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Spacetime Symmetries in Quantum Mechanics

cristian lópez and olimpia lombardi

14.1 Introduction

In the last decades, the philosophy of physics has begun to pay attention to the
meaning and the role of symmetries, an issue that has, however, had a great
relevance in physics since, at least, the middle of the twentieth century. Notwith-
standing this fact, this increasing interest in symmetries has not yet been trans-
ferred to the field of the interpretation of quantum mechanics. Although it is
usually accepted that the Galilean group is the group of invariance of the theory,
discussions about interpretations of quantum mechanics, with very few exceptions,
have not taken into account symmetry considerations. But the invariance of a
theory under a group does not guarantee the invariance of its interpretations, as
they usually add interpretive assumptions to the formal structure of the theory.
Symmetry considerations should thus be seriously taken into account in the field of
the interpretation of quantum mechanics.

For this reason, in this chapter we shall focus on the spacetime symmetries of
quantum mechanics. After briefly introducing certain terminological clarifications,
we shall focus on two aspects of spacetime transformations. First, we shall
consider the behavior of nonrelativistic quantum mechanics under the Galilean
group, aiming at assessing its Galilean invariance in relation to interpretive con-
cerns. Second, we shall analyze the widely-accepted view about the invariance of
the Schrödinger equation under time reversal, in order to unveil some implicit
assumptions underlying such a claim.

14.2 The Concepts of Invariance and Covariance

The meaning of the term ‘symmetry’ is rooted in ordinary language: Symmetry is a
geometrical property of a body whose parts are equal in a certain sense. In
mathematics, the term acquires a precise meaning in terms of invariance – an
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object is symmetric with respect to a certain transformation when it is invariant
under such transformation; that is, it remains unchanged under its application. The
concept of group, originally proposed by Galois in the first half of the nineteenth
century, comes to supplement the notion of symmetry – a group clusters different
transformations into a specific structure.

Despite its mathematical precision, in physics, the concept of symmetry has
given rise to some disagreements on the meaning and the scope of the concept of
invariance and of the closely-related concept of covariance. Commonly, the
property of invariance only applies to mathematical objects and, derivatively, to
the physical items to which they refer, and the property of covariance is reserved
for equations and, derivatively, for the physical laws they express. However, some
authors claim that the difference between invariance and covariance not only
makes sense but is also relevant when applied to laws (Ohanian and Ruffini
1994, Suppes 2000, Brading and Castellani 2007). Hans Ohanian and Remo
Ruffini (1994), for instance, claim that an equation is said to be covariant when
its form is left unaltered under a certain transformation, and it is said to be invariant
when it is covariant and its content, that is, its absolute objects (constants and
nondynamical quantities) are also left unchanged by the transformation. Although
inspired in this idea, we will not follow it in every detail. Here we will consider that
an equation is invariant under a certain transformation when it does not change
under the application of such transformation, and it is covariant under that trans-
formation when its form is left unchanged by it (Suppes 2000). From this perspec-
tive, the invariance of a law does not imply the invariance of the objects contained
in its representing equation.

Once one accepts that the concept of invariance makes sense in its application to
laws, the conceptual implications both of the invariance of the law and of the
involved objects under a particular group of transformations deserve to be con-
sidered. Moreover, when a law is covariant under a transformation and all the
objects it contains are also invariant under the same transformation, the law is
invariant under the transformation as well. Nevertheless, this is not the only way
for a law to be invariant – if a law is covariant under a certain transformation, it can
turn out to be invariant under the transformation even in the case that some of the
objects it contains are not invariant under the same transformation (we will come
back to this point in the next section, when discussing the invariance of the
Schrödinger equation).

On the basis of these conceptual clarifications, some formal definitions can now
be introduced.

Def. 1 Let us consider a set A of objects ai 2 A, and a group G of transformations
gα 2 G, where the gα : A ! A act upon the ai as ai ! ~ai. An object ai 2 A is
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invariant under the transformation gα if, for that transformation, ~ai ¼ ai. In turn, the
object ai 2 A is invariant under the group G if it is invariant under all the trans-
formations gα 2 G.

In physics, the objects to which transformations apply are usually those represent-
ing states s, observables O, and differential operators D, and each transformation
acts upon them in a particular way. In turn, those objects are combined in equations
representing the laws of a theory. Then,

Def. 2 Let L be a law represented by an equation E s;Oi;Dj

� � ¼ 0, where s
represents a state, the Oi represent observables, and the Dj represent differential
operators, and let G be a group of transformations gα 2 G acting upon the objects
involved in the equation as s ! ~s, Oi ! ~Oi, and Dj ! ~Dj. L is covariant under the
transformation gα if E ~s; ~Oi; ~Dj

� � ¼ 0, and L is invariant under the transformation gα
if E ~s;Oi;Dj

� � ¼ 0. Moreover, L is covariant� invariant� under the group G if it is
covariant � invariant � under all the transformations gα 2 G.

On this basis, it is usually said that a certain group is the symmetry group of a theory:

Def. 3 A group G of transformations is said to be the symmetry group of a theory if
the laws of the theory are covariant under the group G.

This means that the laws preserve their validity even when the transformations of
the group are applied to the involved objects.

Some authors prefer to talk about symmetry instead of covariance. This is the case
of John Earman (2004), who defines symmetry in the language of model theory:

Def. 4 Let M be the set of the models of a certain mathematical structure, and let
ML � M be the subset of the models satisfying the law L. A symmetry of the law
L is a map S : M ! M that preserves ML, that is, for any m 2 ML, S mð Þ 2 ML.

When L is represented by a differential equation E s;Oi;Dj

� � ¼ 0, each model
m 2 ML is represented by a solution s ¼ F Oi; s0ð Þ of the equation, corresponding
to a possible evolution of the system. Then, the covariance of L under a transform-
ation g – that is, the fact that E ~s; ~Oi; ~Dj

� � ¼ 0 – implies that if s ¼ F Oi; s0ð Þ is a
solution of the equation, ~s ¼ ~F ~Oi; s0

� �
is also a solution and, as a consequence, it

represents a model S mð Þ 2 ML. This means that the definition of covariance given
by Def. 2 and the definition of symmetry given by Def. 4 are equivalent.

In turn, the covariance of a dynamical law – represented by a differential
equation – does not imply the invariance of the possible evolutions – represented
by the solutions of the equation. In fact, the covariance of the law L, represented by
the equation E s;Oi;Dj

� � ¼ 0, implies that s ¼ F Oi; s0ð Þ and~s ¼ ~F ~Oi; s0
� �

are both
solutions of the equation, but does not imply that s ¼ ~s. In the model-theory
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language, the symmetry of L does not imply that S mð Þ ¼ m. By contrast, invariance
is a stronger property of the law: The invariance of Lmeans that E ~s;Oi;Dj

� � ¼ 0; in
this case s ¼ ~s ¼ F Oi; s0ð Þ or, in the model language, S mð Þ ¼ m.

Def. 5 Let M be the set of the models of a certain mathematical structure, and let
ML � M be the subset of the models satisfying the law L. Let a transformation be a
map S : M ! M that preserves ML. The law L is invariant under the transform-
ation S if, for any m 2 ML, S mð Þ ¼ m.

The general definitions just described can be applied to the Schrödinger equation
so as to explicitly state the conditions of covariance and invariance for quantum
mechanics. Here we will focus on the evolution equation of the theory, leaving
aside the collapse postulate, since it is an interpretive postulate in orthodox
quantum mechanics. Given a transformation g acting as φj i ! ~φj i, O ! ~O,
d=dt ! ~d=dt, and i ! ~i (considering i as the shorthand for the operator i I), by
making ℏ ¼ 1 the Schrödinger equation is covariant under g when

~d ~φj i
dt

¼ �~i ~H ~φj i (14.1)

and it is invariant under g when

d ~φj i
dt

¼ �iH ~φj i: (14.2)

14.3 Quantum Mechanics and the Galilean Group

14.3.1 The Galilean Group

As time is represented by the variable t 2 R and position is represented by the
variable r ¼ x; y; zð Þ 2 R3, the Galilean group G ¼ Tαf g, with α ¼ 1 to 10, is a
group of continuous spacetime transformations Tα : R3 � R ! R3 � R such that

• t ! t
0 ¼ t þ τ (time-displacement)

• r ! r
0 ¼ rþ ρ (space-displacement)

• r ! r
0 ¼ Rθr (space-rotation)

• r ! r
0 ¼ rþ ut (velocity-boost)

where τ 2 R is a real number representing a time interval, ρ ¼ �
ρx, ρy, ρz

� 2 R3 is

a triple of real numbers representing a space interval, Rθ 2 M3�3 is a 3� 3 matrix

representing a space rotation by an angle θ, and u ¼ ux; uy; uz
� � 2 R3 is a triple of

real numbers representing a constant velocity.
For the Galilean group, G is a Lie group, the Galilean transformations Tα

can be represented by unitary operators Uα over the Hilbert space, with the
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exponential parametrization Uα ¼ eiKαsα , where sα is a continuous parameter
and Kα is a hermitian operator independent of sα, the generator of the trans-
formation Tα. Then, G is defined by 10 group generators Kα: one time-
displacement Kτ, three space-displacements Kρi , three space-rotations Kθi ,
and three velocity-boosts Kui , with i ¼ x, y, z. Therefore, by taking ℏ ¼ 1 as
usual, the Galilean group is defined by the commutation relations between its
generators:

að Þ Kρi ;Kρj

h i
¼ 0 fð Þ Kui ;Kρj

h i
¼ iδijM

bð Þ Kui ;Kuj

� � ¼ 0 gð Þ Kρi ;Kτ
� � ¼ 0

cð Þ Kθi ;Kθj

� � ¼ iεijkKθj hð Þ Kθi ;Kτ½ � ¼ 0

dð Þ Kθi ;Kρj

h i
¼ iεijkKρk ið Þ Kui ;Kτ½ � ¼ iKρi

eð Þ Kθi ;Kuj

� � ¼ iεijkKuk

(14.3)

where εijk is the Levi-Civita tensor. Strictly speaking, in the case of quantum
mechanics the symmetry group is the group corresponding to the central extension
of the Galilean algebra, obtained as a semi-direct product between the Galilean
algebra and the algebra generated by a central charge, which in this case is the
mass operator M ¼ mI, where I is the identity operator and m is the mass. The
mass operator as a central charge is a consequence of the projective representation
of the Galilean group (see Bose 1995, Weinberg 1995). However, in order to
simplify the presentation, we will use the expression “Galilean group” from now
on to refer to the corresponding central extension.

In a closed, constant-energy system free from external fields, the generators Kα

are given by the basic magnitudes of the theory: the energy H ¼ ℏKτ, the three
momentum components Pi ¼ ℏKρi , the three angular momentum components
Ji ¼ ℏKθi , and the three boost components Gi ¼ ℏKui . Then, in this case the
commutation relations turn out to be

að Þ Pi;Pj

� � ¼ 0 fð Þ Gi;Pj

� � ¼ iδijM

bð Þ Gi;Gj

� � ¼ 0 gð Þ Pi;H½ � ¼ 0

cð Þ Ji; Jj
� � ¼ iεijkJk hð Þ Ji;H½ � ¼ 0

dð Þ Ji;Pj

� � ¼ iεijkPk ið Þ Gi;H½ � ¼ iPi

eð Þ Ji;Gj

� � ¼ iεijkGk

(14.4)

.The rest of the physical magnitudes can be defined in terms of these basic ones. For
instance, the three position components are Qi ¼ Gi=m, the three orbital angular
momentum components are Li ¼ εijkQjPk, and the three spin components are
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Si ¼ Ji � Li. In the Hilbert formulation of quantum mechanics, each Galilean
transformation gα 2 G acts upon states and upon observables as

φj i ! ~φj i ¼ Usα φj i ¼ eiKαsα φj i (14.5)

O ! ~O ¼ Usα OU�1
sα

¼ eiKαsα Oe�iKαsα (14.6)

The invariance of an observable O under a Galilean transformation Tα amounts to
the commutation between O and the corresponding generator Kα:

~O ¼ eiKαsαOe�iKαsα ¼ O , O;Kα½ � ¼ 0 (14.7)

It is worth bearing in mind that there are operators that are invariant under all
the transformations of the group, and thereby, commute with all the generators of
the group – the Casimir operators of a group. In the case of the Galilean group, the
Casimir operators are the internal energyW ¼ H � P2=2M, the square of total spin
S2 ¼ J � 1

M G� P
� �2

, and the mass M, which are multiples of the identity in any
irreducible representation.

14.3.2 The Covariance of the Schrödinger Equation

Given the Schrödinger equation, let us begin by (i) premultiplying its two members
by U ¼ eiKs, (ii) adding and subtracting dU=dtð Þ φj i to its first member, and (iii)
using the property U�1U ¼ I:

U
d φj i
dt

þ dU

dt
φj i � dU

dt
U�1U φj i ¼ �UiU�1UHU�1U φj i (14.8)

Then, by recalling the transformations of states and observables of Eq. (14.5) and
Eq. (14.6), we obtain

d ~φj i
dt

� dU

dt
U�1 ~φj i ¼ �~i ~H ~φj i (14.9)

This shows that covariance obtains when the time-derivative operator transforms
as

d

dt
!

~d

dt
¼ D

Dt
¼ d

dt
� dU

dt
U�1 )

~d ~φj i
dt

¼ �~i ~H ~φj i (14.10)

This means that the transformed differential operator ~d=dt is a covariant time-
derivative D=Dt, which makes the Schrödinger equation to be Galilean-covariant
in the sense of Eq. (14.1).

In a closed, constant-energy system free from external fields, H is time-
independent and the Pi and the Ji are constants of motion (see Eq. (14.4g) and
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Eq. (14.4h)). Then, for time-translations, space-translations and space-rotations,
dU=dt ¼ deiKs=dt ¼ 0, where K and s stand for H and τ, Pi and ρi, and Ji and θi,
respectively. As a consequence, the time-derivative is invariant under time-
displacements, space-displacements, and space-rotations (see Eq. (14.10)):
d=dt ! ~d=dt ¼ d=dt. But for boost-transformations this is not the case: The
covariance of the Schrödinger equation implies the transformation of the differen-
tial operator as d=dt ! D=Dt. This means that covariance under boosts amounts to
a sort of “nonhomogeneity” of time, which requires the covariant adjustment of the
time-derivative. This conclusion should not be surprising since, when the system is
described in a reference frame ~F at uniform motion corresponding to a velocity ux
with respect to the original frame F, the boost-transformed state depends on a
generator that is a linear function of time:

Gx ¼ mQx ¼ m Qx0 þ Vxtð Þ ¼ mQx0 þ Pxt (14.11)

Then, if the Schrödinger equation is to be valid in ~F , where the state is ~φj i, the
transformed time-derivative has to be adjusted to compensate the time-depending
transformation of the state.

14.3.3 The Invariance of the Schrödinger Equation

As we have seen in the previous section, in a closed, constant-energy system free from
external fields, H is time-independent and the Pi and the Ji are constants of motion.
Then, for time-translations, space-translations, and space-rotations, it follows that
dU=dt ¼ deiKs=dt ¼ 0 and d=dt ! ~d=dt ¼ d=dt. Moreover, for those transform-
ations,~i ¼ i follows trivially, and ~H ¼ H because (see Eq. (14.7)) (i) H;H½ � ¼ 0, (ii)
Pi;H½ � ¼ 0 (Eq. (14.4g)), and (iii) Ji;H½ � ¼ 0 (Eq. (14.4h)). When these results apply
to Eq. (14.9), it is easy to see that the Schrödinger equation is invariant under time-
displacements, space-displacements, and space-rotations in the sense of Eq. (14.2).

The case of boost-transformations is different from the previous cases because,
although ~i ¼ i still holds, the Hamiltonian is not boost-invariant even when the
system is free from external fields (the same happens in classical mechanics, see
Butterfield 2007: 6). In fact, under a boost-transformation corresponding to a
velocity ux, H changes as (see Eq. (14.4i): Gx;H½ � ¼ iPx 6¼ 0)

~H ¼ eiGxuxHe�iGxux 6¼ H (14.12)

Since Gx is not time-independent, dU=dt ¼ deiGxux=dt 6¼ 0, and Eq. (14.9) yields

d ~φj i
dt

¼ �i ~H þ i
deiGxux

dt
e�iGxux

� �
~φj i (14.13)
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In order to know the value of the bracket in the right-hand side (r.h.s.) of Eq.
(14.13), the two terms in the bracket must be computed. When the task is
performed, it can be proved that the terms added to H in ~H cancel out with those
coming from the term containing the time-derivative (see Lombardi, Castagnino,
and Ardenghi 2010: appendices). Therefore, Eq. (14.2) is again obtained and the
invariance of the Schrödinger equation is proved to hold also for boost-
transformations.

The case of boost-transformations illustrates a claim previously mentioned in
Section 14.2: Even though a law is invariant under a transformation when it is
covariant and all the involved objects are invariant, this is not the only way to
obtain invariance. When the quantum system is free from external fields, the
Schrödinger equation is invariant under boost-transformations, in spite of the fact
that the Hamiltonian and the differential operator d=dt are not boost-invariant
objects.

14.3.4 Galilean Group and External Fields

As explained in the previous subsection, when there are no external fields acting on
the system, the Hamiltonian is invariant under time-displacements, space-displace-
ments, and space-rotations, but not under boost-transformations. Despite this fact,
the Schrödinger equation is completely invariant under the Galilean group, and
this conceptually means that the state vector φj i does not “see” the effect of
the transformations – the evolutions of φj i and ~φj i are identical. In other words,
the time-behavior of the system is independent of the reference frame used for the
description.

When the system is under the action of external fields, the fields modify the
evolution of the system. But, in nonrelativistic quantum mechanics, fields are not
quantized: They do not play the role of quantum systems that interact with other
systems. For this reason, the effect of the fields on a system must be included in its
Hamiltonian, because it is the only observable involved in the time-evolution law.
It can be proved that the most general form of the Hamiltonian in the presence of
external fields is (see, e.g., Ballentine 1998)

H ¼ P� A Qð Þð Þ2
2M

þ V Qð Þ (14.14)

where A Qð Þ is a vector potential and V Qð Þ is a scalar potential. The covariance of
the Schrödinger equation, as expressed in Eq. (14.9), fixes the way in which the
potentials A Qð Þ and V Qð Þ must transform under the Galilean group. The electro-
magnetic field may be derived from a vector potential and a scalar potential; thus, a
fully Galilean-covariant quantum theory of the Schrödinger field interacting with
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an external electromagnetic field is possible. However, the electric and magnetic
fields that transform as required to preserve Galilean covariance, although related
to the scalar and vector potentials in the usual way, are ruled by one of two sets of
electromagnetic “field” equations. Those equations can be considered the nonre-
lativistic limits of Maxwell’s equations in cases where either (i) magnetic effects
predominate over electric ones (“magnetic limit”: c Bj j >> Ej j), or (ii) electric
effects predominate over magnetic ones (“electric limit”: c Bj j << Ej j) (see Brown
and Holland 1999, Colussi and Wickramasekara 2008). Nevertheless, A Qð Þ and
V Qð Þ should not necessarily be identified with the electromagnetic potentials,
because they are arbitrary functions that need not satisfy Maxwell’s equations;
for example, the Newtonian gravitational potential can also be included in the
scalar V Qð Þ (Ballentine 1998).

At this point, a relevant issue must be stressed. Space-displacements and space-
rotations are purely geometric operations of displacing and rotating the system
self-congruently to another place and to another direction, respectively. Analo-
gously, time-displacements are purely geometric operations of displacing the
system self-congruently to another time, and they may agree or not with dynamical
evolutions. The commutation of two transformation generators means that the
corresponding geometric operations can be performed in either order with the
same result; for instance, the commutation ½Kρi ,Kρj � ¼ 0 (see Eq. (14.3a)) means

that the order in which space-displacements in different directions are performed
does not modify the result. In particular, the validity of the Galilean group implies
that time-displacements commute both with space-displacements and with space-
rotations (see Eq. (14.3g) and Eq. (14.3h)). When there are no external fields acting
on the system, this feature is given by the commutation relations involving the
Hamiltonian, the three momentum components Pi, and the three angular momen-
tum components Ji, Pi;H½ � ¼ 0 and Ji;H½ � ¼ 0 (Eq. (14.4g) and Eq. (14.4h)),
because here the Hamiltonian is the time-displacement generator. But in the
presence of external fields, since the action of the fields is incorporated into the
Hamiltonian of the system, the Hamiltonian is no longer the generator of time-
displacements: It only retains its role as the generator of the dynamical evolution
(see Laue 1996, Ballentine 1998). For this reason, the commutation with the
momentum components and with the angular momentum components gets broken:
Pi;H½ � 6¼ 0 and Ji;H½ � 6¼ 0. However, to the extent that the covariance of the
Schrödinger equation is retained, the commutation of time-displacements with
both space-displacements and space-rotations still holds, and is still represented
by Kρi ;Kτ

� � ¼ 0 and Kθi ;Kτ½ � ¼ 0, respectively (see Eq. (14.3g) and Eq. (14.3h)),
where the momentum components are still the generators of space-displacements,
Pi ¼ ℏKρi , and the angular momentum components are still the generators of
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space-rotations, Ji ¼ ℏKθi , but the Hamiltonian is no longer the generator of time-
displacements, H 6¼ ℏKτ (we will come back to this point in the next section, about
time-reversal invariance).

14.3.5 The Relevance to Interpretation

In principle, there are two possible interpretations of a transformation: active and
passive. Under the active interpretation, the transformation corresponds to a
change from a system to the transformed system; for instance, a system translated
in space with respect to the original one. Under the passive interpretation, the
transformation consists in a change of the viewpoint – the reference frame – from
which the system is described; for instance, the space-translation of the observer
that describes the system. In the case of continuous spacetime transformations,
both active and passive interpretation are equally allowed; but such a situation is
not so clear in the case of discrete transformations. In general, it is accepted that
only the active interpretation makes sense in the case of discrete transformations
(Sklar 1974: 363). Nevertheless, no matter which interpretation is adopted, the
covariance of the fundamental law of a theory under its continuous symmetry
group implies that the law still holds when the transformations are applied. In the
active interpretation language, the original and the transformed systems are equiva-
lent; in the passive interpretation language, the original and the transformed
reference frames are equivalent.

As is typically accepted, the Galilean group is the symmetry group of continuous
spacetime transformations of classical and quantum mechanics. In the language of
the passive interpretation, the covariance of the dynamical laws amounts to the
equivalence among inertial reference frames (time-translated, space-translated,
space-rotated, or uniformly moving with respect to each other). In other words,
Galilean transformations do not introduce anymodification in the physical situation,
but only express a change in the perspective from which the system is described.

These remarks are related to the fact that certain quantities are physically
irrelevant in the light of theory’s symmetries. For instance, the space-translation
symmetry of a dynamical law means that the specific place where the system is
located in space is irrelevant to its evolution governed by such law: “A global
symmetry reflects the irrelevance of absolute values of a certain quantity: only
relative values are relevant” (see Brading and Castellani 2007: 1360). In classical
mechanics, for example, space-translation invariance implies that absolute position
is irrelevant to the system’s behavior – the equations of motion do not depend on
absolute positions, only relative positions matter. The physical irrelevance of
certain quantities is strongly linked with the issue of objectivity.
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The intuition about a strong link between invariance and objectivity is rooted in
a natural idea: What is objective should not depend on the particular perspective
used for the description. When this intuition is translated into the group-theoretical
language, it can be said that what is objective according to a theory is what is
invariant under the symmetry group of the theory. This idea appeared in the
domain of formal sciences in Felix Klein’s “Erlangen Program” of 1872, with
the attempt to characterize all known geometries by their invariants (see Kramer
1970). This idea passed to physics with the advent of relativity, regarding the
ontological status of space and time (Minkowski 1923). The claim that objectivity
means invariance becomes a main thesis of Hemann Weyl’s book Symmetry
(1952). Max Born also very clearly expressed his conviction about the strong link
between invariance and objectivity: “I think the idea of invariance is the clue to a
rational concept of reality” (Born 1953: 144). In recent times, the idea has strongly
reappeared in several works. For instance, in her deep analysis of quantum field
theory, Sunny Auyang (1995) makes her general concept of “object” to be founded
on its invariance under transformations among all representations. The assumption
of invariance as the root of objectivity is also the central theme of Robert Nozick’s
book Invariances: The Structure of the Objective World (2001). In the same vein,
David Baker (2010) has argued that symmetries are a guide to finding out which
quantities represent fundamental natural properties in a physical theory.

If the ontological meaning of symmetries is accepted, it is easy to see that
symmetries must play an active role in the understanding of a physical theory. In
the particular case of quantum mechanics, the consideration of its Galilean
covariance cannot be overlooked in the discussions about interpretation.

As it is well known, the Kochen-Specker theorem (Kochen and Specker 1967)
establishes a barrier to any realist classical-like interpretation of quantum mechan-
ics: It proves the impossibility of ascribing definite values to all the physical
quantities (observables) of a quantum system simultaneously, while preserving the
functional relations between commuting observables. This result is a manifestation
of the contextuality of quantum mechanics – the ascription of definite values to the
observables of a quantum system is always contextual. As a consequence of the
Kochen-Specker theorem, any realist interpretation of quantum mechanics is com-
mitted to selecting a subset of definite-valued observables from the set of all the
observables of the system (or a preferred basis from all the formally equivalent bases
of the Hilbert space). The observables of that subset will be those that acquire
definite values without violating quantum contextuality. It is at this point that the
symmetry group of the theory becomes a leading character. As noticed by Harvey
Brown, Mauricio Suárez, and Guido Bacciagaluppi (1998), any interpretation that
selects the set of the definite-valued observables of a quantum system in a given state
is committed to considering how that set is transformed under the Galilean group.
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However, now the link between invariance and objectivity comes into play. The
study of the role of symmetries is particularly pressing in the case of realist
interpretations of quantum mechanics, which conceive a definite-valued observ-
able as a physical magnitude that objectively acquires an actual definite value
among all its possible values: The fact that a certain observable acquires a definite
value should be an objective fact that should not depend on the descriptive
perspective. Therefore, the set of the definite-valued observables of a system
picked out by the interpretation should be left invariant by the Galilean
transformations. From a realist viewpoint, it would be unacceptable that such a
set changed as result of a mere change in the perspective from which the system is
described.

In his article “Aspects of objectivity in quantum mechanics,” Harvey Brown
(1999) explicitly tackles the problem in discussing the objectivity of “sharp
values.” In particular, he focuses on interpretations that specify state-dependent
rules for assigning sharp values to some of the self-adjoint operators representing
quantum magnitudes, such as the interpretations whose value-assignment rules
coincide with the eigenstate-eigenvalue link, or the modal interpretations that make
the set of definite-valued observables to depend on the instantaneous state of the
system. Brown clearly explains the difference between the classical and the
quantum case. In classical mechanics, Galilean noninvariant magnitudes modify
their values with the change of reference frame; for this reason, if their objectivity
is to be retained, they must be regarded not as intrinsic properties but as relational
properties. For instance, the values of classical position and momentum can be
conceived as relational properties that link the system and the reference frame. In
quantum mechanics, by contrast, the relational nature acquires a further degree;
whereas, in the classical case the sharp value of a magnitude depends on the
reference frame, in the quantum case the very sharpness of an observable’s value
must be relational in order to preserve its objectivity. For instance, the fact that the
position of a system has a sharp (definite) value in a certain reference frame, and,
as a consequence, that the system can be conceived as a localized particle, is itself
relational. In a different reference frame, the system may have an unsharp value of
position and, then, may behave as a delocalized particle. Brown also correctly
stresses that it is not just boosts that produce this kind of situation; passive spatial
translations can cause that some sharp-valued observables to become unsharp. On
the basis of this analysis, he concludes that

If, in the hope of providing an ontological interpretation of quantum mechanics, we
introduce state-dependent rules for assigning sharp values to magnitudes associated with
a specific quantum system, we should recognise that the objective status of such sharp
values is relational, not absolute.

(Brown 1999: 66–67)
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In the same article, Brown considers an interpretation in which the rule of
definite-value ascription is not state-dependent; he analyzes the problem of covar-
iance in the de Broglie-Bohm pilot-wave interpretation of quantum mechanics, but
he discards it because, although no privileged frame is picked out by the hidden
dynamics of the corpuscles, the forces acting upon the corpuscles and generated by
the guiding wave are Aristotelian, not Newtonian, because they produce velocities,
not accelerations. This seems to lead him to interpretations that introduce state-
dependent rules of definite-value ascription as the only alternative. This maneuver
is opposed to that which led Jeffrey Bub (1997) to advocate for Bohmian mechan-
ics, conceived as a modal interpretation whose rule of definite-value ascription
picks out the position observable: The difficulties of the original modal
interpretations to deal with nonideal measurements due to their state-dependent
rules turns Bohmian mechanics into a natural alternative. But what both Bub and
Brown seem to overlook is that there are other interpretive strategies beyond
Bohmian mechanics and traditional modal interpretations that make the definite-
valued observables to depend on the state of the system. One of them is even more
natural than the Bohmian proposal when the aim is to preserve the objectivity of
definite-valuedness (or of sharpness, in Brown’s terms) in the light of Galilean
symmetry. In fact, the natural way to reach this goal, without making the objective
status of definite-valuedness relational, is to appeal to the Casimir operators of the
Galilean group: If the interpretation has to select a Galilean-invariant set of
definite-valued observables, such a set must depend on those Casimir operators,
insofar as they are invariant under all the transformations of the Galilean group. An
interpretation that has adopted this interpretive strategy is the modal-Hamiltonian
interpretation in its Galilean invariant version (Ardenghi, Castagnino, and Lom-
bardi 2009, Lombardi, Castagnino, and Ardenghi 2010), which has been success-
fully applied to many well-known physical situations and has proved to be
effective for solving the measurement problem, both in its ideal and its nonideal
versions (Lombardi and Castagnino 2008).

Considering that the Casimir operators of the Galilean group represent the
definite-valued observables of a quantum system has the advantage of being very
general. When the system is free from external fields and the Galilean group is
defined by the commutation relations Eq. (14.4), the Casimir operators correspond
to the observables mass M, squared-spin S2, and internal energy W . Yet the
Casimir operators of the Galilean group can always be defined, even when Eq.
(14.4) does not hold. The group must thus be defined in the completely general
way as expressed by Eq. (14.3). Therefore, when there are external fields applied to
the system, and such fields do not break the covariance of quantum mechanics
under the Galilean group, the strategy of defining the definite-valued observables
in terms of the Casimir operators remains valid, whatever they represent.
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Furthermore, the strategy admits a further generalization in its application to
relativistic quantum theories, such as relativistic quantum mechanics and quantum
field theory: The interpretive postulate of endowing the Casimir operators with
definite-valuedness and objectivity is retained, but the relevant group structure is
replaced by changing the Galilean group by the Poincaré group.

14.4 Quantum Mechanics and Time Reversal

14.4.1 A General Notion of Time Reversal

What was said in the previous section seems not to straightforwardly apply to the
question about time-reversal symmetry. To begin with, time reversal is a trans-
formation that does not belong to the Galilean group. Furthermore, while all
Galilean transformations are continuous, time reversal is a discrete transformation
that, at first glance, simply performs the transformation t ! �t. Notwithstanding
these facts, time reversal encloses even more subtle features as it is somehow
related to the nature of time and its unavoidable differences with respect to space;
whereas one can move freely in all directions of space, it seems that one “moves”
in just one direction of time, from past to future and never the other way around.
From early twentieth century, the very notion of time reversal was quite relevant
not only for many physicists working on the foundations of physics, but also for
many philosophers aiming at getting a grasp of the nature of time.

Unfortunately, time is not the kind of thing one can experiment on: Unlike
electrons, pendulums or electromagnetic fields, one cannot directly find out time’s
properties by running an experiment. However, physicists and philosophers have
managed this setback by devising a formal way to dig into time’s properties – the
notions of time reversal and time-reversal invariance have been keystones for the
famous problem of the arrow of time in physics (problem lying on the borderline
between the physics and the metaphysics of time). In fact, the arrow of time has
largely been introduced in terms of time-reversal symmetry: If physical laws
somehow fail to be time-reversal invariant, then one might come to the conclusion
that time is headed according to such a physical law. To put it differently, time-
reversal symmetry is supposed to shed light on the structure of time according to a
given theory. Quoting Jill North:

If the fundamental laws cannot be formulated without reference to a particular kind of
structure, then this structure must exist in order to support the laws – “support” in the sense
that the laws could not be formulated without making reference to that structure.

(North 2009: 203)

The idea is that, by knowing how dynamical equations (standing for physical laws)
behave under time reversal, one can learn about the nature of time according to a
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theory. This kind of principle is well-seated in the literature (see also Earman 1974,
Sklar 1974, Arntzenius 1997), and it is the key element that links time’s properties,
physical laws, and the time-reversal transformation.

However, here nothing has yet been said about the time-reversal transformation
in itself, other than that it minimally performs the transformation t ! �t. As
typically noted in the literature, the topic is somewhat tricky as there is no shared
understanding of what time reversal is exactly supposed to do nor of what proper-
ties it should instantiate (see Savitt 1996 for a careful analysis of varied time-
reversal operators; see Peterson 2015 for an updated approach). Furthermore, time
reversal’s properties seem to change from theory to theory, to the extent that
dynamics also changes. This remark already assumes a strong premise – that the
structure of time, in particular, regarding its time-reversal symmetry property, is
closely tied up to the theory’s dynamics.

14.4.2 Time Reversal in Quantum Mechanics

Independently of the considerations discussed previously, the community of
physicists has reached a wide consensus about the appropriate time-reversal
transformation for standard quantum mechanics. The traditional procedure starts
out by arguing that time reversal can no longer be considered as in Hamiltonian
classical mechanics. As it is well known, the time-reversal operator in classical
contexts is typically defined as the operator that changes the sign of the variable t.
But in quantum mechanics the rationale seems to be different; in fact, Ballentine
(1998) warns us:

One might suppose that time reversal would be closely analogous to space inversion, with
the operation t ! �t replacing x ! �x. In fact, this simple analogy proves to be
misleading at almost every step.

(Ballentine 1998: 377)

Quantum mechanics textbooks rarely offer a thorough justification for such a claim
and commonly go on by formally introducing the “proper” way to reverse time in
quantum mechanics. In some cases, the only justification is based on a classical
analogy: The transformation t ! �t does not lead to the transformation of
momentum as P ! �P, which is expected because this is the way in which
momentum transforms under time reversal in classical mechanics. But mere
analogy does not seem to be a sufficiently good argument; for this reason, Bryan
Roberts (2017) has very recently brought up an updated and purely quantum-
mechanic-based reasoning for defending the standard procedure. Here we will not
analyze in detail those arguments; rather, we will consider the problem in the light
of the symmetries of the Schrödinger equation related to the reversal of time.
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Let us use θ to call a generic time-reversal operator, which performs at least the
transformation t ! �t but whose precise form is not defined yet. As explained in
Section 14.2, this operator acts as φj i ! ~φj i, O ! ~O, d=dt ! ~d=dt, and i ! ~i; in
particular, ~φj i ¼ θ φj i, ~O ¼ θOθ�1, ~d=dt ¼ θd=dt θ�1, and~i ¼ θ iθ�1. The Schrö-
dinger equation is covariant/invariant under θ when Eq. (14.2)/(14.3) holds,
respectively. So, let us begin by premultiplying the two members of the Schrö-
dinger equation by θ and using the property θ�1θ ¼ I:

θ
d

dt

� 	
θ�1θ φj i ¼ �θiθ�1θHθ�1θ φj i (14.15)

As long as θ is not a function of t, it is easy to prove that the Schrödinger equation
is covariant under the application of θ:

~d ~φj i
dt

¼ �~i ~H ~φj i (14.16)

Now, in order to know if the Schrödinger equation is also invariant under the
application of θ, it is necessary to define the precise form of θ to see how it acts
upon d=dt, i, and H. As in the case of the Galilean group, the situation of a closed,
constant-energy system will be considered.

Case (i): If θ ¼ T only performs the transformation t ! �t, then

~d

dt
¼ T

d

dt

� 	
T�1 ¼ � d

dt
~i ¼ TiT�1 ¼ i ~H ¼ THT�1 ¼ H (14.17)

Introducing these equations into Eq. (14.16) leads to the conclusion that the
Schrödinger equation is not T-invariant, since

d ~φj i
dt

¼ iH ~φj i (14.18)

Case (ii): If θ ¼ T∗ performs the transformation t ! �t and the complex
conjugation i ! �i, then

~d

dt
¼ T∗ d

dt

� 	
T∗�1 ¼ � d

dt
~i ¼ T∗iT∗�1 ¼ �i ~H ¼ T∗HT∗�1 ¼ H

(14.19)

Introducing these equations into Eq. (14.16) leads to the conclusion the Schrödinger
equation is T∗-invariant, since

d ~φj i
dt

¼ �iH ~φj i (14.20)
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Summing up, independently of any interpretation, the results given by Eq. (14.18)
and Eq. (14.20) show that the Schrödinger equation is not invariant under the unitary
operatorT , and it is invariant under the antiunitary operatorT∗. The conceptual question
is which of the two operators, T or T∗, represents the operation of time reversal.

14.4.3 Time-Reversal Invariance: Between Petitio Principii
and a Priori Truth

A common answer to that conceptual question is saying that the unitary operator T is
unacceptable as the time-reversal operator because it breaks the requirement that the
energy of the system must be bounded from below. In Jun John Sakurai’s words:

Consider an energy eigenket nj i with energy eigenvalue En. The corresponding time-
reversed state would be Θ nj i [where Θ stands for our T], and we would have, because of
(4.4.27) [�HΘ ¼ ΘH]

HΘ nj i ¼ �ΘH nj i ¼ �Enð ÞΘ nj i (4.4.28)

This equation says that Θ nj i is an eigenket of the Hamiltonian with energy eigenvalues
�En. But this is nonsensical even in the very elementary case of a free particle. We know
that the energy spectrum of the free particle is positive semidefinite – from 0 to +∞. There
is no state lower than a particle at rest (momentum eigenstate with momentum eigenvalue
zero); the energy spectrum ranging from �∞ to 0 would be completely unacceptable.

(Sakurai 1994: 272–273)

Why does the unitary operator T not meet that requirement? It is not unusual to read
that the reason is that the unitary operator T transforms the Hamiltonian as
THT�1 ¼ �H. This sounds very strange because, by performing only the transform-
ation t ! �t, the operator T should leave the time-independent Hamiltonian invari-
ant. So, now the question is: Why does the Hamiltonian transform as H ! �H?
Although not always explicit, a typical answer is that offered by StephenGasiorowicz:

we find that [the equation of motion] can be invariant only if

THT�1 ¼ �H

This, however, is an unacceptable condition, because time reversal cannot change the spectrum
of H, which consists of positive energies only. If T is taken to be anti-unitary [our T∗], the
* operator changes the i to �i [in the equation of motion] and the trouble does not occur.

(Gasiorowicz 1966: 27; italics added)

In a similar vein, Robert Sachs clearly explains that

we require that the [time-reversal] transformations leave the equations of motion invariant
when all forces or interactions vanish.

(Sachs 1987: 7; italics added)
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In other words, under time reversal, the Hamiltonian should transform as H ! �H
in order to preserve the time-reversal invariance of the Schrödinger equation; for
this reason, the unitary T is unacceptable as time-reversal operator, and the right
one is the antiunitary T∗.

At this point, one seems to be caught in the dilemma between petitio principii
and a priori truth. If our original question was whether the Schrödinger equation is
time-reversal invariant, an argument that selects the right operator describing time
reversal by taking the time-reversal invariance of the equation as one of its
premises clearly begs the question. However, some authors do not fall in petitio
principii by considering that certain symmetries of the physical laws have an a
priori status:

A symmetry can be a priori, i.e., the physical law is built in such a way that it respects that
particular symmetry by construction. This is exemplified by spacetime symmetries,
because spacetime is the theater in which the physical law acts . . . and must therefore
respect the rules of the theater.

(Dürr and Teufel 2009: 43–44)

From this perspective, the invariance under the Galilean group must be built into
the Schrödinger equation due to the homogeneity and the isotropy of space and the
homogeneity of time. This view may sound reasonable to the extent that those are
features of space and time that we, in a certain sense, can experience. But, why
should we impose time-reversal invariance? We have no experience of the isotropy
of time since we cannot travel backwards in time. Despite this, time-reversal
invariance must be introduced as a postulate:

One should ask why we are so keen to have this feature in the fundamental laws when we
experience the contrary. Indeed, we typically experience thermodynamic changes which
are irreversible, i.e., which are not time reversible. The simple answer is that our platonic
idea (or mathematical idea) of time and space is that they are without preferred direction,
and that the “directed” experience we have is to be explained from the underlying time
symmetric law.

(Dürr and Teufel 2009: 47)

Challenging the most widely-held position about time reversal in the field
of quantum mechanics, a few authors have raised their voices against it by
appealing to philosophical reasons: The antiunitary operator T∗ would fail to
offer a conceptually sound and clear-cut representation of time reversal. On
the one hand, a far-reaching tradition, which tracks back to the work of Giulio
Racah (1937) and Satosi Watanabe (1955), pleads for a unitary time-reversal
operator in quantum theories. Oliver Costa de Beauregard (1980) has argued
for such a view by claiming that a unitary time-reversal operator that merely
reverses the direction of time by flipping the sign of the variable t goes more
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naturally along with relativistic contexts and is more naturally akin to the
Feynmann zig-zag philosophy. On the other hand, philosophers such as Craig
Callender (2000) and David Albert (2000) have claimed that the Schrödinger
equation should actually be considered as nontime-reversal invariant, since
it is not invariant under T , which more fairly represents what one means
by “reversing the direction of time.” Without any further ado, Jill North
claims:

What is a time-reversal transformation? Just a flipping of the direction of time! That is all
there is to a transformation that changes how things are with respect to time: change the
direction of time itself.

(North 2009: 212)

For these philosophers, if the time-reversal invariance of a theory will tell us
something about the structure of time, time reversal should only reverse the
direction of time without extra additions. In particular, if the question at issue is
the problem of the arrow or time and the time-reversal invariance of the theory is
considered relevant to this problem, imposing the time-reversal invariance of the
Schrödinger equation as a requirement that the theory must satisfy is a circular
strategy.

14.4.4 Wigner’s Definition

The line of argumentation sketched in the previous section seems to be not
completely convincing for adopting the antiunitary operator T∗ as the adequate
representation of time reversal. Yet a thorough argument can be introduced by
appealing to the authority of Eugene Wigner, who defines time reversal as a
transformation such that:

The following four operations, carried out in succession on an arbitrary state, will result in
the system returning to its original state. The first operation is time inversion, the second
time displacement by t, the third again time inversion, and the last on again time
displacement by t.

(Wigner 1931/1959: 326)

In other words,

time reversal � displacement by Δt � time reversal � displacement by Δt = identity

This requirement is commonly interpreted in formal terms as follows:

UΔt θ
�1UΔt θ s ¼ s (14.21)

where s is the arbitrary state and UΔt is the evolution operator for Δt. This
requirement is precisely Sakurai’s starting point in the argument that led him to
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the conclusion stated previously. Under the assumption that the evolution oper-
ators form a group (an assumption that is not always satisfied, see Bohm and
Gadella [1989], where the time evolution is represented by a semigroup), a U�Δt

exists such that U�Δt UΔt ¼ I. In this case, Eq. (14.21) becomes

θ�1UΔt θ s ¼ U�Δt s (14.22)

In quantum mechanics, the argument continues, UΔt ¼ e�iHΔt:

θ�1e�iHΔt θ φj i ¼ eiHΔt φj i (14.23)

Therefore,

θ�1 �iHð Þθ ¼ iH (14.24)

So, when θ is the unitary operator T , this leads to

�H ¼ THT�1 (14.25)

which is unacceptable because it leads to values of energy that are unbounded from
below. Since Wigner (1931/1959) also proved that any symmetry transformation is
represented by a unitary or an antiunitary operator, the argument concludes that the
right time-reversal operator is the antiunitary operator T∗.

This argument in favor of T∗ is certainly much better than the previous one,
which takes the time-reversal invariance of the Schrödinger equation as one of the
premises. Nevertheless, as we will see, this second argument imposes the time-
reversal invariance of the dynamical equation beforehand as well, even if in a more
subtle way.

Let us begin by noticing that, when Eq. (14.21) is used to formalize Wigner’s
requirement, the “displacement by Δt” is represented by the time evolution of the
system by Δt according to the dynamical law of the theory – the Schrödinger
equation, here expressed as s ¼ UΔt s0. However, as stressed in Section 14.3.4,
when considering the Galilean group, time displacement is not time evolution.
Time evolution is ruled by the dynamical law of the theory, in this case quantum
mechanics: According to the Schrödinger equation, the Hamiltonian is the gener-
ator of the dynamical evolution. By contrast, spacetime transformations are
purely geometric operations of displacing or rotating the system self-congruently.
In particular, time-displacement is a purely geometric operation that displaces the
system self-congruently to another time, and may agree or not with time evolu-
tion. In fact, as Hans Laue (1996) and Leslie Ballentine (1998) stress, in a generic
case, the Hamiltonian is not the generator of time displacements and only retains
its role as the generator of the dynamical evolution. This clearly shows that
time displacement and time evolution are different concepts. Hence, insofar as
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Wigner’s definition involves time displacement and not time evolution, it must be
formally expressed as (recall how Galilean transformations act upon states,
Eq. (14.5))

Uτ θ
�1Uτ θ s ¼ eiKτΔt θ�1eiKτΔt θ s ¼ s (14.26)

where Kτ is the generator of time-displacement (see Eq. (14.3)). Now, since U�τ

exists such that U�τUτ ¼ I, an analogue of Eq. (14.23) can be obtained:

θ�1eiKτΔt θ φj i ¼ e�iKτΔt φj i (14.27)

where the difference in sign between Eq. (14.27) and Eq. (14.22) is due to the
inverse relation between transformations on function space and transformations on
coordinates (see Ballentine 1998: 67). Eq. (14.27) expresses what time reversal
means: It should be a transformation such that

time reversal � displacement by Δt � time reversal = displacement by �Δt

More explicitly, take an arbitrary state, time-reverse it, time-displace it by Δt in a
given time-displacement direction, and time-reverse it again; these three operations
must be equivalent to time-displace the original state the same time interval Δt in
the opposite time-displacement direction. Eq. (14.27) represents formally this
condition, but no conclusion about how the Hamiltonian is transformed by time
reversal can be drawn from it.

Even if accepting the conceptual difference between time displacement and time
evolution in Wigner’s definition of time reversal, somebody might retort by saying
that there are cases in which time displacement amounts to time evolution: as
discussed in Section 14.3, in those cases the generator Kτ of time displacement is
equal to the generator H of time evolution. If Kτ is replaced by H in Eq. (14.27),
when θ is the unitary operator T the relation �H ¼ THT�1 of Eq. (14.25) obtains
again, and this is sufficient to discard the unitary operator T as the adequate
representation of time reversal.

Although the argument just discussed seems to be conclusive, when con-
sidered in detail, the implicit assumptions come to light. In fact, the argument
equates time displacement and time evolution, both in the case of Δt and in the
case of �Δt. We have good empirical reasons to accept that, in certain cases, the
time displacement toward the future by Δt is equivalent to the time evolution
given by UΔt ¼ e�iHΔt. But we do not know how the system would evolve in
time toward the past, as we have no experience at all of such an evolution; this is
the specific feature that makes time so different than space. If we impose that,
when time displacement is time evolution toward the future, this is the case
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toward the past too, then we are introducing the time-reversal invariance of the
dynamical law by hand.

In other words, the question about the time-reversal invariance of a law is
precisely the question of whether the time displacement of the system toward the
past is also ruled by the dynamical law, that is, whether it is also a time evolution. If
the answer is positive, the law is time-reversal invariant, if the answer is negative, the
law is not time-reversal invariant. Therefore, supposing from the very beginning that
any time displacement toward the past is a dynamical evolution amounts to putting
the cart before the horse.

But, then, what do Eq. (14.21) and Eq. (14.22) mean? Actually, those equations
express the conditions that define what can be called motion reversal:

motion reversal � evolution by Δt � motion reversal � evolution by Δt = identity

motion reversal � evolution by Δt � motion reversal = evolution by �Δt

To put it precisely, the motion-reversal operator is the operator that reverses the
direction of a lawful motion of the system so as to obtain another lawful motion.
Then, the argument that, starting by Eq. (14.21), concludes with discarding the
unitary operator T is a proof of the fact that the antiunitary operator T∗ is the right
motion-reversal operator for quantum mechanics.

Even though the difference between motion reversal and time reversal has not
been sufficiently stressed, it is acknowledged by some authors. For example,
Ballentine clearly states:

In the first place, the term “time reversal” is misleading, and the operation that is the
subject of this section would be more accurately described as motion reversal. We shall
continue to use the traditional but less accurate expression “time reversal”, because it is so
firmly entrenched.

(Ballentine 1998: 377; italics in original)

Sakurai also emphasizes the point just at the beginning of the section devoted to
time reversal:

In this section we study another discrete symmetry operator, called time reversal. This is a
difficult topic for the novice, partly because the term time reversal is a misnomer; it reminds
us of science fiction. Actually what we do in this section can be more appropriately
characterized by the term reversal of motion. Indeed, that is the terminology used by
E. Wigner, who formulated time reversal in a very fundamental paper written in 1932.

(Sakurai 1994: 266; bold and italics in original)

Summing up, it is quite clear that the antiunitary operator T∗ is the motion-reversal
operator in quantum mechanics. But the initial question still remains: which is the
right quantum time-reversal operator?
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14.5 Conclusions

In this chapter we have focused on the spacetime symmetries of quantum mechan-
ics under the assumption that exploring the meaning of those symmetries is
relevant to the interpretation of the theory.

In the first part, we have considered the behavior of nonrelativistic quantum
mechanics under the Galilean group. We have shown that the Schrödinger equa-
tion is always covariant under the Galilean group, but its Galilean invariance can
only be guaranteed when it is applied to a closed system free from external fields.
We have also discussed the relevance of symmetries to interpretation; in particular,
any realist interpretation that intends to select a Galilean-invariant set of definite-
valued observables should make that set to depend on the Casimir operators of the
Galilean group, since they are invariant under all the transformations of the group.
In future works, these conclusions can be extended in two senses. On the one hand,
they can be transferred to quantum field theory by changing the symmetry group
accordingly: The definite-valued observables of a system in quantum field theory
would be those represented by the Casimir operators of the Poincaré group. Since
the mass operator M and the squared-spin operator S2 are the only Casimir
operators of the Poincaré group, they would always represent definite-valued
observables, a view that stands in agreement with a usual physical assumption in
quantum field theory. On the other hand, if invariance is a mark of objectivity,
there is no reason to focus only on spacetime global symmetries. Internal or gauge
symmetries should also be considered as relevant in the definition of objectivity
and, as a consequence, in the identification of the definite-valued observables of
the system.

In the second part of the chapter, we have carefully disentangled the different
notions involved in the issue of the time-reversal invariance of the Schrödinger
equation. We have assessed the usual claim about the matter, according to which
the Schrödinger equation is time-reversal invariant and the quantum time-reversal
operator is antiunitary. We have argued that the antiunitary operator is actually a
motion-reversal operator and that the question about the right time-reversal oper-
ator in quantum mechanics is still an open question. Those who think that time is
ontologically independent of and prior to the processes in it will stress the
difference between time reversal and motion reversal and, consequently, may tend
to prefer a time-reversal operator that only flips the direction of time. Others, by
contrast, may claim that the very concept of time as independent of motion has no
meaning. From this relationalist-like view, distinguishing between time reversal
and motion reversal as different operations makes no sense and, as a consequence,
the right time-reversal operator is necessarily a motion-reversal operator. This
shows that the question about the time-reversal invariance of quantum mechanics
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involves deep issues about the very nature of time. But the further development of
this aspect of the problem will be the subject of future work.
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