

correlation between prolactin concentration and Cmin-9OHR (β=2.36 ug/l, Padjusted=0.04) and Cmin-

active moiety (β=2.03 ug/l, Padjusted=0.03) in women (table4). No significant associations were 

observed between prolactin concentrations and sexual dysfunction side effects in both 

genders (data not shown).  
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DISCUSSION 

To our knowledge, this is the first population pharmacokinetic study which included a broad 

range of patients of different ages, with an extensive analysis of genetic markers, and with a 

concentration-effect analysis. CLRISP and CL9OHR were estimated to be of 4.6 l/h and 6 l/h, in 

the same range of previously published studies[35,28]. A first pass effect of 92% for EM/UM 

and of 19% for PM patients was calculated in the present study, highlighting the strong 

influence of CYP2D6 genetic polymorphism on first pass effect. Other non-CYP2D6 genetic 

determinants were found to significantly influence risperidone and/or 9-hydroxyrisperidone 

disposition in univariate analysis and, although discarded in the multivariate model, these 

results must be further investigated in larger population samples. A decrease of 4% and 19% 

in the first pass effect upon co-administration of weak (methadone, citalopram, duloxetine, 

venlafaxine and sertraline[40]) and strong (levomepromazine, haloperidol, paroxetine or 

fluoxetine[40]) CYP2D6 inhibitors was observed.  These results are in agreement with studies 

showing that paroxetine increases the plasma concentration of risperidone[55], that  patients 

with paroxetine or levomepromazine as co-medications have a significant higher risperidone  

concentration-dose ratio than patients without co-medication[56], and that the prescription of 

fluoxetine as co-medication increases the active moiety by 50% to 75%[57,58]. One can 

mention that there are discrepant data on the inhibition potential of haloperidol, some 

defining it as a strong inhibitor[40] and other as a weak inhibitor[41]. However, no differences 

were observed when comparing the pharmacokinetic model with haloperidol classified as a 

strong versus weak CYP2D6 inhibitor (data not shown).  

As demonstrated by several other studies[28,59-61], CYP2D6 activity plays the most important 

role in risperidone disposition resulting in low concentrations of risperidone and high 

concentrations of 9-hydroxyrisperidone in patients with a high CYP2D6 activity. Simulations 

showed that CYP2D6 genotype affects risperidone and 9-hydroxyrisperidone exposures with 

a direct influence on the active moiety. Thus, although no statistical differences were found in 

AUCactive moiety between EM/UMs and IMs, a significant difference was found between PMs 

and EM/UM/IM. Non-significant increase of AUCactive moiety was observed in a single dose 
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study with healthy volunteers[62]. Although some studies  found no differences in steady state 

active moiety plasma concentration between CYP2D6 genotypes[60,30,63,13], an increase of 

27% in the active moiety plasma concentration was observed in another study[59], which is in 

agreement with the present finding. Negative results could be due to small patient samples 

and insufficient numbers of PM patients. In addition, an influence of PM status on the active 

moiety concentrations is in agreement with the results of a study including 325 stabilized 

outpatients receiving risperidone, with PM having 3.1 fold higher risk of  moderate to severe 

adverse drug reaction[14].  

Age, by reflecting renal function, is a well-known factor affecting CL9OHR
[2,4,36]. Nevertheless, 

no significant associations were found between CL9OHR and renal function. This may be due 

to the age heterogeneity (median(IQR):39(24) years old) of our cohort. Furthermore, 25% of 

our population is obese and thus these renal indicators might be not appropriate. A non-

significant correlation between CL9OHR and the renal function, estimated by the Salazar-

Corcoran[39] formula suitable for obese subjects, was however found. 

Neurologic symptoms such as akathisia, rigidity or tremor, mainly caused by an antagonism 

of striatal dopamine D2 receptors, are frequent side effects in patients under risperidone 

treatment. Several studies investigated the relationship between neurologic symptoms and 

plasma concentration, with positive[64,1,28,27] or negative results[30,29,31]. In the present study, 

Cmin-active moiety was significantly associated with akathisia, tremor and combined with rigidity. 

Interestingly,  akathisia was not associated with average plasma concentration in a previous 

published population pharmacokinetic study[28]. Cmin of 9-hydroxyrisperidone was not found to 

be associated with any neurologic side effects, which could be tentatively explained by a 

lower affinity to D2 receptor and a higher affinity to 5-HT2A receptor compared to 

risperidone[65]. This is also in agreement with prospective studies reporting a decrease of 

neurologic symptoms after switching from risperidone to 9-hydroxyrisperidone 

(paliperidone)[66,67], although more studies are needed to validate the strategy of switching 

from risperidone to paliperidone in case of poor tolerability. Logistic regression analysis 

indicated that a Cmin-active moiety over 40 ng/ml is associated with more than 70% risk to develop 
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neurologic symptoms (figure 3). Because 40 ng/ml is the median value of the proposed 

therapeutic range (20-60 ng/ml)[68], this suggests that the upper range of the therapeutic 

window should only be targeted in cases of insufficient or absence of response.  

Prolactin concentration was associated with 9-hydroxyrisperidone Cmin in women. 9-

hydroxyrisperidone is characterized by a longer half-life and a higher hydrophilicity than 

risperidone, which is important considering that the pituitary lies outside the blood-brain 

barrier [69-71,34]. Estrogens lead to an increase of lactotrophic cells in the pituitary and a 

decrease of D2 receptor synthesis[72], which may confer to women a higher sensibility to 

prolactin release induced by anti D2 drugs[73].  

Several limitations of the present study have to be mentioned. No effect of CYP3A inducers 

and of Pgp inhibitors as co-medication could be observed, which may be explained by an 

insufficient number of patients under such treatments. Secondly, side effect scales were only 

recorded for the longitudinal study during which scales were missing for several patients, 

which could therefore lead to a reporting bias.  

Strengths of the present study include a naturalistic design, multiple observations over time 

and a broad age and BMI range which may therefore increase the clinical validity of the 

pharmacokinetics results. In addition, patients with co-medications known to induce 

neurologic symptoms or to increase prolactin concentration were excluded from the 

pharmacodynamic analysis.  

CONCLUSION: 

This analysis underlines the importance of CYP2D6 activity status on first pass effect and of 

age on metabolite clearance. Due to this important variability, therapeutic drug monitoring 

should be used to adjust drug dosage with the aim, to target in a first step, and after a careful 

evaluation of the clinical situation, the lower therapeutic window range (20-40 ng/ml) which is 

less associated with neurologic side effects. These results highlight the importance of a 

personalized approach, including both genetic (i.e. before introduction of treatment) and 

therapeutic drug monitoring (during treatment) data, when treating patients with risperidone. 
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Key Points: 

 There is an important influence of CYP2D6 phenotype on risperidone disposition and an 
influence of age on 9-hydroxyrisperidone elimination. 

 Increase in prolactin concentration and neurologic side effects were correlated to the 
active moiety plasma concentration.  

 In order to reduce neurologic side effects, concentration of the active moiety higher 
than 40 ng/ml should be targeted only in cases of insufficient or absence of 
therapeutic response. 
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Figure 1: Compartmental model used to describe risperidone and 9-hydroxyrisperidone plasma concentration-time profiles. FR, 

fraction of the dose converted into metabolite; CLRISP and  CL9OHR, mean apparent risperidone and 9-hydroxyrisperidone clearances; 

V, mean apparent volume of distribution; ka, total absorption rate constant; k12 and k13 absorption rate constants from depot to, 

respectively, risperidone and 9-hydroxyrisperidone compartments;  k23, metabolic rate constant; k20 and k30, risperidone and 9-

hydroxyrisperidone elimination rate constants. 
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Table 1: Summary of the demographic parameters. 

Variable         Last observation 

Sex, male; n / total n (%)  82 /150 (55%) 

Age, years; Median (IQR)  39 (24) 

BMI, kg/m2; Median (IQR)  25.9 (8.5) 

Prevalence of overweighta; n / total n (%)  32 /144 (22%) 

Prevalence of obesitya; n / total n (%)  39 /144 (27%) 

Smoker  74 /143 (52%) 

Ethnic group; n / total n (%) 

Caucasian  122 /150 (81%) 

Asian  4 /150 (3%) 

Arab  3 /150 (2%) 

African    6 /150 (4%) 

Other  15 /150 (10%) 

Psychiatric diagnosisb; n / total n (%) 

Bipolar disorders  17 /150 (11%) 

Depression  21 /150 (14%) 

Drug addiction  3 /150 (2%) 

Organic  7 /150 (5%) 

Other  10 /150 (7%) 

Psychotic disorders  79 /150 (53%) 

Schizoaffective disorders  11 /150 (7%) 

Unknown  2 /150 (1%) 

Risperidone dose, mg/day; n / total n (%) 

< 2  68 /150 (45%) 

2.1 ‐ 4  65 /150 (43%) 

4.1 ‐ 6  13 /150 (9%) 

> 6  4 /150 (3%) 

∆ Time between last dose and blood sampling, h; Median (IQR)  13 (4) 

CYP2D6 weak inhibitorsc; n / total n (%)  48 /150 (32%) 

CYP2D6 strong inhibitorsd; n / total n (%)  7 /150 (5%) 

CYP3A strong inducerse; n / total n (%)  2 /150 (1%) 

Pgp inhibitorsf; n / total n (%)  21/150 (14%) 

Grapefruit  4 /150 (3%) 

Prolactin 

Male, ug/L  31 (25) 

Female, ug/L  85 (85) 

High prolactin levelsg; n / total n (%)  54 /93 (58%) 

Aspartate aminotransferase, U.l; Median (IQR)  24 (11) 

Alanine aminotransferase, U.l; Median (IQR)  19 (17) 

Estimated creatinine clearance, mL/min; Median (IQR)        115 (48) 
a Patient is considered as overweight when BMI is equal or higher than 25 kg/m2 and less than 30  kg/m2. Patient is considered as 
obese when BMI is equal or higher than 30 kg/m2. 
b Diagnoses were establish following the International Classification of Disease, 10th Revision (ICD‐10). 

c duloxetine=2 / citalopram=21 / methadone=6 / sertraline=12 / venlafaxine=7. 

d haloperidol=3 / levomepromazine=2 / paroxetine=2. 

e oxcarbazepine=1 / topiramate=1. 

f lansoprazole=1 / methadone=6 / paroxetine=2 / sertraline=12. 

g Prolactin plasma levels higher than 50 µg/l for women and higher than 40 µg/l for men are considered as high prolactin levels. 

 



Table 2: Final population pharmacokinetic parameter estimates and their bootstrap evaluations. 

 

Parameter  
Population mean  Bootstrap evaluation 

Estimate  SEa (%)  Estimate  CI95% 

logitFREM/UM  2.6  9  2.6  (2.1;3.2) 

θCYP2D6 PM 
  ‐5.0  45  ‐6.3  (‐21.1;‐3.9) 

θCYP2D6 IM  ‐0.85  23  ‐0.87  (‐1.21;‐0.51) 

θINHCYP2D6 M 
  ‐0.51  31  ‐0.54  (‐1.02;‐0.15) 

θ
 INHCYP2D6 S

  ‐1.5  20  ‐1.5  (‐2.99;0.10) 

CL
RISP

 (l/h)  4.6  17  4.8  (3.4;6.2) 

V (l)  250  21  270  (178;414) 

ka (h‐1)  3.1  ‐‐  3.11  ‐‐ 

CL9OHR (l/h)  6.1  6  6.2  (5.4;7.1) 

θAGE (%)  ‐26  20  ‐26  (‐34;‐16) 

k23 (h‐1)  4.9∙10‐3  64  5.0∙10‐3 
(1.8;8.1)∙10‐

3 

IIVb
logitFR

 (CV%)   132  11  131  (99;157) 

IIVb
 CLRISP

 (CV%)   41  37  38  (13;55) 

IIVb
 CL9OHR

 (CV%)   32  14  33  (19;46) 

ωc 
logitFR, CLRISP

 (CV%)  ‐42  50  ‐34  (‐281;11) 

ωc 
logitFR, CL9OHR

(CV%)  85  11  84  (77;88) 

σd
RISP

 (CV%)  41  11  46  (32;52) 

σd
9OHR

 (CV%)  37  10  44  (31;44) 

Correlation risperidone/9‐hydroxyrisperidone (%)  9  156  26  (‐14;44) 

 

logitFR,  logit  transformation of  fraction of  the dose converted  into metabolite defined  in Eq 1; CLRISP, mean apparent  risperidone clearance; V, mean apparent 

volume  of  distribution;  ka,  total  absorption  rate  constant;  CL9OHR, mean  apparent  9OHR  clearance;  k23, metabolic  rate  constant;  UM,  EM,  IM  and  PM  ultra‐, 

extensive, intermediate, poor CYP2D6 metabolizers; INHCYP2D6 M and INHCYP2D6 S, moderate and strong CYP2D6 inhibitors. 

FINAL MODEL:  

TVlogitFR = logitFREM/UM + θCYP2D6 PM*ICYP2D6 PM+ θCYP2D6 IM*ICYP2D6 IM + θINHCYP2D6 M*IINHCYP2D6 M+ θINHCYP2D6 S*IINHCYP2D6 S 

TVCLM = CL9OHR*(1+ θAGE * (AGE‐MAGE)/MAGE) 

where ICYP2D6 PM=1 for PMs 0 otherwise, ICYP2D6 IM=1 for IMs 0 otherwise, IINHCYP2D6 M=1 and IINHCYP2D6 s=1 respectively for moderate and strong CYP2D6 inhibitors intake 0 

otherwise, MAGE= 37.3 years. 

a Standard errors of the estimates (SE) defined as SE/estimate and expressed as percentages. 

b Interpatient variability defined as CVs (%). 

c Correlation between pharmacokinetic parameters expressed as a CVs (%) 

d Residual intrapatient variability expressed as a CVs (%) 

 

 

 

 



 

Figure 2: Concentration-time plots of risperidone (upper graphs) and 9-hydroxyrisperidone (lower graphs) with PI95% for intermediate, 

extensive, ultra rapid (CYP2D6 IM/EM/UM) and poor (CYP2D6 PM) CYP2D6 metabolizers (empty and filled squares represent patient 

receiving moderate and strong CYP2D6 inhibitors; circles all the remaining individuals). 

 

 

 



 

Figure 3: Simulated average estimates of AUC0-24 for risperidone, 9-hydroxyrisperidone and the active moiety with their PI95% for PM 
(poor metabolizers), IM (intermediate metabolizers) and EM/UM (extensive metabolizers/ultrarapid metabolizers) individuals. 

 

 

 

 

 

 

 

 

 



 

Figure 4: The left figure represents minimal concentration of active moiety in relation to the severity of neurologic side effects group. 
The bold horizontal line shows the median value and the two other lines represent the upper and lower quartile. Patients having co-
medication possibly inducing neurologic symptoms (haloperidol, levomepromazine, pipamperone and biperiden) were excluded from 
analysis. On the right panel, the lower and upper histogram represents the frequency of patients without (green histogram) and with 
(red histogram) sides effect, respectively, over Cmin. Probability of developing light or medium extrapyramidal symptoms (left y axis) 
related to minimal active moiety concentration is represented by the red regression curve. Green and red dotted lines represent a 25% 
and 75% probability to develop extrapyramidal symptoms.   
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Table 3: Logistic regression fitted for neurologic and their related side effect over Cmin. 

Side effect  Cmin [ng/ml]     Estimate (se)     P‐Value

Neurologic 

Risperidone  0.021 (0.01)  0.05

9‐hydroxyrisperidone  0.008 (0.008)  0.3

Active moiety   0.015 (0.006)  0.03

Akathisia 

Risperidone  0.014 (0.01)  0.2

9‐hydroxyrisperidone  0.013 (0.008)  0.1

Active moiety   0.015 (0.006)  0.02

Rigidity 

Risperidone  0.018 (0.009)  0.06

9‐hydroxyrisperidone  ‐0.007 (0.007)  0.3

Active moiety   0.002 (0.006)  0.7

Tremor 

Risperidone  0.023 (0.01)  0.03

9‐hydroxyrisperidone  0.012 (0.008)  0.1

Active moiety      0.018 (0.006)  0.01

Logistic  regression  adjusted  by  age  and  gender made  on  last  observation.  Patients  having  co‐medication 
possibly  inducing neurologic  symptoms  (haloperidol,  levomepromazine, pipamperone)  and biperiden were 
excluded from analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4: Linear mixed effect model fitted on prolactin concentration over Cmin.  

Populationa 
n. obs           

(n subjects) 
  

Increase of prolactin concentration for 1 
ng/ml of Cmin. 

P‐Value 

All sampleb  87 (76) 

Risperidone  1.69  0.04 

9‐hydroxyrisperidone  1.39  0.004 

Active moiety   1.28  0.002 

Gender stratificationc:  

Men  48 (42) 

Risperidone  0.98  0.3 

9‐hydroxyrisperidone  0.53  0.2 

Active moiety   0.55  0.2 

Women  39 (34) 

Risperidone  2.56  0.1 

9‐hydroxyrisperidone  2.36  0.04 

Active moiety   2.03  0.03 
a3 patients were deleted from analysis because of presence of co‐medication possibly inducing hyperprolactinemia (haloperidol, 
levomepromazine, pipamperone). All blood samples were drawn before 10:30AM. 
bResults were obtained by fitting a linear mixed model controlling for age and sex. 
cResults were obtained by fitting a linear mixed model controlling for age. 

 

 


