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Fas ligand (FasL) causes apoptosis of epidermal keratinocytes and triggers the appearance of spongiosis in
eczematous dermatitis. We demonstrate here that FasL also aggravates inflammation by triggering the
expression of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes. In HaCaT cells
and in reconstructed human epidermis (RHE), FasL triggered a NF-kB-dependent mRNA accumulation of
inflammatory cytokines (tumor necrosis factor-a, IL-6, and IL-1b), chemokines (CCL2/MCP-1, CXCL1/GROa,
CXCL3/GROg, and CXCL8/IL-8), and the adhesion molecule ICAM-1. Oligomerization of Fas was required both
for apoptosis and for gene expression. Inhibition of caspase activity abolished FasL-dependent apoptosis;
however, it failed to suppress the expression of FasL-induced genes. Additionally, in the presence of caspase
inhibitors, but not in their absence, FasL triggered the accumulation of CCL5/RANTES (regulated on activation
normal T cell expressed and secreted) mRNA. Our findings identify a novel proinflammatory role of FasL in
keratinocytes that is independent of caspase activity and is separable from apoptosis. Thus, in addition to
causing spongiosis, FasL may play a direct role in triggering and/or sustaining inflammation in eczemas.
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INTRODUCTION
Apoptosis (Kerr et al., 1972), the principal mechanism for
elimination of damaged cells in metazoan organisms (Edinger
and Thompson, 2004), is initiated via two pathways, extrinsic
and intrinsic (reviewed in Hengartner, 2000; Krammer, 2000;
Meier et al., 2000; Nicholson, 2000; Rich et al., 2000; Savill
and Fadok, 2000; Yuan and Yankner, 2000). In the extrinsic
pathway, a specialized death ligand (such as FasL) binds to a
death receptor (e.g., Fas) (reviewed in Locksley et al., 2001).
This event triggers the formation of a death-inducing signaling
complex (Kischkel et al., 1995) containing FasL, Fas, the
adaptor protein FADD (Boldin et al., 1995; Chinnaiyan et al.,
1995), and procaspase 8 (Boldin et al., 1996; Muzio et al.,
1996). Within the death-inducing signaling complex, the

increased local concentration of procaspase 8 allows for
its spontaneous autocatalytic cleavage and activation by
‘‘induced proximity’’ (Muzio et al., 1998). ‘‘Initiator’’ caspases
(such as caspase 8) activate proteolytically ‘‘effector’’ caspases
(such as caspases 3, 6, and 7) (reviewed in Cohen, 1997; Shi,
2002). Once activated by the initiator caspases, effector
caspases dismantle the apoptotic cell by systematically
cleaving more than 100 cytoplasmic and nuclear substrates,
thus interfering with virtually every cellular function.

FasL belongs to the tumor necrosis factor (TNF) family of
cytokines that associate as homotrimers and less frequently as
heterotrimers to bind their cognate receptors (Bodmer et al.,
2002). Receptors of the TNF family are activated by ligand-
mediated oligomerization (Bodmer et al., 2002). FasL signals
cell death predominantly as a transmembrane protein by
engagement of its receptor, Fas, on the surface of target cells
(Suda et al., 1997; Krammer, 2000). FasL plays an important
role in the effector function of cytotoxic T lymphocytes and
also regulates their homeostasis (Krammer, 2000). Genetic
mutations that inactivate either FasL or Fas are associated
with autoimmune lymphoproliferative syndrome, a heredi-
tary condition characterized by the accumulation of atypical
lymphocytes and by the development of autoimmune
manifestations (Straus et al., 1999). Membrane-bound FasL
may be processed to a soluble form (sFasL) and shed by
the action of a metalloprotease (Tanaka et al., 1998). The
processed sFasL does not display apoptotic activity and can
even inhibit the action of membrane-bound FasL (Suda
et al., 1997; Schneider et al., 1998; Tanaka et al., 1998).
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Interestingly, crosslinking of sFasL restores its proapoptotic
activity (Schneider et al., 1998). Recently, Holler et al. (2003)
explained the inability of trimeric sFasL to trigger apoptosis
by demonstrating that a hexamer of FasL, consisting of two
trimers held in close proximity, represents the minimal ligand
structure required to signal apoptosis.

The FasL/Fas system has been found to exert functions
different from apoptosis in certain cellular contexts. Engage-
ment of Fas in immature dendritic cells triggered their
maturation and expression of proinflammatory cytokines in
the absence of apoptosis (Rescigno et al., 2000). In an in vivo
mouse model of acute lung injury triggered by intranasal
instillation of Fas-activating antibody, Matute-Bello et al.
(2001) reported the presence of both apoptosis and increased
inflammatory gene expression in alveolar epithelial cells.

Over the past decade, several laboratories have begun to
elucidate the importance of FasL/Fas in skin homeostasis,
carcinogenesis, and inflammatory skin diseases. Epidermal
keratinocytes express Fas, but not FasL (Viard et al., 1998).
However, abnormal expression of lytically active FasL was
found in keratinocytes of patients with toxic epidermal
necrolysis, suggesting that a suicidal keratinocyte reaction
contributes to the pathogenesis of toxic epidermal necrolysis
(Viard et al., 1998). In addition, FasL/Fas signaling was
implicated in acute cutaneous graft-versus-host disease
(Langley et al., 1996). Squamous cell carcinomas were found
to have decreased expression of Fas, increased expression of
its inhibitor cFLIP, and increased expression of FasL, all
suggesting that this type of skin cancer may employ the FasL/
Fas system to evade immune surveillance and tumor lysis
(Bachmann et al., 2001).

More recently, FasL was found to be involved in the
pathogenesis of eczematous dermatitides (such as atopic
dermatitis (AD) and allergic contact dermatitis (ACD))
(Schwarz, 2000; Trautmann et al., 2000, 2001; Klunker
et al., 2003). A common histopathological feature of eczemas
is the formation of exudative epidermal vesicles that are
disruptive to the normal barrier function of the skin. Although
vesicle formation in eczemas has been largely attributed to
rupturing of keratinocyte attachments as a result of inter-
cellular edema (spongiosis) (Schwarz, 2000 and references
therein), recent findings suggest that keratinocyte death plays
a major role in vesicle formation (Schwarz, 2000; Trautmann
et al., 2000). This keratinocyte death appears to be apoptotic
and to be mediated by FasL, delivered to the epidermis by
infiltrating T lymphocytes and acting on Fas whose expres-
sion on the surface of keratinocytes is induced by T lympho-
cyte-derived interferon-g (Trautmann et al., 2000).

These findings clearly demonstrated the important role of
FasL in the epidermal destruction in inflammatory skin
diseases. However, whether FasL is directly involved in the
inflammatory process is not known. We demonstrate here
that FasL elicits a proinflammatory reaction in human
keratinocytes by triggering the expression of stress-responsive
transcription factors, inflammatory cytokines, chemokines,
and the adhesion molecule ICAM-1. Furthermore, we
demonstrate that oligomerization of Fas is required both for
apoptosis and for the inflammatory gene expression, and that

caspase activity is essential for apoptosis, but dispensable for
the inflammatory gene expression. Our results suggest that, in
specific tissue and cellular contexts, FasL may behave as a
bona fide proinflammatory cytokine.

RESULTS
Identification of FasL-activated genes

To identify genes activated by FasL in keratinocytes, we
performed Affymetrix microarray analyses on RNA extracted
from HaCaT cells 2 hours after exposure to Fc:FasL. Analyses
were performed on HG-U133 Plus 2.0 GeneChip arrays,
which interrogate over 47,000 human transcripts. Genes
whose mRNAs were consistently absent from both samples
(control and Fc:FasL-treated) were excluded from the
analysis, reducing the number of evaluated genes to 1146.
Of these, 166 genes were identified, whose mRNA abun-
dance was increased X2-fold after Fc:FasL. The microarray
analysis in Excel format is available upon request. The data
from the microarrays were analyzed by EASE, a software
application for the rapid interpretation of biological data
obtained from microarray analysis (Hosack et al., 2003). The
EASE software automates the process of biological theme
determination by analyzing the over-representation of genes
that belong to categories that are functionally and structurally
defined. Table S2 displays the hierarchical analysis of the
genes whose mRNA abundance was increased X2-fold after
Fc:FasL. These data reveal that the most highly over-
represented genes activated after Fc:FasL treatment of HaCaT
cells were associated with inflammatory, stress, and wound
responses. The molecular functions of these induced genes
were identified as cytokines, chemokines, growth factors, and
regulators of transcription (Tables S2 and S3). Among the
mRNAs increased in abundance are several that encode
immediate-early transcriptional regulators (cJun, cFos, ATF3,
and Egr1; Table S3 and Figures 2a, 4a, and 5), whose
expression has been tied to ligands that activate ERK, p38
mitogen-activated protein kinase (MAPK), and cJun amino
terminal kinase (JNK) (Waskiewicz and Cooper, 1995;
Kyriakis and Avruch, 1996, 2001). Several of these transcrip-
tional regulators have been shown to bind to regulatory
sequences of genes encoding cytokines and chemokines.
Indeed, the microarray analyses and their subsequent
validation by real time RT-PCR (see below) identified the
inflammatory cytokines TNF-a, IL-6, IL-1a, and b, and the
chemokines CCL2/MCP-1, CXCL1/GROa, CXCL3/GROg, and
CXCL8/IL-8 as genes whose mRNA abundance was increased
dramatically in Fc:FasL-treated keratinocytes.

To identify similarities between the pattern of Fc:FasL-
induced mRNA accumulation and the patterns triggered by
other stimuli, we employed the L2L database maintained by
the University of Washington (Seattle, WA; http://depts.
washington.edu/l2l/). L2L is a database of published micro-
array gene expression data, and a software tool for comparing
that published data to a user’s own microarray results. Our
Affymetrix data displayed the highest degree of similarity with
the program of gene expression stimulated by TNF-a in HeLa
cells (Zhou et al., 2003). Specifically, 15 actual matches
between the two lists were identified, with 0.13 matches
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expected by random coincidence (118-fold enrichment,
4.64e�28 binomial P-value). Among the overlapping genes
were those encoding TNF-a-induced proteins 2 and 3, Egr1,
IL-6, cyclooxygenase 2, JunB, and CCL2/MCP-1. These
results strongly suggest that, in HaCaT cells, FasL behaves
as a bona fide inflammatory mediator similar to TNF-a.

Validation of microarray data by real time RT-PCR

To validate the Affymetrix microarray data and gain a better
understanding of the temporal behavior of Fc:FasL-induced
accumulation of specific gene transcripts, we treated HaCaT
cells with Fc:FasL and then investigated, using real time
RT-PCR, the levels of specific mRNAs at 0.5, 1, 2, and 4 hours
after the treatment. The results shown in Table S4 and Figures
1a and 2 are representative of at least six highly reproducible
repetitions of the same experiment. Typically, treatment of
the cells with Fc:FasL (250 ng/ml) resulted in progressive
apoptosis that, assessed morphologically (not shown) and by
the cleavage of poly(ADP)ribose polymerase (PARP), a well-
characterized substrate of effector caspases, affected X50%
of the cells by the fourth hour after treatment (Figures 1c, d, 6
and 7). We therefore restricted our analysis of mRNA
detection to time points not later than 4 hours after Fc:FasL,
as at later times massive death and detachment of cells
occurred. Another rationale to study the mRNA accumulation
within the described time frame was that between 0.5 and
4 hours after the treatment the majority of the MAP kinase
(ERK, JNK, and p38 MAPK) activation occurred (Figure 1c).
The group of transcripts increasing in abundance in response
to Fc:FasL and encoding immediate-early transcription factors
(cJun, cFos, ATF3, and Egr1) is presented in Table S4 and
Figure 2a. Table S4 and Figure 2b demonstrate the analysis of
Fc:FasL-induced accumulation of mRNAs encoding inflam-
matory mediators such as the cytokines TNF-a, IL-6, IL-1b,
and the chemokines CCL2/MCP-1, CXCL1/GROa, CXCL3/
GROg, and CXCL8/IL-8. All these mRNAs were induced to
accumulate manifold in response to Fc:FasL. In addition to
these inflammatory and chemotactic ligands, we detected a
more than 10-fold (at 2 hours) increase in the levels of the
mRNA for ICAM-1 (Table S4 and Figure 2b). We were
intrigued to find that the mRNA for CCL5/RANTES (regulated
on activation normal T cell expressed and secreted) was
consistently unchanged in response to Fc:FasL treatment
(Table S4 and Figure 9). As addressed later experimentally, it
appeared that Fc:FasL-triggered apoptosis created conditions
nonpermissive for the expression of this chemokine (Figure 9).
Finally, we identified an important novel group of Fc:FasL
targeted mRNAs, namely those encoding four epidermal
growth factor receptor (EGFR) ligands: amphiregulin, epir-
egulin, heparin-binding EGF, and transforming growth factor-
a (TGF-a) (Table S4 and Figure 2c). Interestingly, the levels of
mRNA encoding EGF were not increased in response to
Fc:FasL (Table S4), despite the ability of HaCaT cells to
upregulate EGF mRNA expression in response to other stimuli
(such as EGF itself; not shown).

Since both the EASE and the L2L database analyses
suggested strongly that Fc:FasL triggered a proiflammatory
gene expression program in HaCaT cells, we interrogated, by

real-time RT-PCR, the gene expression profiles of HaCaT cells
to TNF-a and IL-1b, two bona fide proinflammatory
cytokines, and compared these profiles to the response of
HaCaT cells to Fc:FasL. The results of these analyses are
summarized in Figure 2. We observed that all the genes
upregulated by Fc:FasL treatment were also strongly respon-
sive to TNF-a and IL-1b. As a rule, however, both TNF-a and
IL-1b displayed a more rapid attenuation of the induced
mRNA accumulation over time than the attenuation of the
signal observed after Fc:FasL. Typically, most TNF-a- or IL-1b
-induced mRNAs were downregulated at 4 hours after
treatment, whereas several Fc:FasL-induced mRNAs were at
their maximum values at 4 hours post-treatment (Figure 2,
see, for instance, the examples of cJun, IL-1b, and CXCL8/IL-8
mRNAs).
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Figure 1. Time course of Fc:FasL-dependent apoptosis and signaling. HaCaT

cells were plated and grown in BKMþ exoGF. The cells were extensively

washed with BKM-exoGF and incubated in BKM-exoGF for 2 hours before

treatments. The cells were then treated, for the indicated times and in

duplicated plates, with Fc:FasL (250 ng/ml). (a) One plate of each duplicate

was harvested for RNA analysis and (c) the other was harvested for

immunoblot analyses. (b) The medium from both plates was combined and

used for TNF-a protein detection by ELISA. Apoptosis was assessed by

determining the cleavage of PARP. The phosphorylation states of JNK, ERK,

and p38 MAPK were assessed using phosphoepitope-specific antibodies and

the levels of the respective total proteins were determined using antibodies

that are independent of the phosphorylation status. TNF-a mRNA levels were

assessed by real-time RT-PCR. Error bars represent standard deviation from

(a) triplicated RT-PCR reactions or (b) ELISA wells. (d) Apoptosis and cFos

expression in Fc:FasL-treated HaCaT cells. Cells were treated exactly as in

(a–c), except that the 0.5 hours time-point was omitted. One plate of each

duplicate was harvested for RNA analysis and the other was harvested for

immunoblot analyses. Apoptosis was assessed by the cleavage of PARP.

cFos expression was determined at the levels of both mRNA and protein

abundance.
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To investigate whether the increased accumulation of
Fc:FasL-induced mRNAs was mediated by Fas, the bona fide
receptor for FasL, we employed ZB4, an Fas-neutralizing
antibody. Indeed, ZB4 abrogated not only the apoptotic
response of HaCaT cells to Fc:FasL but also the accumulation
of all Fc:FasL-regulated transcripts described in Figures 1a
and 2 (not shown, but see Figure 5 below). In summary,
based on the Affymetrix microarray analysis, the EASE and
L2L comparisons, and the real-time RT-PCR data, we
concluded that Fc:FasL triggers a specific program of
proinflammatory and stress-responsive mRNA accumulation
in HaCaT cells.

Dependence of the FasL-activated inflammatory genes on
NF-jB
To investigate whether the inflammatory gene expression
triggered by Fc:FasL was dependent on the activity of NF-kB,
we first examined whether Fc:FasL activated NF-kB in HaCaT

cells. To this end, we investigated, by immunocytochemistry,
the translocation of NF-kB from the cytoplasm to the nucleus
in response to either TNF-a, a paradigmatic NF-kB activator,
or Fc:FasL. As expected, TNF-a triggered a strong nuclear
translocation of NF-kB at 0.5 hours after addition and this
translocation was largely reversed at 1 hour after stimulation
(Figure 3a). Fc:FasL triggered a somewhat less-intense, but
clearly detectable, nuclear translocation of NF-kB at
0.5 hours after addition; however, unlike TNF-a, the nuclear
localization of NF-kB persisted and was even stronger at
1 hour after stimulation (Figure 3a). These results strongly
suggest that Fc:FasL is capable of activating NF-kB in HaCaT
cells.

To address directly the question of whether the inflamm-
atory gene expression triggered by Fc:FasL was dependent on
NF-kB activation, we undertook to ‘‘knockdown’’, by means
of RNA interference (RNAi), the p65/RelA subunit of NF-kB
in HaCaT cells. Figure 3b shows that p65/RelA-directed
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Figure 2. Time courses of Fc:FasL-, TNFa-, and IL-1b-dependent selective mRNA accumulation. Total RNA from the same experiment shown in Figure 1

(Fc:FasL) or from TNF-a- or IL-1b-treated (20 or 5 ng/ml, respectively) HaCaT cells was interrogated in real-time RT-PCR analyses for the steady-state levels of

indicated mRNAs. The relative increase in mRNA accumulation is represented as per cent of maximum achieved accumulation within each treatment group

(Fc:FasL, TNF-a, or IL-b). This allows us to compare kinetics of activation for each treatment irrespective of the differences in maximum fold activation observed

within each treatment group. The levels of each Fc:FasL-induced mRNA expressed as fold increase are shown in Table S4. Error bars represent standard

deviation from triplicated RT-PCR reactions. (a) mRNAs for transcription factors. (b) mRNAs for cytokines, chemokines, and ICAM-1. (c) mRNAs for

EGFR ligands.
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small-interfering (double-stranded) RNA (siRNA), but not a
control (scrambled) siRNA, specifically reduced the steady-
state levels of p65/RelA protein, while not affecting the levels
of its dimerization partner, p50/NF-kB1. By real-time RT-
PCR, we observed, in the same experiment, highly specific
effects of the p65/RelA ‘‘knockdown’’ on Fc:FasL-induced
mRNA accumulation (Figure 4). Some of the interrogated
mRNAs (e.g., the ones encoding cFos, Egr1, amphiregulin,
and TGF-a) displayed independence of NF-kB (Figure 4a and
c). In contrast, all interrogated mRNAs for inflammatory
mediators displayed varied, but substantial, degrees of NF-kB
dependence, the most strongly affected being the mRNA for
ICAM-1; the accumulation of ICAM-1 mRNA in response to
Fc:FasL was practically abolished in the presence of p65/RelA
siRNA (Figure 4b).

Direct and secondary effects of Fc:FasL on the levels of selected
mRNAs

It was conceivable that some of the mRNAs that were
elevated in response to Fc:FasL treatment responded indir-
ectly to Fc:FasL through the production and/or release of

products of earlier Fc:FasL-responding genes (e.g. cytokines).
To address this possibility, we employed an approach
represented schematically in Figure S1. We reasoned that
conditioned medium from Fc:FasL-treated ‘‘donor’’ cells
would contain both Fc:FasL as well as, potentially, a mixture
of other cytokines secreted into the medium by the ‘‘donor’’
cells in response to Fc:FasL. When given to naı̈ve (‘‘accep-
tor’’) cells, this conditioned medium would elicit responses in
these cells that would be attributable to the actions of both
Fc:FasL and other secreted cytokines. If we could eliminate
the activity of Fc:FasL from the conditioned medium, we
would be able to observe the ‘‘secondary’’ effects of the
cytokines released to the medium in response to Fc:FasL by
the ‘‘donor’’ cells. ZB4, the Fas-blocking monoclonal anti-
body, offers such an opportunity. The outcomes of these
experiments are presented in Figure 5a and b. First, we
investigated the group of four genes encoding transcription
factors (cJun, cFos, ATF3, and Egr1). Pretreatment of
‘‘acceptor’’ cells with ZB4 abolished the accumulation of
the mRNAs of these transcription factors in response to
conditioned medium from Fc:FasL-treated ‘‘donor’’ cells,
suggesting that Fc:FasL was the primary inducer to which
these mRNAs responded (Figure 5a). We next analyzed the
effects of ZB4 on the behavior of selected cytokines and
chemokines. ZB4 abolished the accumulation of the mRNA
for IL-6, suggesting that, like the transcription factors, this
mRNA responded exclusively to Fc:FasL (Figure 5b). How-
ever, several other mRNAs (the one for CXCL8/IL-8 being the
most pronounced example) were substantially, but not
completely, suppressed in the presence of ZB4 (Figure 5b).
We concluded, therefore, that the mRNAs for some
inflammatory mediators (e.g. IL-6) responded exclusively to
Fc:FasL, whereas others (e.g. CXCL8/IL-8) displayed some
ability to be activated by ‘‘secondary’’ cytokines, presumably
released into the medium in response to Fc:FasL.

Apoptosis, mRNA accumulation, and protein synthesis

One potential caveat in the interpretation of the data in
Figures 1a, 2, and 5 is that the Fc:FasL-induced mRNA
accumulation of selected genes may not be translated
productively into changes in the levels of the respective
proteins encoded by these mRNAs as a result of inhibition of
protein synthesis in apoptotic cells. We addressed this
possibility in three ways. First, we determined the rates of
protein synthesis in Fc:FasL-treated HaCaT cells by measuring
the rates of [3H]-leucine incorporation at various times after
the treatment and at various concentrations of Fc:FasL (125,
250, and 500 ng/ml). The degree of apoptosis was assessed by
the cleavage of PARP in identically treated parallel plates.
Figure 6 shows that, at any concentration of Fc:FasL, massive
PARP cleavage was detected at 2 and 4 hours, but not at
1 hour. The levels of [3H]leucine incorporation also displayed
a dose-dependent decrease between 2 and 4 hours, but not
substantially at 1 hour (Figure 6). Importantly, however, even
at 4 hours after the treatment with the two highest doses,
when PARP cleavage was estimated to be between 70 and
80% (Figure 6, see immunoblot and graph) and the majority
of the cells displayed blebbing and other signs of apoptotic
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Figure 3. Activation of NF-jB by Fc:FasL and p65/RelA knockdown.

(a) HaCaT cells were plated and prepared for treatments as in Figure 1. The

cells were treated for the indicated times with either TNF-a (20 ng/ml)

or Fc:FasL (250 ng/ml). Immunocytochemical detection of p65/RelA.

Bar¼50 mm. (b) HaCaT cells were transfected in duplicates with either

p65/RelA-directed siRNA or control (scrambled) siRNA as described in

Materials and Methods. Cells were then treated as in Figure 1. One

plate of each duplicate was harvested for RNA analysis (Figure 4, below)

and the other was harvested for immunoblot analyses presented here.
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morphology (not shown), the levels of [3H]leucine incorpora-
tion were maintained within 55–65% of the control levels
(Figure 6). This suggested that substantial levels of protein
synthesis were available to translate mRNAs in Fc:FasL-
treated cells. Second, we directly assessed the levels of cFos
protein in Fc:FasL-treated HaCaT cells. Figure 1d demon-
strates that both cFos mRNA and protein levels were
increased 1 hour after the treatment. At this time, PARP
cleavage was not yet detectable (Figure 1d). Importantly, the
levels of both c-Fos mRNA and protein remained high at
2 and 4 hours after the treatment, despite the progressively
increasing cleavage of PARP (Figure 1d). Finally, we
determined the levels of TNF-a protein secretion into the
medium of Fc:FasL-treated cells. Figure 1b demonstrates that
detectable levels of secreted TNF-a protein were found 2 and
4 hours after Fc:FasL administration. Taken together, these
results strongly argue that apoptosis does not prevent at least
some of the increased mRNAs from being efficiently translated.

Limited oligomerization of FasL is a prerequisite for FasL-
dependent inflammatory mRNA accumulation

Recent findings suggest that Fas-dependent apoptosis requires
the close proximity of two trimeric Fas ligands (Holler et al.,
2003). We asked whether such limited oligomerization of
FasL was also required to trigger the increased accumulation
of the mRNAs for inflammatory mediators. To address this
question, we inserted a PreScissionTM protease cleavage site in
the linker region of Fc:FasL, generating a cleavable version of
Fc:FasL designated Fc:PS:FasL (Figure S2a). Cleavage of the
Fc:PS:FasL protein with PreScissionTM protease disrupts the
hexameric structure of the Fc:PS:FasL and results in the
release of a trimeric FasL protein very similar to the naturally
occurring sFasL (Figure S2a–c). When a Fc:PS:FasL prepara-
tion that was not subjected to cleavage with PreScissionTM

protease was given to HaCaT cells, the cells displayed time-
dependent apoptosis (see PARP panel, Figure 7) and
activation of MAP kinases (Figure 7), although the activity
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of Fc:PS:FasL was reduced compared to the parental Fc:FasL.
Cleavage of Fc:PS:FasL with PreScissionTM protease abolished
both apoptosis and MAP kinase activation (Figure 7). How-
ever, identical treatment of Fc:FasL with PreScissionTM

protease did not affect the ability of Fc:FasL to trigger
apoptosis or to induce the activation of MAP kinases
(Figure 7). Similarly, cleavage of Fc:PS:FasL with PreScis-
sionTM protease abolished completely the ability of Fc:PS:FasL
to trigger the accumulation of all Fc:FasL-regulated mRNAs
(exemplified here by three mRNAs, TNF-a, CXCL1/GROa,
and IL-6; Figure 8). In contrast, PreScissionTM protease-treated
Fc:FasL protein retained its ability to trigger the accumulation
of Fc:FasL-regulated mRNAs (Figure 8). We concluded,
therefore, that limited oligomerization of FasL is a prerequi-
site for FasL-dependent inflammatory mRNA accumulation.

Caspase activity is not required for FasL-dependent gene
expression
We next examined whether caspase activity is essential for
the accumulation of Fc:FasL-regulated mRNAs. As expected,
pretreatment of HaCaT cells with either caspase 8 inhibitor

zIETDfmk or pancaspase inhibitor zVADfmk, blocked
Fc:FasL-dependent cleavage of PARP (Figure 9a, a represen-
tative result using zIETDfmk), indicating efficient inhibition of
caspase activity by these agents. Under these conditions of
caspase inhibition, we observed that all proinflammatory
mRNAs (cytokines, chemokines, ICAM-1, and transcription
factors) presented in Figures 1a, d, and 2 were induced to
accumulate by Fc:FasL to levels very similar to those
observed in the absence of caspase inhibitors (Figure 9b,
top panel; TNF-a, a representative mRNA is shown).
Surprisingly, the mRNA for CCL5/RANTES (which was not
induced to accumulate by Fc:FasL in the absence of caspase
inhibitors; see above and Figure 9b, bottom panel) was
dramatically increased in abundance in Fc:FasL-treated cells
in the presence of either zVADfmk or zIETDfmk (Figure 9b,
bottom panel). These results not only demonstrated that
caspase activity is dispensable for the proinflammatory gene
expression program triggered by Fc:FasL, but also strongly
suggested that caspase activity may be suppressive for some
aspects of the pro-inflammatory action of Fc:FasL in
keratinocytes.
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Validation of the pro-inflammatory action of Fc:FasL using
reconstructed human epidermis

To gain more confidence that the results described so far are
physiologically relevant and are not characteristic of a single
(HaCaT) cell line, we employed reconstructed human
epidermis (RHE) using the HEKn-E6/E7 keratinocytes estab-
lished in our laboratory (Iordanov et al., 2002, 2005). Under
standard protocol conditions for RHE (Poumay et al., 2004),
HEKn-E6/E7 keratinocytes form a morphologically normal
epidermis (including a pronounced stratum corneum) and
proper spatial distribution of epidermal marker proteins
(keratin 5, keratin 1, and filaggrin; Figure S3). Observed
at various times following Fc:FasL administration, RHEs
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Figure 6. Apoptosis and protein synthesis in Fc:FasL-treated HaCaT cells.
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incubated in BKM-exoGF for 2 hours before treatments. The cells were then

treated, in triplicated wells, with Fc:FasL (250 ng/ml). The cells were pulsed-

labeled with 5 mCi of [3H]leucine in 0.3 ml of BKM-exoGF for the last

15 minutes before harvesting. At the desired times (0.5, 1, 2, and 4 hours after

Fc:FasL), the incorporation of [3H]leucine was stopped by the addition of

equal volume of 10% TCA. Cells (both adherent and detached) were washed

3� with 5% TCA, followed by solubilization of the TCA-insoluble proteins in

88% formic acid. The combined samples (containing both adherent and

detached cells, solubilized in formic acid) were counted in a scintillation

counter. Error bars represent standard deviation from experimental point in

triplicates. Cells from identically treated wells (without [3H]leucine labeling)

were harvested for immunoblot detection of PARP cleavage. Quantification of

PARP cleavage was performed as described in Materials and Methods.
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displayed increasing apoptotic morphology between 1 day
and 2.5 days post-treatment (Figure 10a–d, compare panels a
and c; only 2.5 days shown). The presence of bona fide
apoptosis was confirmed by positive staining for active
caspase-3 (Figure 10e–h, compare panels e and g; only 2.5

days shown). The apoptotic action of Fc:FasL on the RHEs
was completely abrogated by the pan-caspase inhibitor
zVADfmk (Figure 10a–h, compare panels c and d and g and
h). Under these experimental conditions of Fc:FasL-triggered,
zVADfmk-inhibitable, apoptosis in RHEs, we observed a
program of inflammatory gene expression highly similar to
that found in HaCaT cells (Figure 11, exemplified by CXCL1/
GROa, CXCL8/IL-8, ICAM-1, and CCL5/RANTES mRNAs).
The Fc:FasL-induced accumulation of mRNAs for inflamma-
tory mediators was completely independent of caspase activity
(Figure 11). Importantly, the behavior of CCL5/RANTES
in RHEs was identical to the one in HaCaT cells: Fc:FasL was
able to induce the accumulation on the mRNA for this
chemokine only when caspase activity was suppressed by
zVADfmk (Figure 11).
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DISCUSSION
Recruitment of T cells, monocytes, and other leukocytes to
sites of cutaneous inflammation plays an important role in the
pathogenesis of acute or chronic inflammatory skin diseases,
such as AD, ACD, and psoriasis (Nickoloff et al., 1990).
Following the endothelium-regulated processes of rolling,
tethering, adhesion, and extravasation, the leukocytes are
attracted to the dermal and epidermal compartments by
gradients of chemoattractants (chemokines) produced by
resident and immigrant cells and are maintained in situ by
adhesion molecules (Pastore et al., 2004). As the major
resident cell type in the epidermis, keratinocytes likely play a
role in leukocyte attraction and epidermal retention. Indeed,
keratinocytes from patients with AD or psoriasis were found
to display distinct chemokine production profiles (Giustizieri
et al., 2001). In the case of AD, the second step of chemotaxis
(i.e. the one after transendothelial migration) was found to be
regulated by the release of chemokines by keratinocytes
triggered to undergo apoptosis in response to T-cell derived
IFN-g (Klunker et al., 2003).

Bearing in mind the apparent prominent role of FasL in
keratinocyte apoptosis during AD and ACD (Trautmann et al.,
2000, 2001), we decided to investigate systematically the
possibility that this cytokine may also play a direct role in
inflammation. Specifically, we addressed the following three
questions:

Is FasL a proinflammatory agent for keratinocytes?
The results of our Affymetrix microarray interrogation,
coupled with the use of the EASE software and L2L database,
and validated by real-time RT-PCR, ELISA, and immunoblot-
ting, support strongly the conclusion that FasL is a potent
inducer of a proinflammatory profile of gene expression in
HaCaT cells. This proinflammatory profile of gene expression
includs elevated mRNA levels of transcription factors,
cytokines, chemokines, and ICAM-1. Considering the activa-
tion of MAP kinases, the increased abundance of mRNAs
encoding transcription factors, and the dependence on NF-
kB, FasL-dependent increase in transcriptional activity of
proinflammatory genes is a likely mechanism by which FasL
triggers the increased abundance of their mRNA transcripts,
although other possibilities, such as increased mRNA
stability, cannot be ruled out.

Can the (trimeric) sFasL trigger apoptosis and/or inflammatory
response in keratinocytes?

The answer to this important question could potentially shed
light on the cellular source of FasL-mediated inflammation.
Should sFasL be capable of triggering keratinocyte apoptosis
and/or inflammation, this would be an indication that
epidermal keratinocytes may be subject to ‘‘long-range’’
FasL-dependent influence by leukocytes that themselves are
not resident in the epidermis. Our results using Fc:PS:FasL
indicate that a minimum of two adjacent FasL trimers are
required for both the apoptotic and the proinflammatory
responses of keratinocytes. The potential implication of this
finding is that, in inflammatory diseases of the skin, the FasL-
dependent keratinocyte apoptosis and proinflammatory
behavior may require transmembrane presentation of FasL
and, therefore, transmigration of leukocytes into, and their
retention in, the epidermal compartment. Alternatively, it is
possible that sFasL is capable of signaling apoptosis and/or
gene expression, but only in a specific tissue context, for
instance due to its appropriate oligomerization and presenta-
tion to cells by components of the extracellular matrix.

Is FasL-induced inflammatory response dependent upon
apoptosis?

The traditional view of apoptosis holds that apoptotic cell
death has evolved as a mechanism of avoiding unnecessary
inflammation through neat and controlled elimination of
damaged cells. This is achieved by means of packaging
diseased cells into apoptotic bodies without plasma mem-
brane breakdown and their subsequent elimination by
professional or bystander phagocytes (Edinger and Thomp-
son, 2004). Apoptosis is also employed to maintain the
immune-privileged state of some organs (such as the eye and
the testis) and in graft-tolerance (Bellgrau et al., 1995; Griffith
et al., 1995). It is thought, however, that if the apoptotic cells
are not efficiently eliminated through phagocytosis, the
resulting process of secondary necrosis (due to the eventual
breakdown of the plasma membrane) may trigger inflamma-
tion (Erjefalt, 2005). Secondary necrosis was proposed to
explain the aggravation of asthma-like inflammation by
apoptotic airway tissue eosinophils in a mouse model (Uller
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et al., 2005). Considering the relative lack of professional
phagocytes in the epidermis and the abundance of apoptotic
keratinocytes observed in vivo in biopsies from eczematous
skin (Trautmann et al., 2000, 2001; Iordanov et al., 2005), it
is plausible to suspect that postapoptotic secondary necrosis
is a major mechanism of keratinocytes’ participation in the
‘‘vicious cycle’’ of inflammation in chronic eczemas. The
results presented here, however, strongly argue that the FasL-
dependent proinflammatory reaction precedes, and is in-
dependent of, FasL-dependent apoptosis. The mRNAs for
most of the inflammatory mediators (e.g. TNF-a, IL-6, IL-1b,
CXCL1/GROa, CXCL3/GROg, and CXCL8/IL-8) were already
induced to accumulate at 1 hour post-Fc:FasL. At this time
point, apoptosis in the same cells was neither detected
morphologically (not shown) nor by means of caspase
activity (PARP cleavage). Most importantly, caspase inhibi-
tors not only failed to inhibit the inflammatory mRNA
accumulation, but their presence appeared to be essential
for the ability of Fc:FasL to induce the accumulation of the
mRNA for CCL5/RANTES. Taken together with several
recently published reports, our findings suggest that the
relationship between FasL-induced cells death and inflam-
mation may be different in specific tissue and cellular
contexts. Engagement of Fas in immature dendritic cells
triggered their maturation and expression of proinflammatory
cytokines in the absence of apoptosis (Rescigno et al., 2000).
In an in vivo mouse model of acute lung injury triggered by
intranasal instillation of Fas-activating antibody, Matute-Bello
et al. (2001) reported the presence of both apoptosis and
increased inflammatory gene expression in alveolar epithelial
cells. Similar to our findings, the study of Matute-Bello et al.
did not reveal an increase in CCL5/RANTES expression after
Fas activation, although this work did not employ caspase
inhibitors to investigate the ability of Fas ligation to activate
CCL5/RANTES under conditions of suppressed apoptosis.
Recently, Petrilli et al. reported intriguing results suggesting
that caspase-cleaved PARP is an important mediator of
inflammatory gene expression during experimentally induced
endotoxic shock or intestinal or renal ischemia–reperfusion
(Petrilli et al., 2004). We demonstrate, however, the ability of
FasL to induce inflammatory gene expression in keratinocytes
in the absence of any detectable PARP cleavage and that the
proinflammatory action of FasL in keratinocytes can be (as in
the case of CCL5/RANTES) even suppressed by caspase
activity. Our findings support a hypothesis that apoptosis in
the eczematous epidermis (manifested clinically as spongio-
sis) may have the function of restricting, rather than
aggravating inflammation. Such a notion may prove to be
important in designing therapeutic strategies for the treatment
of AD and ACD. It is important to point out that the lack of
requirement for caspase activity in the FasL-dependent
inflammatory response allows for the possibility that caspases
may be involved in the nonapoptotic FasL-dependent
signaling in a scaffolding-related function, as discovered by
Kreuz et al. (2004).

Finally, the proinflammatory response elicited by FasL-
treated HaCaT cells is not the first example of a nonapoptosis-
related action of FasL in keratinocytes. We recently reported

that FasL-treated human keratinocytes secrete amphiregulin
and activate EGFR and EGFR-dependent MAP kinase path-
ways (Iordanov et al., 2005). We speculated that this
promitogenic effect of FasL may play a role in the
hyperproliferative phase of AD and ACD. Thus, the FasL/
Fas system may exert a previously underappreciated variety
of effects in the eczematous epidermis, including regulation
of spongiosis and inflammation in the acute phase and
hyperproliferation in the chronic phase.

MATERIALS AND METHODS
Cells

HaCaT cells were propagated in DMEM supplemented with 10%

fetal bovine serum. For experiments, the cells were plated

(24–48 hours before treatments) in EpiLifes basal keratinocyte

medium (BKM) supplemented with a semidefined human keratino-

cyte growth supplement (HKGS; the final concentrations of the

components in the supplemented medium are: bovine pituitary

extract, 0.2% v/v; bovine insulin, 5 mg/ml; hydrocortisone, 0.18 mg/

ml; bovine transferrin, 5 mg/ml; and human epidermal growth factor,

0.2 ng/ml). Both EpiLifes BKM and HKGS were from Cascade

Biologics (Portland, OR). BKM supplemented with HKGS is referred

to as BKMþ exoGF (BKM plus exogenous growth factors). Respec-

tively, BKM lacking HKGS is referred to as BKM�exoGF (BKM

minus exogenous growth factors).

RHE and immunohistochemistry

HEKn-E6/E7 cells were established and propagated as described

(Iordanov et al., 2002, 2005). For RHE, we employed the method of

Poumay et al. (2004), with minor modifications as described. HEKn-

E6/E7 cells were plated at 1� 106 cells/ml on polycarbonate

membranes (Millipore: 0.4 mm, 12-mm-diameter) and allowed to

reach confluence in BKMþ exoGF. Cells were then exposed to the

air–liquid interface by removing the medium above the confluent

monolayer. Simultaneously, the cells were exposed from underneath

the monolayer to differentiation medium (BKMþ exoGF supplemen-

ted with 1.5 mM CaCl2, 50 mg/ml ascorbic acid, and 10 ng/ml

recombinant human keratinocytes growth factor (rhKGF, Peprotech,

Rocky Hill, NJ)). The differentiation medium was exchanged every

48 hours for 14 days. RHEs were fixed in freshly made 4%

p-formaldehyde, embedded in paraffin, and, after sectioning, were

processes for immunohistochemistry following the specific protocols

recommended by the respective manufacturers for each antibody.

Immunocytochemical detection of p65/RelA was performed as

described previously (Iordanov et al., 2001).

Chemicals, Fc:FasL, and cytokines

All commonly used chemicals were from Sigma Chemical Company

(St Louis, MO). Caspase inhibitors (zVADfmk and zIETDfmk) were

from Calbiochem (San Diego, CA). The cloning, expression, puri-

fication, and characterization of Fc:FasL was described previously

(Holler et al., 2003). Fc:PS:FasL was constructed by inserting

annealed oligos (50-GATCTCTGGAGGTGCTGTTCCAGGGGCCCG-30

and 50-GATCCGGGCCCCTGGAACAGCACCTCCAGA-30) in the

BamH1 site of the plasmid encoding Fc:FasL (Holler et al., 2003), so

that the encoded linker sequence between the Fc and FasL becomes

RSPQPQPKPQPKPEPEGSLEVLFQGPGSLQ. Proteolytic digestion

of Fc:[7PS]:FasL with PreScission protease, which cleaves the
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sequence LEVLFQ-GP, was performed for 24 hours at 41C in PBS

1 mM EDTA with 10 U of GST-PreScission (GE Healthcare, Piscat-

away, NJ), per mg of purified protein. Processing of Fc:PS:FasL was

essentially complete, whereas Fc:FasL was unaffected, as assessed by

Western blotting with an anti-human FasL antibody (Figure S2c).

Recombinant human TNF-a was from R&D Systems and recombi-

nant human IL-1b was from Calbiochem.

RNA isolation, affymetrix microarray, and real time RT-PCR
analyses
Cells or RHEs were lysed directly in TRIzol reagent (Invitrogen Life

Technologies, Carlsbad, CA) and RNA was extracted in accordance

with the manufacturer’s instructions. Integrity of RNA was deter-

mined by the appearance of distinct 28S and 18S rRNA bands when

analyzed by electrophoresis on 1% agarose gels. The integrity of

RNA was confirmed for all samples before Affymetrix microarray

and real-time RT-PCR analyses. Gene expression profiling was

performed by the Oregon Health and Science University Gene

Microarray Shared Resource Affymetrix Microarray Core using HG-

U133 Plus 2.0 GeneChip arrays, which interrogate over 47,000

human transcripts. Image processing and normalization were

performed using Affymetrix Microarray suite 5.0 (MAS 5.0)

software to obtain the estimate of the fold change for each paired

group. For real-time RT-PCR analyses, 2mg of total RNA were

reverse-transcribed in the presence of SuperScript II and oligo-dT

primers (both reagents were purchased from Invitrogen Life

Technologies). The amplification of the cDNA was accomplished

using the ABI Prism 7900HT sequence detection system (Applied

Biosystems, Foster City, CA) in the presence of the commercially

available SYBR Green PCR Master Mix (Applied Biosystems)

and 20 mmol/L of the corresponding sense and antisense RT-PCR

primers for 120-bp amplicons in a 40-cycle PCR (Table S1). Fold

induction in gene expression was measured using absolute

quantitation of a standard curve in arbitrary units. The denaturing,

annealing, and extension conditions of each PCR cycle were 951C

for 15 seconds, 551C for 30 seconds, and 721C for 30 seconds,

respectively.

Preparation of cell lysates for immunoblot analysis

To avoid potential postlysis modifications or degradation of proteins

of interest, the cells and RHEs were harvested by direct lysis in 2�
SDS-PAGE sample-loading buffer, followed by heat denaturation at

951C for 5 minutes and ultrasonic shearing. Typically, the detached

(dead) cells were sedimented from the growth medium by

centrifugation, lysed in 2� SDS-PAGE sample-loading buffer, and

combined with the cell lysates from adherent cells. Cell lysates were

stored at �801C.

Antibodies and immunoblot analyses

The Fas-blocking antibody ZB4 was from Upstate Cell Signaling

Solutions. The antibodies against PARP (H-250), ERK1 (C-16), JNK1

(FL), p38 MAPK (C-20), cFos (6-2H-2F), p65/RelA (C-20; rabbit for

immunoblot, goat for immunocytochemistry), and p50/NF-kB1 (E-

10) were from Santa Cruz Biotechnologies. The antibodies against

the phosphorylated forms of ERK, JNK, and p38 MAPK and the

antibody against active caspase 3 were from Cell Signaling

Technology. The anti-filaggrin antibody was from Abcam and the

anti-K5 and -K1 antibodies were from BabCo. The separation of

proteins in SDS-PAGE and the electrotransfer onto polyvinylidene

difluoride membranes (Millipore, Billerica, MA) were performed by

standard procedures. Immunoprobing with specific antibodies and

enhanced chemiluminescent detection (DuPont NEN Research

Products, Boston, MA) were performed following the instructions

of the respective manufacturers. For immunoblot quantification,

appropriately nonsaturated film exposures were selected and

scanned, and the scanned images were imported into IP Lab Gel

(GE Healthcare) software for quantification.

Measurement of protein synthesis

The cells were plated in 12-well tissue culture dishes 24 hours before

treatments in BKMþ exoGF. The cells were extensively washed with

BKM-exoGF and incubated in BKM-exoGF for 2 hours before

treatments. The cells were then treated, in triplicated wells, with

Fc:FasL. The cells were pulse-labeled for 15 minutes with 5 mCi of

[3H]leucine in 0.3 ml of BKM-exoGF. The incorporation of

[3H]leucine was stopped by the addition of equal volume of 10%

trichloroacetic acid (TCA). Cells (both adherent and detached) were

washed 3� with 5% TCA, followed by solubilization of the TCA-

insoluble proteins in 88% formic acid. The combined samples

(containing both adherent and detached cells, solubilized in formic

acid) were counted in a scintillation counter.

ELISA

Detection of TNF-a release by ELISA was performed following the

protocol provided by the manufacturer (eBioscience, San Diego,

CA).

RNAi
The p65/RelA sense (50-GCCCUAUCCCUUUACGUCAdTdT-30) and

antisense (50-UGACGUAAAGGGAUAGGGCdTdT-30) oligonucleo-

tides (Zhou et al., 2003) as well as nonspecific scrambled control

sense (50-UCCUCUCCUAACCUGAUGCdTdT-30) and antisense

(50-GCAUCAGGUUAGGAGAGGAdTdT-30) oligonucleotides were

synthesized by the MMI Research Core Facility (Portland, OR).

Equimolar amounts of the complementary oligonucleotides were

annealed in annealing buffer (50 mM Tris-HCl pH 8, 100 mM NaCl)

by denaturing at 901C for 2 minutes followed by incubation at 371C

for 1 hour. Annealed siRNAs were transfected at a final concentra-

tion of 10 nM using DharmaFECTTM1 (Dharmacon, Lafayette, CO),

according to the manufacturer’s instructions and used for experi-

ments 72 hours later. Measured by BLOCK-iTTM (Invitrogen) fluor-

escent control siRNA transfection, the transfection efficiency was

X90% (not shown).
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SUPPLEMENTARY MATERIAL

Figure S1. Experimental scheme to investigate direct and secondary effects of
Fc:FasL.

Figure S2. Schematic representation of membrane-bound FasL, soluble FasL
(sFasL), and the recombinant Fc:[7PS]:FasL proteins employed in this work.

Figure S3. Morphology and epidermal marker distribution in reconstructed
human epidermis (RHE).

Table S1. Forward and reverse primer sequences used for real-time RT-PCR.

Table S2. Overrepresentation analysis of annotated fasl-induced mrna
abundance.

Table S3. Selected transcripts increased in abundance in fasl-treated HaCaT
cells gene.

Table S4. Increased accumulation of selected mRNAs in Fc:FasL treated
HaCaT cells.
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