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Epigenetic mechanisms of lung carcinogenesis involve differentially 
methylated CpG sites beyond those associated with smoking
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Abstract
Smoking-related epigenetic changes have been linked to lung cancer, but the contribution of epigenetic alterations unrelated 
to smoking remains unclear. We sought for a sparse set of CpG sites predicting lung cancer and explored the role of smoking 
in these associations. We analysed CpGs in relation to lung cancer in participants from two nested case–control studies, using 
(LASSO)-penalised regression. We accounted for the effects of smoking using known smoking-related CpGs, and through 
conditional-independence network. We identified 29 CpGs (8 smoking-related, 21 smoking-unrelated) associated with lung 
cancer. Models additionally adjusted for Comprehensive Smoking Index-(CSI) selected 1 smoking-related and 49 smoking-
unrelated CpGs. Selected CpGs yielded excellent discriminatory performances, outperforming information provided by CSI 
only. Of the 8 selected smoking-related CpGs, two captured lung cancer-relevant effects of smoking that were missed by 
CSI. Further, the 50 CpGs identified in the CSI-adjusted model complementarily explained lung cancer risk. These markers 
may provide further insight into lung cancer carcinogenesis and help improving early identification of high-risk patients.
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Abbreviations
AUC​	� Area under the curve
CSI	� Comprehensive smoking index
EPIC	� European prospective investigation into cancer 

and nutrition
LASSO	� Least absolute shrinkage and selection operator
NOWAC​	� Norwegian women and cancer study
ROC	� Receiver operating characteristics

Background

Although tobacco smoking has been identified as the leading 
cause of lung cancer since the early 1950’s, and despite con-
siderable progress in the diagnosis and treatment of the dis-
ease, lung cancer is still the leading cause of cancer-related 
deaths worldwide. Lung cancer survival remains dismal 
(five-year survival rate ranging from 10 to 20%) mainly due 
to patients being diagnosed at later stages of the disease 
[1–4]. The lack of effective early diagnostic tools is in part 
resulting from the incomplete understanding of the molecu-
lar mechanisms involved in the carcinogenesis process. 
Moreover, in populations where the prevalence of smoking 
is low, an increasing proportion of lung cancer occurs in 
never-smokers and former smokers [1] highlighting a press-
ing need for identifying specific molecular mechanisms 
involved in lung carcinogenesis unrelated to smoking.

While the smoking-induced genetic changes affect-
ing oncogenes and tumour suppressor genes have now 
been well-established [5], recent findings have shown that 
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tobacco use also leads to epigenetic modifications through 
DNA methylation at Cytosine-phosphate-Guanine (CpG) 
sites, potentially resulting in modified gene expression [2, 
5]. Previous studies have shown that the lung epithelium, 
and other tissues such as blood, buccal cells, and sputum, 
present relatively conserved methylation profiles in relation 
to smoking and/or lung cancer [6, 7]. Such epigenetic sig-
natures include methylation changes in CpG sites related to 
inflammation, detoxification of xenobiotics, or cell prolifera-
tion [2, 6, 8–10].

Several studies have investigated the role and poten-
tially mediating molecular pathways affected by smoking-
related epigenetic changes in relation to lung carcinogenesis 
[11–15], but so far, the potential contribution of smoking-
independent epigenetic modifications to lung cancer devel-
opment remains understudied.

In the present study, we used full-resolution DNA methyl-
ation data from two European cohorts, the Italian component 
of the European Prospective Investigation into Cancer and 
Nutrition (EPIC-Italy) and the Norwegian Women and Can-
cer Study cohort (NOWAC). We used (LASSO) penalised 
logistic regression models calibrated via stability selection 
to identify robust sets CpG sites that are jointly explanatory 
of future risk of lung cancer. We subsequently investigated 
to what extent these associations were driven by exposure 
to tobacco smoke, and further assessed the performance 
of selected (sets of) CpG sites in predicting lung cancer in 
comparison to established metrics of tobacco smoke expo-
sure. Finally, we investigated the complex correlation across 
selected CpG sites and their relationship with smoking via 
conditional independence network inference.

Methods

Study population

The present work uses data from two European population-
based prospective cohorts: the Italian component of the 
European Prospective Investigation into Cancer and Nutri-
tion (EPIC-Italy, N = 697 men and women aged 35–72) and 
the Norwegian Women and Cancer Study Cohort (NOWAC, 
N = 442 women aged 35–65) [6].

EPIC-Italy included over 47,000 participants between 
1993 and 1998, who provided anthropometric measure-
ments, blood samples, and information on medical history 
and lifestyle factors collected through a self-administered 
questionnaire [6, 11]. Upon sampling, blood was trans-
ported to local laboratories and prepared for DNA extrac-
tion according to standard laboratory protocols [6, 11]. 
Within EPIC-Italy, we used data from a lung cancer nested 
case–control (CC) study including 192 incident lung cancer 
cases and 192 healthy controls matched to cases by sex, date 

of birth, date of inclusion, and study centre. Additionally, 
we included 322 healthy control individuals from a breast 
and colon cancer study nested within EPIC-Italy [11] (Flow 
chart: Supplementary Fig. 1).

The NOWAC study recruited over 172,000 participants 
between 1991 and 2007 and collected anthropometric meas-
urements, and self-reported information on medical history 
and lifestyle factors [16]. In a subset of (N = 50,000) partici-
pants, recruited between 2003 and 2006, a blood sample was 
also available. Upon collection, blood samples were sent out 
to the Department of Community Medicine at the University 
of Tromsø and subsequently prepared for DNA extraction 
according to previously described laboratory protocols [6, 
17]. During the follow-up and to the end of 2011, 132 lung 
cancer cases with blood samples were identified and were 
used for the DNA methylation profiling [11]. For each case, 
one control with an available blood sample was selected and 
matched on time since blood sampling and year of birth. 
We also included data from 190 healthy control individuals 
from a breast and colon cancer study nested within NOWAC 
(Supplementary Fig. 1) [11].

We excluded seven and four lung cancer cases from 
EPIC-Italy and NOWAC, respectively, as well as two and 
eight controls, due to blood samples not passing the quality 
control checks, or to missing data for one or more covari-
ates. This left 313 lung cancer cases (185 in EPIC-Italy, 
and 128 in NOWAC) and 826 controls (512 in EPIC-Italy, 
and 314 in NOWAC) for statistical analyses (Supplementary 
Fig. 1). Both EPIC-Italy and NOWAC studies were approved 
by relevant international, national, and local ethics commit-
tees and all participants provided signed informed consent.

CpG methylation measurement and data 
pre‑processing

For both cohorts, epigenome-wide analyses were carried out 
from whole blood cells DNA using the IlluminaInfiniumHu-
manMethylation450 array, with all laboratory procedures 
performed at the Human Genetics Foundation (Turin, Italy) 
according to the manufacturer’s protocols [6]. In EPIC-Italy, 
data pre-processing was performed using in-house scripts as 
previously described [6]. Briefly, for each sample and each 
probe, measurements were set to missing if obtained by aver-
aging intensities over less than three beads, or if averaged 
intensities were below detection thresholds estimated from 
negative control probes. Background subtraction and dye 
bias correction (probes using Infinium II design) were also 
performed. This procedure resulted in a subset of 473,929 
CpG sites, of which probes detected in < 20% of the samples 
were excluded, yielding 465,886 CpG markers in the lung 
cancer nested study, and 443,150 in the breast and colon can-
cer controls samples (Supplementary Fig. 1). The same pre-
processing procedure was performed for NOWAC, yielding 
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485,512 CpGs suitable for analyses. The final, merged study 
sample included 443,150 CpGs available in both cohorts, for 
a total of 1139 participants.

Further data processing included imputation of missing 
methylation values according to the k-nearest neighbour 
procedure (k = 10), followed by the M-transformation of 
imputed CpG data, expressed as log2-transformed ratios of 
intensities arising from methylated cytosines over those aris-
ing from unmethylated cytosines.

To account for technically induced noise, we adopted a 
two stage ‘denoising’ strategy fitting a linear mixed model 
for the methylation level at each CpG site (as outcome vari-
able) as a function of age at blood collection, sex, BMI, and 
case control status as fixed effect (predictors), and including 
the technical confounders: chip ID (177 modalities), posi-
tion of the sample on the chip (12 modalities), and recruit-
ment centre (six modalities) as random intercepts. Denoised 
methylation levels were then obtained by subtracting for the 
observed levels the estimated random effects [18, 19].

Statistical analyses

CpG site classification

We categorized the selected 443,150 CpG sites into two 
groups based on their reported association with smoking, 
using data from the largest meta-analysis investigating the 
effects of smoking on epigenome-wide CpG markers [20]. 
We define ‘smoking-related’ CpG sites as those (N = 2623) 
found associated with smoking in that meta-analysis at a 
Bonferroni-corrected significance level ensuring a control 
of the Family Wise Error Rate below 0.05. Conversely, we 
define ‘smoking-unrelated’ CpG sites (N = 440,527) as those 
not associated with any of the smoking metrics.

Multivariate regression

Penalised logistic regression using Least Absolute Shrinkage 
and Selection Operator regularization (LASSO) was used 
to perform variable selection and identify a sparse set of 
CpG sites complementarily contributing to the risk of lung 
cancer. Models were adjusted for sex and age at blood col-
lection (base model). To account for potential confounding 
by exposure to tobacco smoking, we also considered mod-
els further adjusted for the Comprehensive Smoking Index 
(CSI), a continuous score accounting for the duration and 
the intensity of smoking across the life-course (CSI-adjusted 
model) [21]. Adjustment was achieved by not applying any 
penalisation to the regression coefficients of the adjustment 
variables [22, 23]. To ensure reproducibility of the findings, 
LASSO regression was calibrated via stability by means of 
resampling [24]. Selection proportions for each predictor 
were computed over 1000 subsamples of 80% of the study 

participants. The proportion of cases and controls in each 
subsample was controlled to be representative of that in the 
full population. Stably selected CpG sites were defined as 
those with selection proportions, computed over models fit-
ted with a given penalty parameter, above a threshold. The 
penalty parameter and threshold in selection proportions are 
jointly calibrated by maximising a stability score derived 
from the likelihood of uniform (i.e. uninformative) feature 
selection [25]. The average beta-coefficients, conditionally 
on selection, estimated over the 1000 LASSO models with 
calibrated penalty are reported. To assess potential con-
founding by blood cell composition differentials, we ran 
our variable selection model adjusting (i.e. by non penal-
ising) for estimated blood cell type proportions. We esti-
mated blood cell type composition from the sentinel CpG 
sites proposed by Houseman [26] and of the six estimated 
proportions we adjusted for proportions of Monocytes, B 
cells, CD4 + T cells, Natural Killers, CD8 + T cells, and 
Neutrophil. We report and compare the recalibrated effect 
size estimates for the model without and with adjustment for 
blood cell composition.

ROC analysis

Logistic regression models including the stably selected 
CpG sites were recalibrated on 1000 training sets (80% of 
the samples), and the discriminatory ability of each model 
was assessed in the out-of-bag test set (remaining 20% of 
the samples) by estimating the sensitivity, specificity, and 
Area under the Receiver Operating Characteristic (ROC) 
curve. Performances are reported in terms of average, 5th 
and 95th percentiles for these metrics computed across the 
1000 test sets. In addition, to quantify the amount of infor-
mation brought about by each of the stably selected CpG 
sites, a series of models sequentially adding the CpG sites 
by order of selection proportion were evaluated and their 
AUC was reported.

Conditional independence networks

To better characterize DNA methylation changes associated 
with the future risk of lung cancer, we constructed a con-
ditional independence network of lung cancer related CpG 
sites from the stability selection LASSO and also included 
CSI as a node in the network. The partial correlation net-
work was estimated using stability selection applied to the 
graphical LASSO [24]. Selection proportions of the edges 
were estimated on (N = 1000) subsamples of 50% of the 
population and our calibration jointly defined the penalty of 
the graphical LASSO and the threshold in selection propor-
tion for an edge to be considered stable by maximizing the 
stability score, while ensuring that the expected number of 
False Positive selected edges is below 10 [25].
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All statistical analyses were carried out using the R sta-
tistical software (version 4.0.3) using glmnet package and 
in-house script for stability selection and conditional inde-
pendence networks. These available upon request to the cor-
responding author.

Results

Descriptive analyses

The characteristics of the study population are presented in 
Table 1. In EPIC-Italy, the mean age of participants at blood 
sampling was 54 years for controls, and 54.5 for lung cancer 
cases, whereas lung cancer cases were older in NOWAC (56 
vs. 51.1 years). In both EPIC-Italy and NOWAC, there was 
a higher proportion of current and former smokers in lung 
cancer cases, as well as a higher smoking duration, smoking 
intensity and CSI.

Associations with future lung cancer risk

A total of N = 29 CpG sites (including N = 8 smoking-
related and N = 21 smoking-unrelated CpG sites) were stably 
selected in the base model (Fig. 1A, Supplementary Table 1). 
In the CSI-adjusted model, N = 50 CpG sites (1 smoking-
related and 49 smoking unrelated sites) were selected. Of 
these, N = 1 smoking-related (CIRBP−AS1−cg00073090), 
and N = 19 smoking-unrelated CpG sites were selected 
across both models (Fig. 1B, Supplementary Table 2). We 

observed lower selection proportions and effect sizes for 
the N = 7 smoking-related sites selected in the base model 
only (Fig. 1C, D). Despite stable inclusion in both mod-
els, CIRBP−AS1−cg00073090 had a lower effect size in 
the CSI-adjusted model (average β coefficient of − 1.35 in 
the base model and − 0.33 in the adjusted model). Selec-
tion proportions and effect size estimates remained gener-
ally unchanged upon adjustment for CSI for the (N = 19) 
smoking-unrelated CpG sites selected in both models. An 
additional set of N = 30 smoking-unrelated CpG sites was 
stably selected in the CSI-adjusted model (out of a total 
of 50 selected CpG sites). Although these were not stably 
selected in the base model, they showed selection propor-
tions above 0.46 and comparable average β coefficients 
(results not shown).

Effect sizes obtained from our recalibrated models with 
and without adjustment for estimated white blood cell pro-
portions showed very good consistency in both models 
unadjusted (Supplementary Fig. 2A) and adjusted for CSI 
(Supplementary Fig. 2B), hence suggesting limited con-
founding by cell type differentials.

ROC analyses: quantifying the disease relevant 
information

ROC analyses performed in the 1000 testing sets each 
including 20% of the full population yielded a mean AUC of 
0.87 (5th–95th percentiles 0.87–0.88) for the model includ-
ing age, sex and the N = 29 stably selected CpG sites from 
the base model, yielding an increase in average AUC of 0.26 

Table 1   Characteristics of study participants stratified by cohort and future lung cancer status. The mean (standard deviation) and counts (per-
centage) are reported for continuous and categorical variables respectively

EPIC-Italy NOWAC​ Full population

Controls (N = 512) Cases (N = 185) Controls (N = 314) Cases (N = 128)

Sex (women) 331 (65%) 81 (44%) 314 (100%) 128 (100%) 854 (75%)
Age (years) 54 (6.8) 54.5 (6.3) 51.1 (6.9) 56 (4.2) 53.5 (6.7)
Smoking status
Never 257 (50%) 26 (14%) 136 (43%) 14 (11%) 433 (38%)
Former 143 (28%) 59 (32%) 97 (31%) 34 (27%) 333 (29%)
Current 112 (22%) 100 (54%) 81 (26%) 80 (62%) 373 (33%)
Smoking duration (years) 12.1 (14.2) 27.3 (14.3) 15.9 (16.5) 31.6 (14.8) 17.8 (16.6)
Smoking intensity (cig./day) 6 (8.9) 14.4 (9.4) 5.5 (5.8) 10.3 (5.5) 7.7 (8.6)
Comprehensive Smoking Index (CSI) 0.5 (0.7) 1.4 (0.8) 0.7 (0.8) 1.4 (0.7) 0.8 (0.8)
Time to diagnosis (years) 7.2 (3.7) 3.9 (2.0) 5.9 (3.5)
Centre (EPIC-Italy)
Florence 92 (18%) 63 (34%)
Naples 11 (2%) 3 (2%)
Ragusa 29 (6%) 14 (8%)
Turin 246 (48%) 60 (32%)
Varese 134 (26%) 45 (24%)
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over models including age and sex only and an increase of 
0.09 over the model including age, sex and CSI (Fig. 2A), 
which had an AUC of 0.78 (5th–95th percentiles 0.77–0.78). 
The addition of each stably selected CpG site only incremen-
tally improved the AUC, with the largest contributions from 
smoking-related CpGs, namely CIRBP−AS1−cg00073090 
and F2RL3−cg03636183 (Fig. 2B: ΔAUC > 4%). The best 
performing model was that including CSI and the 50 CpG 
sites selected in the CSI-adjusted model. It yielded and 
AUC of 0.94 (5th–95th percentiles 0.94–0.95), represent-
ing an increase in mean AUC of 0.16 compared to that of 
the model including age, sex and CSI, and an AUC increase 
of 0.07 compared to that of the model including age, sex 
and all (N = 29) stably selected CpG sites in the base model 
(Fig. 2A). For both models, we observed a limited increase 
in AUC by including CpG sites with selection proportion 
below the calibrated threshold (Fig. 2B, C).

Conditional Independence Network

The stability-enhanced conditional independence network 
of CSI and the 29 CpG sites selected in the base model 
(Fig. 3) included (N = 20) edges between a set of (N = 9) 
inter-connected nodes (module), mostly constituted of smok-
ing-related CpG sites (N = 7). Of these, four were directly 
related to CSI (AHRR-cg05575921, ALPP2-cg01940273, 
F2RL3-cg03636183 and GNG12-AS1-cg25189904). The 
remaining stably selected CpG sites (1 smoking-related, 19 
smoking-unrelated) were not connected to any other node, 
suggesting their independence and weaker links to smoking.

Discussion

We performed variable selection from full-resolution DNA-
methylation profiles using stability selection approaches. 
Of the 443,150 assayed CpG sites, we identified a sparse 
subset of 29 CpG sites in the base LASSO model, jointly 
associated with the future risk of developing lung cancer. 
These included (N = 8) sites which were previously reported 
to associate with smoking and (N = 21) CpG sites, which 
were not.

Our conditional independence network shows that 7 of 
the 8 smoking-related CpG sites are inter-connected and 
(directly or indirectly) linked to CSI, while the (N = 21) CpG 
sites not reported to be associated with smoking appeared 
more independent and not related to smoking in our data. 
This lends plausibility to our CpG sites classification and 
suggests that the smoking-unrelated CpG sites we found 
associated with lung cancer risk may each capture non-
redundant and complementary disease-relevant information.

Among the selected smoking-related CpG sites, three 
were previously identified as being associated with lung 

cancer risk (AHRR-cg0557921, F2RL3-cg03636183 and 
ALPPL2-cg01940273) [11, 27, 28]. Conversely, CIRBP-
AS1-cg0073090 was not previously associated to lung cancer 
risk, although recent work identified CIRBP as hypometh-
ylated in cases developing occult lymph node metastases 
among non-small cell lung cancer cases [29]. A genome 
wide analysis conducted with multivariate analysis also 
identified CIRBP as an important prognostic gene for non-
small cell carcinoma [30].

Models adjusted for CSI selected only one CpG found 
to be associated with smoking (CIRBP-AS1-cg00073090), 
possibly indicating that this site may reflect smoking expo-
sure that is not fully captured by CSI. In a subset of our study 
population, we found that methylation levels at CIRBP-AS1-
cg00073090 were only nominally associated with child-
hood exposure to tobacco smoke and that this association 
did not survive correction for multiple testing and adjust-
ment for CSI. This suggests that early-life exposure can-
not fully explain the association linking methylation level 
at CIRBP-AS1-cg00073090 and future risk of lung cancer. 
However, short-term, environmental/occupational, second-
hand exposure to tobacco smoke can potentially confound 
this association.

The remaining lung cancer-relevant information is cap-
tured by a set of (N = 49) smoking-unrelated CpG sites, 
potentially reflecting a large range of biological pathways. 
The fact that we highlighted novel, smoking-unrelated CpG 
sites upon accounting for the effect of CSI, tends to be in 
line with former investigations, which also capture weaker 
effect-size and more heterogeneous signals when compared 
to the generally conserved smoking-related epigenetic 
signature (i.e. AHRR-cg05575921, F2RL3-cg03636183) 
[15]. Among these 49 smoking-unrelated markers, 33 were 
found hypomethylated and 17 hypermethylated in lung 
cancer cases, and our discussion will be restricted to those 
presenting stronger effects and a high selection proportion 
(|β|> 0.5, selection proportion > 0.9, N = 14). Following 
adjustment for CSI, the most frequently selected CpG site 
was KCNT1-cg00108873 which was hypomethylated in lung 
cancer cases. KCNT1 is a protein coding gene involved in 
the intracellular potassium activated channel activity. It 
has, to our knowledge never been associated to lung can-
cer risk, although recent work on gene expression identi-
fied low expression of KCNT1 consistently in four cancers, 
including lung [31]. Additional smoking-unrelated CpG 
sites selected in the CSI-adjusted model included PRDM16-
cg00106196, CBX4-cg00192636, SSTR5-cg00610310, 
ALOX12-AS1-cg20216752, NTPCR-cg00069771, 
MAP3K9-cg01022840, TTYH3-cg00145404, GPR61-
cg00521434, and MIR1251-cg03415518, which were all 
hypomethylated (β < -0.5), whereas ZNF664-FAM101A-
cg0020446, RTKN-cg00610692, NFATC1-cg00348031, 
and RORA-cg02433545 were hypermethylated (β > 0.5). We 
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found that PRDM16 encodes for a zinc transcription factor 
which controls the development of brown fat cells. While 
its role in lung cancer has been poorly investigated, recent 

work has shown that it could potentially be an interesting 
therapeutic target for lung adenocarcinomas [32]. Further, 
we found that CBX4 has been specifically related with lung 

A B
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cancer development, acting as an oncogene that enhances 
cell proliferation and promotes cancer cell migration [33]. 
SSTR5 encodes for the somatostatin receptor type 5, which 
is involved in signalling to alter hormone secretion, increase 
apoptosis, and decrease cellular proliferation. In concord-
ance with our findings, differential expression of SSTR5 
has been observed in neuroendocrine lung cancer cases in 
respect to controls [34]. TTHY3 is a gene coding for an 
intracellular calcium activated chloride channel activity. No 
observations linking TTHY3 to lung cancer risk were found, 
although its differential expression has been linked to poor 
clinical outcomes in cases of gastric cancer [35]. We have 
also found that ALOX12 (arachidonate 12-lipoxygenase) 
was associated with lung cancer risk. This gene has not been 
specifically related to lung cancer risk, but former studies 
have reported (i) that hypomethylation at one of its CpG 
site was associated with inflammation of the airways, and 
(ii) that ALOX12 expression was upregulated in in breast 
cancer tissue [36–38]. We could not find evidence for an 
association between ZNF664-FAM101A and NTPCR genes 
and lung cancer, although ZNF664-FAM101 expression 
was found to be up-regulated in gastric cancer tissue [39]. 
Among the CpG sites we identified, some were located in 
intragenic regions of the RTKN1, GPR61, MAP3K9, and 
CABP5 genes, whose functions include cell signalling, cell 
cycle control, and cell growth regulation [40]. Although only 
MAP3K9 has been specifically related with lung cancer, act-
ing as a cell proliferation promoting factor (oncogene) [41], 
previous research has reported that an increased expression 
of RTKN1 was observed in multiple cancer types, includ-
ing lung cancer [42, 43], whereas CABP5 and GPR61 
were previously related with increased RNA expression 
in human gastric cancer tissue, and aberrant methylation 
patterns resulting from air pollution, respectively [44, 45]. 
Exploring the roles of NFATC1, RORA, and MIR1251, we 
found that all three genes were implicated in lung cancer, 
with NFATC1 being an oncogene, RORA being a key cir-
cadian clock regulator in non-small cell lung carcinoma, and 
MIR1251 encoding for non-coding RNA which promotes 
cell migration and invasion by lung cancer cells [46–48].

Finally, we explored the role of the 36 remaining markers 
by applying a gene ontology approach, in order to highlight 

the general processes in which the identified genes may be 
involved [49]. Seven major pathways were identified, includ-
ing FGF, Integrin, Wnt, and Cadherin signalling pathways, 
as well as Angiogenesis, Gonadotropin-releasing hormone 
receptor, and the Alzheimer disease-presenilin pathway, with 
all seven pathways being implicated in lung cancer [50–56].

Strengths and limitations

To our knowledge, this is the first study to investigate asso-
ciations between epigenome-wide methylation profiles 
and lung cancer risk by applying stability selection. This 
approach has allowed us to highlight two sets of CpG sites 
that were explanatory of lung cancer: those related and those 
unrelated to smoking.

Our study also has several limitations. First, we exam-
ined DNA methylation from blood, and not from more 
proximal tissues such as the lung epithelium, buccal cells, 
or sputum, which may represent a challenge regarding the 
interpretability of the identified CpG sites from the patho-
physiological perspective. Second, we used a classification 
of CpGs according to their associations with smoking in 
previous large meta-analyses [20]. Our classification relies 
on marginal associations, which may result in potential 
misclassification of CpG sites and may overlook potential 
interactions between smoking-related CpG sites and those 
initially classified as smoking-unrelated [20]. Neverthe-
less, our conditional independence network seems to sup-
port this classification. In addition, exposure to passive 
smoking has not been taken into account in our analyses, 
hence, some of the CpG sites we refer to as being smoking 
unrelated CpG sites may still be related to other routes of 
exposure to tobacco smoke (e.g. second-hand smoking, 
environmental exposure, early-life exposure). Further, even 
though we observed a high consistency across smoking-
unrelated CpGs found in the base and CSI-adjusted models 
(N = 19 smoking-unrelated CpG sites selected across both 
models), an additional (N = 30) smoking-unrelated CpG 
sites were selected in the CSI-adjusted model. These con-
sist of several (uncorrelated) CpG sites capturing complex 
(and inherently multidimensional) molecular pathways, 
other than those related to smoking, involved in lung car-
cinogenesis. Another limitation of our work is that women 
are largely over-represented in our study. Although sex-
stratified analyses showed similar predictive performances 
of our selected CpG sites in men and women separately 
(results not shown), additional work would be warranted 
to assess the potential sex bias that could have been intro-
duced as well as the effect of sex-specific smoking pat-
terns, by replicating our results in other studies. Although 
our results are based on the comparison of prospective 
cases to controls, reverse causation, whereby some of the 

Fig. 1   Stability selection models exploring the joint associations 
between CpG sites and the future risk of lung cancer. Selection 
proportions of stably selected CpG sites are derived from LASSO-
penalised logistic models for the risk of lung cancer including all 
N = 443,150 CpG sites as predictors and adjusted for age, sex (A) and 
CSI (B). Comparison of selection proportions (C) or β-coefficients 
(D) from the base versus CSI-adjusted models for CpG sites that are 
stably selected in at least one of these two models. The list of stably 
selected CpG sites is reported at the bottom, with overlapping signals 
in bold. CpG sites related to smoking at a Bonferroni-corrected sig-
nificance level ensuring a family-wise error rate below 0.05 are pre-
sented in red, and sites unrelated to smoking in blue

◂
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Fig. 2   Receiver Operating 
Characteristic curve for lung 
cancer prediction. Mean and 
5th–95th percentiles of the 
Area Under the Curve (AUC) 
were calculated across the 1000 
recalibrated models including 
(i) age and sex (green), (ii) age, 
sex and stably selected CpG 
sites from the base model (dark 
blue), (iii) age, sex and CSI 
(orange), and (iv) age, sex, CSI 
and the stably selected CpG 
sites from the adjusted model 
(dark red) (A). Mean and 5th–
95th percentiles of the AUC are 
reported for models sequentially 
including the first 50 CpG sites 
by order of selection proportion 
in the base (B) and adjusted 
(C) models. Calibrated stability 
selection models are indicated 
by a black dashed vertical line. 
CpG sites related to smok-
ing at a Bonferroni-corrected 
significance level ensuring a 
family-wise error rate below 
0.05 are presented in red, and 
sites unrelated to smoking are 
presented in blue

A

B

C
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differentially methylated sites we identify would relate to 
developing and yet not diagnosed cancer rather than to 
mechanisms involved in carcinogenesis cannot be com-
pletely ruled out. However, while excluding (27%) lung 
cancer cases that were diagnosed less than 3 years after 
blood sampling from our analyses, most of the CpG sites 
we identified in the full data set were selected and those 
which were not had selection proportion > 50%. This 
lends plausibility to our findings, but formal assessment 
of reverse causation would entail the longitudinal analy-
sis of repeated measurement of DNA methylation signals 
and smoking metrics across the life-course. Overall, larger 
studies would be needed to investigate the validity of our 
findings at different time to diagnosis, and across main his-
tological subtypes. Finally, our CpG methylation data was 
measured using the Illumina HM450 methylation array 
in both EPIC-Italy and NOWAC, it yields a more limited 
coverage than more recent assays, such as the Infinium 
Methylation EPIC, which includes 850′000 CpG sites [57].

Conclusion

In conclusion, our study uses novel penalised regression 
coupled stability selection approaches to generate new 
hypotheses on potential mechanisms other than those 
related to smoking that are involved in lung carcinogene-
sis. We highlighted multiple CpG markers that are strongly 
and consistently associated with future risk of lung cancer, 
with a distinct subdivision between few, correlated, CpG 
sites that have been previously associated with smoking, 
and multiple, smoking unrelated CpG sites. Based on 
this classification, which was supported by our network 
analyses, we found that two smoking-related CpG sites 
improved the discriminatory performances of the model, 
over and above that of CSI. These may therefore capture 
lung cancer relevant effects of life-course exposure to 
tobacco smoke. We also selected a set of 49 CpG sites 
not directly linked to smoking, that were complementarily 

Fig. 3   Conditional independence network including stably selected 
CpGs identified in relation to lung cancer in the base LASSO model 
(N = 29 stably selected CpG markers) and CSI (black square). CpG 

sites related to smoking at a Bonferroni-corrected significance level 
ensuring a family-wise error rate below 0.05 are presented in red, and 
sites unrelated to smoking are presented in blue
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explanatory of lung cancer risk. If validated in independ-
ent data, these may prove instrumental in understanding 
biological mechanisms involved in lung carcinogenesis 
that are not directly linked to smoking. Overall, our find-
ings identify sets of differentially methylated sites that are 
jointly explanatory of future lung cancer risk, these may 
provide leads into the mechanisms involved in lung cancer 
development (with and without the implication of smok-
ing) and may prove useful for better early identification of 
patients at higher risk of lung cancer.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10654-​022-​00877-2.
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