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Purpose: To develop and validate an automatic retinal pigment epithelial and outer
retinal atrophy (RORA) progression prediction model for nonexudative age-related
macular degeneration (AMD) cases in optical coherence tomography (OCT) scans.

Methods: Longitudinal OCT data from 129 eyes/119 patients with RORA was collected
and separated into training and testing groups. RORA was automatically segmented in
all scans and additionallymanually annotated in the test scans. OCT-based features such
as layers thicknesses, mean reflectivity, and a drusen height map served as an input to
the deep neural network. Based on the baseline OCT scan or the previous visit OCT, en
face RORA predictions were calculated for future patient visits. The performance was
quantified over time with the means of Dice scores and square root area errors.

Results: The average Dice score for segmentations at baseline was 0.85. When predict-
ing progression from baseline OCTs, the Dice scores ranged from 0.73 to 0.80 for total
RORA area and from 0.46 to 0.72 for RORA growth region. The square root area error
ranged from 0.13 mm to 0.33 mm. By providing continuous time output, the model
enabled creation of a patient-specific atrophy risk map.

Conclusions:We developed a machine learning method for RORA progression predic-
tion, which provides continuous-time output. It was used to compute atrophy riskmaps,
which indicate time-to-RORA-conversion, a novel and clinically relevant way of repre-
senting disease progression.

Translational Relevance: Application of recent advances in artificial intelligence to
predict patient-specific progression of atrophic AMD.

Introduction

Age-related macular degeneration (AMD) is the
leading cause of visual impairment in developed
countries.1 Approximately one third of advanced cases
are purely atrophic, where the loss of the outer retina
layers or the retinal pigment epithelium (RPE) is the
main etiology of loss of function.

The traditional term used to describe atrophy in
AMDwas geographic atrophy (GA). Its definition was
based on color fundus photograph appearance2 and
fundus autofluorescence.3 A recent consensus group
has proposed to reclassify atrophy using multimodal
imaging, allowing for more details and smaller lesions

to be recognized. Among others, it was found that
OCT findings were very sensitive for identification of
atrophy. As a result, the term RORA (RPE and outer
retinal atrophy) was introduced, corresponding to a
large degree to GA, yet mainly based on OCT appear-
ance, and allowing for differentiation from outer retinal
atrophy (ORA).4,5

To date, there is no approved treatment for atrophy
even if promising research is currently ongoing on
treatments aiming to slow down its progression.6–9
Moreover, the rate of atrophy progression has been
shown to be highly variable among patients.10,11 Being
able to predict the progression rate for individual
patients would allow for individualized patient counsel-
ing. It would also help weigh the benefit of future
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treatment options against any side effects. Similarly,
the design of treatment studies would benefit from
identification of patients with different progression
profiles, allowing for meaningful results in a relatively
short time. In addition, regional progression predic-
tion, highlighting areas at risk or pertinent for visual
function (e.g., near the fovea), would be especially
relevant. Even though general atrophy progression
models were proposed,12,13 establishing a personalized
prognosis remains a challenge.

The goal of this study was to develop and validate
an automatic algorithm capable of predicting future
atrophy progression in a time-continuous fashion,
based on volumetric OCT scans only. This was then to
be translated into an eye-specific riskmap, whichwould
indicate which retinal regions are particularly prone to
developing RORA.

Methods

This is a monocentric retrospective use of imaging
data, performed in a tertiary referral eye hospital
(Jules Gonin Eye Hospital, Lausanne, Switzerland).
The study was approved by the local ethics commit-
tee (CER-VD 2017-00493) and was performed accord-
ing to the ethical standards set by the Declaration of
Helsinki. No informed consent was required.

Patient Selection

For a patient to be included, follow-up data had to
be available for a duration of at least one year, including
at least twoOCT examinations, acquiredwith aHeidel-
berg Spectralis OCT device (Heidelberg Engineering,
Heidelberg, Germany). In our dataset we intended to
have at least 25% of patients with a long follow-up of
more than three years and at least four OCT exami-
nations, to provide enough data with longer follow-
up periods to train and test the algorithm. The OCT
images were routinely acquired with a macular cube of
6 × 6 mm, 49 B-scan lines or more, and using the in-
built follow-up mode for subsequent visits. Both eyes
of a patient were allowed into the study. Eyes with
neovascular complications or any previous anti-VEGF
treatment, any confounding retinopathy, or poor image
quality were excluded. In total, longitudinal OCT data
from 119 patients with atrophic AMD was collected.

The OCT data was fully coded, eliminating all
personal patient data, and exported. The patient code
remained available to the treating medical retina team.
The exported OCT data covered the entire available
follow-up duration for a given patient, including early

follow-up periods before the appearance of atrophy
(if available). In case of extensive OCT documenta-
tion, the scans were chosen for export with an approxi-
mate six-month interval. The patients were separated
into two distinct groups, one for algorithm training
(99 patients, 109 eyes), and one for testing (20 patients,
20 eyes), ensuring that there was no patient overlap
between those two groups.

Within this study, the most recent RORA defini-
tion was used for identification of atrophy, including a
region with signal hypertransmission into the choroid,
attenuation or complete disruption of the RPE, and
photoreceptors disruptions, as evidenced by alterations
of any of the layers from the ONL to the interdigi-
tation zone.5 With this definition, the entire exported
OCT subset of 20 test patients wasmanually segmented
on each B-scan, being later used as the test set for
algorithm performance.

Algorithm Development

Training OCT volumes were processed to obtain
automated segmentation of RORA14 that served as
a ground-truth for training. The deep learning-based
atrophy segmentation algorithm processed each B-scan
to detect RORA, projected probability of its presence
along the A-scan direction and was thresholded at 0.5
probability to obtain a binary en face RORA segmen-
tation.

Additionally, all OCT scans (belonging to the train
and test set) were preprocessed to obtain segmenta-
tions of retinal layers and drusen.15 The automati-
cally segmented layers included retinal nerve fiber layer,
ganglion cell layer and inner plexiform layer, inner
nuclear layer and outer plexiform layer, outer nuclear
layer, photoreceptors and retinal pigment epithelium,
and the choroid and were used to construct the input
to the atrophy progression algorithm. The input to
the Convolutional Neural Network (CNN), which
performed retinal layer and drusen/pigment epithelium
detachment segmentation was a raw B-scan with inten-
sity normalized to the 0.0 to 1.0 range. The result-
ing segmentations (including both retinal layers and
drusen) were converted to en face thickness maps (in
millimeters), corresponding to each retinal layer and
the drusen height. The en face reflectivity maps were
created by computing the axial intensity mean per B-
scan for each segmented layer. Thickness and reflec-
tivity maps were concatenated into a 13-channel input
(Fig. 1), which served as an input to a deep neural
network. As part of the preprocessing step, all en face
thickness and reflectance maps were resampled to the
same resolution (0.0167 mm × 0.0167 mm), centered
at the fovea to ensure longitudinal alignment, and
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Figure 1. Example of input channels for RORA progression prediction; top: thickness maps of each of the six segmented layers and drusen
height map, bottom: corresponding reflectance maps.

cropped within a window of 384 × 384 pixels around
the fovea.

The aim was to find a function that would approxi-
mate patient-specific continuous atrophy growth over
time. To this end, Taylor’s theorem was applied to
the output of the CNN. It gives an approximation of
a differentiable function around a given point by a
polynomial of degree K. Assuming that we want to
approximate an atrophy progression function f(t) for
each en face pixel using the Taylor series around t =
0 (also called Maclaurin series), we can express this
function as follows:

f (t) =
∑inf

k=0

f (k)(0)
k!

tk

where t is the time at which we want to predict RORA
and f (k)(0) is the k-th derivative of f(t) evaluated at t =
0. Because we do not know f(t) (this is what we want
to predict with our model), we cannot directly compute
f (k)(0). Instead, we take the k-th output channel of our
model as f (k)(0). In practice the number of polyno-

mial terms (or polynomial degree) used to approximate
the function is finite and we constrained it to K = 5.
The ablation study results investigating the effect of K
on the performance are included in the Supplementary
Material.

The CNN with an encoder-decoder architecture
comprised an EfficientNet-b3 backbone16 pretrained
on Imagenet17 with weights provided by the authors.
Given a 13-channel input based on OCT measure-
ments, the network outputs K = 5 channels, which
correspond to parameters of a time-based Taylor series
for each en face pixel. This allowed us to compute
an atrophy segmentation for any chosen future time
point t (measured in years), according to the formula
given above. To give an example, setting t = 0 predicts
RORA segmentation corresponding to the current visit
and t = 1.2 would give a segmentation 1.2 years from
the input visit. The Taylor series was computed in a
pixel-wise manner, with each channel of the network
output corresponding to one term of the series (f (k)(0)).
The output of the Taylor series computation was

Figure 2. The processing workflow: 13-channels en facemap at time t0 is an input to the fully convolutional neural network (FCNN), which
outputs a corresponding five-channel output. It is then fed along with the time interval t to the pixel-wise Taylor series, which computes
RORA prediction at future time t.
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additionally passed through a sigmoid activation
function to constrain the final output values in the
range between 0.0 and 1.0. This resulted in a better
convergence during training.

During training all possible pairs of current (t = 0)
OCT inputs and future (t� 0) RORA predictions were
sampled for a given patient. The training loss between
RORA ground-truth and prediction was computed as
a mean square error. The network was trained for 200
epochs, using the Adam optimizer, with a learning
rate of 0.000005 and a batch size of 24. Longitudi-
nal data corresponding to five patients/34 OCTs was
used as a validation set to monitor the loss value. The
learning curves (training and validation) are shown in
Supplementary Figure S1. The algorithm was devel-
oped using the Python programming language and
PyTorch framework18 for deep learning applications. It
was trained on an Nvidia Titan RTXGPUwith 24 GB
of memory.

Formulating RORA progression prediction using
Taylor series ensures that it can be computed for any
future time point, creating a continuous progression
profile. Figure 2 presents an overview of the training
workflow.

Testing

In the test dataset, manual RORA segmentation
was performed by an experienced reader (I.M.) for
each OCT acquisition of 20 test eyes/patients, each
with at least 4 OCT scans over at least 1.5 year follow-
up. Manual RORA annotations served as the first
testing ground truth (GT-MANUAL). As the training
set was not manually annotated and instead automatic
RORA annotations were utilized, a second testing
ground-truth was created (GT-AUTOMATIC). It
comprised RORA segmentations obtained with the
same algorithm as the one used to create the training
ground-truth and its purpose was to test whether
using automatic annotations during training biased
the algorithm.

For benchmarking the algorithm performance, two
testing scenarios were considered:

• Testing scenario A used the baseline visit as an
input to the network; RORA was predicted for
the baseline visit and all subsequent available time
points.
• Testing scenario B used the preceding visit as the
input to the network; RORA was predicted for the
next available visit.

The algorithm performance was compared to both
ground-truths, with the means of Dice scores consid-
ering total and growth-only RORA areas, as well as

the square root of RORA area error computed per en
face view. The square root transformation was applied
to decrease the dependence on atrophy baseline area.19
We investigated segmentation quality dependent on the
prediction interval t and binned the predictions into
multiple time intervals and for both testing scenarios.
To obtain binary predictions, the model output was
thresholded at 0.5 at each prediction time.

Additionally, for each test patient we compared the
progression rates computed based on manual annota-
tions and atrophy predicted by our model using the
baseline visit as an input for prediction. The correlation
between annotated and predicted progression rates was
quantified using Pearson correlation coefficient.

Atrophy Progression Risk Mapping

To provide a clinically-useful atrophy risk map,
we computed time-to-conversion, that is, the time it
takes for each en face pixel to convert to RORA since
baseline visit. To this end, RORAwas predicted from a
baseline visit OCT at increasing time increments of 0.2,
up to five years since the baseline. Time-to-conversion
was the earliest time point at which RORA probability
exceeded 0.5 for a given en face pixel. The result was
visualized as an en face map with a color-coded time
scale.

Results

The descriptive statistics of train and test sets with
respect to patients and RORA features are presented
in Table 1. In summary, the patients in train and test
datasets showed similar characteristics in terms of
baseline RORA area, growth rates, and follow-up
times.

Testing scenario A, using only baseline visit as an
input and predicting RORA for baseline and each
following visit, generated 140 predictions in total. The
time span from the input OCT scan had a mean of
2.1 years and varied between 0 (prediction for baseline)
to 7.5 years. Testing scenario B, which used the preced-
ing visit as an input to obtain RORA predictions for
the next visit, generated 120 predictions. Themean time
interval between visits was seven months and ranged
between two and 28 months.

Quantitative Results

GT-Manual

Testing Scenario A—Baseline OCT as an Input to
Predict RORA for All Future Visits. Figure 3A shows
the distribution of Dice scores computed on total
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Table 1. Train and Test Set Statistics

Train Set Test Set

Number of patients 99 20
Male/female (%) 31.3/68.7 30/70
Number of eyes 109 20
Number of OCT scans 593 140
Number of eyes with RORA at the baseline 89 19
Mean RORA area at the baseline [mm2] 4.2 ± 4.5 5.9 ± 4.7
Mean follow-up time [months] 35 ± 26 41 ± 18
Mean growth rate [mm/year] 0.34 ± 0.23 0.33 ± 0.16

RORA area, Figure 4A Dice scores for RORA
growth area, and Figure 5A the distribution of
square root area errors. All metrics are categorized
into time intervals depending on the time between
the baseline acquisition and the future time point for
which RORA was predicted using testing scenario A.
The average Dice scores (both for total and growth
RORA regions), as well as average area error are shown
in Table 2.

Using the baseline OCT as an input, the total
RORADice scores were highest for the baseline acqui-
sition (mean Dice score = 0.85, Table 2), which corre-
sponds to the current atrophy reading. The totalRORA
Dice scores decreased slightly with increasing time
intervals (Fig. 3A), with their average ranging from0.73
to 0.80 (Table 2). The Dice scores based on RORA
growth ranged from 0.46 to 0.72 and were increasing
over time. The square root area difference increased
with increasing time since the baseline (Fig. 5A),

with mean values ranging from 0.13 mm to 0.33 mm
(Table 2).

The correlation between progression rates derived
from the manual annotations and our model predic-
tions are shown in Figure 6. The correlation coefficient
between manual and predicted progression rates calcu-
lated over the whole follow-up period was 0.52.

Notable outliers seen in Figure 3A correspond to
the case shown in Figure 8A, with no RORA present
at the baseline. Although our algorithm correctly did
not predict atrophy at the baseline visit, the location
of later predicted RORA was slightly shifted to the
left compared to the manually annotated atrophy,
resulting in a Dice score of 0.0 for this very early
small atrophy. For qualitative comparison we used
the fourth visit as the baseline (Fig. 8B), where
RORA was already present. The model was then
able to predict current and future atrophy with better
accuracy.

Figure 3. The distribution of Dice scores for total RORA area corresponding to two training scenarios (A) baseline visit acquisition is used as
an input to predict RORA for baseline and all future visits; (B) the current visit acquisition is used as an input to predict RORA for the next visit.
The predictions are compared to MANUAL-GT.
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Figure 4. The distribution of Dice scores for RORA growth area corresponding to two training scenarios (A) baseline visit acquisition is used
as an input to predict RORA for all future visits; (B) the current visit acquisition is used as an input to predict RORA for the next visit. The
predictions are compared to MANUAL-GT.

Figure 5. The distribution of square root RORA area errors corresponding to two training scenarios (A) baseline visit acquisition is used as an
input to predict RORA for all future visits; (B) the current visit acquisition is used as an input to predict RORA for the next visit. The predictions
are compared to MANUAL-GT.

Testing Scenario B—Current OCT as an Input to Predict
RORA at the Next Visit. The distributions of Dice
scores (for total and growth-only RORA area) and
RORA area errors corresponding to the testing
scenario b) are shown in Figure 3B, Figure 4B,
and Figure 5B, respectively, and the averaged metrics
in Table 3. When using the preceding visit OCT as an
input, both Dice scores, as well as the square area error
remained relatively stable irrespective of the time inter-
val between two visits (Fig. 3B, Fig. 5B). The average
Dice scores for total RORA area were above 0.83 and
for atrophy growth area ranged from 0.44 to 0.64.
The mean area errors ranged from 0.16 to 0.21 mm
(Table 3).

GT-Automatic
The results of performance evaluation using

automatic ground-truth are shown in Table 2
and Table 3. In the testing scenario A, the mean
total atrophy Dice scores ranged from 0.74 to 0.83,
with the most accurate predictions corresponding to
baseline RORA segmentations. In testing scenario B
the average Dice scores for total RORA ranged from
0.84 to 0.89. The Dice scores for growth regions ranged
from 0.39 to 0.71 when predictions were made using
baseline OCT and between 0.35 and 0.62 using previ-
ous visit OCT as an input. The mean square root area
errors ranged from 0.20 to 0.35 mm for testing scenario
A and from 0.17 and 0.20 mm in testing scenario B.
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Table 2. Quantitative Results of RORA Prediction Based on the Baseline Acquisition (Testing Scenario A)

Input: Baseline Acquisition

t = 0 (Baseline) 0 < t < 1 Year 1 < t < 2 Years 2 < t < 3 Years 3 < t < 4 Years t > 4 Years

GT-manual
Mean Dice score (total RORA) 0.85 0.78 0.80 0.73 0.78 0.80
Mean Dice score (RORA growth) — 0.46 0.57 0.59 0.65 0.72
Mean square root area error [mm] 0.126 0.188 0.219 0.309 0.263 0.327

GT-automatic
Mean Dice score (total RORA) 0.83 0.78 0.81 0.74 0.80 0.81
Mean Dice score (RORA growth) — 0.39 0.57 0.59 0.65 0.71
Mean square root area error [mm] 0.211 0.201 0.218 0.315 0.255 0.346

Table 3. Quantitative Results of RORA Prediction Based on the Previous Visit Acquisition (Testing Scenario B)

Input: Previous Visit Acquisition

0 < t < 6 Months 6 < t < 12 Months t > 12 Months

GT-manual
Mean Dice score (total RORA) 0.84 0.83 0.88
Mean Dice score (RORA growth) 0.44 0.47 0.64
Mean square root area error [mm] 0.159 0.208 0.189

GT-automatic
Mean Dice score (total RORA) 0.84 0.84 0.89
Mean Dice score (RORA growth) 0.35 0.41 0.62
Mean square root area error [mm] 0.204 0.199 0.173

Figure 6. Correlation of progression rates derived from RORA
manually annotated and predicted by our model from the baseline
OCT.

Qualitative Results and RORA Risk Maps

Figures 7 and 8 present a broad range of qualita-
tive results of RORA prediction and their comparison
to the manual ground-truth in the testing scenario A.
Each sub-figure corresponds to one test series, that is,
one test patient. The examples were selected to show a
broad range of situations, including large versus small

RORA, unifocal versusmultifocalRORA, aswell as the
one outlier case with no atrophy at baseline.

Figure 9 presents several examples of the result-
ing atrophy risk maps, which indicate time-to-RORA-
conversion probability in an en face view. Figure 9A
corresponds to the eye in Figure 7A, showing the
relation between progression profile and the atrophy
risk map.

Discussion

The proposed algorithm achieved a satisfactory
performance for predicting RORA progression in the
OCT scans for time intervals exceeding four years since
the baseline visit. Additionally, our model provides
time-continuous progression profiles, which allows us
to compute precise time-to-RORA-conversion maps
in an en face view (Fig. 9). These maps represent a
personalized atrophy growth risk map and provide
insights into retinal regions, which are going to be
affected in the near future. Such a risk estimation is a
clinically useful tool, adding precious location and time
information to a more general atrophy size progres-
sion estimation. This could allow the patient and the
doctor to estimate the consequences for daily life and to
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Figure 7. Qualitative examples of RORA progression profiles of a range of patients with moderate to large RORA at the baseline. Top row:
Infrared fundus image corresponding to the baseline visit, baseline visit prediction and predictions for the follow-up visits. In the follow-
up predictions white regions correspond to RORA already present at the GT baseline, and other colors to RORA growth regions since the
baseline—green to true-positive predicted growth, red to false-positive, and blue to false-negative. The predictions were obtained using
only the baseline visit acquisition as an input and the caption corresponds to time elapsed since the baseline visit. Bottom row: transfoveal
B-scan of baseline OCT (its position in the IR image is denotedwith a green line) andmanual ground-truth annotation for the follow-up visits.

prepare for adequate measures, ideally including thera-
pies in the near future.

The progression of atrophy showed awide interindi-
vidual range. The progression speed has been reported
to range from 0.01 to 0.82 mm/year, with a mean of
0.28 mm/year.19 Our testing group covers this range
well with a mean progression rate of 0.34 mm/year,
ranging from 0.09 to 0.67 mm/year. Recognizing the
individual progression speed can be expected to be

challenging for the algorithm, which uses single OCT
acquisition as an input, as it does not benefit from
previous progression information. For this reason,
we investigated not only segmentation performance
parameters such as Dice scores, but also correlated
the predicted progression rate with ground truth. The
progression rate of RORA based on manual annota-
tions and our model predictions achieved a correlation
coefficient of 0.52. It can be considered as a moderate
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Figure 8. A qualitative example of RORA progression profiles of a patient with no RORA at the baseline (A). Top row: Infrared fundus image
corresponding to the baseline visit, baseline visit prediction and predictions for the follow-up visits. In the follow-up predictions white
regions correspond to RORA already present at the GT baseline, and other colors to RORA growth regions since the baseline—green to
true positive predicted growth, red to false-positive, and blue to false-negative. The predictions were obtained using only the baseline visit
acquisition as an input and the caption corresponds to time elapsed since the baseline visit. Bottom row: transfoveal B-scan of baseline OCT
(its position in the infrared image is denoted with a green line) and manual ground-truth annotation for the follow-up visits. (B) Prediction
example corresponding to the same patient, but using the fourth visit as an input to the progression model.

Figure 9. Atrophy risk map derived from our model predictions—time in years from baseline until conversion to RORA. White region
denotes that RORA was present at the baseline, and the dashed region indicates that RORA is not present there within the next five years.
The riskmapwas obtained using baseline OCT as an input. The infrared images to the left of the riskmapwere acquired at subsequent visits.

level of correlation, taking into account that the long-
term predictions were obtained using only baseline visit
OCT as an input. For more accuracy, additional infor-
mation frommultimodal imaging, genetics, or systemic
factors might be relevant.11

Regarding progression speed and location, it is
interesting to point out the risk maps in Figure 9.
They indicate that the model did not predict just linear
RORA growth in all directions, but rather identified
certain regions, where atrophy grows faster, for example

in a ring around the fovea. This is in accordance with
published literature,11 which found that GA lesions
may grow towards the foveal region in a horseshoe or
ring pattern.

Increasing the time interval from OCT input to the
prediction timepoint had some influence on the perfor-
mance of the algorithm; while the overall algorithm
performance was very satisfying, we observed that the
total RORA Dice scores decreased with time in the
testing scenario A when predicting using the baseline
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OCT as an input. This was not surprising as longer
time intervals for prediction imply higher uncertainty.
However, when the preceding visit OCT was used as an
input (testing scenario B), the performance remained
relatively constant regardless of the period between
two visits, which were much shorter than in testing
scenario A.

The Dice scores computed per growth area were
significantly smaller than the samemetric computed for
the total atrophy. This can be attributed to the smaller
evaluated area, which excluded the baseline atrophy
area. In small tested areas, even small mistakes, manual
or predicted, significantly penalize the average score.
For the same reason, the Dice scores for the growth
area improved with longer time intervals (as the RORA
area was increasing), even though the area error was
increasing at the same time. Although the performance
of the prediction model in the growth regions is of
particular interest, the area-related bias of the Dice
score makes absolute area difference also worth consid-
ering to understand the performance. Absolute square
root area error can be considered free of this problem,
and this measure showed small area errors, slightly
increasing with longer intervals. However, it does not
assess the localization performance. Therefore there is
no one perfect metric that could describe the prediction
model performance, and instead one should consider
several of them at the same time.

The most challenging test case was an eye without
RORA present at the baseline (Fig. 8A). Including
such a case into the test group reduced the overall
performance score. For comparison, the predictions
for Figure 8Bwere obtained using the fourth visit of the
patient shown in Figure 8A as a baseline, when RORA
was already present. As can be seen, this improved
the localization results especially in the short run, but
prediction from early RORA remained challenging in
the long run.

Our RORA progression model is based on en
face layers thickness and reflectivity, rather than raw
OCT data, which necessitates prior layer segmentation.
This approach has the advantage of being relatively
agnostic of the OCT manufacturer and exact scan
resolution. It also allows for faster inference and less
memory utilization, compared to processing full three-
dimensional OCT volume. On the other hand, it is
dependent on accurate layer segmentation, which can
be challenging especially with lower quality scans. This
was the reason for inaccurate baseline segmentations
in Figure 7D, which propagated to future predictions.
One of the ways to improve the post-acquisition OCT
image quality are denoising methods based on image
filtering,20,21 block matching,22 or deep learning.23,24
They can be applied to enhance OCT images during
preprocessing and decrease the subsequent segmenta-

tion error. Projecting OCT data to a set of predefined
en face measures may also cause a loss of detail and
influence the prediction.

Another point of discussion is the use of automated
ground truth in the training set versus manually
annotated ground truth in the test set. Considering
that training the algorithm solely on automated RORA
segmentations and testing it compared to expert
grading could have been to the algorithm disadvan-
tage, we performed the testing not only with manually-
annotated RORA but also with automatically identi-
fied RORA. However, as shown in Table 2 and Table 3,
the averaged Dice scores and area errors are very
similar to the results obtained using manual annota-
tions as a test ground-truth, suggesting that automat-
ically segmented ground-truth closely matched the
clinical expert in defining RORA and did not bias the
algorithm. At the same time, using automatic RORA
segmentations significantly reduced manual annota-
tion effort required for creation of training a dataset
large enough to cover a wide spectrum of progression
patterns with long follow-ups.

The results of the ablation study (available in the
Supplementary Material) show that using a pretrained
network (even on natural images) improved the final
results. Increasing the complexity of the progression
function approximation (number of output channels)
from K = 3 to K = 5 slightly improved the results
in terms of area error, but further increase to K =
7 resulted in performance degradation likely due to
overfitting.

Several previous reports have introduced models for
predicting atrophy in AMD. Schmidt-Erfurth et al.25
developed an algorithm capable of predicting conver-
sion to atrophic AMD within 2 years, with an AUC of
0.80. Other methods predicted not only the conversion
probability, but also the regions where atrophy would
progress. In particular Niu et al.26 used a random forest
classifier and determined predictions in a cohort of 38
eyes/29 patients, using leave-one-out cross-validation
to evaluate three scenarios. In the first scenario, the
baseline OCT was used to predict atrophy at the next
visit after the baseline, obtaining an average Dice score
of 0.81. The second model was trained using baseline
and the first known follow-up visit and evaluated for
all visits of the test patient. This approach resulted in
a Dice score of 0.84. Finally in the third scenario, the
prediction model was trained using also the baseline
visit of the test patient observations from the baseline
and the first follow-up, to predict the atrophy at subse-
quent visits. Including patient-specific prior increased
the Dice score of 0.87, but in practice it requires
retraining the model for every new patient.

A recent publication reported an algorithmic
approach based on deep learning for simultaneous
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segmenting and predicting atrophy growth.27 The
leave-one-out evaluation of patient-independent
testing used a dataset of 38 eyes/29 patients resulting
in a Dice score of 0.79. Using the patient-dependent
model (which had access to test-patient history)
increased the Dice score to 0.82.

Zhang et al.28 proposed an algorithm based on
a bi-directional long short term memory (BiLSTM)
network and a CNN refinement module. Integration
of time factors into the module allowed for taking
into account varying time intervals between input OCT
and predictions. The algorithm was developed with
data of 25 patients, and a minimum of three visits
per patient. The input to the prediction network were
A-scans corresponding to two consecutive visits. To
refine the initial prediction and take into account global
information, the BiLSTM output was fed into a CNN.
The results showed that adding time interval informa-
tion to the model benefits the results, as well as using
both baseline and next follow-up visit to predict further
progression. The method was trained and evaluated
using automatic GA segmentations.

In comparison to the above-mentioned methods,
our approach presents several advantages. First, it can
predict the location of the future atrophy growth. This
is important supplementary information compared to
predicting binary atrophy conversion per patient as
in.25 It is indeed well established that distance to the
fovea of an atrophic lesion is one of the main crite-
ria for the functional repercussions for a given patient
and has a major prognostic value.29 Second, thanks to
using the automated RORA segmentation algorithm,
it was possible to use a larger number of patients with
long follow-up periods as a training set, which is crucial
to cover a large spectrum of progression patterns.
Moreover, our method can be trained on and predict
RORA progression for flexible time intervals, offering
a possibility to construct a time-continuous progres-
sion history and subsequently personalized atrophy
risk map. It has a potential to become a relevant
tool for clinicians, allowing for patient counseling and
treatment planning. To the best of our knowledge,
such a risk map has not yet been published. Finally,
our method allowed us to obtain accurate predictions
over extended time intervals of four years and longer,
whereas the previous studiesmainly focused on predict-
ing the progression within shorter time intervals.

Several limitations were identified during the study.
Our model included only a limited number of inputs,
namely three kinds of features derived from OCT
scans (layers thickness maps, drusen height map, layers
reflectivity). The next step in refining the algorithm
would be to add more OCT parameters described
in the literature,11,30 such as conversion from early

or intermediate AMD to atrophic AMD and further
atrophy progression, which has been linked to the
presence of hyperreflective foci in OCT.25,31 Similarly,
lower drusen concentration showed a higher probabil-
ity for atrophic conversion versus neovascular compli-
cations.25 Schmidt-Erfurth et al.32 used a machine
learning-based predictive model to assess the risk of
RORA development. They outlined relevant features
for atrophy progression, namely outer retinal thinning
(RPE+IS/OS, ONL), higher variability of outer retinal
thickness, presence of hyperreflective foci, and age.
Niu et al.26 have developed a machine learning-
based predictive model which highlighted several OCT
features as atrophy predictors. These features included
thickness of outer retinal bands (the ellipsoid zone,
the outer segments of the photoreceptors, the inter-
digitation zone, the RPE-Bruch’s membrane complex),
reflectivity of the ellipsoid zone, and, to a lesser extent,
reticular pseudodrusen, as well as thickness and reflec-
tivity of inner retinal bands (the inner and outer plexi-
form layers, the inner and outer nuclear layers, the
external limiting membrane, and the myoid zone of the
photoreceptors). Other predictors of atrophy progres-
sion in OCT include outer retinal tubulation, retic-
ular pseudodrusen, hyperreflective spots, hyporeflec-
tive wedge-shaped band, thinning of the ONL, subsi-
dence of the INL and OPL.11,33 Pfau et al.34 showed
that apart from ONL, also loss of ellipsoid zone
and photoreceptors inner and outer segments in the
proximity of the atrophy is prognostic of progression.

Apart from the limited number of inputs fromOCT,
our model did not integrate multimodal imaging, nor
patient specific information such as age and sex.
Integration of other imaging modalities and risk
factors is a complex topic that deserves to be studied
further as it may significantly contribute to improved
predictions. Furthermore, additional training of the
algorithmwith a large spectrum of cases could improve
its performance particularly for more difficult cases:
those with no atrophy at baseline, and those with rare
phenotypes.

Last, our algorithm was developed using nonexuda-
tive AMD cases only. Although the proposed method
is general enough to be trained also for neovascu-
lar AMD patients, those cases are considerably more
difficult, because of the presence of other potentially
confounding elements, such as exudation or fibrosis
and would need to be studied and validated separately.

Although integration of such an algorithm in the
clinical settings would require further validation, exten-
sion to other OCT devices, and evaluating other
contributing factors, the proposed method constitutes
a proof-of-concept for continuous, long-term progres-
sion prediction. In contrast to prior work, we aimed
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at evaluating the prediction not only for the next visit
(∼12 months), but also in the long term, directly from
the baseline. The test set covered a spectrum of atrophy
manifestations, including cases with no or minimal
atrophy present at the baseline. These nascent atrophy
cases are particularly challenging, and they are worth
investigating in progression studies. Adding informa-
tion about additional risk factors to the model may
improve the detection rates and will be explored in
future work. Additionally, the ability to produce time-
continuous prediction allowed us for computation of
atrophy risk maps, which provide a comprehensive
visualization of progression in the future.

Conclusion

In conclusion, we developed an algorithm capable
of accurate RORA prediction of four years and longer,
based on automated readings of an OCT. Moreover,
our approach enabled the creation of a personalized
atrophy progression risk map with a color coded time
scale—a novel and clinically relevant way of repre-
senting predictive information. The possible future
applications include personalized patient counseling,
guidance toward patient specific follow-up interval,
and evaluation of candidates for future treatments.
Atrophy progression predictors are part of a highly
heterogeneous group and their full integration into the
algorithm remains a challenge for future studies. Such
an approach would enable clinical experts to precisely
assess patient health at an individual level.
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